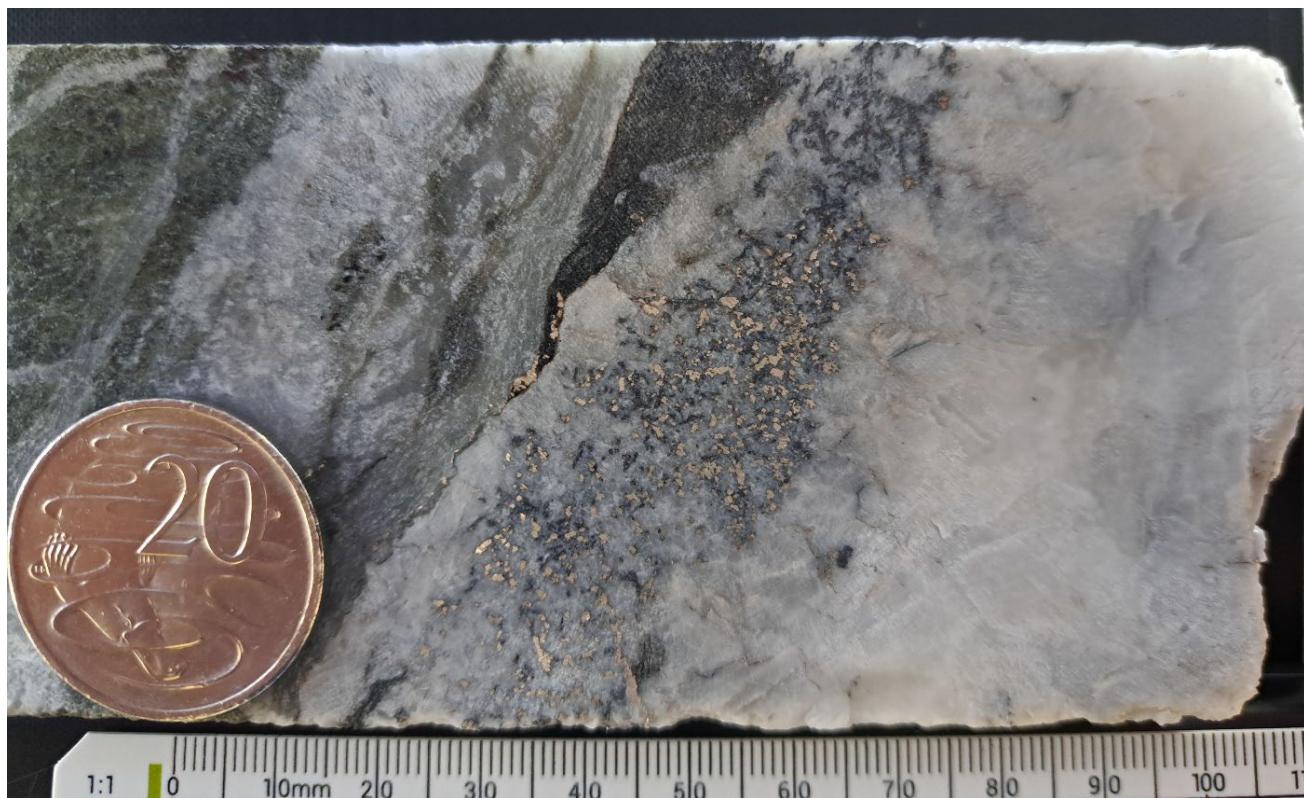


27.4m @ 1,314 g/t Silver Drilled at Elizabeth Hill

Bonanza Silver Grades up to 33,107 g/t (1,064 oz/t) over 0.35 m


Highlights

- Native silver intersected in multiple drill holes, with assays returning exceptionally high grades and broad zones of high-grade mineralisation.
- Silver mineralisation in 25WCDD019 highlights exploration opportunities further northwest than any prior drilling, suggesting the mineralised system is still open and may extend significantly along the strike.
- Furthermore, high grade drill results from 25WCDD019 and 25WCDD020 are hosted almost entirely in granite, unlike previous ultramafic dominated mineralisation, encouraging further exploration to the west of the main mineralised zone.

Hole ID	Length (m)	Ag (g/t)	Ag (oz/t)	From (m)
25WCDD014	27.4	1,314	42	49
<i>including</i>	4.15	3,677	118	52.85
<i>included within</i>	0.4	16,291	524	53.7
<i>and included within</i>	0.9	5,290	170	54.1
<i>and including</i>	0.28	5,660	182	66.15
<i>and including</i>	2.4	7,288	234	74
<i>Included within</i>	0.35	33,107	1,064	74.6
<i>and included within</i>	0.25	17,534	564	74.95
25WCDD019	22	578	19	6
<i>including</i>	0.9	9,070	292	9
25WCDD020	25.8	151	5	20
<i>including</i>	0.63	1,590	51	27.37
25WCDD022	1.95	1,252	40	54.6
<i>including</i>	1.2	1,894	61	54.6

Note: Lengths are down hole lengths not true widths; 1 oz = 31.1035g; results rounded to nearest whole number

- Results strengthen confidence in a laterally extensive, high-grade silver system and validate historical results.
- Assay results for 76 aircore drill holes for 1,060m completed in November 2025, expected mid-February 2026, with follow-up drilling planned.

Photo 1: Photograph of sectioned and preserved half HQ3 drill core (25WCDD014) at 75.05m to 75.15m. This drill core shows 2mm to 4mm grains of native silver hosted within and adjacent to 5cm thick carbonate vein in an ultramafic host rock.

West Coast Silver Limited (ASX: WCE) ('West Coast Silver' or the 'Company') is pleased to advise assay results for diamond drill program (13 holes for 1,015.25m: 25WCDD013-025) have been received from the Phase 2 diamond drilling program at the Elizabeth Hill Joint Venture Project (WCE 70%, Alien Metals 30%) ('Elizabeth Hill') near Karratha, Pilbara region of Western Australia (Figure 1, Figure 3).

Executive Director Bruce Garlick commented:

The Board is very encouraged by the results delivered from this Phase 2 drilling program at Elizabeth Hill. The confirmation of multiple near-surface and bonanza-grade silver intersections reinforces Elizabeth Hill's standing as one of Australia's highest-grade silver projects.

*Of particular significance is the extension of high-grade mineralisation beyond the previously drilled footprint. **High-grade silver intersected in drill hole 25WCDD019 further toward the northwest highlights the potential for the mineralised system to extend well beyond existing drilling, clearly indicating that the Elizabeth Hill trend remains open.***

*In addition, the intersection of long intervals of mineralisation in **25WCDD019 (22.0m @ 578g/t Ag)** and **25WCDD020 (24.8m @ 151g/t Au)**, predominately intersected in the hanging wall granite is highly important for further exploration as mineralisation of this **magnitude has not previously recognised this far into the granite, opening up the likelihood of further granite hosted mineralisation.***

The latest drilling has increased confidence in the scale potential of the silver mineralised system at Elizabeth Hill. The Board looks forward to updating shareholders as the Company advances the Project through the next phase of exploration in 2026.

DRILLING RESULTS

Nine of the 13 diamond drill holes intersected significant high-grade silver mineralisation. The highest-grade intersection was returned from drill hole **25WCDD014**:

- **27.4m @ 1,314g/t Ag (42 oz/t)** from 49m, including multiple bonanza-grade intervals.

Photo 1 demonstrates the distribution and form of silver mineralisation in drill hole 25WCDD014.

Further intervals of native silver identified in **25WCDD014** drill core (Photos 2 to 4 and WCE ASX Announcement dated 5 November 2025). The significant high-grade silver intersections include:

- **4.15m @ 3,677g/t Ag (118 oz/t)** from 52.85m down hole including **0.4m @ 16,291g/t Ag (524 oz/t)** from 53.70m and **0.9m @ 5,290g/t Ag (170 oz/t)** from 54.10m.
- **0.28m @ 5,660g/t Ag (182 oz/t)** from 66.15m down hole.
- **2.4m @ 7,288g/t Ag (234 oz/t)** from 74.00m down hole including **0.35m @ 33,107g/t Ag (1,064 oz/t)** from 74.6m and **0.25m @ 17,534g/t Ag (564 oz/t)** from 74.95m.

Drill hole 25WCDD014 intersected native silver in veins and stockworks and terminated in historical mine workings (Figure 1 and 2). The bonanza-grade results provide insight into the grades historically mined at Elizabeth Hill and indicate the presence of additional high-grade silver mineralisation beyond that previously interpreted from historical drilling.

Drill hole **25WCDD019** intersected a broad zone of near-surface silver mineralisation:

- **22.0m @ 578g/t Ag (19 oz/t) from 6m**, including **0.9m @ 9,070g/t Ag (292 oz/t)**

This hole was drilled on the northernmost drill line and intersected mineralisation further west than previously tested, suggesting a change in strike of the Munni Munni fault and indicating that mineralisation remains open to the northwest.

Drill hole **25WCDD022** intersected high-grade silver mineralisation, returning:

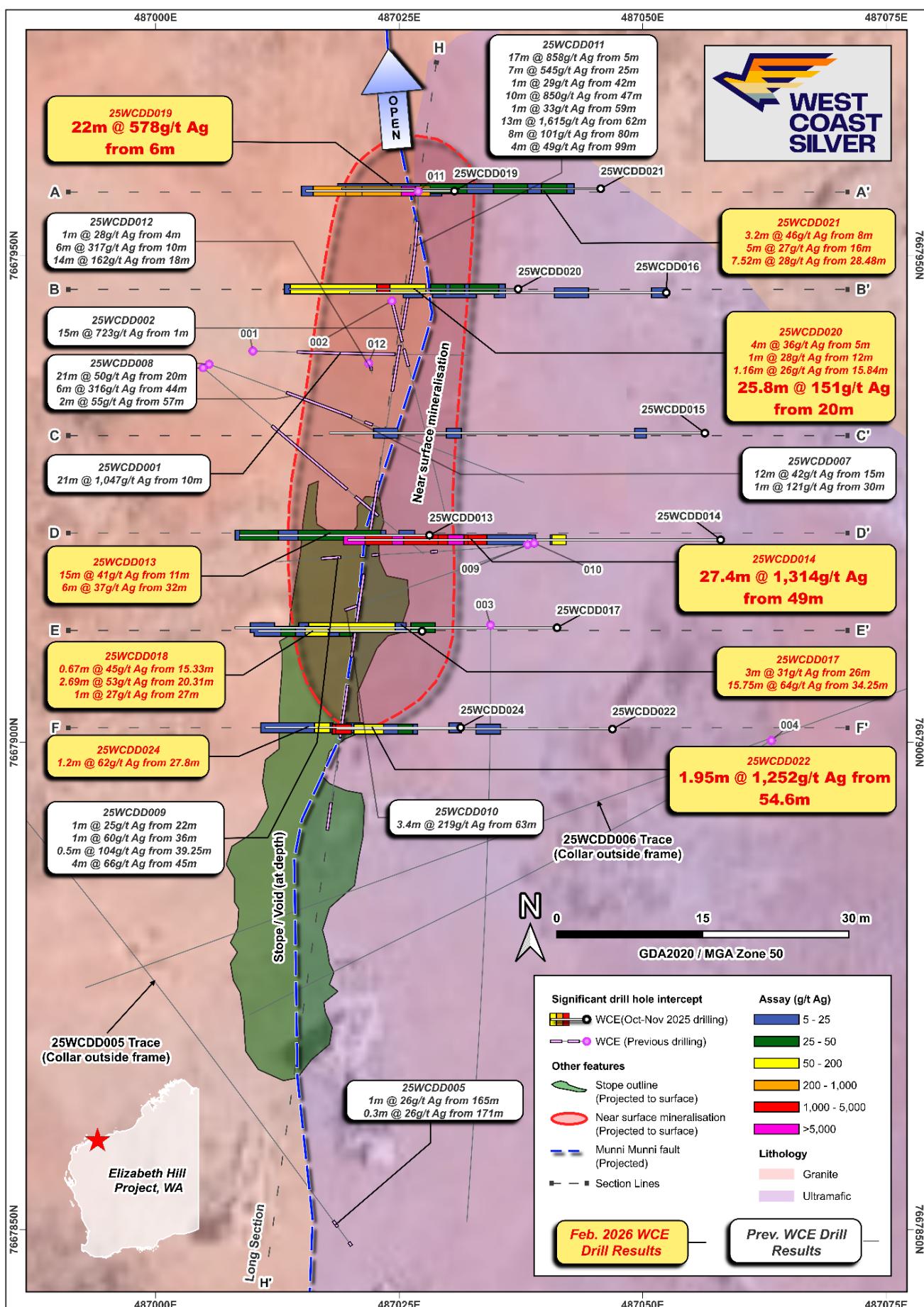
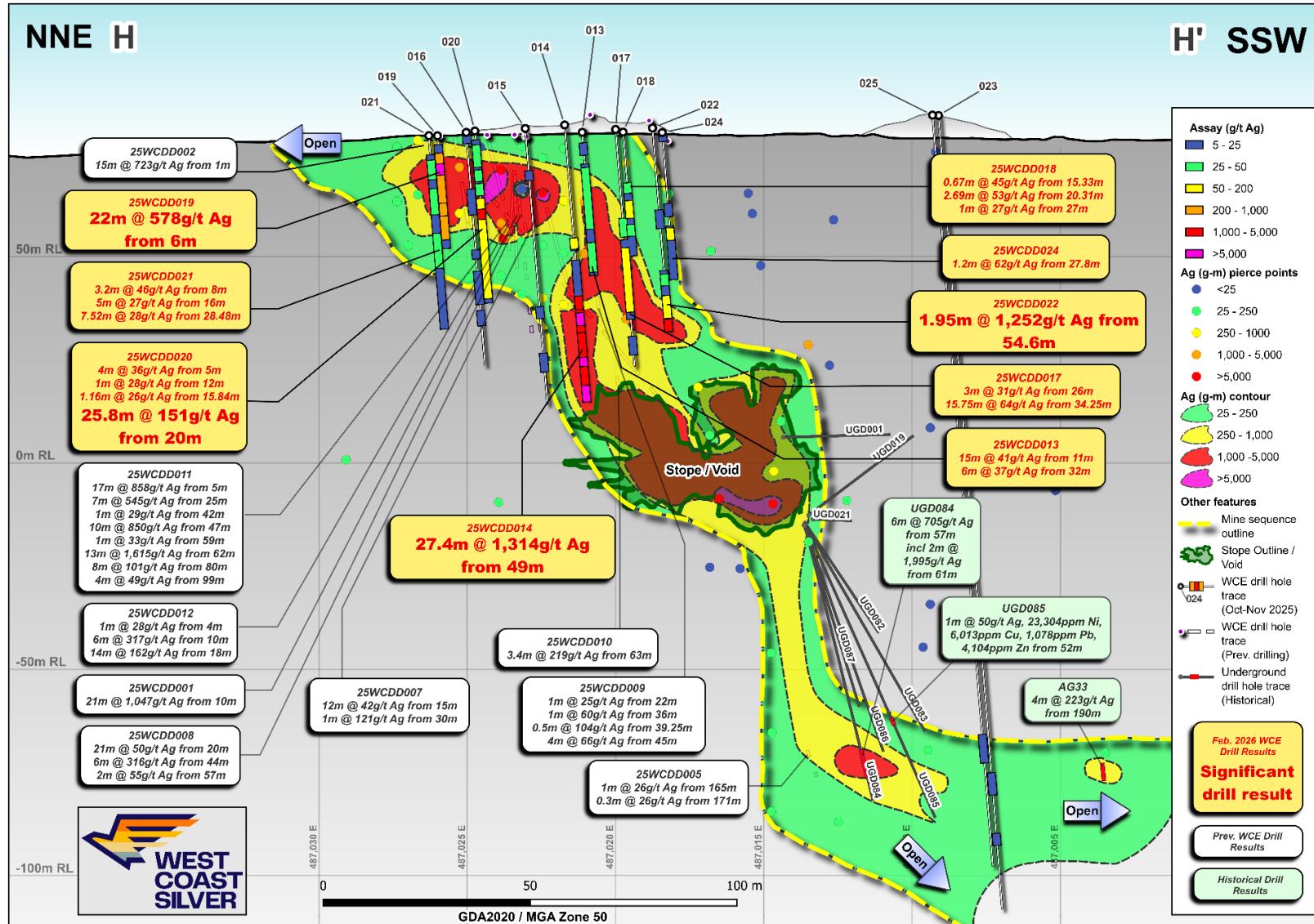
- **1.95m @ 1,252g/t Ag (40 oz/t) from 54.6m**, including **1.20m @ 1,894g/t Ag (61 oz/t)**

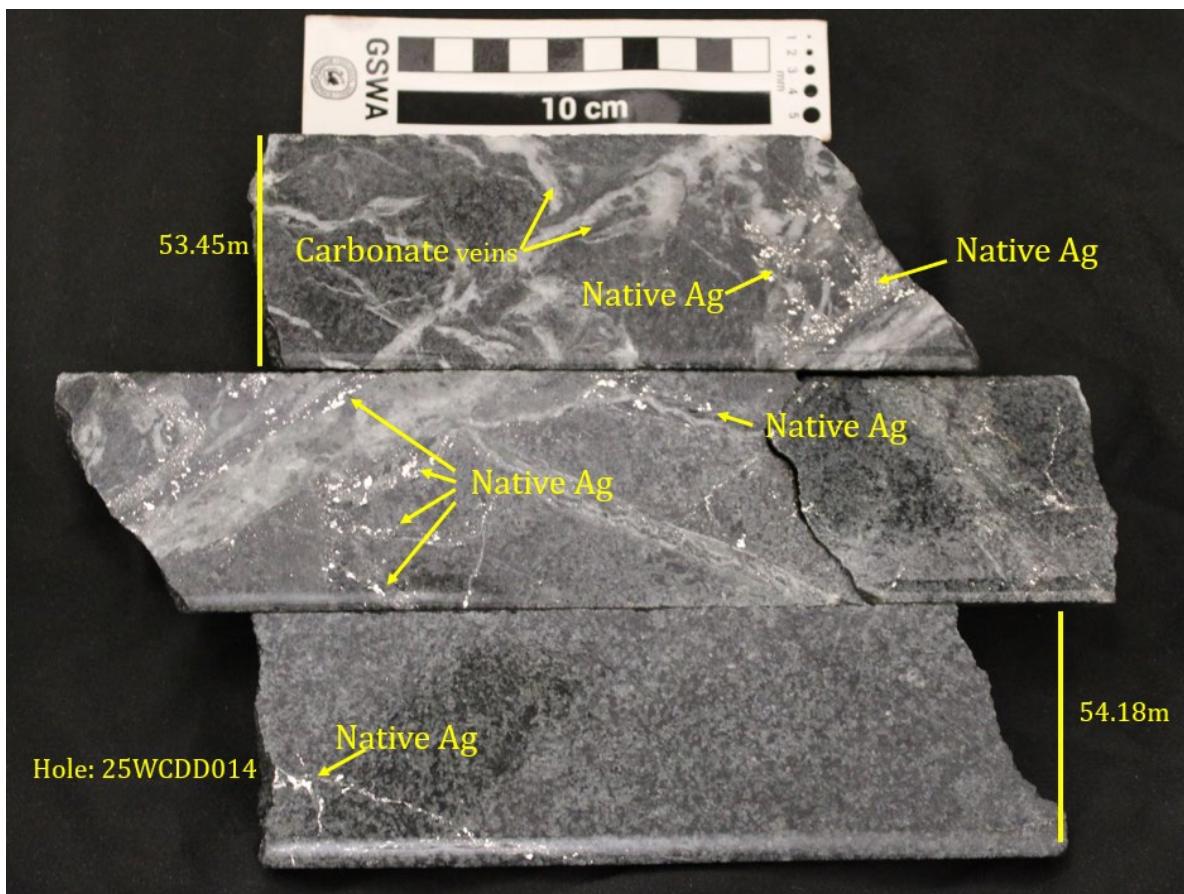
Mineralisation in 25WCDD022 was associated with sulphide-bearing carbonate veins in ultramafic rocks adjacent to historical stopes.

ASX:WCE ANNOUNCEMENT

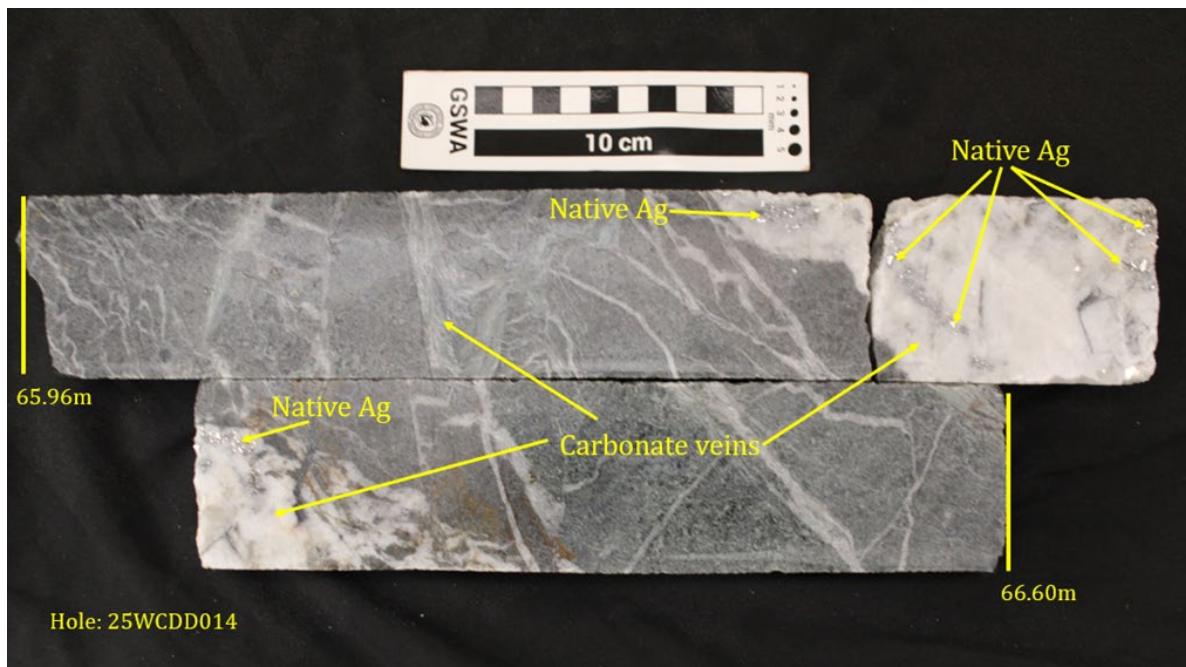
4 February 2026

For personal use only

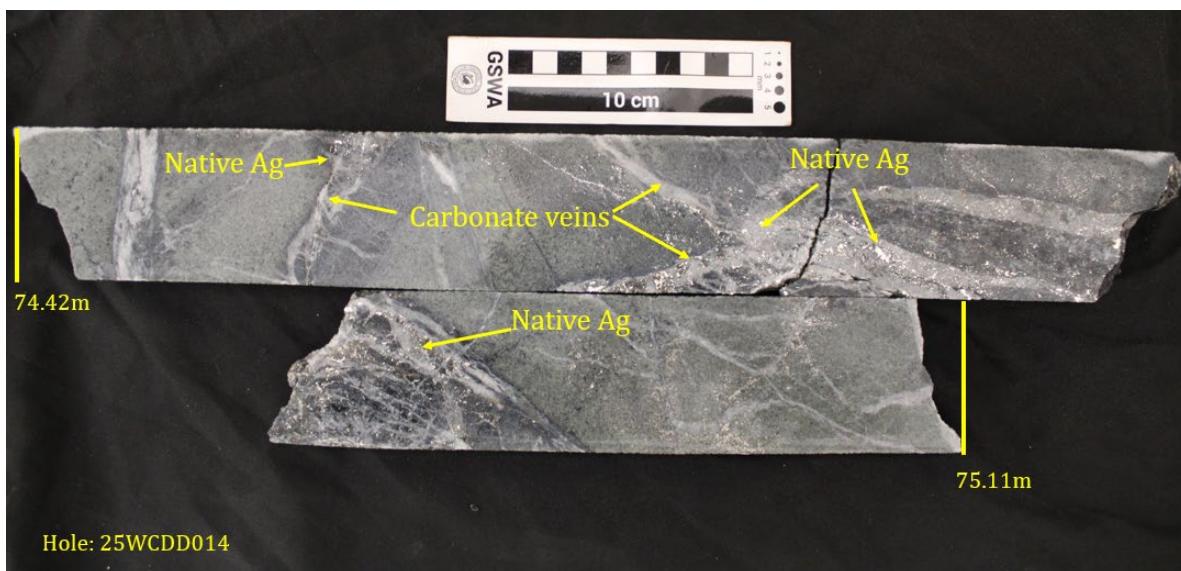




Figure 1: Location of significant silver intercepts in Phase 1 and 2 Elizabeth Hill 2025 diamond drill holes

For personal use only


Figure 2: Long section highlights the southerly plunge of silver mineralization from gram-metre plot (grade g/t Ag x intercept m's) of all drilling results. Elizabeth Hill silver deposit highlighting the significant assay drill results. Note: Phase 2 diamond drill hole traces (25WCDD013-025) are shown in their entirety and are projected onto the long section plane.

For personal use only


Photo 2: Photograph of cut half HQ3 drill core (25WCDD014) from 53.45m to 54.18m showing 2mm to 4mm grains of native silver hosted within and adjacent to 1cm to 3cm thick carbonate veins in an ultramafic host rock.

Note: Intervals shown in the photo are contained within the assay intervals in the text above, but do not show the entire interval.

Photo 3: Photograph of cut half HQ3 drill core (25WCDD014) from 65.96m to 66.60m showing 1% visually estimated, 2mm to 3mm long native silver grains hosted in and adjacent to 1cm to 10cm thick carbonate veins in an ultramafic host rock.

Note: Intervals shown in the photo are contained within the assay intervals in the text above, but do not show the entire interval.

Photo 4: Photograph of cut half HQ3 drill core (25WCDD014) from 74.42m to 75.11m showing 1% visually estimated, 2mm to 4mm long native silver grains hosted within and adjacent to 1cm to 3cm thick carbonate veins in an ultramafic host rock.

Note: Intervals shown in the photo are contained within the assay intervals in the text above, but do not show the entire interval.

EXPLORATION IMPLICATIONS

The drilling has confirmed extensive high-grade silver mineralisation close to surface and immediately above historical mine workings. The results support West Coast's interpretation that the southerly plunge of silver mineralisation broadens as it flattens and approaches surface, creating additional near-surface targets for further exploration (Figure 2).

High-grade silver intercepts in drill hole 25WCDD019 represent the most north-westerly mineralisation intersected to date. The change in the strike of mineralisation corresponds with an interpreted change in the direction of the Munni Munni fault, indicating the mineralised trend remains open to the northwest and may host additional high-grade silver mineralisation.

The consistency of high-grade results validates historical drilling and provides confidence to expand exploration beyond the historically mined areas.

NEXT STEPS

Following the high-grade results intersected in the 2025 diamond drilling programs (Phase 1 and 2), the Company will progress exploration at Elizabeth Hill in a structured and disciplined manner.

- **Results from the 76-hole (1,060m) aircore drill program** completed in November 2025. Pending results are expected in mid-February 2026. It is anticipated the results will further refine targets for near-surface silver mineralisation and prioritising follow-up RC and diamond drilling.
- **Detailed geological and structural review** of all 2025 drilling data, including the interpreted change in strike and plunge of mineralisation, particularly the newly identified targets in the northwest of the Elizabeth Hill Project. Planning of follow-up drilling, subject to results and approvals, targeting near-surface and near-mine extensions of known mineralisation.
- **Further drilling planned** targeting on:
 - extensions of high-grade mineralisation along strike and at depth.
 - near-mine targets adjacent to historical workings.
 - priority targets identified from aircore drilling and the new geological reinterpretation.
- **Surface and down-hole geophysical surveys** to improve targeting and support drill planning during 2026.
- **JORC Mineral Resource Estimate and economic study of near surface mineralisation** being undertaken to support ongoing evaluation of a development pathway.

About The Elizabeth Hill Project

Elizabeth Hill is historically one of Australia's highest grade silver projects and has a proven production history outlined below:

- **High grades enabled low processing tonnes:** 1.2Moz of silver was produced from just 16,830t of ore at a head grade of 2,194g/t (70.5 oz/t Ag)¹.
- **Previous mining operation ceased in 2000:** because of low silver prices (US\$5)².
- **Simplistic historical processing technique: native silver** was recovered via **low-cost** gravity separation techniques.
- **Untapped potential remains** in ground with deposit open at depth and recent consolidation of land package offers potential to discover more Elizabeth Hill style deposits.
- **Tier 1 Mining Jurisdiction located on a mining lease** with potential processing option at the nearby Radio Hill site. Radio Hill is a **third party-owned** processing facility; WCE has **no current agreement in place**.

Through the consolidation of the surrounding land packages into a single contiguous 180km² package significant exploration and growth potential exists both near mine and regionally. The land package holds a significant portion of the Munni Munni fault system, and other fault systems subparallel to the Munni Munni fault system, which are considered prospective for Elizabeth Hill look-a-like silver deposits.

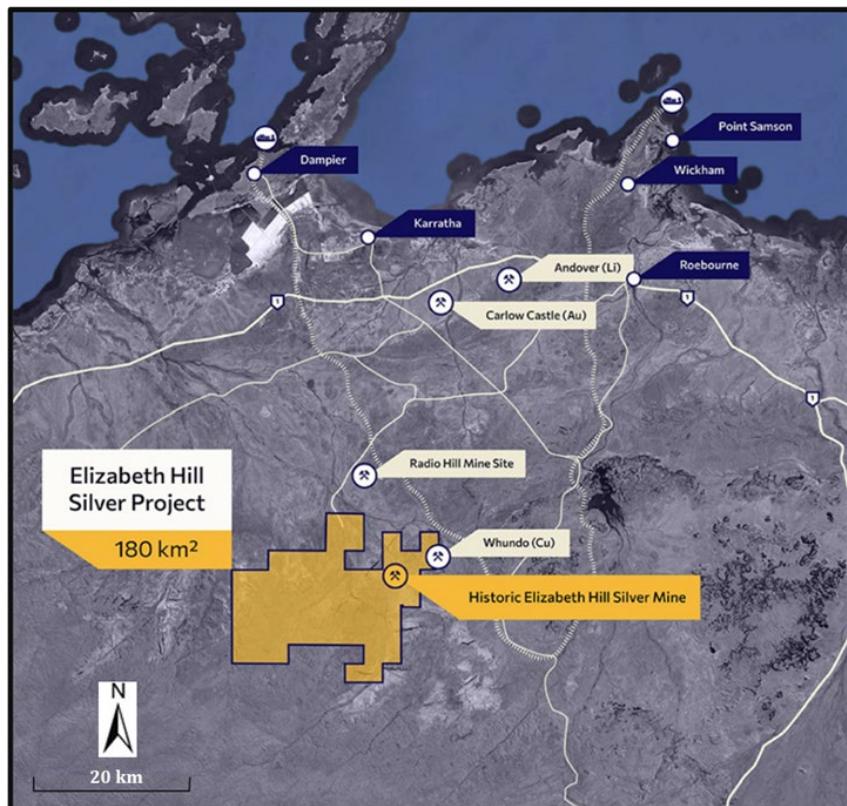


Figure 3: Elizabeth Hill Project Tenement Location

¹ WAMEX Annual Report, 1 April 2014 to 31 March 2015, Elizabeth Hill Silver Project, Global Strategic Metals NL, p16
² www.kitco.com/charts/silver

This ASX announcement has been authorised for release by the Board of Directors of West Coast Silver Limited. For further information, please contact:

Bruce Garlick
Executive Director
West Coast Silver Limited
E: info@westcoastsilver.com.au

Competent Person Statement

The information in this announcement that relates to Exploration Results is based on information reviewed by Mr Max Nind who is a Member of the Australian Institute of Geoscientists. Mr Nind is a consultant to West Coast Silver and a full-time employee of ERM Australia Consultants Pty Ltd.

Mr Nind has sufficient experience that is relevant to the style of mineralisation and type of deposits under consideration, and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves', and a Specialist under the VALMIN Code 2015 Edition of the 'Australasian Code for Public Reporting of Technical Assessments and Valuations of Mineral Assets'. Mr Nind consents to the inclusion in the announcement of the matters based on this information and in the form and context in which it appears.

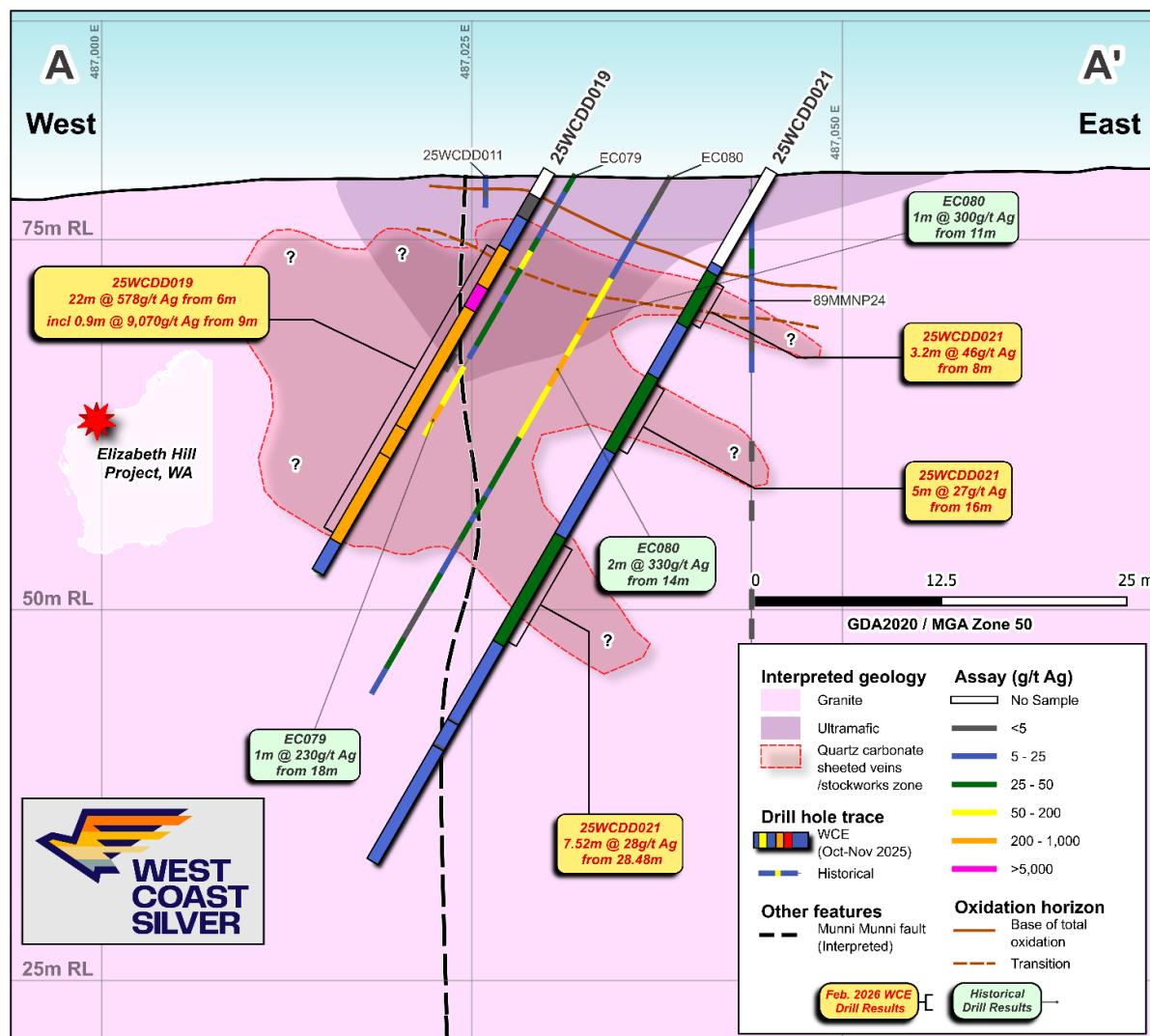
Forward-Looking Statements

Statements in this announcement which are not statements of historical facts, including but not limited to those relating to the proposed transaction, are forward-looking statements. These statements instead represent management's current expectations, estimates and projections regarding future events. Although management believes the expectations reflected in such forward-looking statements are reasonable, forward-looking statements are based on the opinions, assumptions and estimates of management at the date the statements are made and are subject to a variety of risks and uncertainties and other factors that could cause actual events or results to differ materially from those projected in the forward-looking statements.

Accordingly, investors are cautioned not to place undue reliance on such statements.

For personal use only

CROSS SECTIONS


Drill Holes 25WCDD019 and 25WCDD021

Drill holes 25WCDD019 and 25WCDD021 were designed to test near surface mineralisation at the ultramafic-granite contact where it is intersected by the subvertical Munni Munni Fault (Figures 1, 2 and 4).

Drill hole 25WCDD019 was designed to twin historical reverse circulation percussion (RC) drill hole EC079, intersected silver mineralisation hosted within carbonate veins and iron-oxide rich veinlets, with associated malachite and black sulphide minerals, as previously reported (refer to WCE ASX Announcement dated 5 November 2025). Assay results returned a significant intersection of **22m @ 578g/t Ag** from 6m, including **0.9m @ 9,070g/t Ag** from 9m.

The wide intersection of silver mineralisation in 25WCDD019 within the Munni Munni Fault and its hangingwall validates the silver mineralisation in EC079 and extends it by another 8m down hole beyond the end of historical drilling. The results indicate that mineralisation remains open to the northwest along a flexure in the Munni Munni fault, with further drilling required to test this interpretation.

Drill hole 25WCDD021 was designed to target mineralisation east and below historical RC hole EC080 (Figure 4). The significant intersections in the drill hole confirm the targeting criteria and include **3.2m @ 46g/t Ag** from 8m, **5m @ 27g/t Ag** from 16m and **7.52m @ 28g/t Ag** from 28.48m.

Figure 4: Cross section A-A' - 2025 drill holes 25WCDD019 and 25WCDD021 and historical drilling assay results. The dip of mineralisation and sheeted vein/stockwork zone may be an apparent dip due to the Munni Munni fault flexing northwest.

Drill Holes 25WCDD016 and 25WCDD020

Drill holes 25WCDD016 and 25WCDD020 were designed to test the interaction of the Munni Munni fault and granite-ultramafic contact in the northern up-plunge position of the Elizabeth Hill mineralisation (Figures 1, 2 and 5). These drill intersections represent the oxidised expression of the deeper native silver and silver sulphide mineralisation.

Drill hole 25WCDD020, drilled to twin historical RC drill hole EC072, intersecting both primary and secondary silver minerals associated with carbonate veins at shallow depth, with silver mineralisation and minor galena and sphalerite within a brecciated, quartz-veined zone. Assay results of **4m @ 36g/t Ag** from 5m, **1m @ 28g/t Ag** from 12m, **1.16m @ 26g/t Ag** from 15.84m, and **25.8m @ 151g/t Ag** from 20m broadly confirm historical results and extend mineralisation to greater depth and further west.

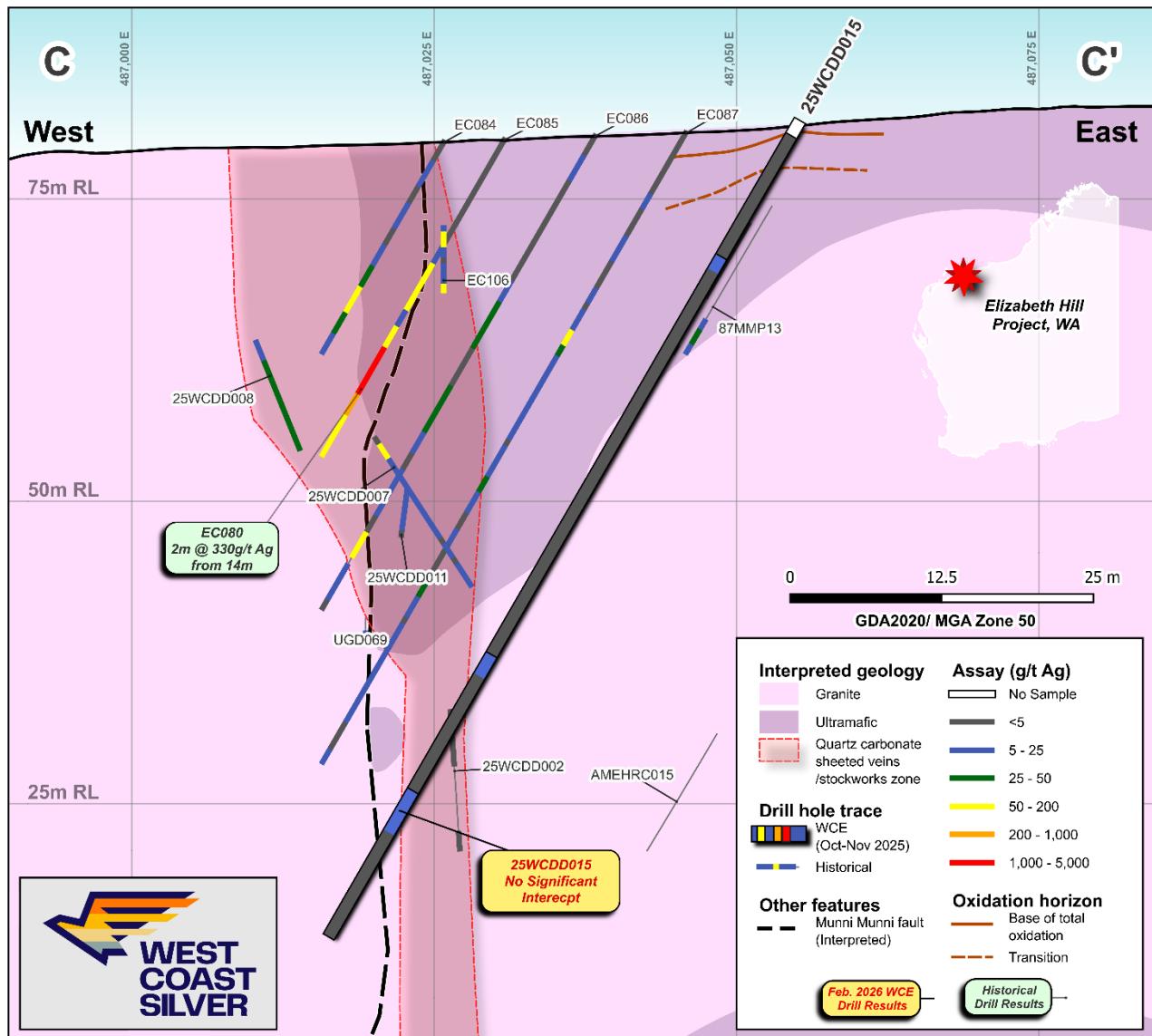
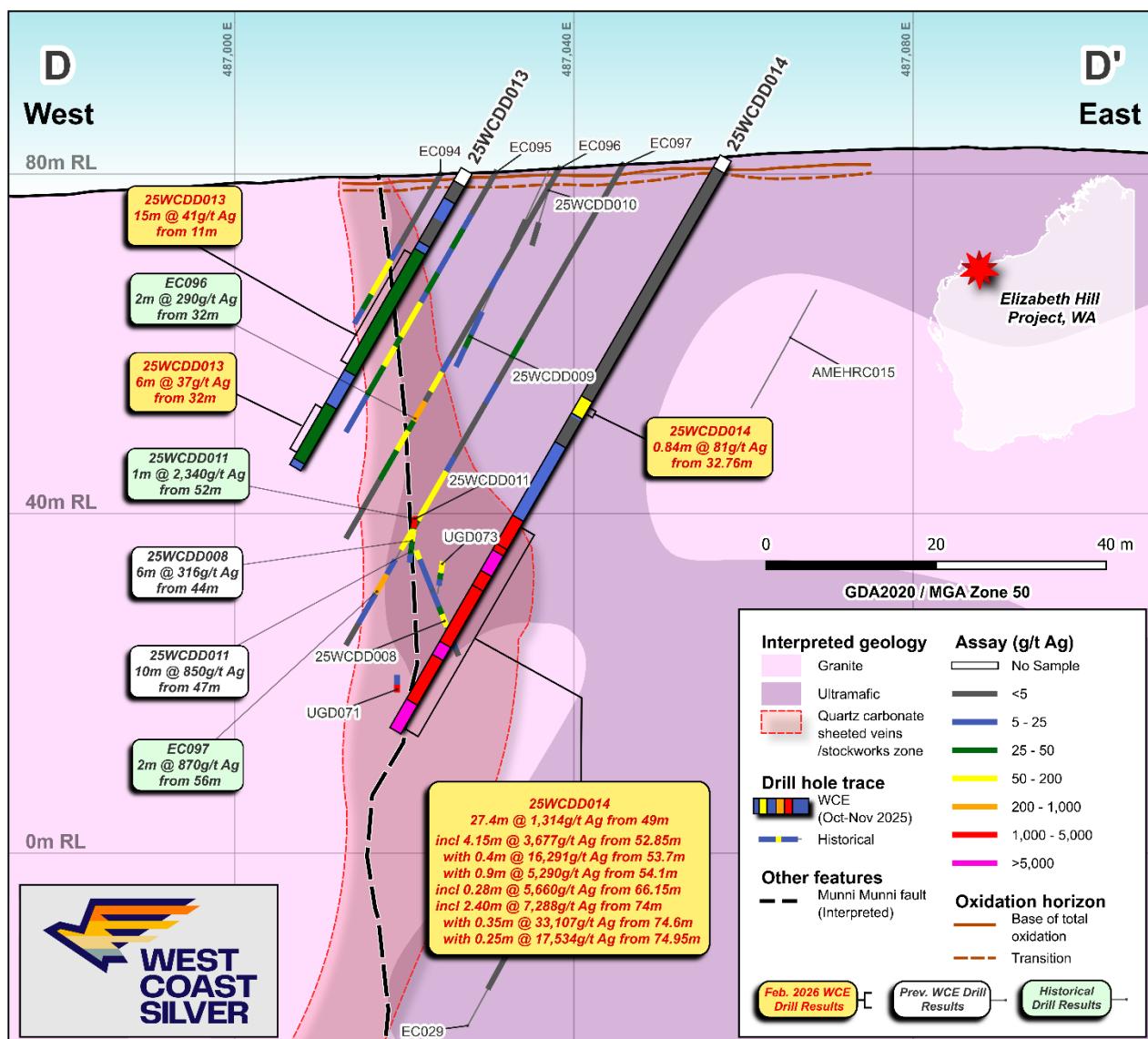

Drill hole 25WCDD016 intersected low-grade silver mineralisation up to 21.9g/t Ag associated with iron oxide minerals in a carbonate matrix (Appendix 3) (WCE ASX Announcement dated 5 November 2025). The Company interprets the main silver mineralisation to plunge to the south, with **25WCDD016** intersecting below the interpreted plunging mineralised zone.

Figure 5: Cross section B-B' - 2025 drill holes 25WCDD016 and 25WCDD020 and historical drilling assay results

Drill Hole 25WCDD015

Drill hole 25WCDD015 was designed to test for down-plunge extensions of high-grade silver mineralisation along the Munni Munni fault (Figure 1, 2 and 6). This drill hole intersected intensely silicified granite within the fault zone and at the ultramafic-granite contact with no significant silver mineralisation intersected. WCE interprets the silver mineralisation in the upper parts of the section plunges to the south, with 25WCDD015 intersected below the interpreted plunging mineralised zone.


Drill Holes 25WCDD013 and 25WCDD014

Drill holes 25WCDD013 and 25WCDD014 targeted the interaction of the Munni Munni fault and granite-ultramafic contact, and mineralisation at the upper portion of the Elizabeth Hill mine sequence (Figures 1, 2 and 7).

Drill hole 25WCDD014 targeted extensions of mineralisation to the east and beneath historical RC drill hole EC097. Geological logging identified three intervals with native silver hosted within and adjacent to carbonate veins, as previously reported (WCE ASX Announcement dated 5 November 2025). These logging observations supported by assay results include:

- **27.4m @ 1,314g/t Ag** from 49m down hole.
 - including **4.15m @ 3,677g/t Ag** from 52.85m.
 - included within **0.4m @ 16,291g/t Ag** from 53.70m and **0.9m @ 5,290g/t Ag** from 54.10m.
 - including **0.28m @ 5,660g/t Ag** from 66.15m.
 - including **2.4m @ 7,288g/t Ag** from 74.00m.
 - included within **0.35m @ 33,107g/t Ag** from 74.6m and **0.25m @ 17,534g/t Ag** from 74.95m.

Drill hole 25WCDD013, drilled as a twin to historical RC drill holes EC094 and EC095, intersected oxidised carbonate-quartz veins and secondary minerals consistent with historical observations. Assay results of **15m @ 41g/t Ag** from 11m down hole and **6m @ 37g/t Ag** from 32.00m down hole confirm the historical drilling results.

Drill Holes 25WCDD017 and 25WCDD018

Drill holes 25WCDD017 and 25WCDD018 were designed to test the ultramafic-granite contact and Munni Munni fault (Figures 1, 2 and 8).

Drill hole 25WCDD017, drilled as a twin to historical RC drill hole EC100, intersected silver mineralisation including trace native silver, occurring as 1mm to 2mm grains at 43.61m within a quartz vein in a late fracture (refer to WCE ASX Announcement dated 5 November 2025). The drill hole intersected **3m @ 31g/t Ag** from 26m down hole, and **15.75m @ 64g/t Ag** from 34.25m down hole validating the historical results in EC100 (Figure 8).

Drill hole 25WCDD018, drilled as twin to historical RC hole EC098, intersected silver mineralisation with galena and jarosite at 21.43m (refer to WCE ASX Announcement dated 5 November 2025) with significant intersections including **0.67m @ 45g/t Ag** from 15.33m down hole, **2.69m @ 53g/t Ag** from 20.31m down hole, and **1m @ 27g/t Ag** from 27m down hole confirming the historical silver mineralisation intersected in EC098 (Figure 8).

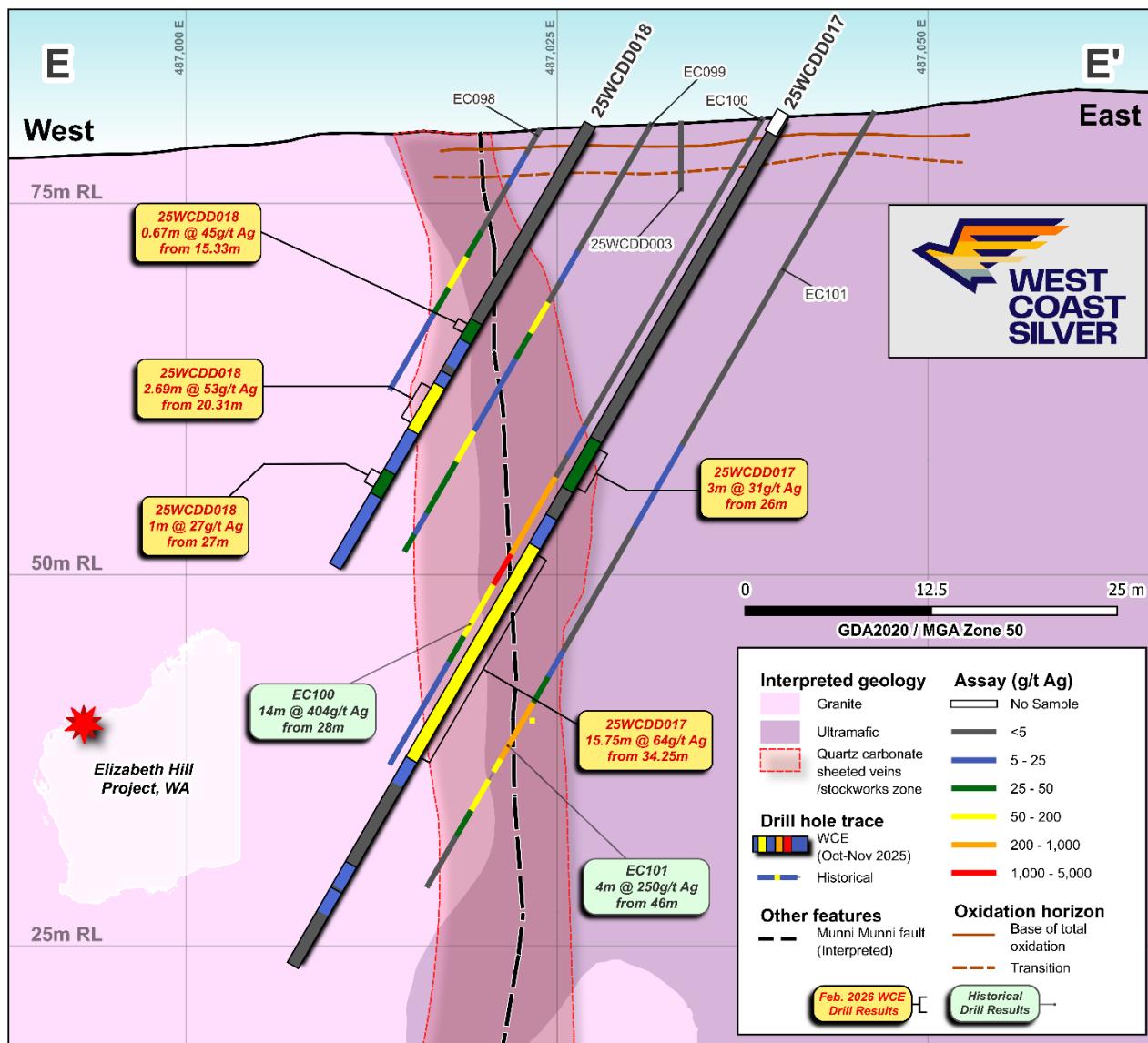


Figure 8: Cross section E-E' - 2025 drill holes 25WCDD017 and 25WCDD018 and historical drilling assay results

Drill Holes 25WCDD022 and 25WCDD024

Drill holes 25WCDD022 and 25WCDD024 were designed to test the vertical ultramafic-granite contact and the Munni Munni fault at Elizabeth Hill (Figure 1, 2 and 9).

Drill hole 25WCDD022 was targeted to twin historical RC drill hole EC105, intersected silver sulphide mineralisation at 54.95m, with silver mineralisation associated with sphalerite between 55.75m and 55.90m. Assay results returned multiple silver intersections including **1m @ 40g/t Ag** from 42m down hole, **4.1m @ 91g/t Ag** from 48m down hole and high-grade intersection of **1.95m @ 1,252g/t Ag** from 54.60m down hole that includes **1.2m @ 1,894g/t Ag** from 54.60m down hole. These results validate the historical silver intersection in EC105.

Drill hole 25WCDD024 drilled as a twin of historical RC hole EC112. No visible silver mineralisation was identified during the logging; however, assay results returned a silver intersection of **1.2m @ 62g/t Ag** from 27.8m down hole, confirming the historical intersection in RC hole EC112.

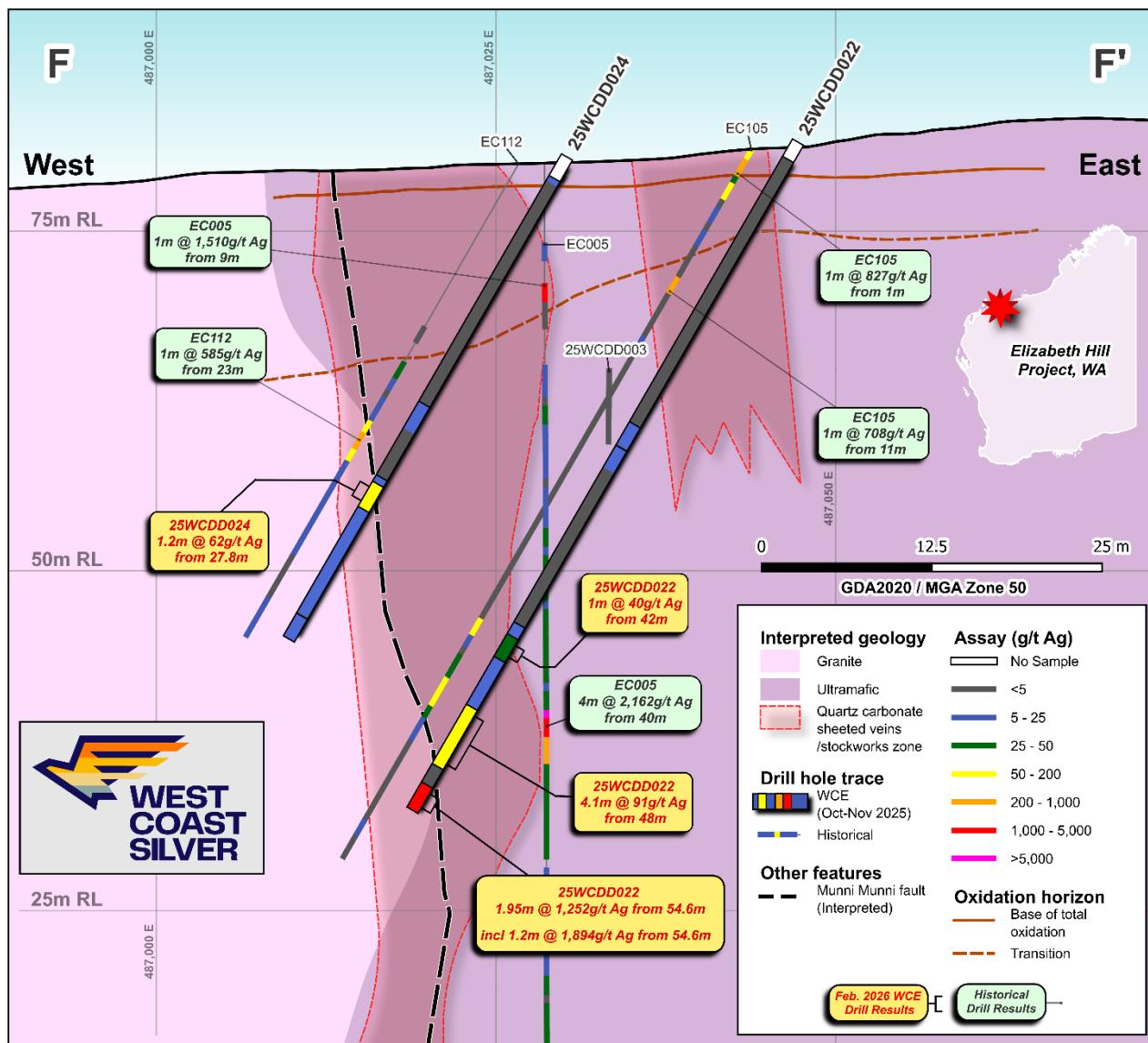
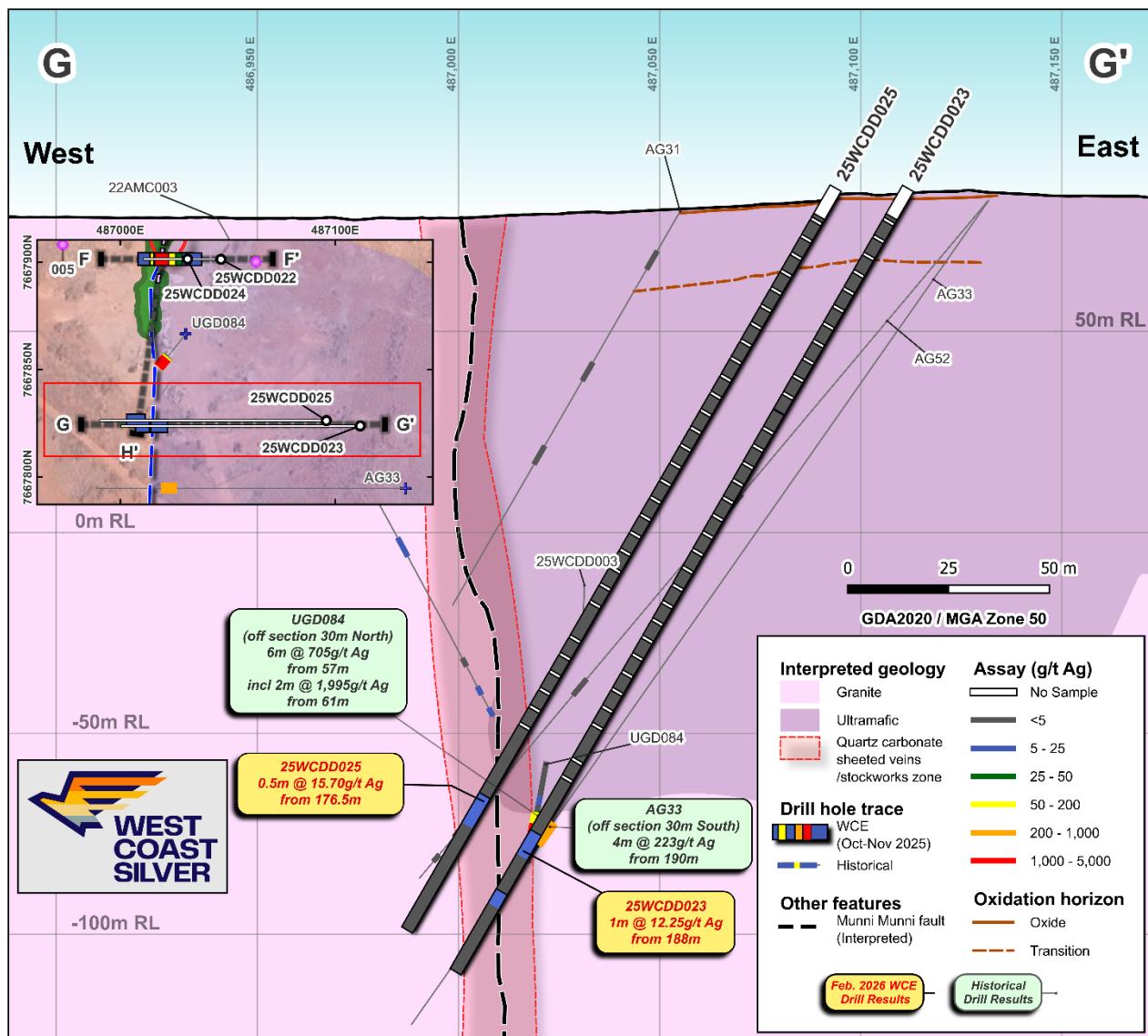


Figure 9: Cross section F-F' - 2025 drill holes 25WCDD022 and 25WCDD024 and historical drilling assay results


Drill Holes 25WCDD023 and 25WCDD025

Drill holes 25WCDD023 and 25WCDD025 were designed to test the ultramafic-granite contact and Munni Munni fault below and to the south of the historical underground workings (Figure 1, 2 and 10).

Drill hole 25WCDD025 intersected an extensive sheeted and stockwork vein system and silicified alteration zone between 174.45m and 208.55m, returning lower grade silver mineralisation up to **15.7g/t Ag**.

Drill hole 25WCDD023 intersected sheeted quartz-carbonate between 195.00m and 202.00m, with silicified alteration of granite intersected between 204.00m and 217.00m. Low-grade silver mineralisation up **12.25g/t Ag** was returned.

The low-grade Ag mineralisation in 25WCDD023 and 25WCDD025 is consistent with the lower grade halo mine sequence peripheral to the high-grade intercept reported in historical diamond drill hole UGD84 (**2m @ 1,995g/t Ag** from 61m down hole).

Figure 10: Cross section G-G' – 2025 drill holes 25WCDD023 and 25WCDD025 and historical drilling assay results

Appendix 1: Drill Hole Collar Details

Drill Hole ID	Easting (m)	Northing (m)	RL (mASL)	Azimuth (°)	Dip (°)	Drilled Depth(m)
25WCDD013	487028.1	7667921.3	86.9	270	-60	38.90
25WCDD014	487058.0	7667920.8	88.7	270	-60	76.40
25WCDD015	487056.4	7667931.8	87.6	270	-60	76.90
25WCDD016	487052.4	7667946.2	86.7	270	-60	64.90
25WCDD017	487041.2	7667911.8	87.6	270	-60	66.00
25WCDD018	487027.4	7667911.4	86.7	270	-60	33.50
25WCDD019	487030.7	7667956.6	86.1	270	-60	30.40
25WCDD020	487037.2	7667946.5	86.3	270	-60	47.00
25WCDD021	487045.7	7667956.8	85.9	270	-60	53.00
25WCDD022	487046.9	7667901.4	87.7	270	-60	56.55
25WCDD023	487111.7	7667823.9	90.4	270	-60	221.80
25WCDD024	487031.3	7667901.5	86.6	270	-60	40.00
25WCDD025	487095.9	7667826.3	89.2	270	-60	209.90

Note: Grid coordinate system is GDA2020 Zone 50

For personal use only

Appendix 2: Significant Silver Intercepts in January 2026

Diamond Drill Holes

Hole	From (m)	To (m)	Interval (m)	Ag (g/t)	Ag (oz/t)	Including	From (m)	To (m)	Interval (m)	Ag (g/t)	Ag (oz/t)
25WCDD013	11	26	15	41	1.3						
25WCDD013	32	38	6	37	1.2						
25WCDD014	32.76	33.6	0.84	81	2.6						
25WCDD014	49	76.4	27.4	1,314	42.2	including	52.85	57	4.15	3,677	118.2
						<i>included within</i>	53.7	54.1	0.4	16,291	523.8
						<i>also included within</i>	54.1	55	0.9	5,290	170.1
						<i>and including</i>	66.15	66.43	0.28	5,660	182.0
						<i>and including</i>	74	76.4	2.4	7,288	234.3
						<i>included within</i>	74.6	74.95	0.35	33,107	1,064.4
						<i>also included within</i>	74.95	75.2	0.25	17,534	563.7
25WCDD017	26	29	3	31	1.0						
25WCDD017	34.25	50	15.75	64	2.1						
25WCDD018	15.33	16	0.67	45	1.4						
25WCDD018	20.31	23	2.69	53	1.7						
25WCDD018	27	28	1	27	0.9						
25WCDD019	6	28	22	578	18.6	including	9	9.9	0.9	9,070	291.6
25WCDD020	5	9	4	36	1.2						
25WCDD020	12	13	1	28	0.9						
25WCDD020	15.84	17	1.16	26	0.8						
25WCDD020	20	45.8	25.8	151	4.9	including	27.37	28	0.63	1,590	51.1
25WCDD021	8	11.2	3.2	46	1.5						
25WCDD021	16	21	5	27	0.9						
25WCDD021	28.48	36	7.52	28	0.9						
25WCDD022	42	43	1	40	1.3						
25WCDD022	48	52.1	4.1	91	2.9						
25WCDD022	54.6	56.55	1.95	1,252	40.3	including	54.6	55.8	1.2	1,894	60.9
25WCDD024	27.8	29	1.2	62	2.0						

Note: 25g/t Ag cut off for significant intercepts

500g/t Ag cut off for very high grade intervals within the significant intercepts

Intervals are down hole lengths not true widths; 1 oz = 31.1035g

Appendix 3: January 2026 Diamond Drill Assay Results

Hole ID	From (m)	To (m)	Interval (m)	Ag (g/t)	Ag (oz/t)	Cu (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
25WCDD013	0.27	1	0.73	4.26	0.137	299.0	660.0	1.9	50
25WCDD013	1	2	1	1.75	0.056	919.0	882.0	2.3	66
25WCDD013	2	3	1	0.40	0.013	593.0	720.0	3.5	76
25WCDD013	3	4.07	1.07	1.56	0.050	489.0	714.0	51.1	98
25WCDD013	4.07	5.29	1.22	5.23	0.168	171.0	786.0	32.4	99
25WCDD013	5.29	6	0.71	0.73	0.023	217.0	949.0	7.0	97
25WCDD013	6	7	1	0.59	0.019	622.0	888.0	5.1	86
25WCDD013	7	7.96	0.96	0.88	0.028	214.0	877.0	10.8	88
25WCDD013	7.96	8.52	0.56	4.51	0.145	191.5	995.0	14.5	73
25WCDD013	8.52	9	0.48	3.18	0.102	207.0	2,550.0	38.7	275
25WCDD013	9	9.39	0.39	3.09	0.099	377.0	4,920.0	119.5	648
25WCDD013	9.39	10	0.61	1.65	0.053	459.0	2,010.0	58.8	219
25WCDD013	10	11	1	16.20	0.521	788.0	1,210.0	102.5	121
25WCDD013	11	12	1	28.60	0.920	680.0	679.0	39.6	76
25WCDD013	12	13	1	31.50	1.013	797.0	858.0	60.0	72
25WCDD013	13	14	1	33.20	1.067	1,220.0	1,040.0	13.5	70
25WCDD013	14	14.86	0.86	37.50	1.206	521.0	770.0	26.0	78
25WCDD013	14.86	16	1.14	124.00	3.987	714.0	802.0	40.5	90
25WCDD013	16	17.11	1.11	68.90	2.215	831.0	703.0	82.0	123
25WCDD013	17.11	18	0.89	17.05	0.548	1,880.0	1,505.0	635.0	459
25WCDD013	18	19	1	31.20	1.003	693.0	424.0	1,305.0	499
25WCDD013	19	19.49	0.49	36.90	1.186	517.0	327.0	1,765.0	751
25WCDD013	19.49	20	0.51	12.05	0.387	2,220.0	1,060.0	5,810.0	2,130
25WCDD013	20	21.18	1.18	28.80	0.926	1,315.0	816.0	3,980.0	2,220
25WCDD013	21.18	22	0.82	19.75	0.635	415.0	361.0	2,510.0	972
25WCDD013	22	23.2	1.2	22.60	0.727	416.0	454.0	3,880.0	1,250
25WCDD013	23.2	24	0.8	45.90	1.476	41.7	32.9	763.0	51
25WCDD013	24	25	1	54.00	1.736	66.3	27.3	620.0	68
25WCDD013	25	26	1	34.50	1.109	37.0	25.2	247.0	59
25WCDD013	26	27	1	17.50	0.563	22.3	17.2	81.7	38
25WCDD013	27	28	1	18.10	0.582	21.1	11.5	59.3	30
25WCDD013	28	28.3	0.3	18.75	0.603	18.2	7.0	69.8	20
25WCDD013	28.3	29	0.7	17.55	0.564	15.5	9.1	42.2	21
25WCDD013	29	30	1	15.55	0.500	63.9	24.0	216.0	75
25WCDD013	30	31	1	15.85	0.510	89.7	28.3	374.0	100
25WCDD013	31	32	1	15.00	0.482	38.9	20.0	108.5	64
25WCDD013	32	33	1	26.40	0.849	14.8	9.0	39.7	20
25WCDD013	33	34	1	27.20	0.874	26.1	4.8	123.5	17
25WCDD013	34	35	1	33.10	1.064	28.2	72.8	106.5	34
25WCDD013	35	36.2	1.2	52.60	1.691	58.8	10.4	324.0	29
25WCDD013	36.2	37	0.8	43.20	1.389	23.6	21.0	40.7	60
25WCDD013	37	38	1	37.40	1.202	24.8	20.6	33.8	61
25WCDD013	38	38.9	0.9	24.50	0.788	41.7	32.9	46.5	94
25WCDD014	0.15	1	0.85	0.48	0.015	384.0	673.0	2.1	54

For personal use only

ASX:WCE ANNOUNCEMENT

4 February 2026

For personal use only

Hole ID	From (m)	To (m)	Interval (m)	Ag (g/t)	Ag (oz/t)	Cu (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
25WCDD014	1	2	1	0.39	0.013	486.0	749.0	2.3	64
25WCDD014	2	3.13	1.13	0.29	0.009	933.0	1,720.0	1.5	68
25WCDD014	3.13	4	0.87	0.21	0.007	1,010.0	1,215.0	1.4	58
25WCDD014	4	5	1	0.35	0.011	451.0	809.0	1.0	50
25WCDD014	5	6	1	0.26	0.008	347.0	711.0	0.8	53
25WCDD014	6	6.35	0.35	0.19	0.006	273.0	860.0	1.0	57
25WCDD014	6.35	7	0.65	1.11	0.036	621.0	912.0	1.1	55
25WCDD014	7	8	1	1.00	0.032	1,080.0	1,005.0	2.2	72
25WCDD014	8	9.04	1.04	0.89	0.029	1,740.0	1,285.0	3.1	76
25WCDD014	9.04	10	0.96	0.94	0.030	1,245.0	1,025.0	2.3	79
25WCDD014	10	11	1	1.40	0.045	1,455.0	1,120.0	3.4	74
25WCDD014	11	12	1	0.61	0.020	751.0	806.0	2.3	71
25WCDD014	12	13	1	0.64	0.021	890.0	782.0	7.6	75
25WCDD014	13	14	1	0.58	0.019	758.0	671.0	3.4	76
25WCDD014	14	15	1	0.16	0.005	216.0	581.0	3.3	73
25WCDD014	15	16	1	0.09	0.003	116.5	506.0	1.4	67
25WCDD014	16	17	1	0.20	0.006	175.0	526.0	1.5	62
25WCDD014	17	18.15	1.15	0.61	0.020	573.0	786.0	2.3	69
25WCDD014	18.15	19	0.85	1.24	0.040	1,070.0	1,100.0	2.4	75
25WCDD014	19	20	1	2.02	0.065	1,455.0	1,195.0	3.6	78
25WCDD014	20	20.35	0.35	2.27	0.073	1,300.0	1,080.0	2.7	75
25WCDD014	20.35	21	0.65	2.79	0.090	1,430.0	1,170.0	3.3	76
25WCDD014	21	22	1	0.78	0.025	370.0	579.0	3.2	76
25WCDD014	22	23	1	1.04	0.033	338.0	550.0	3.7	66
25WCDD014	23	24	1	1.75	0.056	429.0	767.0	3.4	65
25WCDD014	24	24.38	0.38	0.36	0.012	269.0	689.0	4.1	71
25WCDD014	24.38	25	0.62	0.30	0.010	719.0	881.0	8.3	96
25WCDD014	25	26	1	0.44	0.014	789.0	906.0	14.4	129
25WCDD014	26	27	1	0.95	0.031	728.0	765.0	15.4	165
25WCDD014	27	27.63	0.63	0.53	0.017	701.0	765.0	8.5	114
25WCDD014	27.63	28	0.37	2.48	0.080	601.0	575.0	44.7	102
25WCDD014	28	29	1	4.03	0.130	319.0	501.0	18.8	92
25WCDD014	29	30	1	2.13	0.068	432.0	520.0	140.5	109
25WCDD014	30	31	1	4.12	0.132	1,000.0	989.0	51.6	94
25WCDD014	31	32	1	2.27	0.073	549.0	626.0	46.5	85
25WCDD014	32	32.76	0.76	2.37	0.076	225.0	457.0	944.0	259
25WCDD014	32.76	33.6	0.84	80.50	2.588	693.0	634.0	31,000.0	644
25WCDD014	33.6	34	0.4	6.52	0.210	470.0	639.0	103.5	227
25WCDD014	34	35	1	3.25	0.104	392.0	595.0	397.0	214
25WCDD014	35	35.95	0.95	4.88	0.157	416.0	608.0	33.3	78
25WCDD014	35.95	37.22	1.27	2.19	0.070	485.0	715.0	16.1	91
25WCDD014	37.22	38	0.78	2.53	0.081	283.0	621.0	16.5	87
25WCDD014	38	39	1	3.71	0.119	301.0	564.0	25.7	83
25WCDD014	39	40	1	6.46	0.208	278.0	568.0	17.5	84
25WCDD014	40	41.07	1.07	5.47	0.176	503.0	648.0	15.2	94
25WCDD014	41.07	42.33	1.26	1.50	0.048	483.0	837.0	33.8	144

ASX:WCE ANNOUNCEMENT

4 February 2026

For personal use only

Hole ID	From (m)	To (m)	Interval (m)	Ag (g/t)	Ag (oz/t)	Cu (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
25WCDD014	42.33	43	0.67	12.10	0.389	846.0	941.0	15.2	71
25WCDD014	43	44	1	11.40	0.367	949.0	993.0	8.9	64
25WCDD014	44	45	1	12.90	0.415	1,260.0	1,315.0	6.1	65
25WCDD014	45	46	1	5.03	0.162	175.0	859.0	10.8	58
25WCDD014	46	47	1	5.91	0.190	291.0	844.0	12.6	63
25WCDD014	47	48	1	8.23	0.265	200.0	738.0	3.4	53
25WCDD014	48	49	1	8.63	0.277	220.0	812.0	8.3	60
25WCDD014	49	50	1	86.30	2.775	129.0	786.0	10.4	81
25WCDD014	50	50.69	0.69	138.00	4.437	206.0	772.0	17.6	63
25WCDD014	50.69	51	0.31	242.00	7.780	220.0	602.0	110.0	493
25WCDD014	51	51.42	0.42	297.00	9.549	249.0	544.0	35.6	139
25WCDD014	51.42	52	0.58	195.00	6.269	195.5	556.0	43.2	150
25WCDD014	52	52.85	0.85	250.00	8.038	189.0	519.0	38.3	148
25WCDD014	52.85	53.7	0.85	2,270.00	72.982	1,105.0	655.0	612.0	1,075
25WCDD014	53.7	54.1	0.4	16,291.00	523.767	1,510.0	654.0	1,170.0	2,080
25WCDD014	54.1	55	0.9	5,290.00	170.077	692.0	777.0	316.0	1,365
25WCDD014	55	56	1	1,545.00	49.673	1,465.0	1,610.0	117.0	485
25WCDD014	56	57	1	506.00	16.268	534.0	679.0	103.5	254
25WCDD014	57	57.55	0.55	375.00	12.057	265.0	542.0	59.3	203
25WCDD014	57.55	58	0.45	322.00	10.353	231.0	420.0	809.0	360
25WCDD014	58	59	1	96.00	3.086	394.0	387.0	3,000.0	134
25WCDD014	59	60	1	8.43	0.271	92.3	242.0	1,275.0	136
25WCDD014	60	60.45	0.45	18.60	0.598	1,035.0	637.0	247.0	513
25WCDD014	60.45	61	0.55	15.80	0.508	1,215.0	1,125.0	181.5	939
25WCDD014	61	62	1	31.60	1.016	2,220.0	1,720.0	320.0	609
25WCDD014	62	62.47	0.47	27.90	0.897	789.0	717.0	758.0	371
25WCDD014	62.47	63.29	0.82	7.84	0.252	34.3	83.4	2,750.0	136
25WCDD014	63.29	64.06	0.77	15.00	0.482	132.0	310.0	294.0	398
25WCDD014	64.06	64.86	0.8	38.30	1.231	287.0	229.0	4,920.0	735
25WCDD014	64.86	66.15	1.29	15.75	0.506	1,090.0	741.0	363.0	378
25WCDD014	66.15	66.43	0.28	5,660.00	181.973	455.0	701.0	717.0	807
25WCDD014	66.43	67	0.57	36.60	1.177	191.5	865.0	216.0	569
25WCDD014	67	68	1	78.70	2.530	259.0	472.0	581.0	736
25WCDD014	68	69	1	80.90	2.601	2,020.0	1,810.0	244.0	332
25WCDD014	69	70	1	60.40	1.942	470.0	1,360.0	214.0	466
25WCDD014	70	71	1	68.60	2.206	460.0	1,030.0	217.0	167
25WCDD014	71	72	1	59.90	1.926	380.0	722.0	133.5	93
25WCDD014	72	73	1	2.48	0.080	117.5	843.0	47.9	171
25WCDD014	73	74	1	9.24	0.297	148.0	411.0	49.6	135
25WCDD014	74	74.6	0.6	1,370.00	44.046	775.0	1,325.0	213.0	501
25WCDD014	74.6	74.95	0.35	33,107.00	1064.414	2,070.0	977.0	145.5	1,600
25WCDD014	74.95	75.2	0.25	17,534.00	563.731	875.0	958.0	1,195.0	193
25WCDD014	75.2	75.4	0.2	636.00	20.448	548.0	873.0	54.9	97
25WCDD014	75.4	76.4	1	572.00	18.390	311.0	554.0	39.1	109
25WCDD015	0.4	1	0.6	0.72	0.023	1,380.0	718.0	3.7	75
25WCDD015	1	2	1	1.35	0.043	1,320.0	1,025.0	2.7	84

ASX:WCE ANNOUNCEMENT

4 February 2026

For personal use only

Hole ID	From (m)	To (m)	Interval (m)	Ag (g/t)	Ag (oz/t)	Cu (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
25WCDD015	2	3	1	0.60	0.019	1,020.0	1,010.0	2.6	78
25WCDD015	3	4	1	1.66	0.053	1,220.0	899.0	3.1	88
25WCDD015	4	4.42	0.42	1.97	0.063	1,045.0	777.0	6.3	79
25WCDD015	4.42	5	0.58	2.66	0.086	763.0	743.0	2.0	84
25WCDD015	5	6	1	1.05	0.034	451.0	941.0	16.1	72
25WCDD015	6	6.45	0.45	1.52	0.049	474.0	911.0	5.6	67
25WCDD015	6.45	7	0.55	3.03	0.097	974.0	855.0	2.9	89
25WCDD015	7	8	1	2.87	0.092	1,465.0	949.0	12.4	88
25WCDD015	8	9	1	2.49	0.080	1,320.0	1,000.0	5.5	85
25WCDD015	9	10	1	1.76	0.057	913.0	666.0	8.6	89
25WCDD015	10	11	1	2.52	0.081	1,365.0	907.0	4.3	89
25WCDD015	11	12	1	0.61	0.020	479.0	554.0	5.8	82
25WCDD015	12	13	1	0.65	0.021	383.0	511.0	3.7	76
25WCDD015	13	13.4	0.4	6.03	0.194	3,360.0	1,430.0	21.1	107
25WCDD015	13.4	14.18	0.78	2.05	0.066	1,025.0	433.0	9.2	75
25WCDD015	14.18	15	0.82	0.49	0.016	154.5	493.0	9.9	76
25WCDD015	15	16	1	0.29	0.009	104.5	425.0	3.4	77
25WCDD015	16	17	1	0.74	0.024	252.0	468.0	14.0	79
25WCDD015	17	18	1	0.22	0.007	77.4	433.0	3.5	77
25WCDD015	18	19	1	0.23	0.007	47.5	439.0	5.7	62
25WCDD015	19	20	1	0.23	0.007	44.8	501.0	3.4	62
25WCDD015	20	21	1	0.21	0.007	55.9	437.0	5.1	66
25WCDD015	21	22	1	0.48	0.015	77.5	427.0	6.8	68
25WCDD015	22	22.35	0.35	2.22	0.071	481.0	511.0	65.3	79
25WCDD015	22.35	23	0.65	1.76	0.057	398.0	468.0	43.6	80
25WCDD015	23	24	1	0.61	0.020	112.5	446.0	89.1	88
25WCDD015	24	24.6	0.6	2.89	0.093	562.0	894.0	79.1	119
25WCDD015	24.6	25	0.4	1.86	0.060	337.0	273.0	34.5	71
25WCDD015	25	26	1	0.46	0.015	85.5	57.5	36.2	34
25WCDD015	26	26.76	0.76	1.88	0.060	636.0	116.0	197.0	62
25WCDD015	26.76	28	1.24	0.22	0.007	51.7	57.8	54.7	80
25WCDD015	28	29	1	0.11	0.004	38.0	49.4	42.1	75
25WCDD015	29	30	1	0.33	0.011	135.0	136.0	23.6	124
25WCDD015	30	31	1	0.37	0.012	161.0	120.0	8.0	128
25WCDD015	31	31.82	0.82	0.41	0.013	175.0	108.5	13.4	179
25WCDD015	31.82	33	1.18	0.18	0.006	85.9	39.6	10.8	121
25WCDD015	33	34.12	1.12	0.16	0.005	92.6	61.4	9.9	117
25WCDD015	34.12	35.09	0.97	0.17	0.005	76.9	46.5	75.7	70
25WCDD015	35.09	35.84	0.75	0.06	0.002	20.0	7.1	52.0	22
25WCDD015	35.84	37	1.16	0.26	0.008	109.5	51.9	31.1	115
25WCDD015	37	38	1	1.28	0.041	90.5	47.2	7.4	122
25WCDD015	38	38.32	0.32	0.24	0.008	83.0	41.9	91.9	100
25WCDD015	38.32	39	0.68	2.15	0.069	892.0	257.0	183.5	150
25WCDD015	39	40	1	0.60	0.019	241.0	117.0	63.9	186
25WCDD015	40	40.99	0.99	2.70	0.087	814.0	120.5	70.4	117
25WCDD015	40.99	42.2	1.21	0.27	0.009	102.5	76.6	41.3	119

ASX:WCE ANNOUNCEMENT

4 February 2026

For personal use only

Hole ID	From (m)	To (m)	Interval (m)	Ag (g/t)	Ag (oz/t)	Cu (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
25WCDD015	42.2	43	0.8	0.36	0.012	125.5	233.0	50.7	188
25WCDD015	43	44	1	3.18	0.102	1,095.0	660.0	33.6	143
25WCDD015	44	45.26	1.26	1.36	0.044	418.0	272.0	21.7	126
25WCDD015	45.26	46	0.74	0.51	0.016	94.3	150.0	71.0	135
25WCDD015	46	47	1	1.55	0.050	444.0	231.0	116.0	417
25WCDD015	47	48	1	3.47	0.112	1,130.0	316.0	949.0	1,880
25WCDD015	48	49	1	2.57	0.083	677.0	187.0	169.5	476
25WCDD015	49	49.9	0.9	4.90	0.158	782.0	379.0	1,095.0	457
25WCDD015	49.9	51	1.1	1.92	0.062	233.0	60.7	1,275.0	212
25WCDD015	51	51.62	0.62	16.75	0.539	67.8	23.0	75,900.0	148
25WCDD015	51.62	52.06	0.44	14.60	0.469	467.0	127.0	1,905.0	335
25WCDD015	52.06	53	0.94	0.95	0.031	30.8	20.7	1,750.0	1,495
25WCDD015	53	54	1	0.50	0.016	45.6	5.3	922.0	54
25WCDD015	54	54.46	0.46	0.25	0.008	45.4	7.7	62.0	50
25WCDD015	54.46	55	0.54	2.47	0.079	18.8	8.5	10,400.0	76
25WCDD015	55	56	1	0.21	0.007	12.4	4.3	161.5	43
25WCDD015	56	57	1	0.18	0.006	18.4	3.4	36.3	32
25WCDD015	57	58	1	0.77	0.025	107.0	13.0	40.0	63
25WCDD015	58	58.85	0.85	0.27	0.009	25.4	6.8	188.0	43
25WCDD015	58.85	59.84	0.99	0.86	0.028	34.3	5.9	427.0	107
25WCDD015	59.84	61	1.16	0.69	0.022	225.0	33.5	93.4	43
25WCDD015	61	62	1	0.38	0.012	103.0	19.2	269.0	299
25WCDD015	62	63	1	0.21	0.007	59.7	10.3	80.6	16
25WCDD015	63	64	1	0.49	0.016	57.8	12.4	858.0	251
25WCDD015	64	64.3	0.3	6.19	0.199	454.0	173.0	181.0	254
25WCDD015	64.3	65	0.7	9.93	0.319	481.0	645.0	108.5	236
25WCDD015	65	65.81	0.81	7.37	0.237	371.0	662.0	23.5	127
25WCDD015	65.81	67	1.19	5.58	0.179	56.9	139.5	158.5	156
25WCDD015	67	68	1	0.53	0.017	36.1	9.3	51.8	21
25WCDD015	68	68.48	0.48	0.36	0.012	29.3	19.4	21.7	23
25WCDD015	68.48	69	0.52	0.23	0.007	10.2	16.0	80.0	9
25WCDD015	69	70	1	0.12	0.004	13.4	6.8	17.4	38
25WCDD015	70	71	1	0.12	0.004	11.8	5.1	9.3	30
25WCDD015	71	72	1	0.05	0.002	7.7	3.0	23.2	18
25WCDD015	72	73	1	0.08	0.003	26.8	5.8	7.7	40
25WCDD015	73	74	1	0.04	0.001	15.1	3.3	11.4	36
25WCDD015	74	74.31	0.31	0.07	0.002	27.3	4.7	18.2	34
25WCDD015	74.31	75	0.69	0.20	0.006	119.5	45.4	33.7	56
25WCDD015	75	76	1	0.23	0.007	105.0	9.6	25.9	44
25WCDD015	76	76.9	0.9	0.21	0.007	15.8	6.8	31.8	40
25WCDD016	0.75	1	0.25	6.47	0.208	194.5	244.0	29.3	90
25WCDD016	1	2	1	7.17	0.231	75.6	28.9	28.3	38
25WCDD016	2	3	1	2.55	0.082	245.0	81.7	91.4	51
25WCDD016	3	4	1	2.32	0.075	167.5	37.8	14.6	35
25WCDD016	4	5.17	1.17	2.45	0.079	229.0	30.5	13.0	23
25WCDD016	5.17	6.3	1.13	1.10	0.035	450.0	58.4	10.6	26

ASX:WCE ANNOUNCEMENT

4 February 2026

For personal use only

Hole ID	From (m)	To (m)	Interval (m)	Ag (g/t)	Ag (oz/t)	Cu (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
25WCDD016	6.3	7	0.7	0.49	0.016	219.0	131.0	35.4	112
25WCDD016	7	8	1	0.59	0.019	325.0	153.5	5.5	87
25WCDD016	8	9	1	1.04	0.033	469.0	160.5	4.5	81
25WCDD016	9	10.03	1.03	1.51	0.049	1,335.0	213.0	11.4	87
25WCDD016	10.03	11	0.97	2.59	0.083	1,935.0	312.0	263.0	209
25WCDD016	11	12	1	1.30	0.042	1,220.0	181.0	653.0	136
25WCDD016	12	12.93	0.93	1.27	0.041	150.5	40.6	48.0	36
25WCDD016	12.93	13.9	0.97	0.44	0.014	498.0	177.0	8.2	131
25WCDD016	13.9	15	1.1	0.22	0.007	161.5	32.0	24.3	32
25WCDD016	15	16	1	0.18	0.006	24.0	7.3	13.0	24
25WCDD016	16	17	1	0.97	0.031	37.9	11.6	782.0	24
25WCDD016	17	18.13	1.13	7.02	0.226	149.0	95.4	486.0	87
25WCDD016	18.13	19	0.87	1.45	0.047	70.2	18.7	283.0	45
25WCDD016	19	19.9	0.9	1.04	0.033	32.9	7.7	80.3	21
25WCDD016	19.9	21	1.1	10.80	0.347	17.6	9.3	114.0	35
25WCDD016	21	22	1	5.21	0.168	12.6	14.4	48.8	49
25WCDD016	22	23	1	0.21	0.007	12.6	10.0	2,470.0	37
25WCDD016	23	24	1	0.10	0.003	49.8	28.4	111.0	63
25WCDD016	24	25	1	0.22	0.007	46.6	61.0	27.8	105
25WCDD016	25	26	1	0.09	0.003	27.2	112.0	19.8	151
25WCDD016	26	27	1	0.12	0.004	65.3	55.6	29.1	145
25WCDD016	27	28	1	0.37	0.012	252.0	67.0	17.8	105
25WCDD016	28	29	1	0.40	0.013	270.0	63.4	31.8	135
25WCDD016	29	29.5	0.5	0.23	0.007	144.0	116.5	13.8	139
25WCDD016	29.5	30.22	0.72	0.18	0.006	69.8	15.6	88.4	66
25WCDD016	30.22	31.16	0.94	1.58	0.051	430.0	138.0	346.0	143
25WCDD016	31.16	31.86	0.7	4.97	0.160	467.0	65.6	110.0	47
25WCDD016	31.86	32.3	0.44	3.01	0.097	159.0	60.3	125.0	89
25WCDD016	32.3	33	0.7	3.67	0.118	21.4	6.0	52,800.0	20
25WCDD016	33	34	1	1.40	0.045	14.0	3.4	1,650.0	22
25WCDD016	34	34.3	0.3	8.43	0.271	8.2	1.9	423.0	13
25WCDD016	34.3	35	0.7	1.82	0.059	128.5	68.9	53.9	112
25WCDD016	35	36	1	0.85	0.027	324.0	201.0	26.6	113
25WCDD016	36	37	1	1.94	0.062	43.1	14.0	377.0	36
25WCDD016	37	38	1	2.74	0.088	13.1	5.7	37.2	25
25WCDD016	38	38.68	0.68	0.33	0.011	22.3	114.5	67.1	106
25WCDD016	38.68	39	0.32	0.67	0.022	129.5	26.7	67.2	25
25WCDD016	39	40	1	0.37	0.012	18.8	11.0	96.9	33
25WCDD016	40	41	1	7.04	0.226	164.5	99.7	390.0	120
25WCDD016	41	42	1	7.53	0.242	169.0	137.0	519.0	130
25WCDD016	42	42.9	0.9	13.20	0.424	34.7	30.8	58.8	36
25WCDD016	42.9	44	1.1	7.33	0.236	24.3	299.0	158.0	369
25WCDD016	44	45	1	16.70	0.537	243.0	192.5	88.8	191
25WCDD016	45	46.14	1.14	14.10	0.453	399.0	160.0	189.5	323
25WCDD016	46.14	47	0.86	7.63	0.245	39.5	19.3	98.0	87
25WCDD016	47	48.04	1.04	3.36	0.108	32.4	6.5	611.0	1,475

ASX:WCE ANNOUNCEMENT

4 February 2026

For personal use only

Hole ID	From (m)	To (m)	Interval (m)	Ag (g/t)	Ag (oz/t)	Cu (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
25WCDD016	48.04	49	0.96	1.12	0.036	7.6	1.2	2,540.0	231
25WCDD016	49	49.63	0.63	2.98	0.096	95.6	3.0	2,000.0	3,970
25WCDD016	49.63	50.14	0.51	0.87	0.028	56.9	3.7	388.0	925
25WCDD016	50.14	51	0.86	3.10	0.100	27.4	5.0	391.0	97
25WCDD016	51	52	1	21.90	0.704	74.8	20.9	123.5	91
25WCDD016	52	53	1	12.10	0.389	48.5	42.5	2,110.0	500
25WCDD016	53	54	1	4.92	0.158	17.0	8.5	24.2	35
25WCDD016	54	55	1	2.02	0.065	13.2	9.9	41.2	50
25WCDD016	55	56	1	3.48	0.112	20.9	6.0	615.0	54
25WCDD016	56	57	1	3.60	0.116	14.1	9.0	57.5	33
25WCDD016	57	58	1	1.86	0.060	8.5	8.2	161.5	26
25WCDD016	58	59	1	1.43	0.046	38.8	79.7	8.5	76
25WCDD016	59	60	1	0.19	0.006	19.2	6.7	21.8	37
25WCDD016	60	61	1	0.32	0.010	21.3	2.9	48.9	22
25WCDD016	61	62	1	0.35	0.011	27.4	2.2	40.7	21
25WCDD016	62	63	1	0.54	0.017	22.7	1.7	62.7	9
25WCDD016	63	64	1	1.14	0.037	8.6	1.5	2,070.0	11
25WCDD016	64	64.9	0.9	0.21	0.007	5.4	2.7	62.7	25
25WCDD017	0	0.8	0.8		0.000				
25WCDD017	0.8	2	1.2	0.30	0.010	552.0	734.0	2.5	55
25WCDD017	2	3	1	0.07	0.002	329.0	803.0	1.4	59
25WCDD017	3	4	1	0.64	0.021	874.0	990.0	8.6	63
25WCDD017	4	5	1	2.25	0.072	1,775.0	1,375.0	1.4	66
25WCDD017	5	6	1	2.64	0.085	1,440.0	905.0	1.4	68
25WCDD017	6	7	1	1.26	0.041	863.0	730.0	1.0	65
25WCDD017	7	8	1	1.62	0.052	580.0	628.0	1.7	63
25WCDD017	8	9	1	2.50	0.080	780.0	698.0	0.9	64
25WCDD017	9	10	1	1.90	0.061	599.0	528.0	1.2	62
25WCDD017	10	11	1	3.02	0.097	992.0	591.0	1.9	62
25WCDD017	11	12	1	1.82	0.059	622.0	598.0	6.5	63
25WCDD017	12	13	1	1.26	0.041	336.0	447.0	1.1	62
25WCDD017	13	14	1	4.51	0.145	1,135.0	741.0	2.1	69
25WCDD017	14	15	1	1.56	0.050	407.0	565.0	1.2	63
25WCDD017	15	16	1	2.72	0.087	653.0	679.0	1.5	66
25WCDD017	16	17	1	2.60	0.084	653.0	743.0	1.1	67
25WCDD017	17	18	1	1.44	0.046	293.0	510.0	0.9	54
25WCDD017	18	19	1	1.18	0.038	206.0	504.0	0.7	51
25WCDD017	19	20	1	3.36	0.108	643.0	617.0	10.0	54
25WCDD017	20	21	1	2.73	0.088	421.0	655.0	1.0	55
25WCDD017	21	22	1	2.23	0.072	340.0	667.0	0.9	51
25WCDD017	22	23	1	3.18	0.102	429.0	633.0	1.2	49
25WCDD017	23	24	1	1.13	0.036	197.5	541.0	1.6	50
25WCDD017	24	25	1	1.38	0.044	181.0	570.0	1.4	54
25WCDD017	25	26	1	1.34	0.043	179.5	564.0	1.0	55
25WCDD017	26	27	1	42.40	1.363	5,320.0	2,840.0	2.0	76
25WCDD017	27	28	1	3.32	0.107	434.0	853.0	5.8	82

ASX:WCE ANNOUNCEMENT

4 February 2026

For personal use only

Hole ID	From (m)	To (m)	Interval (m)	Ag (g/t)	Ag (oz/t)	Cu (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
25WCDD017	28	29	1	46.10	1.482	5,380.0	5,070.0	3.8	120
25WCDD017	29	30	1	4.80	0.154	480.0	904.0	1.7	58
25WCDD017	30	31	1	4.35	0.140	453.0	976.0	1.0	57
25WCDD017	31	32	1	1.94	0.062	221.0	872.0	3.9	62
25WCDD017	32	33	1	7.32	0.235	804.0	1,620.0	6.5	81
25WCDD017	33	34.25	1.25	10.20	0.328	811.0	1,605.0	30.4	81
25WCDD017	34.25	35	0.75	49.00	1.575	4,110.0	2,290.0	18.7	105
25WCDD017	35	36.25	1.25	53.40	1.717	4,130.0	2,790.0	11.1	114
25WCDD017	36.25	37	0.75	22.50	0.723	1,695.0	2,020.0	29.6	174
25WCDD017	37	38	1	80.00	2.572	299.0	859.0	36.4	225
25WCDD017	38	39.03	1.03	32.80	1.055	508.0	1,205.0	1,780.0	1,510
25WCDD017	39.03	40	0.97	26.60	0.855	258.0	280.0	1,215.0	772
25WCDD017	40	41	1	12.80	0.412	212.0	266.0	1,830.0	769
25WCDD017	41	42	1	36.00	1.157	118.0	199.0	2,480.0	497
25WCDD017	42	43	1	8.96	0.288	238.0	364.0	3,960.0	1,145
25WCDD017	43	43.54	0.54	25.70	0.826	295.0	123.5	20,300.0	404
25WCDD017	43.54	44.5	0.96	453.00	14.564	159.0	61.1	4,690.0	164
25WCDD017	45.5	46.5	1	58.90	1.894	159.5	181.5	1,965.0	392
25WCDD017	46.5	47	0.5	48.90	1.572	907.0	321.0	11,150.0	814
25WCDD017	47	48	1	25.40	0.817	42.9	24.2	320.0	48
25WCDD017	48	49	1	24.00	0.772	186.0	18.3	1,150.0	64
25WCDD017	49	50	1	111.00	3.569	110.0	17.8	8,700.0	56
25WCDD017	50	51.2	1.2	10.15	0.326	38.4	22.4	61.3	24
25WCDD017	51.2	52	0.8	5.14	0.165	43.9	30.4	73.0	18
25WCDD017	52	53	1	1.12	0.036	27.8	27.2	36.2	55
25WCDD017	53	54	1	1.30	0.042	23.3	11.2	25.9	27
25WCDD017	54	55	1	1.66	0.053	35.2	14.5	42.5	26
25WCDD017	55	56	1	1.51	0.049	30.2	8.7	35.0	27
25WCDD017	56	57	1	4.38	0.141	44.6	16.4	66.5	49
25WCDD017	57	58	1	1.89	0.061	26.8	7.8	49.0	21
25WCDD017	58	59	1	3.68	0.118	24.8	11.6	24.5	31
25WCDD017	59	60	1	5.22	0.168	35.4	14.8	31.2	40
25WCDD017	60	61	1	3.47	0.112	15.0	5.9	42.5	20
25WCDD017	61	62	1	5.93	0.191	18.0	12.3	48.8	16
25WCDD017	62	63	1	2.91	0.094	16.6	16.2	25.7	22
25WCDD017	63	63.86	0.86	2.06	0.066	16.3	9.6	37.8	39
25WCDD017	63.86	64.24	0.38	0.70	0.023	11.6	7.6	2,040.0	10
25WCDD017	64.24	65	0.76	4.75	0.153	24.4	22.0	43.6	42
25WCDD017	65	66	1	0.31	0.010	7.4	10.6	21.6	47
25WCDD018	0	1	1	0.23	0.007	1,020.0	726.0	68.0	71
25WCDD018	1	2	1	0.14	0.005	1,060.0	795.0	1.9	76
25WCDD018	2	2.59	0.59	0.22	0.007	1,070.0	925.0	1.3	72
25WCDD018	2.59	3	0.41	0.23	0.007	636.0	875.0	0.7	68
25WCDD018	3	4	1	0.29	0.009	525.0	781.0	1.9	69
25WCDD018	4	5	1	0.37	0.012	958.0	809.0	1.5	72
25WCDD018	5	6	1	0.24	0.008	1,055.0	843.0	2.0	80

ASX:WCE ANNOUNCEMENT

4 February 2026

For personal use only

Hole ID	From (m)	To (m)	Interval (m)	Ag (g/t)	Ag (oz/t)	Cu (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
25WCDD018	6	6.72	0.72	0.43	0.014	851.0	972.0	3.4	68
25WCDD018	6.72	8	1.28	0.27	0.009	810.0	822.0	1.1	84
25WCDD018	8	9	1	3.73	0.120	722.0	779.0	1.0	77
25WCDD018	9	10	1	3.32	0.107	950.0	1,180.0	1.2	91
25WCDD018	10	11	1	0.76	0.024	678.0	992.0	1.0	73
25WCDD018	11	12	1	1.24	0.040	238.0	813.0	1.0	52
25WCDD018	12	12.54	0.54	0.54	0.017	149.0	751.0	1.2	51
25WCDD018	12.54	13	0.46	0.34	0.011	207.0	731.0	1.0	59
25WCDD018	13	14	1	2.87	0.092	426.0	796.0	1.6	53
25WCDD018	14	15.33	1.33	4.12	0.132	234.0	842.0	4.3	52
25WCDD018	15.33	16	0.67	44.60	1.434	702.0	828.0	1.1	119
25WCDD018	16	17	1	8.45	0.272	768.0	986.0	348.0	558
25WCDD018	17	18	1	5.61	0.180	560.0	756.0	1,730.0	1,105
25WCDD018	18	19.36	1.36	3.49	0.112	521.0	701.0	1,990.0	1,215
25WCDD018	19.36	20.31	0.95	11.00	0.354	247.0	348.0	1,955.0	870
25WCDD018	20.31	21.39	1.08	29.10	0.936	541.0	628.0	9,240.0	1,645
25WCDD018	21.39	22	0.61	98.80	3.176	196.0	225.0	6,660.0	597
25WCDD018	22	23	1	50.50	1.624	63.3	52.3	381.0	162
25WCDD018	23	24	1	21.30	0.685	32.2	12.6	166.5	40
25WCDD018	24	25	1	22.90	0.736	25.5	20.6	168.5	61
25WCDD018	25	26	1	8.34	0.268	41.4	15.2	195.0	33
25WCDD018	26	27	1	8.64	0.278	56.9	22.4	214.0	55
25WCDD018	27	28	1	27.00	0.868	53.6	43.2	358.0	124
25WCDD018	28	29	1	11.25	0.362	48.2	34.0	200.0	112
25WCDD018	29	30	1	11.10	0.357	54.4	28.3	315.0	122
25WCDD018	30	30.5	0.5	11.10	0.357	13.0	5.5	51.6	13
25WCDD018	30.5	31.38	0.88	11.40	0.367	11.8	7.3	42.7	16
25WCDD018	31.38	32	0.62	7.37	0.237	13.6	2.9	69.1	20
25WCDD018	32	33	1	19.50	0.627	22.4	3.5	190.5	64
25WCDD018	33	33.5	0.5	22.00	0.707	51.7	7.9	266.0	76
25WCDD019	1.1	2	0.9	3.33	0.107	674.0	663.0	6.4	83
25WCDD019	2	3	1	1.73	0.056	375.0	430.0	9.9	82
25WCDD019	3	3.64	0.64	2.33	0.075	771.0	735.0	4.5	81
25WCDD019	3.64	4	0.36	11.30	0.363	737.0	554.0	10.1	104
25WCDD019	4	5	1	6.74	0.217	404.0	409.0	63.1	152
25WCDD019	5	6	1	24.00	0.772	384.0	369.0	765.0	333
25WCDD019	6	6.62	0.62	138.00	4.437	265.0	512.0	11,850.0	509
25WCDD019	6.62	7.63	1.01	33.80	1.087	961.0	1,535.0	7,090.0	1,215
25WCDD019	7.63	8.64	1.01	177.00	5.691	875.0	446.0	2,320.0	579
25WCDD019	8.64	9	0.36	317.00	10.192	601.0	375.0	1,685.0	1,490
25WCDD019	9	9.9	0.9	9,070.00	291.607	2,920.0	1,035.0	4,660.0	2,370
25WCDD019	9.9	11	1.1	438.00	14.082	523.0	115.0	1,030.0	229
25WCDD019	11	12	1	220.00	7.073	242.0	40.8	330.0	100
25WCDD019	12	13	1	332.00	10.674	638.0	63.9	405.0	107
25WCDD019	13	14	1	212.00	6.816	154.5	61.6	487.0	174
25WCDD019	14	15	1	133.00	4.276	132.5	41.5	474.0	100

ASX:WCE ANNOUNCEMENT

4 February 2026

For personal use only

Hole ID	From (m)	To (m)	Interval (m)	Ag (g/t)	Ag (oz/t)	Cu (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
25WCDD019	15	15.84	0.84	123.00	3.955	127.0	58.0	250.0	77
25WCDD019	15.84	17	1.16	325.00	10.449	481.0	195.0	682.0	290
25WCDD019	17	17.42	0.42	205.00	6.591	812.0	192.0	2,470.0	416
25WCDD019	17.42	18	0.58	87.20	2.804	60.6	26.9	125.5	51
25WCDD019	18	19	1	404.00	12.989	61.5	25.8	365.0	66
25WCDD019	19	20	1	299.00	9.613	40.1	24.5	69.4	52
25WCDD019	20	21.32	1.32	576.00	18.519	173.0	74.0	401.0	179
25WCDD019	21.32	22	0.68	138.00	4.437	101.0	38.0	136.0	77
25WCDD019	22	23	1	75.10	2.415	23.0	13.4	25.6	43
25WCDD019	23	23.91	0.91	69.10	2.222	35.6	22.1	22.0	63
25WCDD019	23.91	25	1.09	227.00	7.298	245.0	133.0	202.0	302
25WCDD019	25	25.8	0.8	61.10	1.964	125.5	40.0	270.0	53
25WCDD019	25.8	26.5	0.7	69.00	2.218	65.2	54.7	164.0	133
25WCDD019	26.5	27.37	0.87	88.50	2.845	65.5	135.5	338.0	159
25WCDD019	27.37	28	0.63	27.80	0.894	704.0	607.0	44.8	104
25WCDD019	28	29	1	5.14	0.165	471.0	484.0	9.7	85
25WCDD019	29	30	1	5.39	0.173	493.0	514.0	19.5	82
25WCDD019	30	30.4	0.4	16.85	0.542	423.0	396.0	71.9	87
25WCDD020	1	3	2	4.45	0.143	654.0	1,115.0	31.9	68
25WCDD020	3	3.64	0.64	2.15	0.069	1,100.0	1,635.0	20.3	67
25WCDD020	3.64	5	1.36	6.91	0.222	1,180.0	920.0	54.9	86
25WCDD020	5	6	1	36.70	1.180	1,635.0	1,025.0	26.1	81
25WCDD020	6	6.62	0.62	35.60	1.145	1,505.0	971.0	27.1	76
25WCDD020	6.62	7	0.38	17.30	0.556	1,055.0	737.0	10.6	73
25WCDD020	7	7.63	0.63	57.80	1.858	1,430.0	759.0	22.6	81
25WCDD020	7.63	8	0.37	6.28	0.202	830.0	642.0	65.6	118
25WCDD020	8	8.64	0.64	25.40	0.817	1,750.0	885.0	92.7	217
25WCDD020	8.64	9	0.36	61.20	1.968	1,355.0	710.0	116.5	263
25WCDD020	9	9.9	0.9	24.60	0.791	845.0	568.0	16.3	117
25WCDD020	9.9	11	1.1	15.35	0.494	570.0	588.0	19.5	165
25WCDD020	11	12	1	13.25	0.426	743.0	1,065.0	248.0	478
25WCDD020	12	13	1	28.20	0.907	547.0	1,275.0	410.0	710
25WCDD020	13	14	1	8.84	0.284	821.0	1,015.0	1,215.0	1,060
25WCDD020	14	15	1	12.65	0.407	869.0	1,030.0	1,640.0	1,310
25WCDD020	15	15.84	0.84	14.50	0.466	706.0	954.0	966.0	1,130
25WCDD020	15.84	17	1.16	25.50	0.820	746.0	788.0	1,105.0	808
25WCDD020	20	20.61	0.61	65.60	2.109	61.7	32.3	53.0	58
25WCDD020	20.61	21.32	0.71	70.10	2.254	204.0	65.6	157.0	92
25WCDD020	21.32	22	0.68	96.80	3.112	1,265.0	178.0	453.0	223
25WCDD020	22	23	1	101.00	3.247	433.0	148.5	359.0	179
25WCDD020	23	24	1	205.00	6.591	102.5	23.1	399.0	51
25WCDD020	24	24.8	0.8	185.00	5.948	151.0	25.6	275.0	45
25WCDD020	24.8	25.8	1	112.00	3.601	43.1	26.8	63.1	59
25WCDD020	25.8	26.5	0.7	160.00	5.144	94.9	28.3	101.5	58
25WCDD020	26.5	27.37	0.87	309.00	9.935	173.5	85.6	42.8	161
25WCDD020	27.37	28	0.63	1,590.00	51.120	260.0	80.7	48.2	118

ASX:WCE ANNOUNCEMENT

4 February 2026

For personal use only

Hole ID	From (m)	To (m)	Interval (m)	Ag (g/t)	Ag (oz/t)	Cu (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
25WCDD020	28	29	1	190.00	6.109	91.5	50.4	67.0	105
25WCDD020	29	29.6	0.6	242.00	7.780	76.9	14.8	198.5	57
25WCDD020	30.5	31.4	0.9	144.00	4.630	115.0	32.7	447.0	77
25WCDD020	31.4	32	0.6	99.60	3.202	43.6	26.8	165.5	57
25WCDD020	32	33	1	78.70	2.530	34.4	20.9	198.0	77
25WCDD020	33	34	1	72.80	2.341	80.9	35.9	1,150.0	117
25WCDD020	34	35	1	63.80	2.051	40.6	17.6	42.1	55
25WCDD020	35	35.8	0.8	90.30	2.903	71.9	54.3	119.0	116
25WCDD020	35.8	37	1.2	46.20	1.485	184.0	119.5	104.5	277
25WCDD020	37	38	1	95.80	3.080	366.0	49.9	3,770.0	469
25WCDD020	38	39	1	244.00	7.845	471.0	32.4	17,750.0	303
25WCDD020	39	39.8	0.8	195.00	6.269	1,720.0	78.8	8,610.0	62,400
25WCDD020	39.8	41	1.2	242.00	7.780	803.0	33.3	6,140.0	44,600
25WCDD020	41	42	1	29.00	0.932	159.0	45.0	1,990.0	247
25WCDD020	42	43	1	32.40	1.042	149.0	42.4	1,240.0	454
25WCDD020	43	44.1	1.1	28.20	0.907	94.6	17.6	426.0	65
25WCDD020	44.1	44.6	0.5	20.30	0.653	145.5	149.5	726.0	459
25WCDD020	44.6	45.3	0.7	24.10	0.775	37.1	80.0	208.0	589
25WCDD020	45.3	45.8	0.5	36.90	1.186	340.0	249.0	1,905.0	467
25WCDD020	45.8	47	1.2	22.70	0.730	77.1	109.5	464.0	163
25WCDD021	6.5	7.5	1	5.77	0.186	3,220.0	3,730.0	88.3	363
25WCDD021	7.5	8	0.5	21.30	0.685	1,270.0	2,080.0	299.0	463
25WCDD021	8	9	1	57.40	1.845	906.0	1,215.0	160.5	332
25WCDD021	9	10.2	1.2	47.60	1.530	1,135.0	1,145.0	118.5	529
25WCDD021	10.2	11.2	1	31.10	1.000	1,625.0	510.0	1,705.0	240
25WCDD021	11.2	12.37	1.17	10.80	0.347	932.0	288.0	46.2	119
25WCDD021	12.37	13	0.63	10.25	0.330	813.0	249.0	37.1	113
25WCDD021	13	14	1	5.47	0.176	975.0	318.0	41.3	137
25WCDD021	14	15	1	5.64	0.181	2,650.0	630.0	47.2	119
25WCDD021	15	16	1	6.64	0.213	1,020.0	552.0	188.5	160
25WCDD021	16	16.8	0.8	39.50	1.270	739.0	270.0	3,450.0	450
25WCDD021	16.8	17.8	1	9.57	0.308	510.0	32.3	1,515.0	64
25WCDD021	17.8	18.34	0.54	10.90	0.350	210.0	70.8	1,005.0	164
25WCDD021	18.34	19.5	1.16	29.30	0.942	91.1	22.7	1,215.0	52
25WCDD021	19.5	20	0.5	52.00	1.672	243.0	30.7	3,310.0	66
25WCDD021	20	21	1	27.90	0.897	13.8	36.7	1,440.0	61
25WCDD021	21	22	1	24.50	0.788	43.5	28.1	110.0	56
25WCDD021	22	23	1	17.30	0.556	11.2	8.7	84.1	20
25WCDD021	23	24	1	13.75	0.442	24.4	52.0	146.0	96
25WCDD021	24	24.8	0.8	7.68	0.247	55.6	89.9	16.2	115
25WCDD021	24.8	25.8	1	16.05	0.516	29.6	31.1	16.1	45
25WCDD021	25.8	26.6	0.8	11.55	0.371	128.0	71.8	33.4	124
25WCDD021	26.6	27.5	0.9	6.14	0.197	48.1	50.7	19.8	78
25WCDD021	27.5	28.48	0.98	11.95	0.384	65.7	103.0	20.8	124
25WCDD021	28.48	29	0.52	29.00	0.932	51.2	12.5	75.0	20
25WCDD021	29	30	1	18.85	0.606	54.9	7.1	184.5	25

ASX:WCE ANNOUNCEMENT

4 February 2026

For personal use only

Hole ID	From (m)	To (m)	Interval (m)	Ag (g/t)	Ag (oz/t)	Cu (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
25WCDD021	30	30.5	0.5	31.30	1.006	200.0	31.3	604.0	51
25WCDD021	30.5	31.2	0.7	30.30	0.974	232.0	22.5	941.0	50
25WCDD021	31.2	32.07	0.87	8.49	0.273	135.5	72.2	41.1	113
25WCDD021	32.07	33	0.93	32.40	1.042	173.5	96.5	280.0	403
25WCDD021	33	34	1	25.90	0.833	204.0	127.0	140.0	196
25WCDD021	34	35	1	38.00	1.222	88.9	106.5	1,495.0	152
25WCDD021	35	36	1	37.00	1.190	24.5	60.9	853.0	113
25WCDD021	36	37	1	16.90	0.543	52.0	86.8	807.0	126
25WCDD021	37	38	1	15.50	0.498	84.5	40.0	342.0	76
25WCDD021	38	39	1	11.45	0.368	41.6	20.9	528.0	74
25WCDD021	39	40	1	11.60	0.373	68.9	9.3	1,220.0	38
25WCDD021	40	41	1	6.30	0.203	64.1	59.7	85.0	84
25WCDD021	41	42.05	1.05	6.71	0.216	44.0	149.0	37.4	158
25WCDD021	42.05	43	0.95	4.58	0.147	18.2	67.4	54.6	72
25WCDD021	43	44	1	8.56	0.275	141.5	34.9	59.3	41
25WCDD021	44	45	1	4.11	0.132	215.0	143.0	39.8	228
25WCDD021	45	46	1	10.15	0.326	81.7	52.4	62.7	84
25WCDD021	46	46.9	0.9	15.50	0.498	162.5	28.3	245.0	83
25WCDD021	46.9	47.7	0.8	12.00	0.386	25.1	17.0	37.4	93
25WCDD021	47.7	49	1.3	10.50	0.338	10.2	7.9	10.2	41
25WCDD021	49	50	1	15.10	0.485	13.2	9.7	24.3	41
25WCDD021	50	51	1	8.66	0.278	10.2	9.2	19.6	39
25WCDD021	51	52	1	10.95	0.352	8.9	9.6	16.7	27
25WCDD021	52	53	1	14.85	0.477	17.5	15.0	22.1	46
25WCDD022	0.53	1.24	0.71	3.80	0.122	148.5	653.0	2.8	47
25WCDD022	1.24	1.9	0.66	0.31	0.010	330.0	814.0	1.6	45
25WCDD022	2.23	3	0.77	0.16	0.005	213.0	773.0	1.1	61
25WCDD022	3	4	1	0.20	0.006	550.0	662.0	1.4	80
25WCDD022	4	5	1	0.12	0.004	201.0	627.0	0.8	68
25WCDD022	5	6	1	0.24	0.008	207.0	796.0	0.7	58
25WCDD022	6	7	1	0.17	0.005	440.0	871.0	1.0	61
25WCDD022	7	8	1	0.75	0.024	980.0	871.0	1.6	72
25WCDD022	8	9	1	0.52	0.017	927.0	835.0	1.2	71
25WCDD022	9	10	1	0.42	0.014	572.0	732.0	0.9	75
25WCDD022	10	11	1	0.39	0.013	447.0	912.0	1.0	71
25WCDD022	11	12	1	0.76	0.024	664.0	885.0	1.9	72
25WCDD022	12	13	1	0.36	0.012	560.0	686.0	0.9	60
25WCDD022	13	14	1	0.25	0.008	594.0	864.0	0.8	61
25WCDD022	14	14.9	0.9	0.60	0.019	638.0	891.0	0.8	59
25WCDD022	14.9	16	1.1	0.50	0.016	466.0	1,015.0	3.2	85
25WCDD022	16	17	1	0.21	0.007	186.0	738.0	0.8	51
25WCDD022	17	17.49	0.49	0.07	0.002	88.6	696.0	0.9	58
25WCDD022	17.49	18	0.51	0.20	0.006	32.9	871.0	12.9	109
25WCDD022	18	19.1	1.1	0.24	0.008	160.5	755.0	1.4	64
25WCDD022	19.1	20	0.9	0.27	0.009	179.0	958.0	0.6	52
25WCDD022	20	21	1	0.70	0.023	546.0	1,360.0	0.7	65

ASX:WCE ANNOUNCEMENT

4 February 2026

For personal use only

Hole ID	From (m)	To (m)	Interval (m)	Ag (g/t)	Ag (oz/t)	Cu (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
25WCDD022	21	22	1	0.59	0.019	415.0	928.0	0.8	60
25WCDD022	22	23	1	1.26	0.041	667.0	923.0	35.3	58
25WCDD022	23	24	1	3.23	0.104	2,210.0	1,725.0	1.4	65
25WCDD022	24	25	1	5.54	0.178	3,130.0	1,970.0	1.2	71
25WCDD022	25	26	1	3.04	0.098	1,405.0	1,530.0	0.8	62
25WCDD022	26	27	1	13.50	0.434	6,010.0	4,040.0	1.6	79
25WCDD022	27	28	1	3.94	0.127	1,490.0	1,690.0	1.1	65
25WCDD022	28	29	1	0.90	0.029	298.0	894.0	0.8	64
25WCDD022	29	30	1	1.31	0.042	400.0	972.0	0.8	64
25WCDD022	30	31	1	2.72	0.087	769.0	1,460.0	1.0	77
25WCDD022	31	32	1	1.06	0.034	277.0	813.0	0.9	59
25WCDD022	32	33	1	2.23	0.072	597.0	876.0	1.1	64
25WCDD022	33	34	1	0.90	0.029	217.0	791.0	-0.5	62
25WCDD022	34	35	1	1.28	0.041	279.0	735.0	-0.5	60
25WCDD022	35	36	1	1.86	0.060	431.0	913.0	-0.5	62
25WCDD022	36	37	1	2.05	0.066	413.0	1,050.0	-0.5	59
25WCDD022	37	38	1	1.87	0.060	392.0	810.0	-0.5	59
25WCDD022	38	39	1	2.19	0.070	292.0	793.0	1.1	58
25WCDD022	39	40	1	2.79	0.090	516.0	806.0	2.6	59
25WCDD022	40	41	1	3.22	0.104	601.0	896.0	2.2	113
25WCDD022	41	42	1	12.25	0.394	414.0	959.0	30.8	66
25WCDD022	42	43	1	40.30	1.296	1,525.0	1,480.0	2.7	70
25WCDD022	43	44	1	14.65	0.471	1,150.0	1,310.0	8.3	69
25WCDD022	44	45	1	8.09	0.260	196.0	1,005.0	6.9	67
25WCDD022	45	46	1	16.00	0.514	433.0	1,175.0	14.2	65
25WCDD022	46	47	1	13.40	0.431	495.0	993.0	40.3	390
25WCDD022	47	48	1	7.46	0.240	423.0	810.0	2.2	90
25WCDD022	48	49	1	75.60	2.431	9,060.0	10.6	961.0	2,800
25WCDD022	49	49.95	0.95	10.25	0.330	242.0	818.0	30.9	197
25WCDD022	49.95	51	1.05	183.00	5.884	493.0	670.0	24.6	130
25WCDD022	51	52.1	1.1	85.40	2.746	408.0	749.0	51.2	137
25WCDD022	52.1	53	0.9	3.88	0.125	432.0	1,055.0	199.0	343
25WCDD022	53	54	1	2.49	0.080	825.0	3,140.0	400.0	769
25WCDD022	54	54.6	0.6	2.91	0.094	763.0	2,860.0	461.0	1,210
25WCDD022	54.6	55.15	0.55	2,330.00	74.911	2,520.0	2,730.0	1,710.0	1,330
25WCDD022	55.15	55.8	0.65	1,525.00	49.030	1,075.0	275.0	12,850.0	1,255
25WCDD022	55.8	56.55	0.75	226.00	7.266	198.0	33.6	8,600.0	13,150
25WCDD023	5	6	1	0.05	0.002	125.5	549.0	11.7	59
25WCDD023	10	11	1	0.08	0.003	162.0	1,130.0	1.7	60
25WCDD023	15	16	1	0.04	0.001	48.5	717.0	0.7	57
25WCDD023	20	21	1	0.06	0.002	87.2	960.0	1.9	67
25WCDD023	25	26	1	0.06	0.002	127.0	594.0	1.3	59
25WCDD023	30	31	1	0.05	0.002	87.2	600.0	1.1	53
25WCDD023	35	36	1	0.13	0.004	164.0	872.0	3.4	59
25WCDD023	40	41	1	0.03	0.001	49.8	801.0	0.9	64
25WCDD023	45	46	1	0.10	0.003	169.5	686.0	0.9	63

For personal use only

Hole ID	From (m)	To (m)	Interval (m)	Ag (g/t)	Ag (oz/t)	Cu (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
25WCDD023	50	51	1	0.06	0.002	108.5	725.0	1.1	59
25WCDD023	55	56	1	0.19	0.006	365.0	1,000.0	4.2	96
25WCDD023	60	61	1	0.35	0.011	696.0	850.0	1.3	57
25WCDD023	64.3	65	0.7	0.79	0.025	1,405.0	1,170.0	1.5	55
25WCDD023	65	66	1	0.08	0.003	127.5	505.0	1.4	47
25WCDD023	70	71	1	0.25	0.008	425.0	571.0	3.0	51
25WCDD023	75	76	1	1.51	0.049	2,780.0	2,380.0	2.0	62
25WCDD023	80	81	1	0.41	0.013	759.0	871.0	1.0	56
25WCDD023	85	86	1	0.49	0.016	848.0	756.0	1.1	62
25WCDD023	90	91	1	0.20	0.006	350.0	717.0	1.7	61
25WCDD023	95	96	1	0.32	0.010	581.0	664.0	4.2	61
25WCDD023	100	101	1	0.53	0.017	995.0	1,055.0	6.0	64
25WCDD023	105	106	1	0.32	0.010	601.0	795.0	1.2	70
25WCDD023	110	111	1	0.22	0.007	390.0	632.0	1.5	68
25WCDD023	115	116	1	0.19	0.006	391.0	544.0	1.2	61
25WCDD023	120	121	1	0.37	0.012	630.0	781.0	2.1	66
25WCDD023	125	126	1	0.44	0.014	763.0	728.0	2.5	78
25WCDD023	130	131	1	0.34	0.011	664.0	811.0	1.7	64
25WCDD023	135	136	1	0.07	0.002	107.0	730.0	0.9	56
25WCDD023	140	141	1	0.46	0.015	1,100.0	678.0	5.9	87
25WCDD023	145	146	1	0.35	0.011	621.0	741.0	2.5	74
25WCDD023	150	151	1	0.09	0.003	212.0	695.0	0.6	56
25WCDD023	155	156	1	0.13	0.004	268.0	632.0	0.9	67
25WCDD023	158	159.2	1.2	0.15	0.005	306.0	576.0	2.7	67
25WCDD023	160	161	1	0.39	0.013	694.0	1,205.0	0.9	49
25WCDD023	165	166	1	0.17	0.005	274.0	950.0	16.6	47
25WCDD023	170	171	1	0.79	0.025	728.0	581.0	2.8	72
25WCDD023	171	172	1	0.34	0.011	549.0	632.0	1.2	64
25WCDD023	172	173	1	0.56	0.018	990.0	839.0	1.2	62
25WCDD023	173	174	1	0.20	0.006	334.0	699.0	1.3	63
25WCDD023	174	175	1	0.11	0.004	147.0	618.0	1.2	58
25WCDD023	175	176	1	0.04	0.001	57.7	829.0	0.9	49
25WCDD023	176	177	1	0.03	0.001	52.9	788.0	1.0	48
25WCDD023	177	178	1	0.09	0.003	142.5	848.0	1.2	46
25WCDD023	178	179	1	0.13	0.004	299.0	546.0	5.2	78
25WCDD023	179	180	1	0.13	0.004	123.0	477.0	3.6	80
25WCDD023	180	181	1	0.13	0.004	152.0	459.0	5.5	78
25WCDD023	181	181.7	0.7	0.16	0.005	130.5	459.0	5.6	78
25WCDD023	181.7	182.37	0.67	0.36	0.012	269.0	523.0	16.4	113
25WCDD023	182.37	183	0.63	0.59	0.019	48.1	12.4	70.9	113
25WCDD023	183	184	1	2.18	0.070	31.3	5.6	33.9	53
25WCDD023	184	185	1	1.03	0.033	52.6	11.2	32.3	58
25WCDD023	185	186	1	12.15	0.391	1,535.0	391.0	48.0	88
25WCDD023	186	187	1	10.30	0.331	1,080.0	219.0	48.9	49
25WCDD023	187	188	1	9.53	0.306	905.0	366.0	198.0	87
25WCDD023	188	189	1	12.25	0.394	1,535.0	422.0	52.8	112

ASX:WCE ANNOUNCEMENT

4 February 2026

For personal use only

Hole ID	From (m)	To (m)	Interval (m)	Ag (g/t)	Ag (oz/t)	Cu (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
25WCDD023	189	190	1	0.96	0.031	127.5	27.2	47.3	54
25WCDD023	190	191	1	0.78	0.025	118.5	22.2	39.0	46
25WCDD023	191	192	1	0.14	0.005	17.0	3.9	32.1	51
25WCDD023	192	193	1	0.13	0.004	15.6	4.1	36.4	36
25WCDD023	193	194	1	0.14	0.005	9.8	3.3	33.0	100
25WCDD023	194	195	1	0.12	0.004	8.8	2.9	34.4	128
25WCDD023	195	196	1	0.17	0.005	29.9	3.1	42.6	54
25WCDD023	196	197	1	0.16	0.005	19.4	3.8	19.7	35
25WCDD023	197	198	1	0.13	0.004	30.8	4.5	12.9	49
25WCDD023	198	198.7	0.7	0.17	0.005	19.1	5.9	13.6	39
25WCDD023	198.7	199.85	1.15	0.15	0.005	12.8	5.1	36.8	27
25WCDD023	199.85	200.45	0.6	1.38	0.044	12.6	10.6	43.9	31
25WCDD023	200.45	201	0.55	3.17	0.102	45.9	92.5	107.5	110
25WCDD023	201	201.5	0.5	1.29	0.041	22.6	23.2	38.0	27
25WCDD023	201.5	202	0.5	2.70	0.087	19.4	19.1	42.6	28
25WCDD023	202	203.1	1.1	5.07	0.163	291.0	56.5	62.7	44
25WCDD023	203.1	204	0.9	1.29	0.041	119.5	22.2	41.6	28
25WCDD023	204	205	1	0.28	0.009	27.7	12.8	86.5	39
25WCDD023	205	206	1	0.14	0.005	15.2	4.0	57.6	18
25WCDD023	206	207	1	0.41	0.013	12.8	5.8	40.5	34
25WCDD023	207	208	1	1.74	0.056	10.8	6.7	29.7	26
25WCDD023	208	209	1	1.18	0.038	21.1	4.0	49.5	52
25WCDD023	209	210	1	0.13	0.004	6.8	2.7	71.8	88
25WCDD023	211	212	1	0.81	0.026	9.0	2.7	254.0	558
25WCDD023	212	213	1	0.27	0.009	6.0	6.5	78.3	57
25WCDD023	213	214	1	3.74	0.120	14.4	5.6	67.1	39
25WCDD023	214	215	1	1.64	0.053	13.6	4.0	40.6	52
25WCDD023	215	216	1	0.17	0.005	8.5	2.5	20.3	24
25WCDD023	216	217	1	3.20	0.103	10.8	9.3	25.4	24
25WCDD023	217	218	1	4.10	0.132	9.4	8.6	33.7	32
25WCDD023	218	219	1	0.34	0.011	7.7	22.2	38.8	41
25WCDD023	219	220	1	0.12	0.004	7.2	5.0	33.8	57
25WCDD023	220	221	1	0.11	0.004	7.9	4.5	31.1	65
25WCDD023	221	221.8	0.8	0.07	0.002	6.7	3.9	31.2	34
25WCDD024	0	0.9	0.9		0.000				
25WCDD024	0.9	1.4	0.5	5.61	0.180	706.0	821.0	3.8	68
25WCDD024	1.4	2	0.6	0.86	0.028	1,675.0	1,225.0	1.3	78
25WCDD024	2	3	1	0.37	0.012	1,430.0	1,250.0	1.2	77
25WCDD024	3	4	1	0.20	0.006	1,040.0	1,230.0	0.9	72
25WCDD024	4	5.05	1.05	0.43	0.014	951.0	1,125.0	0.9	73
25WCDD024	5.05	6	0.95	0.80	0.026	1,165.0	1,150.0	1.1	76
25WCDD024	6	7	1	1.43	0.046	1,455.0	1,445.0	1.8	85
25WCDD024	7	8	1	0.74	0.024	605.0	1,040.0	1.2	68
25WCDD024	8	9	1	0.34	0.011	214.0	746.0	0.9	65
25WCDD024	9	10	1	0.24	0.008	452.0	919.0	0.8	63
25WCDD024	10	11	1	1.33	0.043	449.0	1,080.0	1.8	65

ASX:WCE ANNOUNCEMENT

4 February 2026

For personal use only

Hole ID	From (m)	To (m)	Interval (m)	Ag (g/t)	Ag (oz/t)	Cu (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
25WCDD024	11	12	1	0.87	0.028	382.0	1,170.0	2.1	69
25WCDD024	12	13	1	0.35	0.011	752.0	1,220.0	1.2	75
25WCDD024	13	14	1	0.24	0.008	883.0	866.0	1.2	77
25WCDD024	14	15	1	0.47	0.015	1,305.0	1,065.0	1.3	90
25WCDD024	15	15.5	0.5	0.15	0.005	865.0	960.0	0.7	68
25WCDD024	15.5	16	0.5	0.73	0.023	464.0	799.0	0.7	73
25WCDD024	16	17	1	2.20	0.071	725.0	879.0	0.9	74
25WCDD024	17	18	1	0.76	0.024	562.0	859.0	0.7	75
25WCDD024	18	19	1	2.11	0.068	580.0	820.0	0.9	77
25WCDD024	19	19.77	0.77	1.75	0.056	486.0	864.0	1.1	73
25WCDD024	19.77	21	1.23	1.10	0.035	273.0	643.0	0.6	77
25WCDD024	21	22	1	10.05	0.323	292.0	772.0	0.7	79
25WCDD024	22	22.41	0.41	9.94	0.320	675.0	820.0	1.1	122
25WCDD024	22.41	23	0.59	4.01	0.129	1,360.0	1,295.0	180.5	434
25WCDD024	23	24.25	1.25	1.77	0.057	1,655.0	1,865.0	518.0	1,165
25WCDD024	24.25	25	0.75	4.72	0.152	1,155.0	1,290.0	757.0	998
25WCDD024	25	26	1	3.71	0.119	1,265.0	1,285.0	2,110.0	1,100
25WCDD024	26	27.25	1.25	3.63	0.117	750.0	738.0	2,920.0	960
25WCDD024	27.25	27.8	0.55	14.65	0.471	291.0	507.0	1,775.0	635
25WCDD024	27.8	29	1.2	61.50	1.977	81.7	69.9	468.0	135
25WCDD024	29	30	1	11.10	0.357	35.4	27.4	97.5	77
25WCDD024	30	31	1	15.20	0.489	48.5	17.0	149.0	48
25WCDD024	31	32	1	11.35	0.365	16.8	7.2	50.9	17
25WCDD024	32	33	1	10.30	0.331	10.4	7.0	28.3	11
25WCDD024	33	34	1	7.63	0.245	15.5	5.0	57.7	8
25WCDD024	34	35	1	10.50	0.338	11.0	4.1	46.9	6
25WCDD024	35	36	1	10.75	0.346	12.0	3.5	94.7	6
25WCDD024	36	37	1	8.59	0.276	14.6	12.7	45.5	27
25WCDD024	37	38	1	9.20	0.296	11.8	11.5	24.1	24
25WCDD024	38	39	1	3.34	0.107	16.8	25.6	13.8	59
25WCDD024	39	40	1	8.33	0.268	9.8	13.0	35.5	30
25WCDD025	5	6	1	0.06	0.002	114.0	709.0	2.0	69
25WCDD025	10	11	1	0.12	0.004	307.0	676.0	1.4	59
25WCDD025	15	16	1	0.03	0.001	41.3	616.0	5.3	55
25WCDD025	20	21	1	0.10	0.003	135.5	972.0	1.8	92
25WCDD025	25	26	1	0.08	0.003	159.5	583.0	1.1	57
25WCDD025	30	31	1	0.05	0.002	89.3	594.0	1.0	58
25WCDD025	35	36	1	0.05	0.002	97.3	819.0	0.7	58
25WCDD025	40	41	1	0.04	0.001	92.2	624.0	3.7	65
25WCDD025	45	46	1	0.06	0.002	97.6	727.0	0.7	56
25WCDD025	50	51	1	0.28	0.009	491.0	1,025.0	1.4	61
25WCDD025	55	56	1	0.06	0.002	113.0	785.0	0.6	58
25WCDD025	60	61	1	1.81	0.058	3,030.0	3,240.0	1.1	57
25WCDD025	65	66	1	1.22	0.039	2,350.0	1,680.0	1.9	56
25WCDD025	70	71	1	0.60	0.019	1,065.0	897.0	10.3	49
25WCDD025	75	76	1	0.10	0.003	175.5	636.0	3.3	48

ASX:WCE ANNOUNCEMENT

4 February 2026

For personal use only

Hole ID	From (m)	To (m)	Interval (m)	Ag (g/t)	Ag (oz/t)	Cu (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
25WCDD025	80	81	1	0.80	0.026	1,495.0	1,115.0	3.2	62
25WCDD025	85	86	1	1.20	0.039	2,260.0	2,150.0	1.1	67
25WCDD025	90	91	1	0.28	0.009	488.0	1,105.0	0.9	67
25WCDD025	95	96	1	0.10	0.003	150.5	750.0	0.8	57
25WCDD025	100	101	1	0.49	0.016	774.0	1,180.0	1.4	56
25WCDD025	105	106	1	0.18	0.006	272.0	917.0	0.7	53
25WCDD025	110	111	1	0.68	0.022	1,125.0	1,400.0	1.2	53
25WCDD025	115	116	1	1.62	0.052	2,860.0	1,985.0	1.0	60
25WCDD025	120	121	1	0.89	0.029	1,565.0	1,395.0	1.1	57
25WCDD025	122.5	123.38	0.88	2.22	0.071	4,080.0	1,980.0	2.5	103
25WCDD025	125	126	1	0.67	0.022	1,235.0	1,065.0	0.9	65
25WCDD025	130	131	1	0.73	0.023	1,040.0	1,100.0	1.0	61
25WCDD025	135	136	1	0.46	0.015	756.0	1,175.0	1.4	63
25WCDD025	140	141	1	0.39	0.013	705.0	683.0	1.3	56
25WCDD025	145	146	1	1.11	0.036	1,720.0	1,195.0	1.1	61
25WCDD025	150	151	1	2.04	0.066	2,370.0	1,840.0	1.1	71
25WCDD025	155	156	1	0.66	0.021	561.0	631.0	0.9	58
25WCDD025	156	157	1	0.44	0.014	331.0	646.0	2.1	60
25WCDD025	157	158	1	1.59	0.051	1,315.0	907.0	5.4	74
25WCDD025	158	159	1	0.33	0.011	294.0	692.0	3.2	64
25WCDD025	159	160	1	1.12	0.036	919.0	959.0	2.2	70
25WCDD025	160	161	1	0.34	0.011	267.0	640.0	2.5	56
25WCDD025	161	162	1	1.41	0.045	1,060.0	907.0	4.0	68
25WCDD025	162	163	1	1.42	0.046	980.0	1,155.0	1.7	73
25WCDD025	163	164	1	0.68	0.022	421.0	737.0	11.7	60
25WCDD025	164	165	1	0.84	0.027	465.0	780.0	3.8	59
25WCDD025	165	166	1	1.16	0.037	667.0	897.0	2.9	66
25WCDD025	166	167	1	1.46	0.047	794.0	905.0	3.7	71
25WCDD025	167	167.55	0.55	0.39	0.013	178.0	647.0	4.2	69
25WCDD025	167.55	168.7	1.15	0.60	0.019	294.0	611.0	4.7	108
25WCDD025	168.7	170	1.3	1.22	0.039	440.0	638.0	5.9	72
25WCDD025	170	171.06	1.06	1.73	0.056	573.0	558.0	2.9	81
25WCDD025	171.06	172	0.94	1.32	0.042	357.0	477.0	5.2	108
25WCDD025	172	173	1	2.68	0.086	747.0	817.0	9.2	99
25WCDD025	173	174	1	4.83	0.155	1,160.0	780.0	9.9	106
25WCDD025	174	174.45	0.45	4.43	0.142	862.0	663.0	49.4	212
25WCDD025	174.45	175	0.55	5.13	0.165	929.0	809.0	114.0	360
25WCDD025	175	176	1	0.73	0.023	314.0	511.0	184.0	451
25WCDD025	176	176.5	0.5	9.77	0.314	350.0	369.0	306.0	470
25WCDD025	176.5	177	0.5	15.70	0.505	174.5	179.5	1,820.0	329
25WCDD025	177	178.3	1.3	11.60	0.373	29.5	68.3	97.5	112
25WCDD025	178.3	179	0.7	4.44	0.143	21.8	32.0	74.0	80
25WCDD025	179	180.13	1.13	5.80	0.186	21.0	26.6	75.7	74
25WCDD025	180.13	181	0.87	2.18	0.070	50.8	25.9	156.0	241
25WCDD025	181	182	1	0.66	0.021	10.3	6.5	37.2	38
25WCDD025	182	183	1	0.21	0.007	8.3	3.5	58.4	21

ASX:WCE ANNOUNCEMENT

4 February 2026

For personal use only

Hole ID	From (m)	To (m)	Interval (m)	Ag (g/t)	Ag (oz/t)	Cu (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
25WCDD025	183	184	1	0.23	0.007	7.9	3.2	63.8	29
25WCDD025	184	185	1	0.55	0.018	16.4	4.9	58.4	57
25WCDD025	185	185.8	0.8	0.62	0.020	10.3	6.4	50.1	36
25WCDD025	185.8	186.6	0.8	1.78	0.057	19.0	90.7	36.7	118
25WCDD025	186.6	187	0.4	0.78	0.025	13.0	14.6	16.2	49
25WCDD025	187	188	1	0.44	0.014	17.2	7.7	43.8	47
25WCDD025	188	189	1	0.28	0.009	13.0	6.1	177.0	46
25WCDD025	189	190	1	0.24	0.008	27.9	6.6	48.5	48
25WCDD025	190	191	1	0.20	0.006	51.3	5.4	51.0	38
25WCDD025	191	192	1	0.16	0.005	13.8	20.6	58.5	53
25WCDD025	192	193	1	0.14	0.005	12.0	3.9	69.0	63
25WCDD025	193	194	1	0.09	0.003	10.0	2.8	65.7	46
25WCDD025	194	195	1	0.13	0.004	10.2	3.6	93.8	87
25WCDD025	195	196	1	0.14	0.005	10.2	3.6	141.5	172
25WCDD025	196	197	1	0.13	0.004	12.4	4.1	170.0	202
25WCDD025	197	198	1	0.17	0.005	9.9	4.0	193.5	105
25WCDD025	198	199	1	0.16	0.005	12.4	4.4	106.5	123
25WCDD025	199	200	1	0.20	0.006	6.6	5.8	89.1	132
25WCDD025	200	201	1	0.25	0.008	14.2	6.0	92.2	104
25WCDD025	201	202	1	0.36	0.012	8.0	10.6	25.8	69
25WCDD025	202	203	1	0.25	0.008	12.2	9.0	35.2	74
25WCDD025	203	204	1	1.84	0.059	14.0	104.5	47.0	253
25WCDD025	204	205	1	0.27	0.009	9.9	16.9	70.0	199
25WCDD025	205	205.8	0.8	1.18	0.038	66.4	124.0	34.4	129
25WCDD025	205.8	207	1.2	3.13	0.101	224.0	523.0	235.0	352
25WCDD025	207	208	1	0.89	0.029	49.6	282.0	1,390.0	336
25WCDD025	208	208.55	0.55	0.35	0.011	16.4	107.5	1,200.0	199
25WCDD025	208.55	209	0.45	0.27	0.009	68.7	14.0	119.5	37
25WCDD025	209	209.9	0.9	0.18	0.006	42.9	8.8	38.8	32

Note: intervals are down hole lengths not true widths; 1oz = 31.1035g

Appendix 3: JORC Code, 2012 – Table 1 - Elizabeth Hill

October 2025 Diamond Drill Assay Results

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	<ul style="list-style-type: none"> Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	<ul style="list-style-type: none"> Samples for laboratory analyses were taken by sawing the diamond drill (DD) core in half along a cutting line, which is offset from the core orientation line. The half of the drill core without the orientation line was collected for assaying. Duplicate samples were collected by sawing the remaining half core into two quarter cores, taking a quarter core for the assay and preserving the quarter core with the orientation line. Sample length was typically 1m but could be as high as 1.3m and as low as 20cm. The short sample lengths were designed to separately capture the zones of visible native silver mineralisation. Original and QAQC samples (CRM standards, blanks and core duplicates) were sent to the laboratory for analysis (ALS Perth for all elements and secondary assaying at ALS Langley Canada for any over grade Ag assays). Entire DD samples were fine crushed (CRU-42a) to 90% passing 3.15mm. The sample was then rotary split directly from the crusher (SPL-22a) and pulverised to obtain 750g to 85% passing 75 µm (method PUL-25e). These preparation methods are industry standard and appropriate for the samples.
Drilling techniques	<ul style="list-style-type: none"> Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	<ul style="list-style-type: none"> Drilling was undertaken with a track-mounted LF90 diamond core drill rig capable of drilling HQ core to 600m. Core was recovered in a triple tube. All the core in this program was drilled HQ3. The drill rig was lined up on the proposed dip and azimuth by the drillers using an Azimuth Aligner instrument. Core was orientated using Reflex ACT III HQ tool. Drill hole collars were surveyed using an IMDEX TN14 Gyro and Differential GPS. A Reflex Omni X-42 North Seeking Gyro was used for downhole surveying of the drill holes and was calibrated prior to use, with readings taken at approximately every 5m on the in and out run.
Drill sample recovery	<ul style="list-style-type: none"> Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	<ul style="list-style-type: none"> Core recovery was systematically recorded from the commencement of diamond coring to the end of hole, by reconciling against driller depth blocks, production plots and knowledge obtained from visual inspection. Core recoveries typically averaged above 90% with isolated minor zones of lesser recovery. No relationship has been established between core recovery and grade. There is no reason to expect any sampling bias. Detailed core recovery data was noted throughout the drilling by the drilling crew and confirmatory

For personal use only

Criteria	JORC Code explanation	Commentary
		measurements were collected and recorded by the geologist as part of the geotechnical logging.
Logging	<ul style="list-style-type: none"> Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	<ul style="list-style-type: none"> Diamond drill core was orientated and geologically and geotechnically logged for the entire drill hole by an experienced team of geologists with the data stored in a database. All core logging was both qualitative and quantitative in nature. Photographs are taken prior to the cutting and sampling of the core; core is wetted to improve the visibility of features in the photographs.
Subsampling techniques and sample preparation	<ul style="list-style-type: none"> If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	<ul style="list-style-type: none"> Samples for laboratory analyses were taken by sawing the DD core in half along a cutting line, which is offset from the core orientation line. The half of the drill core without the orientation line was collected for assaying. Duplicate samples were collected by sawing the remaining half core into two quarter cores, taking a quarter core but preserving the quarter core with the orientation line. Original and QAQC samples (CRM standards, blanks and core duplicates) were sent to the laboratory for analysis (ALS Perth for all elements and secondary assaying at ALS Langley Canada for any over grade Ag assays). Entire DD core samples were fine crushed (CRU-42a) to 90% passing 3.15mm. The sample was then rotary split directly from the crusher (SPL-22a) and pulverised to obtain 750g to 85% passing 75 µm (method PUL-25e). These preparation methods are standard and appropriate for the samples. The 1m half core samples are appropriate to the grain size of the material being sampled. Where intervals of native silver were logged, these were sampled to mineralogical boundaries as low as 0.2m in length.
Quality of assay data and laboratory tests	<ul style="list-style-type: none"> The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established. 	<ul style="list-style-type: none"> Laboratory samples were analysed at ALS laboratories (Perth) for 48 elements, four acid digestion and ICP-MS finish. Samples with above upper detection limit analyses (>100g/t Ag) were then analysed at ALS Perth with Ag-OG62 (four acid, ore grade Ag), ME-OG62 (four acid ore grade elements), Pb-OG62 (ore grade Pb – four acid) and Zn-OG62 (ore grade Zn – four acid). For Ag assays >1,500g/t Ag, samples were sent to ALS Langley (Canada) for analysis by Ag-GRA21 (Ag 30g FA-GRAV finish). For Ag assays >10,000g/t, samples were then further analysed at ALS Langley by Ag-CON01 (Ag concentrate). Four acid digestion is considered a near total digestion. The first samples analysed at the start of each hole were a blank then a standard before assaying of core samples, then ending the sample run for the hole with a standard then a blank. Certified reference material (CRM) standards (OREAS 303b, OREAS-602c, OREAS-608b, OREAS-611b) were inserted in the sampling stream as every 25th sample. Duplicate samples (quarter core) were collected as every 50th sample. Irrespective of where intervals of native silver were sampled in the hole, a duplicate sample was collected which was followed by insertion of a blank.

Criteria	JORC Code explanation	Commentary
		<ul style="list-style-type: none"> Acceptable levels of accuracy and precision have been established for all CRM standards and for the majority of the blank material. Four blanks which had been inserted after core intervals with visible native silver showed some contamination of the blanks from the previous extremely high-grade Ag sample of <1% relative as carry-over from the crusher and pulveriser. The Competent Person (CP) considers the levels of carry-over is acceptable and there was no direct evidence of further contamination after the blank on succeeding samples.
Verification of sampling and assaying	<ul style="list-style-type: none"> The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	<ul style="list-style-type: none"> Significant silver intercepts reported in this announcement were generated by ERM's Principal Structural Geologist and QAQC cross checking and validation completed by the CP. October 2025 diamond drilling twinned several historical drill holes to verify their reported grades. Primary data have been entered into spreadsheets on laptops which then have been verified and entered into the database. No adjustments were made to the assay data.
Location of data points	<ul style="list-style-type: none"> Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	<ul style="list-style-type: none"> Diamond drill holes are located using a Differential GPS (DGPS) with accuracy to within 20cm for northing and easting. Historical collars have been surveyed by DGPS where collars were found. 2025 drilling uses a downhole north seeking gyro for surveys that provides continuous readings in and out of the drill hole. The data is uploaded into a database for storage. A 0.5m DTM is used for topographic control. Data has been collected in GDA94/MGA Zone 50 and converted to GDA20/MGA Zone 50.
Data spacing and distribution	<ul style="list-style-type: none"> Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	<ul style="list-style-type: none"> Drill holes were spaced 15-25m apart on drill lines that were spaced 10-20m apart. Drill holes were either designed to verify historical drill results and/or test for extensions of mineralisation. No Mineral Resource or Ore Reserve are reported. Core samples for laboratory analyses have been taken of the entire drill hole on a 1m sample length but may be reduced to 0.2m or extended to 1.3m where geological or mineralogical parameters required. The exception was for drill holes 25WCDD023 and 25WCDD025 which have been sampled every 5th metre in the upper parts of the drill holes and then every metre through the zone interpreted to potentially contain mineralisation.
Orientation of data in relation to geological structure	<ul style="list-style-type: none"> Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralized structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	<ul style="list-style-type: none"> Drill holes were oriented with a dip of -60° towards 270°. This hole orientation was designed to intersect the north-south trending, sub-vertical, mineralised structural envelope as close to perpendicular. Geologically described logged intersections do not represent true thickness. The drill orientation is not expected to have introduced any sampling bias.
Sample security	<ul style="list-style-type: none"> The measures taken to ensure sample security. 	<ul style="list-style-type: none"> Drill core was transported from the drill rig to the storage facility in Karratha by WCE personnel. Samples have been stored in a secured yard in Karratha under supervision by WCE personnel. Diamond core samples were collected in individual calico bags and several calico bags were then placed in labelled polyweave bags that were zip locked. Polyweave bags were subsequently

ASX:WCE ANNOUNCEMENT

4 February 2026

Criteria	JORC Code explanation	Commentary
		<p>loaded into labelled bulka bags that were tied off and secured for transportation.</p> <ul style="list-style-type: none">• A chain of control was utilised for tracking of samples from Karratha to the lab in Perth.• Samples were dispatched to the ALS laboratory in Perth via a commercial transport company.
Audits or reviews	<ul style="list-style-type: none">• The results of any audits or reviews of sampling techniques and data.	<ul style="list-style-type: none">• No audits or reviews of the sampling techniques has been undertaken by West Coast Silver or any independent parties. The data has been audited by ERM's Database Manager before entering into the database. The Database Manager also completed an audit of the QAQC samples.

For personal use only

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	<ul style="list-style-type: none"> Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	<ul style="list-style-type: none"> The results reported in this announcement refer to core from holes drilled wholly on M47/342. The tenement lies within the Ngarluma Native Title claim. The tenement is in good standing with no known impediments.
Exploration done by other parties	<ul style="list-style-type: none"> Acknowledgment and appraisal of exploration by other parties. 	<ul style="list-style-type: none"> The Elizabeth Hill deposit and adjoining area has been explored for Ni, Cu, PGM, base metals, Li and Ag mineralisation since 1968 when US Steel International Inc explored the area for base metals and nickel. Massive silver was discovered in ~1994-1995 by Legend mining NL in a percussion hole drilling program. Further drilling followed and in 1997 an exploration shaft and drive was sunk by East Coast Minerals NL. Underground mining at Elizabeth Hill was conducted in 1999-2000 with additional drilling completed by East Coast Minerals NL until the project was sold to Global Strategic Metals NL in 2012. Alien Metals Ltd purchased the lease M47/342 in early 2020. Considerable exploration for Ni, Cu, PGM was conducted by Hunter Resources dating back to the 1980s. Helix Resources acquired the Munni Munni Project in the late 1990's and undertook a number of scoping studies. In 2002, a SRK Mineral Resource estimate for PGE and Au was published in accordance with the JORC code. Subsequently, Platina Resources undertook mining studies and two scoping studies for the PGE and Au mineralisation.
Geology	<ul style="list-style-type: none"> Deposit type, geological setting and style of mineralisation. 	<ul style="list-style-type: none"> The Elizabeth Hill silver mineralisation is structurally controlled and is located at the contact of the ultramafic Munni Munni intrusion to the east and Archaean gneisses and granites to the west. This contact is occupied by the north-south trending Munni Munni Fault. Mineralisation has been intersected over a 100m north-south zone along the boundary of the Munni Munni Fault, plunging south along the granite contact. The zone has an east-west width of 15-20m with the high-grade core restricted to around 3m width in the region of the underground workings. The mineralised zone is separated into several pods and occurs within a quartz carbonate chalcedonic silica breccia that contains carbonate and quartz veins. The silver occurs in fine disseminations, needles, veins, nuggets and platelets up to several centimetres in diameter.
Drill hole Information	<ul style="list-style-type: none"> A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: 	<ul style="list-style-type: none"> Drill information relevant to this release has been provided above in Appendix 1.

Criteria	JORC Code explanation	Commentary
	<ul style="list-style-type: none"> o easting and northing of the drill hole collar <ul style="list-style-type: none"> o elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar <ul style="list-style-type: none"> o dip and azimuth of the hole o down hole length and interception depth o hole length. • If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case 	
Data aggregation methods	<ul style="list-style-type: none"> • In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. • Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. • The assumptions used for any reporting of metal equivalent values should be clearly stated 	<ul style="list-style-type: none"> • 2025 or historical drilling assay data referenced has previously been reported in ASX announcements. • Significant drill core intersections reported in Appendix 2 in this announcement have been calculated using a 25g/t Ag cut-off, are length weighted and up to 2.02m of internal dilution. Some of these significant intervals also include very high grade silver intersections that have been calculated using a 500g/t Ag lower cut-off and are length weighted. • No metal equivalent values are reported.
Relationship between mineralisation widths and intercept lengths	<ul style="list-style-type: none"> • These relationships are particularly important in the reporting of Exploration Results. • If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. • If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known'). 	<ul style="list-style-type: none"> • Drill hole intersections reported are not true widths due to the sub vertical geometry of the mineralised body and -60° dip of the drill holes.
Diagrams	<ul style="list-style-type: none"> • Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	<ul style="list-style-type: none"> • Appropriate maps and figures have been included in this announcement.
Balanced reporting	<ul style="list-style-type: none"> • Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practised to avoid misleading reporting of Exploration Results 	<ul style="list-style-type: none"> • All relevant and material exploration data to highlight the areas discussed in this announcement have been reported or referenced. • Drill assay information relevant to this announcement has been provided above in the body of the announcement and in Appendix 3B. Five elements (Ag, Cu, Ni, Pb and Zn) have been reported only in Appendix 3, as they are deemed to be anomalous in mineralised zones. Additional elements analysed are not considered relevant. • Historical drill data and assay results referenced in this announcement have been previously reported in ASX announcements.

For personal use only

Criteria	JORC Code explanation	Commentary
Other substantive exploration data	<ul style="list-style-type: none"> Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	<ul style="list-style-type: none"> All relevant and material exploration data for the areas discussed in this announcement have been reported or referenced.
Further work	<ul style="list-style-type: none"> The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	<ul style="list-style-type: none"> Further work will include but not limited to systematic geological mapping, channel and rock chip sampling, soil sampling, pXRF, geophysics, structural interpretation, historical data compilation, and drilling to identify suitable host rock geology and structural architecture for polymetallic mineralisation. Interpretive diagrams are included in this announcement.