

High-grade gold continues to be intersected at the 4.5Moz Bullabulling Gold Project

7m @ 38.75 g/t Au, including 1m @ 196g/t Au, intersected at Bacchus

Highlights

Minerals 260 Limited (ASX:MI6) is pleased to report further results from its ongoing drilling program at the 4.5Moz Bullabulling Gold Project, located 25km west of Coolgardie in Western Australia. Assays have been received for a further 83 drill holes totalling 16,657m, including:

Phoenix Deposit (57Mt @ 1.0g/t Au for 1,800koz Au)

Infill

- 14m @ 1.0g/t Au from 88m in BBRC0376*
- 12m @ 1.3g/t Au from 180m in BBRC0431*
- 19m @ 1.26g/t Au from 42m in BBRC0462*

Extensional (outside the December 2025 MRE)

- 8m @ 2.2g/t Au from 340m and 7.1m @ 1.2g/t Au from 368.2m in BBRD0010*¹
- 12m @ 1.5g/t Au from 102m and 10m @ 1.6g/t Au from 192m in BBRC0430*
- 13m @ 1.3g/t Au from 131m in BBRC0434*
- 11m @ 1.1g/t Au from 198m and 20m @ 0.6g/t Au from 253m in BBRC0435*

Bacchus Deposit (46Mt @ 1.1g/t Au for 1,600koz Au)

Infill

- 8.8m @ 1.3g/t Au from 197m in BBRD0046*¹
- 8m @ 3.0g/t Au from 175m and 6m @ 6.5g/t Au from 322m in BBRC0357*
- 6m @ 10.0g/t Au from 101m in BBRC0414*, including:
 - 1m @ 55.3g/t Au from 104m
- 7m @ 38.75g/t Au from 251m in BBRC0452* (True widths are estimated between 70% and 85% of the reported drillhole intercepts), including:
 - 4m @ 64.3g/t Au from 251m
 - 1m @ 196g/t Au from 252m

Extensional

- 15m @ 1.7g/t Au from 109m and 9m @ 1.1g/t Au from 128m in BBRC0356*
- 24m @ 1.4g/t Au from 110m in BBRC0418*

Dicksons Deposit (18Mt @ 1.0g/t Au for 610koz Au)

Infill

- 12m @ 1.2g/t Au from 83m and 4m @ 3.4g/t Au from 152m in BBRC0384*
- 11m @ 1.3g/t Au from 205m in BBRC0433*

Kraken Deposit (8.8Mt @ 1.2g/t Au for 340koz Au)

Infill

- 17m @ 0.8g/t Au from 85m in BBRC0406*

Extensional

- 14m @ 1.7g/t Au from 189m in BBRC0442*
- 2m @ 25.49g/t Au from 164m in BBRC0472*

Gibraltar Deposit (5.4Mt @ 1.0g/t Au for 180koz Au)

Extensional (results included in the December 2025 MRE)

- 10m @ 2.2g/t Au from 197m in BBRD0177*¹
- 10m @ 2.6g/t Au from 239m in BBRD0274*¹, including:
 - 1m @ 11.2g/t Au from 242m

Drilling at Bullabulling continues to:

- **Consistently return thick and high-grade mineralisation** along the footwall shear zone at Bacchus;
- **Intersect multiple mineralised lenses outside the December 2025 Mineral Resource Estimate (MRE)** pit shell, indicating strong potential for further increases to the MRE both at depth and along strike;
- **Confirm the continuity of mineralisation at depth along the entire 8.5km strike extent of the MRE**;
- **Intersect thick, high-grade mineralisation** down-plunge of the main lode at Gibraltar;
- **Target extensions of high-grade areas** located beneath or along strike from the 4.5Moz MRE, specifically the high-grade areas at Bacchus and between Bacchus and Kraken; and
- Support increasing confidence in the MRE and **improve the understanding of structural controls of the high-grade areas**.

* True widths are estimated at between 85% and 95% of the reported drillhole intercepts

True widths are estimated at between 70% and 85% of the reported drillhole intercepts

¹ Diamond tail results reported only. See previous ASX announcements for RC pre-collar significant intercepts.

Table 1 – Drilling Summary

	Holes (RC and DD)	Metres (RC and DD)
Drilled by MI6²	553	117,561
Previously reported	437	92,463
Reported in this announcement³	83	16,657
Total reported	520	109,121
Assays pending	33	8,440

² Two diamond holes were drilled by Norton Goldfields prior to the completion of the transaction.

³ Number includes diamond tails where RC pre-collars have been previously reported

Management Comment

Minerals 260 Managing Director, Luke McFadyen, said: *“It is fitting to close out 2025 with the best intercept reported by Minerals 260 - a hole at Bacchus which represents the highest value intercept on a gram x metre basis. Our +110,000m drilling campaign this year supported the recently announced 4.5Moz MRE and now we’ve announced some of the highest value intercepts in the history of the project. We’ve consistently delivered excellent drilling results since we started drilling at Bullabulling eight months ago. Importantly, the majority of results reported in this announcement were not included in the recent MRE update and will support an updated MRE in 2026.”*

“I would like to take this opportunity to thank our team for their hard-work this year. Their efforts have positioned Minerals 260 as one of the leading gold development companies in Australia and sets us up for an exciting 2026.”

Details

Minerals 260 Limited (“Minerals 260” or the “Company”) (**ASX: MI6**) is pleased to report results from its 100%-owned, 4.5Moz Bullabulling Gold Project (“Bullabulling” or the “Project”) located 25km west of Coolgardie in Western Australia.

Assays have been received for 83 drill holes totalling 16,657m, only two of these holes were included in the recently announced 4.5Moz MRE.

A total of 553 holes for 117,561m have been drilled by Minerals 260 since April 2025, comprising 53 DD holes for 10,623m, 483 RC holes for 101,943m, and 17 RC/DD holes for 4,995m (**Table 1**). See **Appendix 1** for a summary of the results included in this Announcement.

Drilling results in this Announcement are from:

- Infill drilling at the Dicksons, Phoenix, Bacchus and Kraken deposits;
- Diamond tails to follow up RC drilling at the Gibraltar prospect; and
- Extensional drilling beneath and along strike of the MRE pit shells, specifically high-grade areas at the Bacchus deposit.

Phoenix Deposit (57Mt @ 1.0g/t Au for 1,800koz Au)

Drilling at Phoenix has targeted down dip extensions and deeper lodes beneath the MRE pit shells. BBRC0435 intersected 11m @ 1.1g/t Au from 198m, and 20m @ 0.6g/t Au from 253m within the pit shell, extending mineralisation ~50m down dip (**Figure 2**).

Extensional holes targeting down dip mineralisation beneath the MRE pit shell included BBRC0434 with 13m @ 1.3g/t Au from 131m, and diamond tail BBRD0010 with 8m @ 2.2g/t Au from 340m and 7.1m @ 1.2g/t Au from 368.2m.

Bacchus Deposit (46Mt @ 1.1g/t Au for 1,600koz Au)

Drilling continues to intersect thick and higher than resource grade mineralisation, along the footwall lode where results include several of the highest gram x meter intercepts by Minerals 260, including the previously reported 10.2m @ 18.5g/t from 236.2m in BBDD0021. New results include:

- 8.8m @ 1.3g/t Au from 197m in BRRD0046;
- 8m @ 3.0g/t Au from 175m and 6m @ 6.5g/t Au from 322m in BBRC0357; and
- 24m @ 1.4g/t Au from 110m in BBRC0418.

Infill drilling at the southern end of the Bacchus MRE pit shell is consistently returning high grade and thick intercepts, with new results including:

- 7m @ 38.75g/t Au from 251m, including 4m @ 64.3g/t Au from 251m and 1m @ 196g/t Au from 252m in BBRC0452, being the best intercept received from drilling at Bullabulling (**Figures 3 and 4**);
- 6m at 10.0g/t Au from 101m in BBRC0414; and
- 5m at 2.7g/t Au from 61m in BBRC0411.

Dicksons Deposit (18Mt @ 1.0g/t Au for 610koz Au)

Recent drilling at Dicksons focussed on infill and depth extensions beneath the MRE pit shells. BBRC0432 intersected 19m @ 0.7g/t Au from 131m within the planned pit shell and BBRC0433 extended mineralisation beneath the pit shell with 11m @ 1.3g/t Au from 205m (**Figure 5**). Other significant results include BBRC0384 with 12m @ 1.2g/t Au from 83m and 4m @ 3.4g/t Au from 152m

These intercepts will be followed up with drilling to target deeper mineralisation outside of the current MRE.

Kraken Deposit (8.8Mt @ 1.2g/t Au for 340koz Au)

Recent drilling at Kraken has focused on infilling and testing depth extensions. Infill drilling returned thicker than anticipated mineralisation near the base of the planned pit shell, including 17m @ 0.8 g/t Au from 85m in BBRC0406.

Extension drilling delivered strong results, with BBRC0442 intersecting 14m @ 1.7 g/t Au from 189m on the margin of the MRE pit shell. Mineralisation in this area appears to increase in both grade and thickness with depth. BBRC0472, drilled between Bacchus and Kraken, intersected 2m @ 25.49g/t Au from 164m, supporting a plan to close the existing gap between, and potentially connect, the two deposits in the future. These results are highly encouraging and highlight the potential for further resource growth at Kraken.

Drilling will prioritise the eastern and western extensions of Kraken to define additional shallow, higher-grade mineralisation. Success in these areas may provide opportunities to optimise mine scheduling by bringing forward higher-grade, near-surface ounces early in the mine life.

Gibraltar Deposit (5.4Mt @ 1.0g/t Au for 180koz Au)

Drilling at Gibraltar targeted the down-plunge extension of the mineralised system, with BBRD0177 returning 10m at 2.2g/t Au from 197m, and BBRD0274 returning 10m at 2.6g/t Au from 239m (Figure 6). These results were incorporated into the December MRE and indicate that mineralisation may be increasing in both thickness and grade at depth. Drilling will focus on further defining these thicker, higher-grade zones located outside the MRE pit shell.

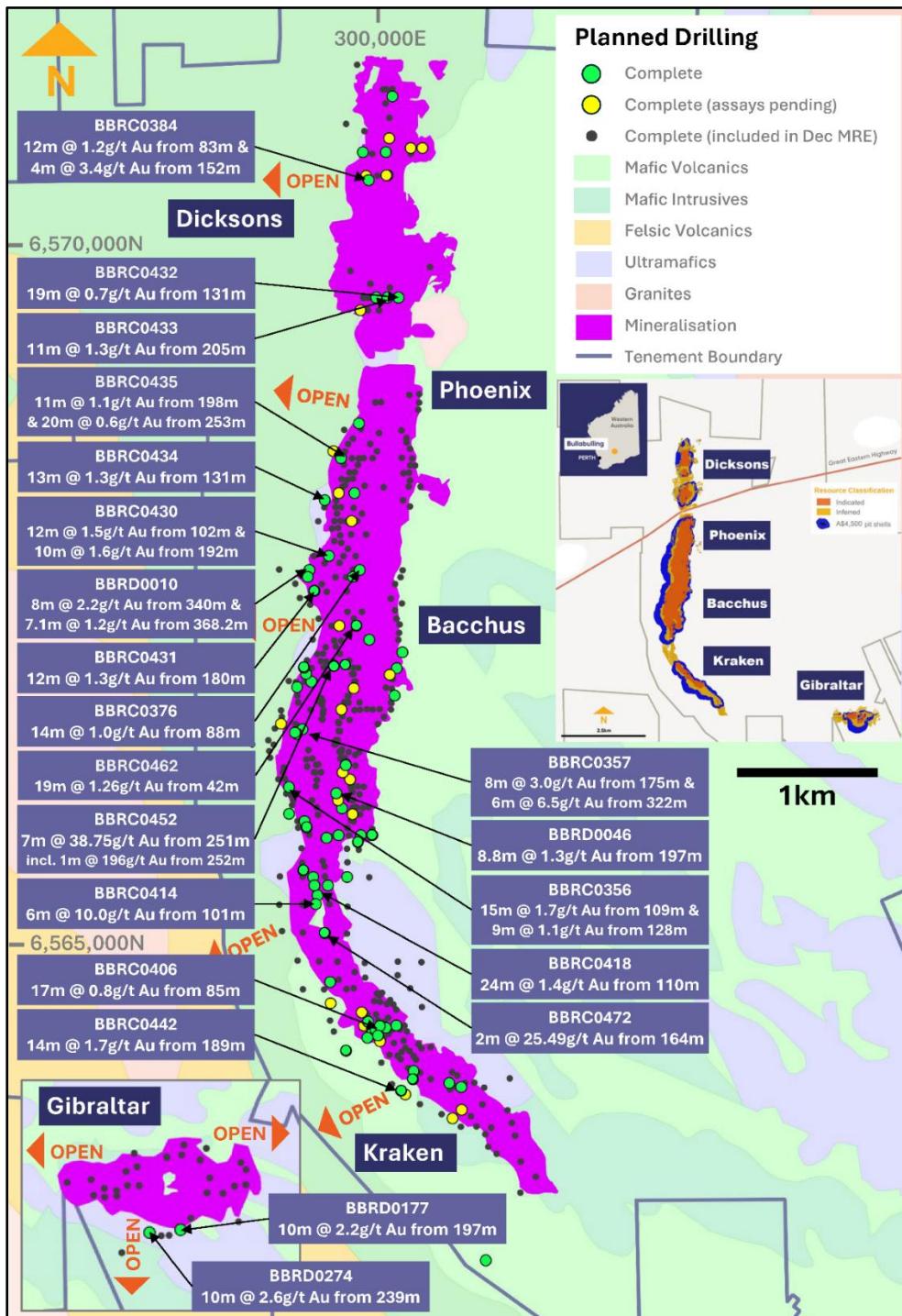


Figure 1 - Completed drilling collar locations with highlighted results

For personal use only

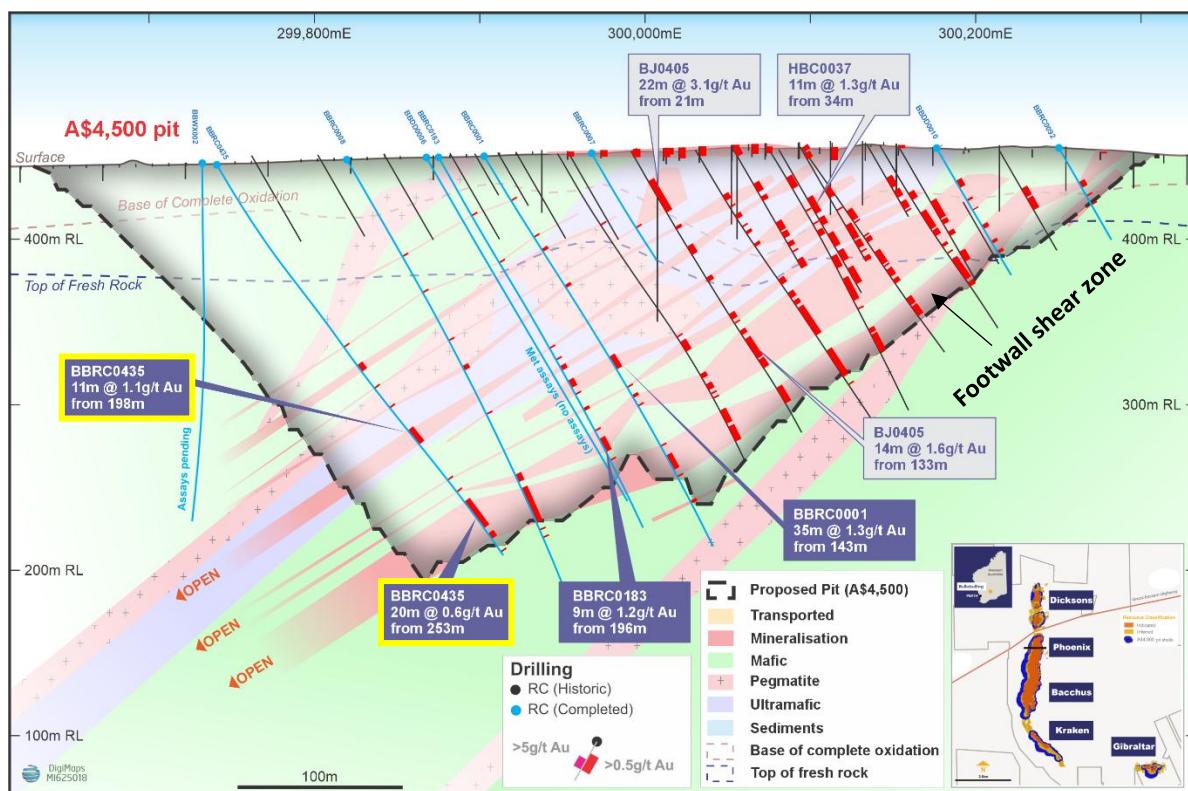


Figure 2 - Section 6568480N showing gold mineralisation in BBRC0435 in the foot wall lode of the Phoenix pit. New results with yellow borders.

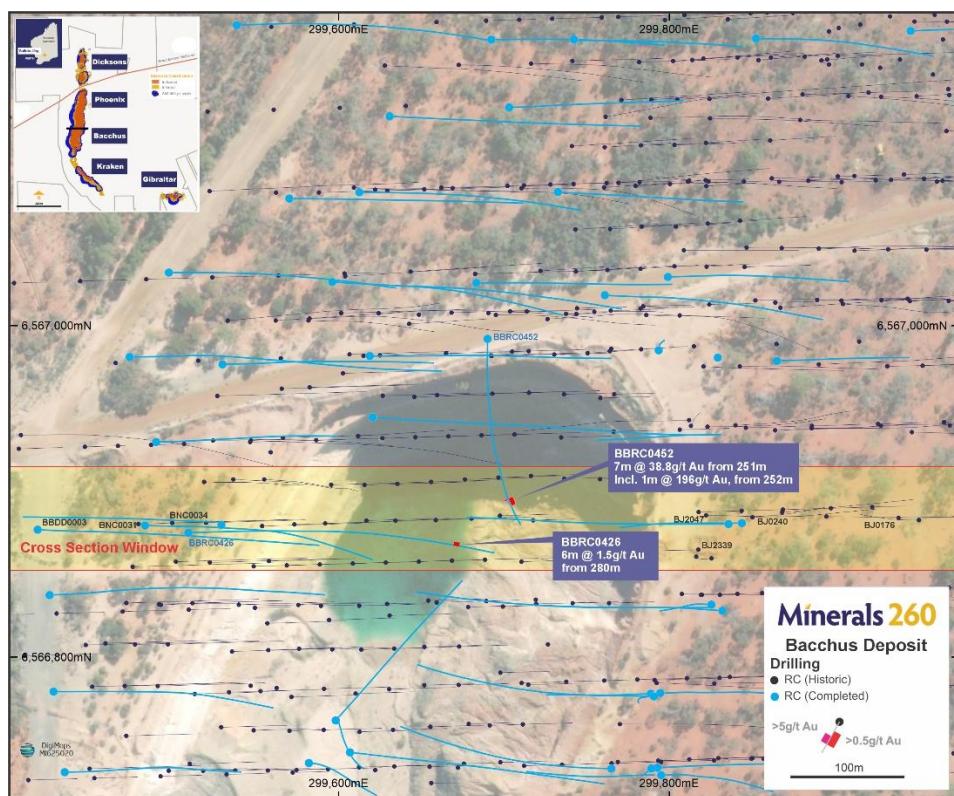
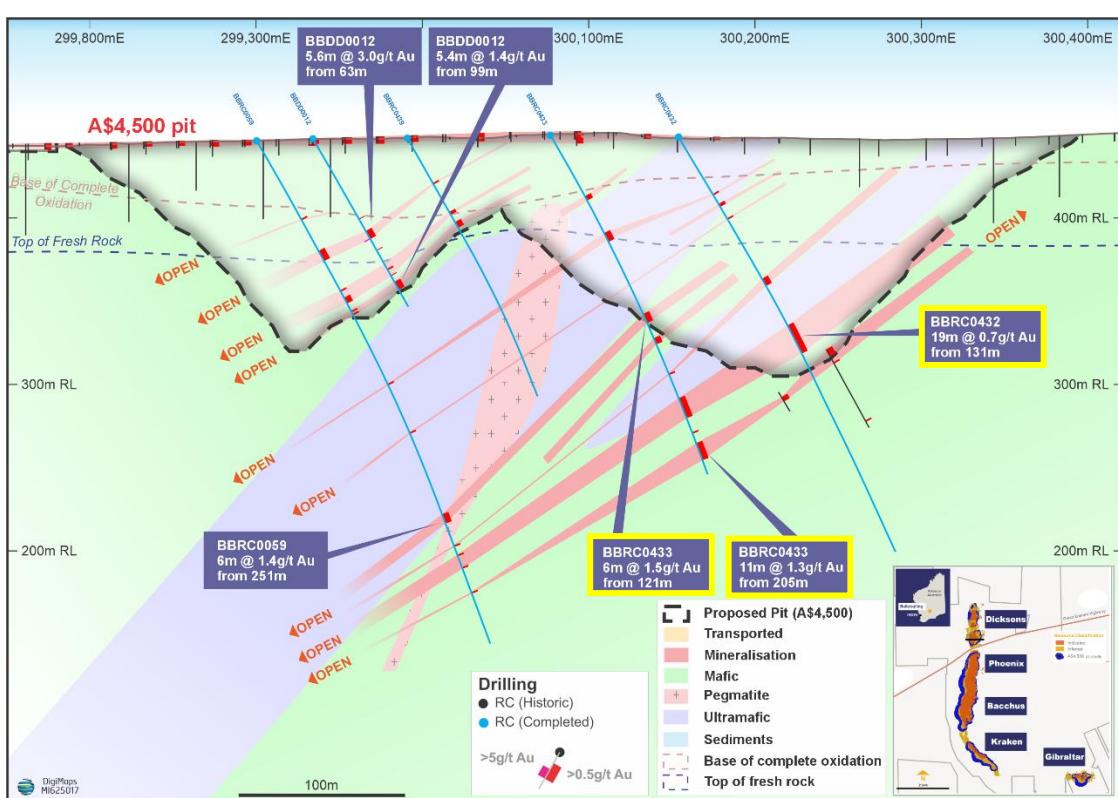
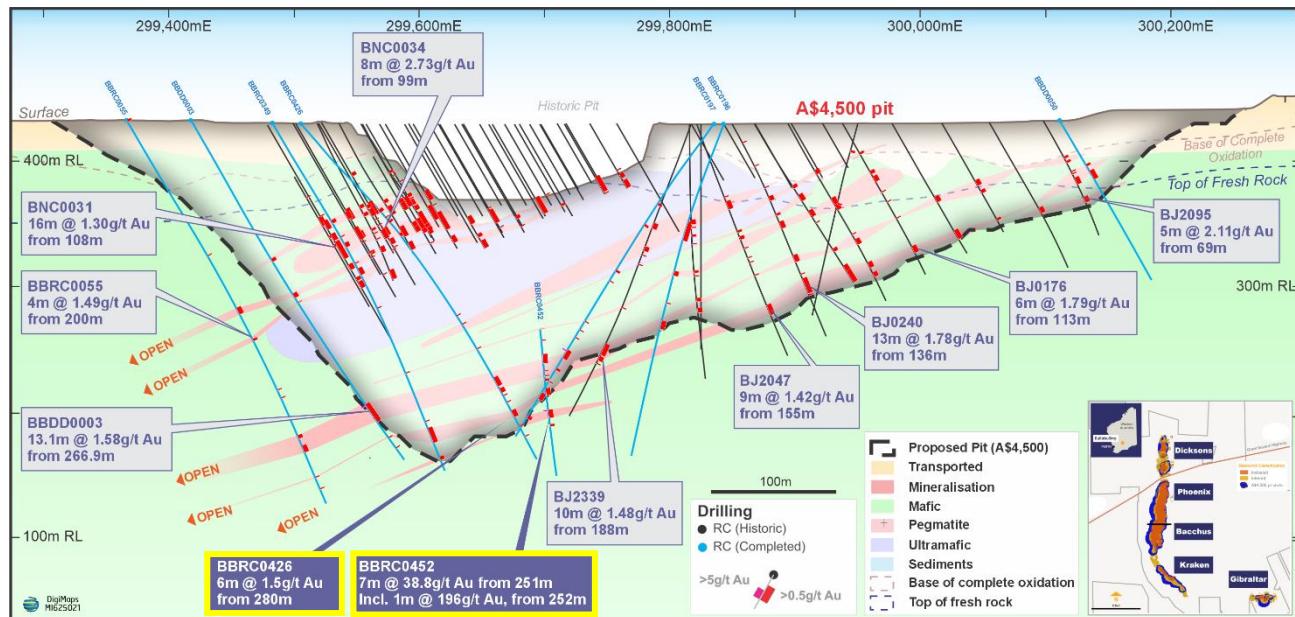




Figure 3 - Image showing plan view of hole BBRC0452 at Bacchus, drilled south underneath the historic pit

For personal use only

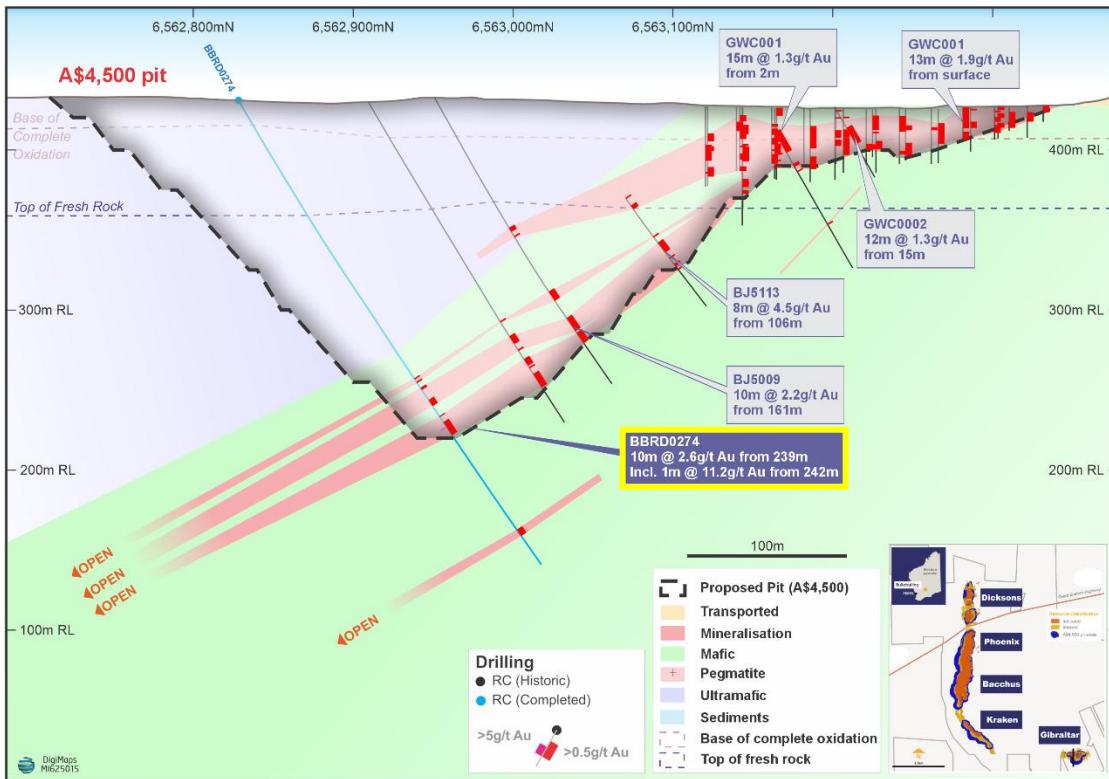


Figure 6 - Section 305020E (looking west) showing thick, high-grade gold mineralisation in BBRD0274 extending the depth of the Gibraltar pit. New results with yellow borders.

For personal use only

For personal use only

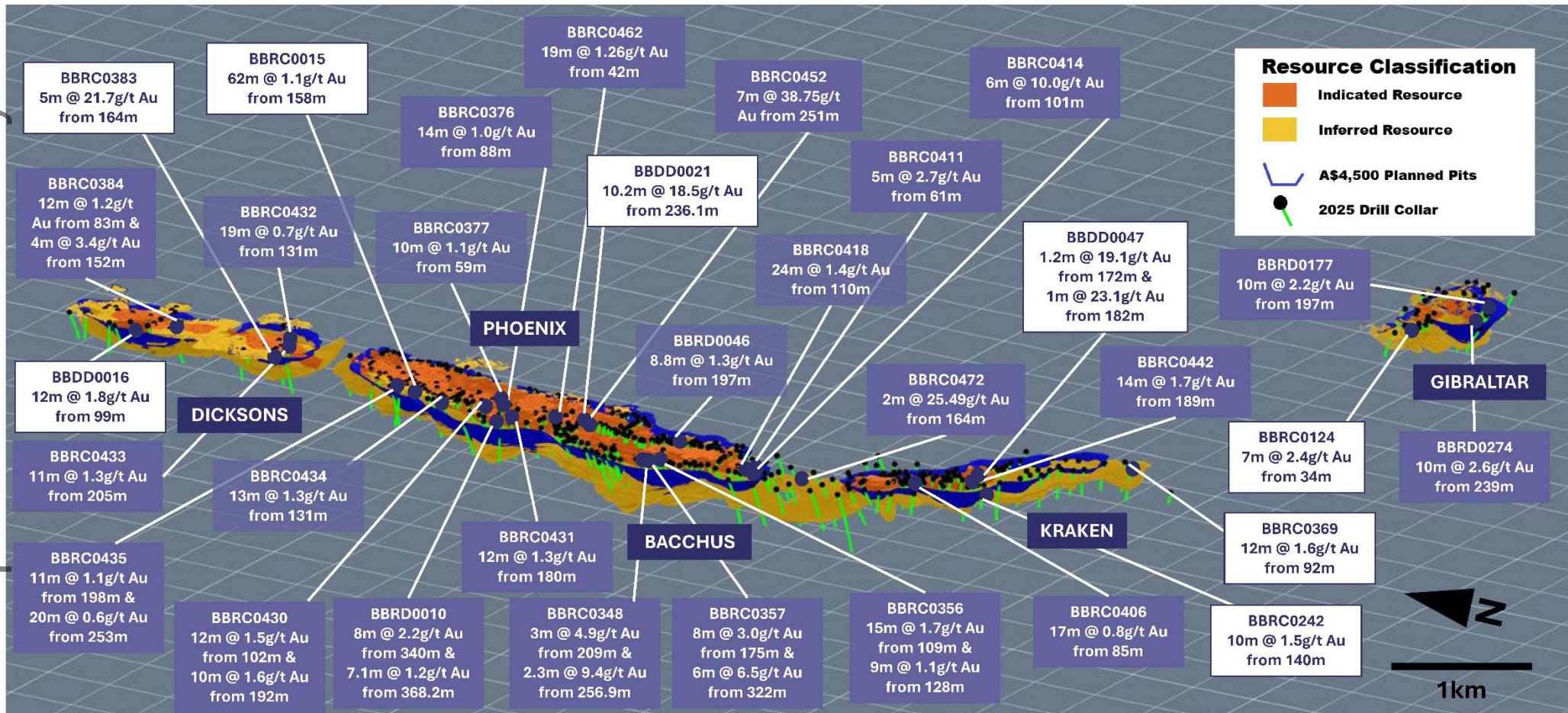


Figure 7 - Bullabulling resource showing key intercepts with completed Minerals 260 drill collars (new results are in purple boxes)

This announcement has been authorised for release by the Board of Minerals 260 Limited.

For further information please contact:

Luke McFadyen
Managing Director
T: +61 8 6556 6020
info@minerals260.com.au

Investor Relations:

Nicholas Read
Read Corporate
T: +61 8 9388 1474
nicholas@readcorporate.com.au

Bullabulling Gold Project Overview

Bullabulling Gold Project is a potential open pit mining operation located 25km south-west of Coolgardie in the Eastern Goldfields region of Western Australia. The Project hosts a JORC 2012 Mineral Resource Estimate of 130Mt @ 1.0g/t Au for 4.5Moz of gold, on granted mining leases (M15/503, M15/1414, M15/282, M15/554 and M15/552) and is located within a largely contiguous ~587sq km tenement package (**Table 1 and 2 and Figure 8**).

Table 1 - Bullabulling Mineral Resource Estimate as of December 2025 by deposit

Deposit	Indicated			Inferred			Total Resource		
	Tonnes (Mt)	Grade Au (g/t)	Metal Au (koz)	Tonnes (Mt)	Grade Au (g/t)	Metal Au (koz)	Tonnes (Mt)	Grade Au (g/t)	Metal Au (koz)
Dicksons	12	1.0	390	6.5	1.0	220	18	1.0	610
Phoenix	45	0.98	1,400	12	1.1	400	57	1.0	1,800
Bacchus	32	1.0	1,100	14	1.2	530	46	1.1	1,600
Kraken	2.9	1.2	120	5.9	1.2	220	8.8	1.2	340
Gibraltar	1.7	0.85	47	3.7	1.1	130	5.4	1.0	180
Total	93	1.0	3,000	42	1.1	1,500	130	1.0	4,500

Table 2 - Bullabulling Mineral Resource Estimate as of December 2025 by domain

Domain	Indicated			Inferred			Total Resource		
	Tonnes (Mt)	Grade Au (g/t)	Metal Au (koz)	Tonnes (Mt)	Grade Au (g/t)	Metal Au (koz)	Tonnes (Mt)	Grade Au (g/t)	Metal Au (koz)
Oxide	3.1	0.95	96	1.5	0.93	44	4.6	0.94	140
Transitional	23	0.99	720	3.2	1.1	110	26	1.0	830
Fresh	67	1.0	2,200	37	1.1	1,300	104	1.1	3,600
Total	93	1.0	3,000	42	1.1	1,500	130	1.0	4,500

For personal use only

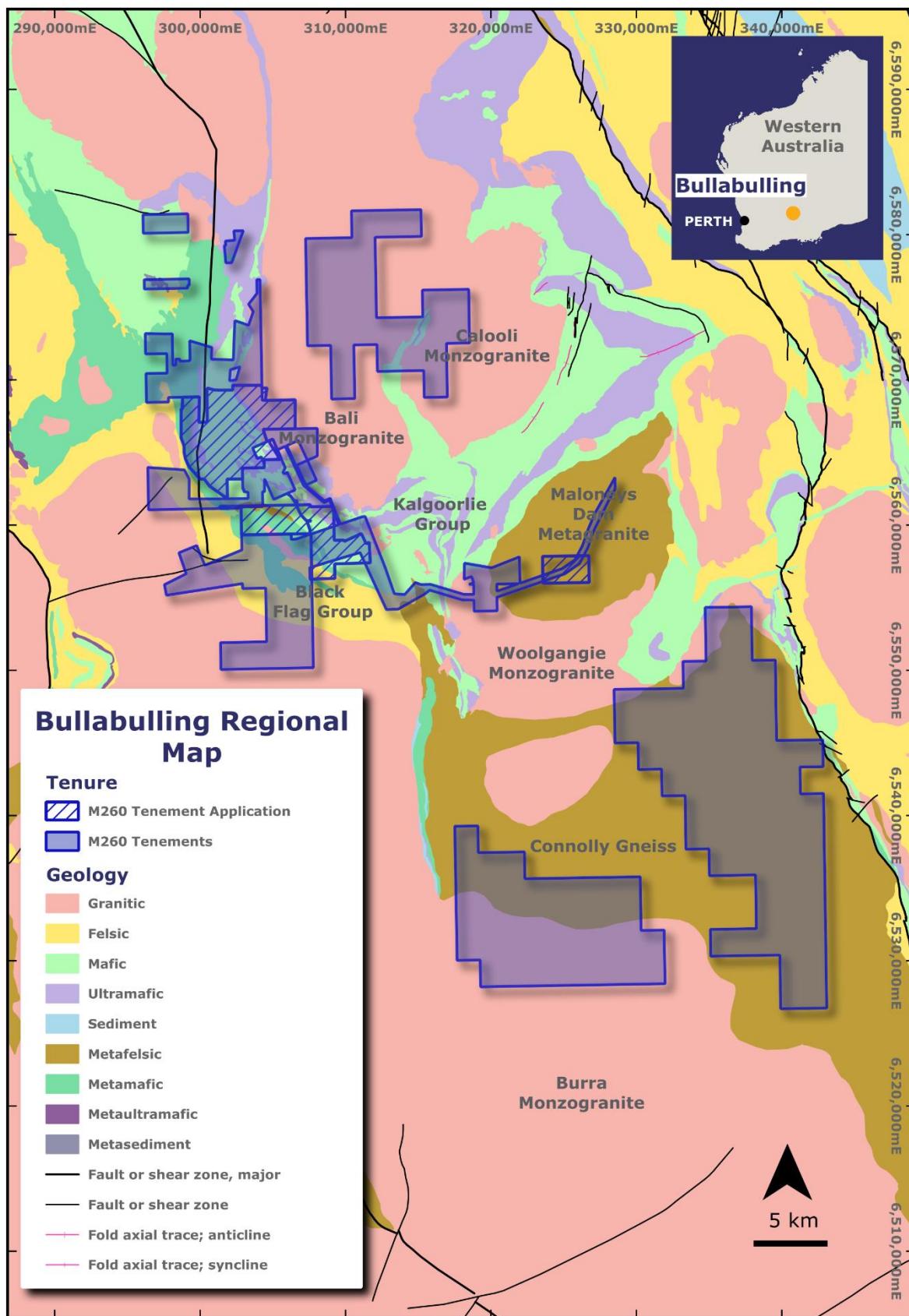


Figure 8 - Bullabulling project tenements and geology, showing granted and pending tenure

Competent Person Statement

The information in this announcement that relates to Exploration Results for the Bullabulling Gold Project is based on, and fairly represents, information and data compiled by Mr Matthew Blake, who is a Competent Person and a member of the Australasian Institute of Geoscientists (AIG). Mr Blake is a full-time employee of the Minerals 260, is entitled to participate in the Company's Employee Securities Incentive Plan, and his associates hold securities in Minerals 260. Mr Blake has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activities being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Blake consents to the inclusion in this announcement of the information and data relating to the Bullabulling Gold Project based on his information in the form and context in which it appears.

The information in this announcement that relates to the Mineral Resource Estimate for the Bullabulling Gold Project is extracted from the Minerals 260 Limited ASX announcement titled "Bullabulling Gold Project Mineral Resource Doubles to 4.5Moz" dated 1 December 2025.

The information in this announcement that relates to prior Exploration Results and Historical Exploration Results for the Bullabulling Gold Project is extracted from the following ASX announcements:

- "Bullabulling Gold Project Exploration Strategy" dated 12 May 2025
- "Bullabulling Gold Project Drilling Results" dated 4 June 2025
- "Bullabulling Gold Project Drilling Update" dated 7 July 2025
- "Gold discovered along strike and at depth at Bullabulling" dated 4 August 2025
- "High-Grade Intercepts Expand Bullabulling Drill Program" dated 9 September 2025
- "High-Grade Results to Support Bullabulling Resource Upgrade" dated 7 October 2025
- "Bullabulling Gold Project Mineral Resource Doubles to 4.5Moz" dated 1 December 2025

These announcements are available at www.minerals260.com.au.

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original announcements and that in the case of the Mineral Resource Estimate for the Bullabulling Gold Project, all material assumptions and technical parameters underpinning the estimates in the previous announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Persons findings presented have not been materially modified from the original market announcements.

Forward Looking Statements

This announcement may contain forward-looking statements, guidance, forecasts, estimates, prospects, projections or statements in relation to future matters that may involve risks or uncertainties and may involve significant items of subjective judgement and assumptions of future events that may or may not eventuate (Forward Statements).

Forward Statements can generally be identified by the use of forward-looking words such as "anticipates", "estimates", "will", "should", "could", "going", "may", "expects", "plans", "forecast", "target" or similar expressions. Forward Statements including references to updating or upgrading mineral resource estimates, future or near-term production and the general prospectivity of the deposits at the Bullabulling Gold Project (Project), likelihood of permitting the Project and taking a financial investment decision, among other indications, guidance or outlook on future revenues, distributions or financial position and performance or return or growth in underlying investments are provided as a general guide only and should not be relied upon as an indication or guarantee of future performance.

In addition, these Forward Statements are based upon certain assumptions and other important factors that, if untrue, could materially affect the future results, performance or achievements expressed or implied by such information or statements. There can be no assurance that such information or statements will prove to be accurate.

Key assumptions upon which the Company's forward-looking information is based include, without limitation, assumptions regarding the exploration and development activities, receipt of timely approvals and permits, ability to obtain timely finance on reasonable terms when required in the future and contracting for development, construction and commissioning of any future mining operation on terms favourable to the Company, the current and future social, economic and political conditions and any other assumption generally associated with the mining industry. To the extent that certain statements contained in this announcement may constitute 'Forward Statements' or statements about forward looking matters, then the information reflects the Company's (and no other party's) intent, belief or expectations as at the date of this announcement. No independent third party has reviewed the reasonableness of any such statements or assumptions. None of the Company, its related bodies corporate and their respective officers, directors, employees, advisers, partners, affiliates and agents (together, the MI6 Parties) represent or warrant that such Forward Statements will be achieved or will prove to be correct or gives any warranty, express or implied, as to the accuracy, completeness, likelihood of achievement or reasonableness of any Forward Statement contained in this announcement.

Forward Statements are not guarantees of future performance and involve known and unknown risk, uncertainties and other factors, many of which are beyond the control of the Company, and their respective officers, employees, agents and advisors, that may cause actual results to differ materially from those expressed or implied in such statements. Except as required by law or regulation, the Company assumes no obligation to release updates or revisions to Forward Statements to reflect any changes. Recipients should form their own views as to these matters and any assumptions on which any of the Forward Statements are based and not place reliance on such statements.

Appendix 1 – Bullabulling Project – RC & DD Drill Hole Statistics

Hole_ID	Hole Type	East	North	RL	Depth (m)	Dip	Azimuth	From (m)	To (m)	Significant Intercepts	
										Gold (>0.5g/t)	
										Interval (m)	Grade (g/t)
BBRD0010*	RC/DD	299516	6567683	534	416	-60	90	335.6	336.25	0.65	2.62
								340	348	8	2.24
								incl. 1m @ 15.2g/t AU from 340m			
								368.16	375.3	7.14	1.17
								380.43	381.9	1.47	2.67
								389.25	389.97	0.72	0.68
								167.6	172.3	4.7	0.86
								193	197	4	1.41
								204.1	205.5	1.4	1.15
								210.9	213.55	2.65	0.61
BBRD0035*	RC/DD	299490	6566930	431	286	-65	90	147	148	1	0.72
								196.6	197.1	0.5	11.75
								212	213	1	0.66
								239	240	1	1.84
								266	267.6	1.6	0.86
								197	205.77	8.77	1.27
								216	217	1	0.58
								219.83	220.84	1.01	0.97
								223.88	227.7	3.82	1.91
								197	207	10	2.19
BBRD0177*	RC/DD	305221	6562848	427	256	-60	350	212.1	216	3.9	0.72
								244.36	247.6	3.24	0.6
								208.5	209.55	1.05	1.02
								213.09	214.8	1.71	0.59
								222.3	227	4.7	0.81
								234.5	235.25	0.75	2.9
								239	249	10	2.64
								inc. 1m @ 11.2 g/t Au from 242m			
								321	326	5	1.77
								267.85	270.11	2.26	1.02
BBRD0305*	RC/DD	299608	6566615	386	350.3	-75	270	273.32	274.82	1.5	6.00
								inc. 0.7m @ 12.4 g/t Au from 273.3m			
								280.46	282.64	2.18	0.59
								284.31	285	0.69	0.58
								286	287	1	0.67
								300.17	304.31	4.14	0.80
								312	321.97	9.97	1.27
								328	328.96	0.96	1.50

For personal use only

For personal use only

Hole_ID	Hole Type	East	North	RL	Depth (m)	Dip	Azimuth	From (m)	To (m)	Significant Intercepts	
										Gold (>0.5g/t)	
										Interval (m)	Grade (g/t)
								341.87	342.29	0.42	0.67
BBRD0327*	RC/DD	299869	6568730	454	298	-60	90	227.9	229	1.1	1.96
								233.5	234.5	1	1.4
								239.5	248.3	8.8	0.77
								284.9	285.2	0.3	2.93
BBRD0337*	RC/DD	299507	6566394	367	370	-90	90	236.91	237.89	0.98	0.65
								244	245.04	1.04	0.54
								249	250	1	0.58
								209	212	3	4.92
BBRD0348*	RC/DD	299465	6566536	430	346.1	-55	90	incl. 0.4m @ 37.3g/t Au from 209m			
								235.92	241	5.08	0.54
								256.86	259.13	2.27	9.44
								incl. 0.75m @ 26.4g/t Au from 257.8m			
								272.2	275	2.8	2.46
								278.25	280.4	2.15	0.59
								283	284.15	1.15	0.77
								313	318	5	0.84
								324	325	1	1.83
								97	100	3	0.5
BBRC0356	RC	299367	6566124	432	280	-53	90	104	105	1	0.81
								109	124	15	1.7
								128	137	9	1.08
								143	155	12	0.65
								165	166	1	0.59
								173	176	3	0.59
								190	197	7	1.11
								207	215	8	0.85
								250	254	4	0.64
								71	77	6	0.85
BBRC0357	RC	299424	6566506	431	334	-55	130	160	161	1	1.19
								175	183	8	2.98
								incl. 1m @ 18.6g/t Au from 181m			
								216	226	10	0.72
								239	242	3	1.06
								260	264	4	0.69
								279	289	10	2.48
								297	298	1	0.81
								300	301	1	0.77
								308	309	1	0.51

For personal use only

Hole_ID	Hole Type	East	North	RL	Depth (m)	Dip	Azimuth	From (m)	To (m)	Significant Intercepts	
										Gold (>0.5g/t)	
										Interval (m)	Grade (g/t)
								315	316	1	1.68
								322	328	6	6.52
								incl. 1m @ 34.4g/t Au from 327m			
BBRC0358	RC	299410	6566515	433	360	-70	75	48	52	4	0.51
								64	65	1	0.51
								142	143	1	0.91
								180	191	11	0.74
								227	228	1	0.92
								253	254	1	1.01
								297	298	1	0.6
								299	304	5	0.5
								324	325	1	3.9
								4	8	4	0.57
BBRC0359	RC	299707	6566080	403	184	-80	270	20	24	4	0.65
								35	36	1	1.22
								103	104	1	0.58
								131	132	1	0.76
								144	148	4	2.06
								163	164	1	0.57
								68	70	2	3.17
BBRC0375	RC	299943	6567180	434	180	-60	90	84	87	3	0.58
								93	95	2	0.86
								99	101	2	1.26
								22	23	1	0.79
BBRC0376	RC	299827	6567630	437	204	-60	90	32	33	1	0.96
								38	39	1	0.8
								43	44	1	0.92
								48	49	1	0.97
								67	69	2	0.82
								77	78	1	0.69
								83	84	1	0.57
								88	102	14	0.95
								112	113	1	0.69
								134	135	1	0.53
								136	137	1	0.65
								153	154	1	0.91
BBRC0377	RC	299875	6567680	439	180	-60	90	19	21	2	0.83
								44	54	10	0.55
								59	69	10	1.09

For personal use only

Hole_ID	Hole Type	East	North	RL	Depth (m)	Dip	Azimuth	From (m)	To (m)	Significant Intercepts	
										Gold (>0.5g/t)	
										Interval (m)	Grade (g/t)
								90	91	1	0.6
								100	101	1	0.7
								139	142	3	1.71
BBRC0378	RC	299368	6565933	434	198	-62	90	1	3	2	0.72
								112	113	1	0.51
								130	133	3	1.16
								161	162	1	1.32
								170	171	1	0.89
BBRC0379	RC	299724	6565780	425	216	-60	90	20	21	1	0.56
								35	36	1	0.72
								67	68	1	2.75
								97	99	2	3.59
BBRC0384	RC	299939	6570470	439	202	-60	90	5	7	2	0.64
								45	49	4	1.19
								53	61	8	1.15
								75	78	3	0.95
								83	95	12	1.15
								119	126	7	0.59
								134	135	1	0.67
								152	156	4	3.39
								183	187	4	1.19
								4	5	1	1.44
BBRC0385	RC	300109	6571070	434	136	-60	90	45	46	1	0.64
								156	171	15	0.65
								199	200	1	0.52
								210	213	3	0.58
								231	232	1	0.54
BBRC0386	RC	299897	6570670	438	238	-60	90	233	234	1	0.52
								32	40	8	0.71
								44	48	4	0.54
								144	145	1	1.65
								198	199	1	0.51
BBRC0387	RC	300062	6570670	438	250	-60	90	201	202	1	0.82
								219	220	1	0.92
								239	240	1	1.24
								247	250	3	1.67
								254	258	4	1.12
BBRC0388	RC	299503	6567630	445	346	-60	90	266	268	2	0.55
								273	274	1	0.93

For personal use only

Hole_ID	Hole Type	East	North	RL	Depth (m)	Dip	Azimuth	From (m)	To (m)	Significant Intercepts	
										Gold (>0.5g/t)	
										Interval (m)	Grade (g/t)
								280	283	3	0.66
								295	299	4	0.53
								315	316	1	0.88
								320	322	2	1.13
								338	339	1	0.5
								345	346	1	0.94
BBRC0389	RC	299560	6565287	432	184	-60	90	75	76	1	0.62
								92	95	3	1.26
								106	109	3	1.03
								159	160	1	0.57
								161	162	1	0.78
BBRC0400	RC	300063	6564403	419	112	-60	45	49	58	9	0.72
								63	64	1	0.69
BBRC0401	RC	300140	6566976	432	58	-90	90	43	45	2	0.87
								49	50	1	0.59
BBRC0402	RC	300137	6564419	419	88	-60	45	No significant results			
BBRC0403	RC	300019	6564416	419	100	-60	45	34	35	1	0.55
								37	38	1	0.51
								41	42	1	0.53
								54	55	1	1.51
								68	69	1	0.51
								87	88	1	1.18
BBRC0404	RC	299961	6564360	419	136	-60	45	103	104	1	0.68
BBRC0405	RC	299663	6564730	425	190	-60	90	115	118	3	0.75
								130	132	2	0.71
								138	139	1	3.99
								183	190	7	1.36
BBRC0406	RC	300005	6564347	419	148	-60	45	85	102	17	0.79
BBRC0407	RC	300516	6564007	417	202	-60	45	66	70	4	0.66
								78	83	5	0.71
								94	98	4	0.63
								106	107	1	0.58
BBRC0408	RC	300260	6564093	417	166	-60	45	120	121	1	0.54
								126	131	5	0.96
								136	138	2	0.97
BBRC0409	RC	299935	6564446	420	118	-60	45	50	51	1	0.52
								95	100	5	0.8
BBRC0410	RC	299479	6565880	432	156	-60	90	64	66	2	1.21
								101	102	1	0.5

For personal use only

Hole_ID	Hole Type	East	North	RL	Depth (m)	Dip	Azimuth	From (m)	To (m)	Significant Intercepts	
										Gold (>0.5g/t)	
										Interval (m)	Grade (g/t)
								112	113	1	1.36
								120	127	7	0.95
								140	141	1	1.01
BBRC0411	RC	299647	6565420	424	120	-60	90	43	45	2	0.66
								61	66	5	2.67
								incl. 1m @ 11.6g/t Au from 62m			
								72	73	1	0.57
								74	78	4	0.55
BBRC0412	RC	299752	6566230	428	222	-71	270	Assays pending			
BBRC0413	RC	299774	6566281	428	174	-57	270	13	15	2	1.16
								20	21	1	0.51
								57	65	8	0.77
								72	75	3	0.52
								154	155	1	1.55
								172	174	2	0.72
BBRC0414	RC	299550	6565420	432	198	-60	90	3	7	4	0.55
								70	75	5	1.68
								82	83	1	0.53
								101	107	6	9.99
								incl. 1m @ 55.3g/t Au from 104m			
								120	121	1	0.5
BBRC0415	RC	299883	6565780	424	132	-60	90	125	126	1	1.1
								146	147	1	0.56
								151	152	1	0.53
								38	41	3	1.39
								49	50	1	0.8
BBRC0416	RC	299861	6565730	424	120	-60	90	No significant results			
BBRC0417	RC	299964	6565780	424	90	-60	90	No significant results			
BBRC0418	RC	299542	6565480	432	258	-60	90	72	81	9	0.83
								89	90	1	5.6
								98	99	1	1.42
								103	104	1	2.75
								110	134	24	1.38
								148	149	1	2.84
BBRC0419	RC	299573	6565350	431	244	-60	90	215	217	2	0.68
								68	69	1	0.69
								86	87	1	1.03
								98	99	1	2
BBRC0420	RC	299748	6565972	402	196	-90	270	25	26	1	0.84

For personal use only

Hole_ID	Hole Type	East	North	RL	Depth (m)	Dip	Azimuth	From (m)	To (m)	Significant Intercepts	
										Gold (>0.5g/t)	
										Interval (m)	Grade (g/t)
								68	72	4	1.64
								106	112	6	0.88
BBRC0421	RC	299546	6566079	369	136	-75	270	60	61	1	0.63
								97	99	2	1.05
								115	116	1	1.86
								8	9	1	0.7
								14	15	1	0.61
								28	29	1	0.5
								33	34	1	0.74
								40	41	1	2.53
								52	53	1	0.76
								57	62	5	0.92
BBRD0422*	RC/DD	299546	6566079	369	213.94	-80	90	67	70	3	0.73
								74	79	5	0.58
								106	109	3	2.04
								7	8	1	2.32
								13	14	1	0.55
								19	20	1	0.53
								38	39	1	0.65
								75	76	1	1.42
								105	106	1	0.71
								117	118	1	0.79
BBRC0423	RC	299569	6565980	366	121	-60	90	12	13	1	0.58
								14	15	1	0.57
								39	40	1	0.98
								43	45	2	0.66
								57	58	1	0.62
								73	79	6	0.61
								83	84	1	0.53
								118	119	1	0.72
								123	124	1	0.53
								0	2	2	3.25
BBRC0424	RC	299557	6565980	365	126	-80	270	130	131	1	0.65
								165	166	1	0.88
								178	179	1	0.52
								180	181	1	0.67
								185	196	11	0.76
								204	210	6	1.11
								215	219	4	0.67
								BBRC0426	RC	299529	6566880
								432	324	-50	90
								87	90	3	1.15

For personal use only

Hole_ID	Hole Type	East	North	RL	Depth (m)	Dip	Azimuth	From (m)	To (m)	Significant Intercepts	
										Gold (>0.5g/t)	
								Interval (m)	Grade (g/t)		
								95	96	1	0.69
								99	101	2	0.92
								112	115	3	0.59
								128	129	1	0.62
								192	193	1	1.3
								200	201	1	0.96
								223	224	1	0.62
								250	258	8	0.53
								260	264	4	0.51
								266	267	1	0.67
								272	273	1	1.19
								280	286	6	1.5
								294	295	1	1.2
								303	304	1	0.56
BBRC0427	RC	299494	6565835	430	282	-60	90	167	168	1	0.52
								172	175	3	1.08
								234	235	1	0.61
BBRC0428	RC	300125	6566780	432	60	-75	90	No significant results			
BBRC0429	RC	299476	6566981	433	341	-60	88	75	76	1	0.57
								111	112	1	4.15
								159	160	1	1.17
								202	203	1	0.75
								256	268	12	0.93
								277	278	1	0.52
								307	311	4	1.26
								319	320	1	0.82
BBRC0430	RC	299655	6567780	438	318	-60	90	102	114	12	1.49
								143	147	4	0.57
								152	168	16	0.52
								182	183	1	3.02
								192	202	10	1.55
								207	208	1	0.78
								214	215	1	0.91
								259	263	4	1.1
								269	270	1	7.74
								110	111	1	0.57
BBRC0431	RC	299550	6567530	434	198	-65	90	180	192	12	1.27
								196	197	1	0.55
								40	41	1	0.82

For personal use only

Hole_ID	Hole Type	East	North	RL	Depth (m)	Dip	Azimuth	From (m)	To (m)	Significant Intercepts	
										Gold (>0.5g/t)	
										Interval (m)	Grade (g/t)
								47	49	2	1.74
								57	58	1	0.69
								99	104	5	1.16
								131	150	19	0.72
BBRC0433	RC	300072	6569630	450	225	-60	90	42	45	3	0.6
								67	73	6	0.85
								121	127	6	1.5
								137	141	4	0.58
								160	161	1	1.96
								176	189	13	0.76
								198	199	1	1.89
								205	216	11	1.29
								131	144	13	1.29
								162	166	4	0.6
BBRC0434	RC	299624	6568180	441	318	-60	90	183	184	1	0.58
								202	204	2	0.66
								228	232	4	0.71
								256	257	1	0.69
								273	276	3	0.86
								283	284	1	0.57
								134	135	1	0.55
								148	153	5	0.74
BBRC0435	RC	299740	6568480	446	293	-60	90	165	166	1	0.5
								180	181	1	0.54
								198	209	11	1.09
								236	237	1	0.5
								245	246	1	0.5
								253	273	20	0.61
								277	281	4	0.51
								290	291	1	0.54
BBRC0436	RC	299684	6568528	447	384	-60	87	Assays pending			
BBRC0437	RC	300195	6567090	432	72	-60	89	No significant results			
BBRC0438	RC	299725	6568230	444	411	-60	87	Assays pending			
BBRC0439	RC	299991	6569625	448	174	-60	88	31	32	1	1.54
								51	53	2	1.4
								58	62	4	1.25
BBRC0440	RC	300602	6563978	417	136	-60	45	50	51	1	0.89
								66	67	1	0.66
								70	71	1	0.55

For personal use only

Hole_ID	Hole Type	East	North	RL	Depth (m)	Dip	Azimuth	From (m)	To (m)	Significant Intercepts	
										Gold (>0.5g/t)	
										Interval (m)	Grade (g/t)
								96	99	3	0.75
								104	109	5	0.52
								116	118	2	0.8
								122	124	2	0.89
BBRC0441	RC	300540	6563754	417	182	-60	45	154	158	4	0.81
BBRC0442	RC	300171	6563952	416	220	-60	45	189	203	14	1.73
								214	215	1	0.84
BBRC0443	RC	300605	6563815	417	208	-60	45	Assays pending			
BBRD0444	RC/DD	300257	6564034	417	191	-60	45	Assays pending			
BBRC0445	RC	299989	6564388	419	136	-61	45	75	76	1	0.64
								81	83	2	1.29
BBRC0446	RC	299930	6564331	420	184	-59	44	128	130	2	1.29
								143	144	1	2.09
								158	160	2	1.02
BBRC0447	RC	300778	6562735	412	124	-60	44	No significant results			
BBRC0448	RC	299777	6564239	421	214	-61	44	202	205	3	0.93
BBRC0449	RC	300201	6563923	416	250	-60	44	186	201	15	1.77
								213	215	2	1.45
BBRC0450	RC	299784	6565471	424	198	-60	88	101	102	1	0.88
BBRC0451	RC	299469	6565526	434	258	-60	88	5	6	1	2.48
								88	89	1	3.78
								97	103	6	0.69
								111	112	1	1.50
								127	128	1	0.57
								139	140	1	0.52
								156	162	6	0.93
								168	171	3	0.80
								180	181	1	1.01
								186	187	1	0.73
								248	249	1	1.04
BBRC0452	RC	299690	6566992	431	306	-64	179	57	60	3	0.54
								63	64	1	0.51
								68	69	1	1.13
								75	77	2	0.59
								81	82	1	0.73
								88	91	3	0.69
								117	118	1	0.56
								164	165	1	0.66
								182	183	1	0.53
								192	193	1	0.74

For personal use only

Hole_ID	Hole Type	East	North	RL	Depth (m)	Dip	Azimuth	From (m)	To (m)	Significant Intercepts	
										Gold (>0.5g/t)	
								Interval (m)	Grade (g/t)		
								204	212	8	1.15
								218	219	1	0.61
								222	223	1	0.52
								225	227	2	0.64
								233	239	6	0.81
								251	258	7	38.75
								incl. 4m @ 64.3g/t Au from 251m, incl. 1m @ 196g/t Au from 252m			
								263	265	2	1.65
BBRC0453	RC	300106	6571250	430	180	-60	90	Assays pending			
BBRC0454	RC	300040	6569830	448	222	-60	90	Assays pending			
BBRC0455	RC	300250	6569830	448	228	-60	90	Assays pending			
BBRC0456	RC	300275	6569727	446	222	-85	270	Assays pending			
BBRC0457	RC	299717	6568420	445	366	-65	90	Assays pending			
BBRC0458	RC	300230	6571255	435	246	-60	90	Assays pending			
BBRC0459	RC	300269	6570954	438	216	-60	90	Assays pending			
BBRC0460	RC	299880	6569536	446	354	-65	89	Assays pending			
BBRC0461	RC	299730	6567279	432	252	-60	90	Assays pending			
BBRC0462	RC	299852	6567277	433	210	-59	91	42	61	19	1.26
								65	67	2	0.62
								79	82	3	0.77
								89	95	6	1.06
								103	104	1	2.92
								110	113	3	0.53
								135	149	14	0.97
								154	155	1	0.89
								164	165	1	3.69
								186	189	3	0.60
BBRC0463	RC	300075	6570505	435	174	-58	119	1	3	2	0.88
								50	52	2	0.91
								93	94	1	0.99
								98	99	1	2.82
								110	111	1	3.22
								125	130	5	0.61
BBRC0464	RC	300089	6570766	431	198	-61	93	0	1	1	1.25
								41	42	1	0.57
								47	49	2	1.21
								67	68	1	0.95
								72	79	7	0.79

For personal use only

Hole_ID	Hole Type	East	North	RL	Depth (m)	Dip	Azimuth	From (m)	To (m)	Significant Intercepts	
										Gold (>0.5g/t)	
										Interval (m)	Grade (g/t)
								110	111	1	0.57
								116	118	2	1.01
								150	151	1	0.88
BBRC0465	RC	300085	6570508	436	200	-60	86	2	3	1	0.64
								9	11	2	0.92
								45	46	1	0.50
								64	65	1	0.63
								68	69	1	0.61
								73	75	2	0.86
								88	89	1	0.85
								108	109	1	0.63
								170	171	1	0.65
BBRC0466	RC	300324	6570700	438	150	-60	87	66	70	4	0.64
BBRC0467	RC	300260	6570699	438	204	-61	91	80	87	7	1.53
								116	120	4	1.30
BBRC0468	RC	299820	6568031	442	204	-60	89	37	51	14	0.77
								55	56	1	0.51
								58	59	1	0.50
								98	99	1	0.52
								102	106	4	0.51
								139	144	5	2.65
								166	176	10	0.98
BBRC0469	RC	299663	6564578	422	174	-60	90	168	170	2	0.66
BBRC0470	RC	299309	6566578	432	357	-55	89	155	156	1	5.87
								174	176	2	5.71
								209	210	1	0.53
								280	288	8	1.84
								346	347	1	4.60
								356	357	1	0.53
BBRC0471	RC	300085	6566927	432	136	-50	91	65	69	4	0.62
								72	73	1	1.14
BBRC0472	RC	299637	6565084	428	166	-60	88	59	61	2	0.52
								74	78	4	0.52
								93	94	1	0.59
								108	109	1	0.66
								118	119	1	0.64
								131	133	2	1.62
								139	141	2	1.40
								164	166	2	25.49

For personal use only

Hole_ID	Hole Type	East	North	RL	Depth (m)	Dip	Azimuth	From (m)	To (m)	Significant Intercepts	
										Gold (>0.5g/t)	
										Interval (m)	Grade (g/t)
incl. 1m @ 49.5g/t Au from 164m											
BBRC0473	RC	299723	6566027	403	211	-71	270	0	3	3	1.32
								8	11	3	0.56
								33	39	6	0.58
								55	61	6	0.82
								81	82	1	0.50
								134	138	4	1.77
								142	144	2	0.97
								25	26	1	2.26
BBRC0474	RC	299598	6566207	433	232	-54	118	35	46	11	0.78
								54	55	1	0.84
								106	107	1	1.05
								125	127	2	0.88
								164	168	4	1.58
BBRC0475	RC	299824	6565926	421	232	-59	271	Assays pending			
BBRC0476	RC	299887	6564522	416	136	-61	44	29	30	1	4.74
								37	38	1	0.92
								49	52	3	1.63
								58	60	2	0.85
								111	112	1	0.51
BBRC0477	RC	299804	6566177	425	234	-75	271	Assays pending			
BBRC0478	RC	300019	6564303	418	150	-60	45	91	92	1	1.49
								103	104	1	0.56
								107	108	1	0.74
								111	115	4	0.62
								118	119	1	0.61
								127	128	1	0.89
BBRC0479	RC	299742	6566683	429	216	-85	94	Assays pending			
BBRC0480	RC	299909	6564417	420	150	-60	44	No significant results			
BBRC0481	RC	299832	6566828	430	264	-69	273	71	75	4	0.55
								95	99	4	0.56
								141	145	4	0.81
								189	191	2	0.86
								201	202	1	1.64
								220	221	1	0.66
								226	227	1	0.74
BBRC0482	RC	299574	6566282	373	252	-75	89	Assays pending			
BBRC0483	RC	299564	6566237	373	252	-70	91	Assays pending			
BBRC0484	RC	299883	6570380	439	252	-60	90	Assays pending			

For personal use only

Hole_ID	Hole Type	East	North	RL	Depth (m)	Dip	Azimuth	From (m)	To (m)	Significant Intercepts		
										Gold (>0.5g/t)		
										Interval (m)	Grade (g/t)	
BBRC0485	RC	299844	6569872	443	204	-60	90	Assays pending				
BBRC0486	RC	300031	6569666	448	252	-60	90	Assays pending				
BBRC0487	RC	300123	6569585	451	222	-60	90	Assays pending				
BBWX001	RC	300079	6569104	451	304	-89.46	295.65	Assays pending				
BBWX002	RC	299732	6568484	446	304	-89.88	13.07	162	163	1	1.14	
								177	178	1	0.61	
								182	186	4	0.71	
								194	196	2	0.74	
BBWX003	RC	299905	6568820	454	298	-89.85	99.98	45	46	1	1.24	
								57	58	1	0.56	
								76	79	3	3.22	
								91	92	1	0.54	
								167	173	6	0.96	
								195	196	1	0.57	
								272	276	4	0.5	
								280	281	1	0.62	
								293	294	1	0.73	
								228	232	4	0.51	
BBWX004	RC	299460	6567480	434	298	-89.87	212.92	265	266	1	3.89	
								297	298	1	0.75	
BBWX005	RC	299920	6571200	431	196	-89.65	293.91	Assays pending				
BBWX006	RC	299820	6570942	433	232	-89.75	127.27	Assays pending				
BBWX007	RC	299978	6569945	433	298	-89.83	58.68	Assays pending				
BBWX008	RC	299980	6564870	420	197	-90	0	Assays pending				
BBWX009	RC	299525	6565100	427	208	-90	0	Assays pending				
BBWX010	RC	299217	6566430	447	409	-90	0	Assays pending				
BBWX011	RC	300041	6564167	418	259	-90	0	Assays pending				
BBWX012	RC	300595	6563689	417	298	-90	0	Assays pending				
BBWX013	RC	301088	6563613	420	221	-90	0	Assays pending				

*Diamond tail results reported only. See previous announcements for RC pre-collar results.

Appendix 2 – Bullabulling Project – JORC Code 2012 Table 1 Criteria

The table below summarises the assessment and reporting criteria used for the Bullabulling Project and reflects the guidelines in Table 1 of *The Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves* (the JORC Code, 2012).

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	<p><i>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</i></p> <p><i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i></p> <p><i>Aspects of the determination of mineralisation that are Material to the Public Report.</i></p> <p><i>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</i></p>	<p>The Bullabulling Mineral Resource estimate is based on 158 diamond core holes (DD and RC_DD of NQ, HQ and PQ diameter) for a total of 23,728 m and 5,909 RC drillholes (5.5" face sampling hammer) for a total of 415,018m, drilled between 1985 and 2025 by various companies.</p> <p>This is a subset of the project database which comprises approximately 12,500 holes for a total of 620,000m, including AC, RAB and auger holes which were only utilised for geological interpretation where appropriate data was available.</p> <p>Approximately 75% of the holes used for estimation were drilled pre-2010</p> <p>Minerals 260 Limited</p> <p>RC samples were collected by the metre from the drill rig in calico bags via a cone splitter with a bulk coarse reject sample collected in buckets and poured on the ground.</p> <p>2–5 kg samples were collected from each metre of RC drilling with samples typically dry. Rock chips for logging were obtained by sieving a large scoop from each bag. Washed chips were placed into appropriately labelled chip trays.</p> <p>Cyclones regularly cleaned to remove hung-up clays and avoid cross-sample contamination. The coarse reject samples were weighed in small campaigns only, and the weight recorded in an Excel spreadsheet which was later entered into the database. Calico weights are recorded at the laboratory.</p> <p>Diamond core (HQ, NQ and PQ) sampled in intervals of ~1.0 m (with a minimum of 0.3 m) where possible, otherwise intervals less than 1.0 m selected based on geological boundaries.</p> <p>Drill core samples were typically half HQ and NQ. PQ core was reserved for metallurgical sampling. Samples of approximately 10 cm length were selected by the geologist and subject to bulk density measurements using the water displacement method.</p> <p>The core was cut in half parallel to the orientation mark, with one half retained and the other half sent to the laboratory for analysis.</p> <p>For RC and DD samples, entire samples were oven dried for 24 hours, weighed and pulverised with 85% <75µm. If the primary sample was larger than 3 kg it was split prior to pulverising. A 50 g charge is collected and subject to fire assay (Au-AA26) and analysed for gold using atomic absorption spectrometry (AAS).</p> <p>Portable x-ray fluorescence (pXRF) determinations were performed to verify litho-geochemistry only using a Olympus Vanta portable analyser, which was regularly calibrated.</p> <p>All collars are initially collected via handheld GPS, with a surveyor to be commissioned to collect final coordinates via a differential global positioning system (GPS) (accuracy ±0.1 m).</p> <p>Bullabulling Gold Limited (Bullabulling Gold)</p> <p>Sampling techniques are as per Minerals 260, other than the below:</p> <p>RC samples coarse reject sample collected in plastic mining</p>

For personal use only

Criteria	JORC Code explanation	Commentary
Drilling techniques	<i>Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).</i>	<p>bags. The coarse reject samples were weighed, and the weight recorded in a field book which was later entered into the database.</p> <p>Magnetic susceptibility was measured using a model KT-10 portable magnetic susceptibility metre with readings taken at 1 m intervals.</p> <p>Portable x-ray fluorescence (pXRF) determinations were performed to verify litho-geochemistry only using a PAS XL3t 950s GOLDD+ portable analyser, which was regularly calibrated.</p> <p>All collars surveyed by Fugro Spatial Solutions or ABIMS by differential global positioning system (GPS) (accuracy ± 0.1 m).</p> <p>Historical (pre-2000)</p> <p>Similar sampling practices with a riffle splitter utilised for RC sampling.</p> <p>No information is available on the sample preparation practices.</p> <p>Gold analysis was by a mixture of methods (fire assay and acid digest, acid digest only and bottle roll), followed by AAS finish.</p>
Drill sample recovery	<i>Method of recording and assessing core and chip sample recoveries and results assessed.</i>	<p>Drilling techniques from 1974 to 2025 includes:</p> <p>Aircore (AC) – standard 3.5" AC drill bit</p> <p>Rotary air blast (RAB) – standard 4.25" drill bit</p> <p>RC – 5.5" with face sampling hammer</p> <p>NQ2 DD core, standard tube</p> <p>HQ3 DD core, standard tube</p> <p>PQ3 DD core, standard tube.</p> <p>AC and RAB holes were used to inform geological interpretations only in the resource estimate where appropriate data was available.</p> <p>The drilling was typically aligned at -60° to the east, which is appropriate given the strike and dip of the mineralisation. The bulk of the drilling is RC with DD holes completed for bulk density determinations and metallurgical testing.</p> <p>Holes were drilled on a nominal 35 m x 75 m grid spacing historically, with 40m x 40m by Minerals 260. RC drillholes range in depth from 1 m to 348 m, averaging 59 m. Bullabulling Gold DD holes range in depth from 136 m to 573.5 m, averaging 355 m.</p> <p>DD holes were drilled directly from surface or from base of RC pre-collars. All Bullabulling Gold, DD core was oriented where possible using an ACT REFLEX (ACT II RD) tool. All Minerals 260 DD core is oriented with an Axis orientation tool. It is unknown how historical drill core was oriented and is assumed to be to industry standards.</p> <p>Sample recoveries for Bullabulling Gold's and Minerals 260's RC drilling is visually estimated and recorded for each metre in Micromine Field Marshal (Bullabulling Gold) and validated Excel logging software (Minerals 260).</p> <p>Analysis of historical results yielded an average recovery of 97%.</p> <p>For DD core, recovery was measured and recorded for every metre in Micromine Field Marshal software (Bullabulling Gold) or validated Excel sheets (Minerals 260).</p> <p>Diamond core recoveries averaged 99% for historical core.</p>

Criteria	JORC Code explanation	Commentary
	<i>Measures taken to maximise sample recovery and ensure representative nature of the samples.</i>	There is no recovery information available for the historical drilling. Minerals 260 RC drill collars were sealed to prevent sample loss and holes were normally drilled dry to prevent poor recoveries and contamination caused by water ingress. For DD drillholes, core blocks were inserted in sections where core loss has occurred. This was recorded on the block and during the logging process and with photography of wet core.
	<i>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</i>	No relationship between sample recovery and grade was noted.
Logging	<i>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</i>	For RC drilling, geological logging was undertaken on chip samples at 1 m intervals with lithology, oxidation strength, mineralogy, grainsize, texture, colour, vein infill and percentage, metal sulphide percentage and alteration type and strength recorded. Geological logging, structural measurements, rock-quality designation (RQD) and recovery measurements were carried out on DD core. DD core was photographed wet and dry. XRF determinations of lithophile elements nickel and chromium were utilised to confirm the visual identification of ultramafic or komatiitic units (Bullabulling Gold only).
	<i>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</i>	The logging was quantitative, based on visual field estimates
	<i>The total length and percentage of the relevant intersections logged.</i>	All holes were logged from start to finish and all logging was done with sufficient detail to meet the requirements of resource estimation and mining studies.
Sub-sampling techniques and sample preparation	<i>If core, whether cut or sawn and whether quarter, half or all core taken.</i>	DD core sample lengths were adjusted so that they did not cross lithological boundaries with ~1 m sample intervals ideally used. Samples are collected from half core cut using an onsite diamond saw. The remaining half core was stored as a library sample.
	<i>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</i>	Non-core samples were collected as 1 m samples. RC samples were collected using a cone splitter (Bullabulling Gold and Minerals 260) or riffle splitter (historical) to cut the sample stream and produce a 2–5 kg sample.
	<i>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</i>	Sample preparation followed industry best practice standards and was conducted by internationally recognised laboratories including ALS (2025-current), Amdel, Jinning, Genalysis (2010-2014) and A.C.E. Laboratories Kalgoorlie and Broken Hill Minerals Southern Cross laboratory (pre-2010). Sample preparation included oven drying, jaw crushing and pulverising to 80% passing 75 µm.
	<i>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</i>	Field duplicates were collected at a rate of 1 in 20 on average. A proportion of pulp duplicates were re-submitted for assay and then assayed by an umpire laboratory. Subsampling is performed during the preparation stage according to the laboratory's internal protocols.
	<i>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</i>	Measures taken to ensure representative drill samples included: Regular cleaning of cyclones and sampling equipment to prevent contamination Statistical comparison of field and laboratory duplicates, standards and blanks Statistical comparison of anomalous composite assays versus average of follow up 1 m assays.

For personal use only

Criteria	JORC Code explanation	Commentary
	<i>Whether sample sizes are appropriate to the grain size of the material being sampled.</i>	The entire sample (2–5 kg) was submitted to the laboratory consistent with industry standards.
Quality of assay data and laboratory tests	<i>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</i>	<p>Assay and laboratory procedures were selected following a review of techniques provided by internationally certified laboratories.</p> <p>Historical</p> <p>Pre-1994 samples were analysed for gold at A.C.E. Laboratories using a 24-hour bottle roll cyanide extraction technique with an AAS finish. Residues of all samples with solution reads greater than 0.4 g/t Au were assayed by Genalysis using the fire assay/AAS technique.</p> <p>Post-1994, samples were sent to Broken Hill Minerals Southern Cross laboratory who used an acid digest/AAS technique with a 0.01 g/t Au detection limit.</p> <p>Bullabulling Gold</p> <p>From June 2010 to December 2012, samples were assayed for gold at ALS facilities by the fire assay method (50 g charge 0.01 g/t Au detection limit).</p> <p>RC samples from five pre-collars in the first DD drilling program (June to August 2010) were assayed at ALS using by fire assay (30 g charge 0.002 g/t Au detection limit) and half core samples by fire assay (30 g charge 0.01 g/t Au detection limit). Solutions from samples assaying >10 g/t Au were diluted and reanalysed using method Au-DIL (Au overlimit by dilution).</p> <p>The final gold assay was selected in priority of Au-DIL then 50 g charge then 30 g charge.</p> <p>From January 2013 to April 2014, samples were assayed for gold at the Bureau Veritas laboratory in Kalgoorlie laboratory using a 40 g charge (0.01 g/t Au detection limit).</p> <p>The assay techniques used are total.</p> <p>Minerals 260</p> <p>From April 2025, samples were assayed for gold at ALS facilities by the fire assay method (50 g charge 0.01 g/t Au detection limit), with ME-ICP61 and four acid digest for 34 elements:</p> <p>Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, La, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sr, Th, Ti, U, V, W, Zn.</p> <p>Bullabulling Gold performed XRF determinations to verify litho-geochemistry using a PAS XL3t 950s GOLDD+ handheld XRF (pXRF). The pXRF readings were not representative of grade intervals and are not reported.</p> <p>Minerals 260 use an Olympus Vanta pXRF to assist with litho-geochemistry. The pXRF readings were not representative of grade intervals and are not reported.</p>
	<i>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</i>	
	<i>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established</i>	<p>Historical</p> <p>Bullabulling Gold inserted field duplicates at a rate of 1 in 20 samples on average. A proportion of pulp duplicates were resubmitted for assay including assay by an umpire laboratory.</p> <p>Laboratory standards checked for accuracy and precision.</p> <p>No information is available on the historical quality control procedures and is assumed to be done to industry standards.</p> <p>Minerals 260</p> <p>QAQC samples are inserted 1:10 samples, with a combination of blanks, certified reference materials and field duplicates. QAQC results are analysed monthly to ensure there is no bias in samples.</p>

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	<p><i>The verification of significant intersections by either independent or alternative company personnel.</i></p> <p><i>The use of twinned holes.</i></p> <p><i>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</i></p>	<p>Intersections were peer reviewed in-house.</p> <p>No twin holes were drilled.</p> <p>Historical All Bullabulling Gold field data was manually collected, entered into Micromine Field Marshall software, validated in Micromine, and loaded into a commercial database (GBIS). All electronic data was routinely backed up. Data was exported as csv files for processing by several different software packages. No information is available on the historical data management and is assumed to be done to industry standards.</p> <p>Minerals 260 Data is collected and entered into validated Excel spreadsheets, validated in Micromine, and loaded into an MX Deposit database where additional checks are performed by an external contractor. Data is exported as an Access database to use in various software packages.</p>
	<i>Discuss any adjustment to assay data.</i>	There was no requirement to adjust assay data.
Location of data points	<p><i>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</i></p> <p><i>Specification of the grid system used</i></p> <p><i>Quality and adequacy of topographic control.</i></p>	<p>The local mine grid was based on AMG Zone 51 coordinates up until 2014. From 2015 onwards GDA94/MGA Zone 51 was used including for the resource estimate. Nominal RLs based on regional topographic datasets were used initially; however, these were updated as differential GPS coordinates were collected.</p> <p>Bullabulling Gold All collars were surveyed by Fugro Spatial Solutions or ABIMS by differential GPS (accuracy $\pm 0.1\text{m}$). A campaign of differential GPS surveys of surviving historical collars was undertaken by Fugro and results compared with the inherited database. Results indicated that the location data for historical drilling is accurate. Almost all drilling was subject to gyroscopic survey. No downhole surveys were undertaken on vertical holes. From January 2011 to April 2014, continuous downhole surveys were performed mainly in-rod by gyroscopic technique on the bulk of RC drillholes (85%). A proportion (13%) were surveyed down open hole. 24 holes where downhole surveys were unable to be performed relied on collar survey data for downhole traces.</p> <p>Historical Very few of the historical RC drillholes have downhole surveys and therefore rely on collar information. Historical DD holes have downhole survey information based on Eastman camera surveys, with minimal hole deviation noted. Collar surveys were completed by Spectrum Surveys and Datum Surveys using an unknown survey instrument. Coordinates were resurveyed to ensure accuracy, with Datum Survey data given preference, where available.</p> <p>Minerals 260 All collars are initially surveyed with handheld GPS (accuracy $\pm 5\text{m}$), with all drill collars to be picked up by an external surveyor using a differential GPS. Coordinates are collected in GDA94/MGA Zone 51. Downhole surveys for all holes are conducted with a True North Seeking Gyro, which is regularly calibrated.</p>

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	<i>Data spacing for reporting of Exploration Results.</i>	<p>Historical</p> <p>Drilling of the main 7 km north-south Bullabulling mineralised trend was completed along a set of east-west trending sections. The section spacing typically ranges from 20 m x 20 m apart to 35 m x 75 m apart. Preliminary drilling of the northwest-southeast oriented portion of the mineralised trend over a strike length of 2 km was undertaken on east-west sections.</p> <p>From January 2013, infill drilling of the northwest-southeast oriented trend along the Kraken areas was completed on northeast-southwest trending sections orthogonal to the mineralised trend. Section spacing was maintained at 35 m x 75 m.</p> <p>Areas were classified as Indicated where there is infill drilling at 20–40 m along strike and 20 m on section and where the geological and grade continuity are robust. Areas with drill spacing 40–80 m along strike and/or along section were classified as Inferred. All laterite material was set to Inferred as the drilling is predominantly historical.</p> <p>Minerals 260</p> <p>Infill and step out drilling is conducted at 40m along section and 40 to 50m along strike. Exploration holes are completed on an 160 x 160m spacing initially, with infill holes drilled pending results.</p>
	<i>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</i>	<p>The section spacing is sufficient to establish the degree of geological and grade continuity necessary to support the resource classifications applied.</p> <p>The spacing of holes is considered of sufficient density to provide an "Indicated" or "Inferred" classification under the JORC Code (2012).</p>
	<i>Whether sample compositing has been applied.</i>	<p>Historical</p> <p>No sample compositing was applied to historical drilling.</p> <p>Minerals 260</p> <p>For intervals deemed to have a low potential of mineralisation based on surrounding data, samples are composited to 4m samples with the 1m samples retained. Samples are scooped off the drill pad and placed into a calico. If results are anomalous, the 1m samples are sent for analysis.</p>
Orientation of data in relation to geological structure	<p><i>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</i></p> <p><i>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</i></p>	<p>Drilling was angled typically at -60° to achieve the most representative intersections through mineralisation.</p> <p>Drilling is typically oriented perpendicular to the interpreted strike of the geology and no bias is envisaged.</p> <p>No sampling bias was observed.</p>
Sample security	<i>The measures taken to ensure sample security.</i>	<p>Historical</p> <p>Bullabulling Gold's RC and DD core samples were collected from drill site and delivered by the company to either to ALS or Amdel in Kalgoorlie following standard chain of custody procedures.</p> <p>Core prepared for metallurgical testwork was stored at site and then freighted to ALS' metallurgical facility in Perth. Pulp samples are boxed and stored at site in locked sea containers.</p> <p>There is no available information on the historical sample security which is assumed to be done to industry standards.</p> <p>Minerals 260</p> <p>RC and DD core samples were collected from drill site and delivered by freight company to ALS in Perth following standard chain of custody procedures.</p>

For personal use only

Criteria	JORC Code explanation	Commentary
Audits or reviews	<i>The results of any audits or reviews of sampling techniques and data.</i>	<p>In late 2011, a review of the ALS assay data was undertaken by contractor RSC who made a number of recommendations to improve laboratory practices. Following the review, the quality of the quality control samples submitted by Bullabulling Gold improved.</p> <p>In March 2025, an audit of ALS, Perth was conducted by Minerals 260 geologists to view laboratory practices and cleanliness. No issues were observed.</p>

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	<p><i>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</i></p> <p><i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</i></p>	<p>The Bullabulling Project comprises 11 granted Mining Leases (M15/1414, M15/282, M15/483, M15/503, M15/529, M15/552, M15/554, M15/1878, M15/1879, M15/1880, M15/1881). 1 Mining Lease application (M15/1939). 7 granted Exploration Licenses (E15/1392, E15/1485, E15/2111, E15/2112, E15/2113, E15/2114, E15/2118). 1 Exploration Licence Applications (E15/2117, E15/2150). 17 granted General Purpose Leases (G15/47, G15/30, G15/31, G15/32, G15/33, G15/34, G15/35, G15/36, G15/37, G15/38, G15/39, G15/40, G15/41, G15/42, G15/44, G15/45, G15/49). 18 granted Miscellaneous Licences (L15/156, L15/157, L15/158, L15/196, L15/206, L15/218, L15/222, L15/328, L15/330, L15/331, L15/332, L15/333, L15/334, L15/335, L15/336, L15/339, L15/358, L15/357). 2 Miscellaneous License Applications (L15/359, M15/499). 8 granted Prospecting Licenses (P15/6062, P15/6208, P15/6209, P15/6210, P15/6211, P15/6212, P15/6213, P15/6618). 6 Prospecting Licence Applications (P15/6971, P15/6972, P15/6973, P15/7010, P15/7011, P15/7012). 26 Prospecting Licences subject to an option agreement (P15/6427, P15/6474 to P15/6492, P15/6559 to P15/6264).</p> <p>The tenement package forms a contiguous, ~587 km² area located ~65 km southwest of Kalgoorlie, Western Australia.</p> <p>The 26 Prospecting Licences subject to an option agreement are held by Belarox Limited</p> <p>All other tenements are 100%-owned by Bullabulling Operations Pty Ltd (BOPL) and Minerals 260 Holdings Pty Ltd, which are wholly owned subsidiaries of Minerals 260 Limited.</p> <p>Several tenements are subject to royalties:</p> <p>Franco Nevada Australia Pty Ltd – 1% gross royalty on all gold produced from M15/282, M15/552 and M15/554</p> <p>Vox Royalty Australia Pty Ltd – A\$10/fine ounce (or fine ounce equivalent) of gold produced (post the first 100,000 ounces produced) on M15/503 and M15/1414.</p> <p>The Bullabulling Project is largely contained within the Bullabulling Pastoral Lease owned by Bullabulling Operations Pty Ltd. Bullabulling Operations Pty Ltd has agreed to transfer the Bullabulling Pastoral Lease to Norton Gold Fields Pty Ltd. Norton Gold Fields Pty Ltd is the beneficial holder of the Bullabulling Pastoral Lease. An Access and Compensation Deed has been executed with Norton Gold Fields Pty Ltd providing permission to access to the Bullabulling Pastoral Lease on completion of the transfer</p> <p>Bullabulling Operations Pty Ltd and Bullabulling Gold Pty Ltd has a Native Title Land Use Agreement in place.</p> <p>All granted licences are currently in good standing.</p>

The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.

For personal use only

Criteria	JORC Code explanation	Commentary
Exploration done by other parties	<i>Acknowledgment and appraisal of exploration by other parties.</i>	<p>Ownership of the Bullabulling Project has changed several times since initial exploration work in the early 1970s. The major work phases included:</p> <p>Western Mining Corporation from 1974 to 1982: 150 RC holes were drilled to the north of the current Phoenix pit.</p> <p>Valiant Consolidated Ltd and Hill Minerals NL joint venture in 1985. Work included magnetic surveys, soil sampling and RC and RAB drilling which led to the discovery of the Bacchus deposit.</p> <p>Central Kalgoorlie Gold Mines NL explored the area north and south of the Great Eastern Highway at the same time focusing on the laterite gold mineralisation. Drilling confirmed the presence of lateritic and primary mineralisation and the existence of the Phoenix deposit.</p> <p>Samantha Gold NL purchased the project in 1993. The drilling database at the time consisted of 6,500 auger, RAB, AC, RC and DD holes. Samantha continued RC drilling focusing on the Bacchus and Phoenix areas. Samantha Gold became Resolute Samantha Limited and then Resolute Limited in 1996.</p> <p>Open pit mining commenced in 1995 and focused on the Bacchus and Phoenix areas. Small pits were also developed in the Hobbit and Dicksons areas exploiting supergene mineralisation.</p> <p>In 2002, Jervois Mining Limited acquired the project from Resolute and commenced a small heap leach operation.</p> <p>Jervois Mining Limited sold the project to Auzex Resources Limited in February 2010. Ongoing exploration was carried out under a joint venture with GGG Resources Plc. By February 2012, 696 holes (mostly RC) totalling 114,259 m had been drilled.</p> <p>Bullabulling Gold Limited was formed in April 2012 following GGG Resources purchase of Auzex Resources 50% interest in the project. A further 69 holes for 10,816 m of mostly RC drilling had been completed by April 2013 including resource updates in 2012 and 2013 and a prefeasibility study in 2013.</p> <p>In September 2014, Norton Gold Fields ("Norton") completed a takeover of Bullabulling Gold who in turn was acquired by Zijin Mining Group Co. Ltd in May 2015. Additional exploration and metallurgical drilling and testwork was completed along with a Mineral Resource update, mining studies and environmental surveys.</p>
Geology	<i>Deposit type, geological setting and style of mineralisation.</i>	<p>The Bullabulling project is located within the Coolgardie Domain of the Kalgoorlie Terrane in the Archaean Yilgarn Craton of Western Australia.</p> <p>The greenstone sequences within Coolgardie Domain are bounded by the Zuleika Shear to the east and the Ida Fault to the west. The Kunanalling Shear Zone passes through the middle of the domain.</p> <p>The domain comprises a series of north-south striking mafic, ultramafic, felsic volcanic and sedimentary rocks which are extensively metamorphosed from multiple deformation phases ranging from greenschist to amphibolite facies metamorphism. The stratigraphy is generally dipping 30–40° to the west and is cut by numerous pegmatite/ aplite dykes and sills. Variations in dip occur due to folding and occasional faulting.</p> <p>Gold mineralisation is hosted in a continuous sequence of amphibolite which strikes over approximately 8 km. The amphibolites range from hornblende-rich to quartz-rich and overlie an ultramafic basement.</p> <p>The Bullabulling trend is typified by a network of ductile high strain zones and folds that broadly parallel the stratigraphy and are the result of multiple deformation events. The structures have allowed fluid flow into the amphibolite</p>

Criteria	JORC Code explanation	Commentary
Drill hole Information	<p>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</p> <ul style="list-style-type: none"> • easting and northing of the drill hole collar • elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar • dip and azimuth of the hole • down hole length and interception depth • hole length. 	sequence resulting in the deposition and remobilisation of gold.
Data aggregation methods	<p>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</p> <p>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</p> <p>The assumptions used for any reporting of metal equivalent values should be clearly stated.</p>	<p>Provided in Appendix 1</p> <p>Drilling assays have been composited using a weighted average of gold grades, with a 0.5g/t Au cut-off. No top cuts have been applied to grades. The resource cut-off is 0.4g/t Au.</p> <p>Shorter intercepts with higher grades have been reported provided the grade (g/t Au) x thickness (m) is equal or greater than 1.</p> <p>N/A</p>
Relationship between mineralisation widths and intercept lengths	<p>These relationships are particularly important in the reporting of Exploration Results.</p> <p>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</p> <p>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</p>	<p>The Bullabulling mineralisation parallels the stratigraphy where it dips at between 15° and 60° towards the west, averaging around 30°. Southeast of Kraken, the mineralisation is oriented about an open fold with the stratigraphy and strikes northwest-southeast with mineralisation dipping between 30° and 45° to the southwest.</p> <p>Drilling has been completed perpendicular to mineralisation with most holes orientated to the east and dipping at -60°.</p> <p>The true thickness of mineralisation is estimated at between 85% and 95% of the reported drillhole intercepts, unless otherwise stated.</p>
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to Figures in body of the announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practised to avoid misleading reporting of Exploration Results.	All RC and diamond drilling results by Minerals 260 for the Bullabulling project have been reported in Appendix 1.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and	All other substantive exploration data is reported in this announcement.

Criteria	JORC Code explanation	Commentary
<i>rock characteristics; potential deleterious or contaminating substances.</i>		
Further work	<i>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</i>	<p>Mineral 260' has the following activities planned for 2025:</p> <ul style="list-style-type: none"> • RC and DD infill and extensional drilling at main deposit areas. • Initial testing of regional targets. • Sterilisation drilling • Water bore drilling. • Geotechnical and metallurgical drilling and testwork. • Heritage and environmental surveys. • Auger drilling

For personal use only