

Final Assays Confirm Extension of Gold System at Mt Turner Project

ASX Announcement 17 November 2025

Lightning Minerals Ltd (L1M or the Company) is excited to provide an update on the final batch of assays from the inaugural drilling campaign at its wholly owned Mt Turner Gold Project in Queensland, Australia, with results confirming a large-scale mineralised system extending over 12km along the Drummer Fault, with gold mineralisation intersected in eight of nine holes and multiple new gold targets identified.

HIGHLIGHTS

- Final results confirm **multiple new gold targets** across the Mt Turner Project, supporting the presence of **a large**, **continuous mineralised system along the Drummer Fault**
- High-grade gold anomalies from soil and rock-chip sampling up to 21.9g/t Au, extending mineralisation
 2.7km west of the Rocky Reward pit
- Shallow, wide gold intersections at Pit 6 (Rocky Reward) highlight strong continuity along strike, including:
 - Hole 25L1MP6DD001 (Pit 6): 2.8m @ 1.2g/t Au, 2.8g/t Ag from 65m
 Incl. 0.9m @ 3.4g/t Au, 8.1 g/t Ag from 66.9m
 and 24.8m @ 0.3g/t Au, 2.1g/t Ag from 75m
 - Hole 25L1MP6DD002 (Pit 6): 34m @ 0.4g/t Au, 1.4g/t Ag from 78m
 and 0.94m @ 0.8g/t Au, 14g/t Ag from 150.9m
- Phase 1 of exploration confirms shallow orogenic gold system along the Drummer Fault with multiple high-grade epithermal occurrences
- 8 of the 9 holes drilled have intersected mineralisation in the inaugural drill program
- Significant mineralised intersections include:
 - Hole 25L1MP3DD001¹ (Pit 3): 20.4m @ 2.4g/t Au and 14.3g/t Ag from 62m
 Incl. 1.8m @ 10.6g/t Au and 27.1g/t Ag from 77m
 - Hole 25L1MP5DD001¹ (Pit 5): 8m @ 1.4g/t Au and 4.8g/t Ag from 77.8m
- Hole 25L1MP5DD002² (Pit 5): 3.9m @ 3.6g/t Au and 8.8g/t Ag from 90m
 Incl. 1.0m @ 10.7g/t Au and 17.4g/t Ag from 90m
 1.0m @ 7.2g/t Au and 10.4g/t Ag from 67m
- Hole 25L1MP5DD003² (Pit 5): 3.0m @ 2.8g/t Au and 7.5g/t Ag from 105m Incl. 1.0m @ 6.3g/t Au and 17.2g/t Ag from 105m and 2.2m @ 1.9g/t Au and 5.3g/t Ag from 98.8m and 1.0m @ 7.6g/t Au and 9.5g/t Ag from 127m
- Hole 25L1MCOBDD001² (Cobar): 17.2m @ 6.2% Zn, 1.4% Pb and 10.3g/t Ag from 32m
 Incl. 5.0m @ 11.6% Zn, 0.5% Pb and 12.4g/t Ag from 43.8m
- Hole 25L1MCOBDD002² (Cobar): 12.4m @ 6.2% Zn, 1.4% Pb and 24.2g/t Ag from 17.6m Incl. 2.4m @ 15.3% Zn, 4.1% Pb and 75.2g/t Ag from 22.7m and 0.6m @ 19.7% Zn, 8.4% Pb and 150g/t Ag from 22.7m

Lightning Minerals' Managing Director Alex Biggs said, "Having now received our final assays from Pit 6 (Rocky Reward) and also the soil and rock chip sampling, we are excited about our first round of exploration at Mt Turner. We have intersected gold and base metals across multiple targets in drilling and significant soil and rock chip results which provide the Company with additional targets for phase two of exploration at Mt Turner. The Pit 6 (Rocky Reward) results demonstrate the potential width of mineralisation, intersected in two drill holes approximately 80m apart, along strike. We look forward to further testing the gold potential below current drilling at Rocky Reward plus the targets we have identified at Pit 3 (Drummer West) and Pit 5 (Drummer Girl). Positive rock chip and soil sampling results have identified multiple additional gold target areas and have extended the known gold mineralisation along the Drummer Fault by 2.7km west of Rocky Reward. This now gives us 12km of known mineralised strike along the Drummer Fault. The team is now employing a vectoring strategy to finalise target areas for further exploration.

"We have moved quickly to complete our initial drilling at Mt Turner and have demonstrated the potential prospectivity of the area. To intersect mineralisation in eight of the nine holes drilled is testament to both the project generation team and the geology of the area. These results give us even greater confidence in the future potential of the project and the opportunity it presents for the Company and its shareholders. We look forward to further success and are well positioned to take advantage of the current buoyant precious metal and base metal markets. We have a fantastic project, that we feel will provide significant upside to the Company".

Pit 6 (Rocky Reward) Delivers Additional 34m Wide Gold Intersection

Final assay results from holes eight and nine of the inaugural drill program at the Company's wholly owned Mt Turner Project continue to demonstrate gold potential along the Drummer Fault. The final two drill holes have been targeted beneath Pit 6 (Rocky Reward) which is approximately six kilometres west of previous drilling at Pit 3 (Drummer West) and Pit 5 (Drummer Girl) where significant gold intersections have also been intersected (ASX Announcement 21 October 2025 and ASX Announcement 10 November 2025). The six-kilometre strike length of the Drummer Fault between recent intersections at Pit 6 (Rocky Reward), Pit 3 (Drummer West) and Pit 5 (Drummer Girl) provide the Company with an outstanding opportunity to delineate further gold mineralisation. The entire mapped strike length of the Drummer Fault, which is approximately14km, is situated wholly within the Company's tenure.

The broad zones of anomalous gold intersected at Pit 6 (Rocky Reward), combined with the high grades identified at Pit 3 (Drummer West) and Pit 5 (Drummer Girl) demonstrate the potential continuity of the mineralised system over multiple kilometres of the Drummer Fault. This scale potential is further demonstrated by the width and grade continuity of the intersections at Pit 6 (Rocky Reward), 34m @ 0.4g/t Au, 1.4g/t Ag, as well as the intersection of Quartz Feldspar Porphyry intrusion. The two current drill holes at Pit 6 (Rocky Reward) are 80m along strike from each other. The next phase of drilling will focus on potential grade increases with depth and the relationship of the porphyry intrusions to the gold mineralisation.

Intersections at Pit 6 (Rocky Reward) are as follows:

Hole L1MP6DD001 (Pit 6 - Rocky Reward)

2.8m @ 1.2g/t Au and 2.8g/t Ag from 65m Incl. 0.9m @ 3.4g/t Au and 8.1g/t Ag from 66.9m and 24.8m @ 0.3g/t Au and 2.1g/t Ag from 75m.

Hole L1MP6 DD002 (Pit 6 - Rocky Reward)

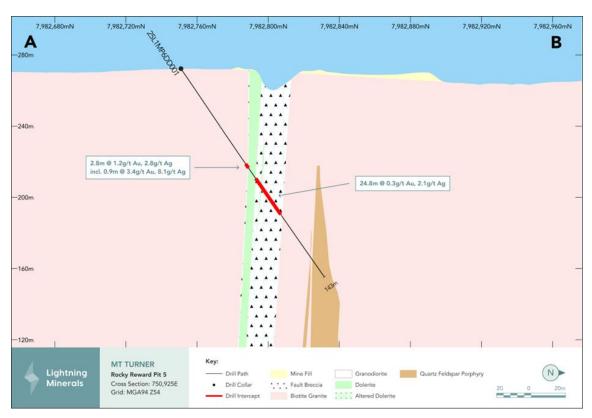
34m @ 0.4g/t Au and 1.4 g/t Ag from 78m and 0.94m @ 0.8g/t Au and 14g/t Ag from 150.86m.

Holes 25L1MP6DD001 and 25L1MP6DD002 (Pit 6 - Rocky Reward)

In summary, drilling at Pit 6 (Rocky Reward) has identified an open-ended zone of hydrothermally altered dolerite which is host to both orogenic style gold sulphide-bearing quartz veins and breccias and less frequent, epithermal style gold sulphide bearing fine grained quartz veinlets which tend to be more sulphidic. Further work at Pit 6 (Rocky Reward) will be undertaken to ascertain potential controls on gold-silver distribution. Figure 1, Figure 2 and Figure 3 show drill hole cross-sections and plan view. Significant intersections are shown in Table 1 and Table 2.

The assay results, in addition to the geological logging of 25L1MP6DD001 and 25L1MP6DD002 confirm that Pit 6 (Rocky Reward) is host to a significant precious metal mineralising event/s. The company's geological team were highly encouraged by the field observations during drilling, with the identification of veining, alteration and metal zonation consistent with both orogenic and epithermal mineral systems. This thesis being borne out with excellent results received. They continue to focus on the potential extent of mineralisation along the Drummer Fault.

The Drummer Fault is a known conduit for gold-silver mineralising fluids. Importantly, the recent identification of Quartz-Feldspar-Porphyry (QFP) intrusion(s) in the drilling may indicate further potential for the migration of mineralising fluids from deeper in the system. These multi-generation phases of mineralisation are globally recognised as being fundamental to a mineral system possessing both economically significant grade and potential volume. The combination of mineral systems that have been observed throughout this phase of drilling have helped to further refine the company's exploration model at the Mt Turner project.



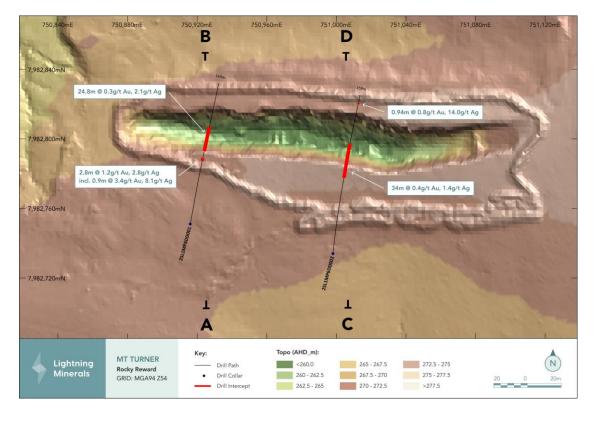

Figure 1: Cross-section of Hole 25L1MP6DD001 (Pit 6 - Rocky Reward)

Figure 2: Cross-section of Hole 25L1MP6DD002 (Pit 6 - Rocky Reward)

Figure 3: Plan view of Holes 25L1MP6DD001 and 25L1MP6DD002 (Pit 6 - Rocky Reward)

Table 1: Drill Hole Location for Significant Intercepts

Hole ID	Location	Hole Type	Easting GDA94z54 (m)	Northing GDA94z54 (m)	RL AHD (m)	Azimuth Grid (°)	Dip (°)	Hole Depth (m)
25L1MP6DD001	Pit 6	Diamond	750916	7982751	272.2	11.00	-55	143.00
25L1MP6DD002	Pit 6	Diamond	750998	7982734	270.8	6.00	-55	158.90

Table 2: Drill Hole Significant Intercepts

Hole ID	Hole Type	Depth From (m)	Depth To (m)	Interval (m)	Au (g/t)	Ag (g/t)
25L1MP6DD001	Diamond	65.0	67.8	2.8	1.2	2.8
includin	9	66.9	67.8	0.9	3.4	8.1
25L1MP6DD001	Diamond	75.0	99.8	24.8	0.3	2.1
25L1MP6DD002	Diamond	78.0	112.0	34.0	0.4	1.4
25L1MP6DD002	Diamond	150.86	151.8	0.94	0.8	14.0

Soil and Rock Chip Sampling Significantly Extends Mineralisation Along the Drummer Fault

The Company has also completed a soil sampling and rock chip sampling campaign across the Mt Turner project, initially focused on the Drummer Fault. The purpose of the program was to confirm the presence of mineralisation between the existing open pits along the Drummer Fault and along strike, to the east and west. Assay results indicate that it is likely the mineralisation may be continuous along the Drummer Fault.

The soil sampling program has focused on path-finder elements which are known to have a strong association with gold mineralisation. Arsenic (As), Silver (Ag) and Antimony (Sb) are key pathfinder metals for both epithermal gold-silver and orogenic gold-silver systems.

Pit 3 (Drummer West) and Pit 5 (Drummer Girl)

- Soil anomalies (including Au-Ag-As-Pb-Zn) indicate potential to extend mineralisation to the west of each pit
 - o Strike extension of up to 450m at Pit 5 and 350m at Pit 3
 - o Soil anomalism consistent with mineralisation intersected in 25L1MP3DD001 (20.4 m 2.4 g/t Au and 14.3 g/t Ag)
 - Rock chips taken from 500m northeast (Sample ID 106127: 5.7 g/t Au) and 500m southeast (Sample ID 106135: 5.3 g/t Au and 44.1 g/t Ag) of Pit 5 indicate that mineralisation may not be constrained to the Drummer Fault

New Western Target Identified ~ 2.7 Km west of Pit 6 (Rocky Reward)

- Soil anomalies (including Au-Ag-As-Pb-Cu) identify potential new area of mineralisation, approximately 350m wide
- Significant rock chip assays from the area include
 - o 21.9 g/t Au (Sample ID 106108)
 - o 3.2 g/t Au (Sample ID 106128)
 - o 3.5 g/t Au (Sample ID 106113)
- Samples also contain anomalous Ag, Cu, Pb, Sb potentially related to a previously unrecognised mineralised corridor

Rock-chip sampling has further expanded the prospective footprint beyond the Drummer Fault. Multiple samples collected approximately 2.7km west of Pit 6 returned significant grades, including **21 g/t Au** (Sample ID: 106108), **3.2 g/t Au** (Sample ID: 106128), and 3.5 g/t Au (Sample ID: 106113) over a strike length of 385m. These samples also display elevated Ag and base-metal values, supporting the interpretation of a potential new mineralised zone west of the known system.

Additional rock-chip sampling northeast and southeast of Pit 5 (Drummer Girl), has also delivered strong results. Sample ID 106127, collected ~500 m northeast of the pit, returned 5.7 g/t Au and displays clear epithermal alteration. Sample ID 106135, located ~500 m southeast of the pit, returned 5.3 g/t Au and 44.1 g/t Ag. These results demonstrate that mineralisation may not be constrained to the Drummer Fault and has potential to extend to the north and south of this structural feature, significantly widening the prospective corridor.

East of Pit 1 (Drummer Toy), soil and rock-chip sampling has identified at least two anomalous Au-Ag-As-Cu-Pb-Zn zones extending nearly 2.5 km from the pit. Although sampling density in this area is lower, results are highly encouraging. Rock-chip values include **5.6 g/t Au** (Sample ID: 106142) along the surface expression of the Drummer Fault, and additional samples to the north and south returned **0.92 g/t Au** (Sample ID: 106131) and **2.09 g/t Au and 38.2 g/t Ag** (Sample ID: 106132), collected 475 m north and 580 m south of the fault respectively.

Collectively, these results highlight the potential scale of the gold-silver mineralised system at the Mt Turner project. They also demonstrate multiple satellite and extension targets surrounding the Drummer Fault corridor, significantly expanding the Company's exploration search space and supporting the potential for further discoveries in under-tested areas.

Table 3 and Table 4 show significant rock chip samples utilising a 0.2g/t Au cut-off grade. Arsenic (As) is a key indicator element often associated with gold, the soil samples have been filtered based on As >20ppm. All rock chip sample and soil sample locations are displayed in Figure 4. Significant soil samples >100ppm As are listed in Table 5.

Figure 4: Plan view of Mt Turner Project demonstrating all soil and rock sample geochemistry, including the phase 1 drill hole program

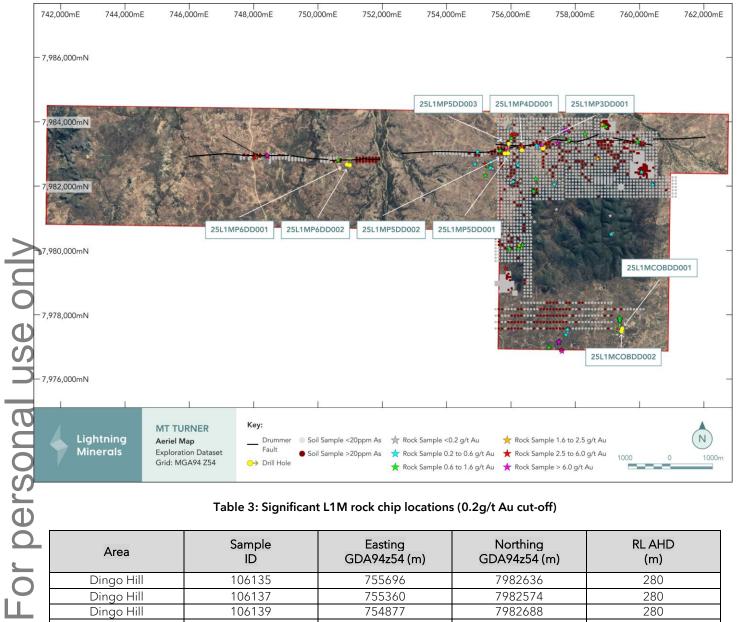


Table 3: Significant L1M rock chip locations (0.2g/t Au cut-off)

Area	Sample ID	Easting GDA94z54 (m)	Northing GDA94z54 (m)	RL AHD (m)
Dingo Hill	106135	755696	7982636	280
Dingo Hill	106137	755360	7982574	280
Dingo Hill	106139	754877	7982688	280
Dingo Hill	106133	755375	7982752	280
Drummer Fault	106108	748420	7982962	280
Drummer Fault	106142	760100	7983338	280
Drummer Fault	106113	748034	7982904	280
Drummer Fault	106128	748430	7982930	280
Drummer Fault	106114	748074	7982908	280
Drummer Fault	106132	758694	7982858	280
Drummer Fault	106131	758873	7983899	280
Drummer Fault	106130	750622	7982808	280
Drummer Fault	106111	754957	7983071	280
Drummer Fault	106143	760095	7983335	280
Drummer Fault	106120	759931	7983384	280
Drummer Fault	106116	748436	7982935	280
Moonlight	106127	756094	7983630	280
Mt Turner	106104	757343	7982054	280
Red Hills	106122	760404	7982057	280
Red Hills	106124	760059	7982438	280

Table 4: Significant L1M rock chip assays (0.2g/t Au cut-off)

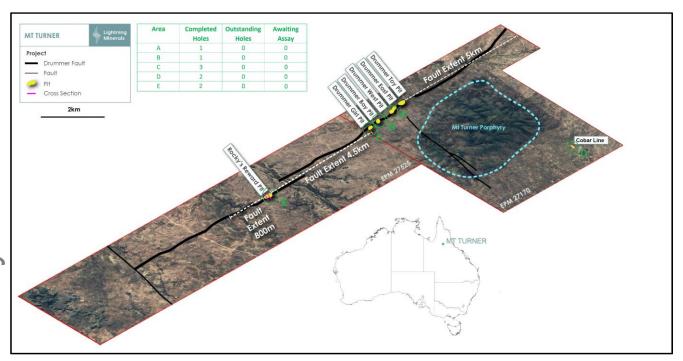
Area	Sample ID	Au (g/t)	Ag (g/t)	As (ppm)	Sb (ppm)	Cu (%)	Pb (%)	Zn (%)
Dingo Hill	106135	5.3	44.1	11350	672	0.10	0.67	0.12
Dingo Hill	106137	0.6	1.2	675	11.2	0.04	0.06	0.10
Dingo Hill	106139	0.4	26.9	700	213	0.01	0.19	0.07
Dingo Hill	106133	0.4	4.1	9670	32.9	0.01	0.01	0.01
Drummer Fault	106108	21.9	54.1	346	9.3	0.52	0.33	0.01
Drummer Fault	106142	5.6	5.6	797	11.45	0.03	0.08	0.22
Drummer Fault	106113	3.5	42.5	10050	31.8	0.02	2.08	0.01
Drummer Fault	106128	3.2	55.6	229	7.83	0.91	0.82	0.01
Drummer Fault	106114	2.2	9.3	2570	6.28	0.01	0.32	0.00
Drummer Fault	106132	2.1	38.2	2470	333	0.03	0.11	0.04
Drummer Fault	106131	0.9	4.7	6380	5.5	0.03	0.04	0.00
Drummer Fault	106130	0.8	0.4	456	2.1	0.00	0.00	0.00
Drummer Fault	106111	0.5	2.6	26	17.45	0.03	0.02	0.00
Drummer Fault	106143	0.5	89.4	375	13.45	0.22	0.13	0.07
Drummer Fault	106120	0.4	3.9	419	3.21	0.01	0.03	0.01
Drummer Fault	106116	0.2	5.5	33	2.89	0.19	0.64	0.01
Moonlight	106127	5.7	8.7	4680	6.63	0.00	0.04	0.00
Mt Turner	106104	0.5	54.7	9970	420	0.48	7.04	0.11
Red Hills	106122	0.3	43.2	222	96.7	0.06	0.04	0.02
Red Hills	106124	0.2	1.3	33	3.77	0.01	0.18	0.07

Table 5: Significant L1M soil assays (>100ppm As cut-off)

3	Sample ID	Easting GDA94z54 (m)	Northing GDA94z54 (m)	RL AHD (m)	As (ppm)	Au (ppm)	Ag ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
_	105625	751700	7982820	280	1225	0.140	2.160	206	13	56
	105639	751900	7982840	280	508	0.151	1.420	116	12	29
)	105595	751300	7982815	280	487	0.345	1.290	118	41	100
	105626	751700	7982800	280	473	0.085	1.180	81	29	34
\	105609	751500	7982840	280	442	0.125	1.240	108	13	37
	105638	751900	7982860	280	402	0.153	0.270	7	30	18
)	105863	755700	7983160	280	401	0.072	1.280	111	415	921
	105867	755700	7983080	280	364	0.052	0.510	34	772	670
	105870	755800	7983170	280	334	0.140	1.850	77	79	245
	105864	755700	7983140	280	315	0.125	1.380	87	294	1065
	105684	748100	7982940	280	284	0.082	0.680	57	189	38
-	105600	751400	7982870	280	274	0.084	0.230	21	33	14
	105601	751400	7982850	280	254	0.167	1.240	94	21	49
	105617	751600	7982830	280	231	0.068	1.900	158	13	39
	105608	751500	7982860	280	226	0.101	0.540	42	28	20
	105809	755600	7983110	280	223	0.085	0.360	23	86	166
	105685	748100	7982920	280	221	0.030	0.350	7	130	11
	105640	751900	7982820	280	215	0.059	0.780	45	18	15
Ĺ	105808	755600	7983090	280	215	0.176	0.740	68	110	737
	105602	751400	7982830	280	213	0.185	0.290	23	25	16
Ĺ	105632	751800	7982830	280	211	0.058	1.080	119	15	33
	105630	751800	7982870	280	195.5	0.021	0.440	2	30	21
Ĺ	105868	755700	7983060	280	191	0.053	0.150	20	286	429
	105683	748100	7982960	280	190	0.030	0.180	28	83	26
ļ	105872	755800	7983130	280	189.5	0.227	0.480	24	34	61
	105637	751900	7982880	280	186.5	0.066	0.210	3	31	14
	105629	751800	7982890	280	184.5	0.021	0.250	1	34	9
ļ	105622	751700	7982880	280	181.5	0.007	0.220	6	32	30
Ĺ	105607	751500	7982880	280	167.5	0.078	0.250	16	33	17

Sample ID	Easting GDA94z54 (m)	Northing GDA94z54 (m)	RL AHD (m)	As (ppm)	Au (ppm)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
105599	751400	7982890	280	165.5	0.061	0.160	4	21	7
105588	751200	7982810	280	150.5	0.189	0.280	5	36	28
105603	751400	7982810	280	148	0.118	0.240	17	22	12
105862	755700	7983180	280	147.5	0.034	0.370	36	265	397
105928	756900	7983310	280	146.5	0.468	1.340	86	145	128
105678	748002	7982912	280	145.5	0.042	0.260	10	235	16
105628	751700	7982760	280	145	0.028	0.680	2	32	6
105810	755600	7983130	280	138.5	0.044	0.450	12	55	147
105633	751800	7982810	280	136	0.050	0.620	45	16	8
105627	751700	7982780	280	134	0.033	0.330	6	32	21
105596	751300	7982800	280	133	0.152	0.250	12	37	36
105807	755600	7983070	280	132.5	0.095	0.480	97	79	331
105614	751600	7982890	280	130.5	0.016	0.840	20	23	13
105682	748100	7982980	280	128.5	0.031	0.230	29	52	21
105634	751800	7982790	280	126.5	0.020	0.460	21	19	5
105869	755800	7983190	280	123.5	0.042	0.320	27	102	180
105871	755800	7983150	280	123	0.080	0.420	23	20	63
105623	751700	7982860	280	120.5	0.005	0.130	1	13	9
105610	751500	7982820	280	117	0.093	0.280	3	30	40
105593	751300	7982860	280	110.5	0.079	0.190	2	32	19
105635	751800	7982770	280	110	0.035	0.900	20	18	7
105927	756900	7983330	280	108	0.185	2.370	121	237	60
105624	751700	7982840	280	106.5	0.006	0.100	3	12	3
105604	751400	7982790	280	105.5	0.067	0.160	10	21	10
105590	751200	7982770	280	101.5	0.051	0.180	4	22	18
105597	751300	7982780	280	101	0.131	0.340	6	35	15
105860	755500	7983070	280	101	0.053	0.590	51	69	548

Mt Turner Project Location and Prospectivity


The Mt Turner Project is located 15km to the northwest of Georgetown in North Queensland. The Project is held through granted Exploration Permits (EPM 27170 and EPM 27525) The Drummer Fault structure, a 14 km east-west structure readily visible on LiDAR and satellite imagery is a key feature of the terrain Historically, several shallow oxide pits were mined for gold in the 1990's along the Drummer Fault. In addition, northeast trending structures have intersected the Drummer Fault in numerous locations. These structures have potential to form higher-grade mineralisation and are thus a high priority target. There are multiple existing mineralised targets along the Drummer Fault and below the current open pits.

Prior drilling³ was completed by Essex Minerals Inc⁴ during 2021, Union Mining NL⁵ in the 1990s, and CRA Exploration Ltd⁶ in the late 1980's intersecting multiple gold lodes with positive results including 16m @ 3.56 g/t Au (Hole UMDT95_D04), 16.0m @ 3.60g/t Au (Hole UMDT95_D03), 12m @ 6.5g/t Au (Hole UMDT95_D03) and 6m @ 2.9g/t Au (Hole PD86_RR2). These results formed the basis for shallow oxide open pit mining across six open pits in the 1990's. Minimal exploration has occurred beneath the historical open pits but multiple targets exist with shallow mineralisation intercepts of up to 7.0m @ 1.74g/t Au and 67.7g/t Ag from 64m downhole (Hole 21ISMP3RC001).

The Company has now completed its inaugural drill program of nine holes confirming mineralisation below existing open pits.

Figure 5: Isometric view of Mt Turner Project demonstrating Drummer Fault and drilling areas including current drill hole status

Geology and Mt Turner Potential - An Evolving Thesis

The Permo-Carboniferous, Mt Turner Porphyry System is a multi-stage felsic magmatic event localised by NW-NE conjugate faults. The system is characterised by a number of felsic quartz eye intrusive stocks and associated rhyolite dyke swarms that emanate some distance from the intrusive centre. These rhyolite dykes are analogous with large copper and gold deposits. Analogous points of comparison are under investigation to assist in further thesis development.

The Mt Turner Porphyry System hosts a 6-kilometre diameter magmatic hydrothermal system characterised by a pervasive alteration halo with historical soil data displaying a classic porphyry metal zonation pattern from an inner copper-molybdenum core, surrounded by a gold-silver-base metal zone (Figure 6). Proximity to the east-west trending Drummer Hill fault structure has provided a large-scale fluid pathway into which porphyry related hydrothermal fluids have migrated, resulting in the generation of near surface epithermal gold and silver mineralisation in the periphery region of the porphyry intrusion.

The Company has adopted a targeted exploration model focused on peripheral structures and breccia zones which are likely to host epithermal style, low temperature precious metal mineralisation. Structural analysis from geophysics LiDAR topographical data has identified a number of prospective peripheral structures and breccia zones associated with rhyolite volcanics. These prospective structures have been ranked on the basis of strike length, historical mining activity, host rock lithology (Proterozoic basement mafic rocks were considered high priority) and their proximity to the Mt Turner porphyry system.

The 14-kilometre east-west trending, regional Drummer Fault and associated splay structures was considered to be the highest priority target. The fault has been intruded by Permo-Carboniferous subvolcanics and volcanic lithologies, with wide-ranging compositions and alteration intensity, from mafic dykes to rhyolite to fine grained granite. Fault splays, tensional jogs and horse-tailing, considered conducive for mineralisation have been recognised from analytical signal aero-magnetic data. The current drilling program has targeted a number of these prospective tensional zones along the Drummer Fault.

The second structure targeted during the initial drilling program was the Cobar Line Structure (Cobar prospect). A one kilometre long, north-south trending geological feature associated with the Mt Turner rhyolite dyke swarm, immediately south of, and within the gold-silver-base metal zone of the Mt Turner porphyry system.

745,000mE 750,000mE 755,000mE 760,000mE 7,985,000mN Pit 3 Pit 2 Pit 1 Pit 4 Pit 5 EPM 27525 Pit 6 7,980,000mN EPM 27170 7,975,000mN Key MT TURNER N Lightning Brecciated Ferruginous Dykes Inner Cu-Mo Zone Metal Zonation **Minerals** Drummer Fault Outer Au-Aq-Base Metal Zone þ Grid: MGA94 Z54 Tenement Boundary Porphyry Breccia Zone Outer Base Metal Zone

Figure 6: Mt Turner Porphyry System Zoning Thesis

Next Steps - Defining the Scale Potential at Mt Turner

All assays have now been received from the drill program and the soil and rock chip sampling campaign at the Mt Turner project. With eight of the nine diamond drillholes intersecting mineralisation the Company's geology team are planning a follow up drill program across multiple targets. The aim is to demonstrate continuity of mineralisation both at depth and along strike from the recent results. Additional analysis will be completed on the soil samples to aid multi-element modelling and potential vectoring toward high order targets. Ranking will also be undertaken on newly identified targets for potential future drilling.

The success of the first round of drilling at Mt Turner provides the Company with the impetus to further pursue, multiple, existing and new target opportunities across the Mt Turner project. It is anticipated that this target rich environment will now present the Company with numerous gold and multi-commodity opportunities going forward into 2026 and beyond.

REFERENCES

¹ASX Announcement 21 October 2025 - High Grade Gold Intersected at Mt Turner Project

²ASX Announcement 10 November 2025 - More High-Grade Gold & Base Metals at Mt Turner Project

³ Prior drilling results contained within this document have been reviewed and compiled by the Competent Person and reported in accordance with JORC Code 2012. See Company Announcement 30 June 2025 -Acquisition of Advanced Brownfields Gold and Copper Projects

⁴Essex Minerals (TSX-V:ESX) TSXV Announcement - Essex Reports Numerous High-Grade Gold Intercepts At Drummer Fault, October 13, 2021 (https://essexminerals.com/wp-content/uploads/ESX-2021-10-13-NR-Drummer-Fault-Drilling-FINAL.pdf)

⁵ Essex Minerals (TSX-V:ESX) TSXV Announcement - ESSEX Samples Up to 14.55 G/T Gold Extending Gold Mineralisation Along Drummer Fault, Mt Turner Gold Project (https://essexminerals.com/wp-content/uploads/ESX-2021-07-13_NR-Mt-Turner-Exploration-FINAL.pdf)

⁶ CRA Exploration Ltd 1987 - Clark Creek A to P 4416M, North Queensland, Report On Investigations For The First Six Months Of Tenure, https://geoscience.data.qld.gov.au/data/report/cr016859

Approved for release by the Board of Directors

-END-

More information at www.lightningminerals.com.au

ABOUT LIGHTNING MINERALS

Lightning Minerals is a mineral exploration company, listed on the Australian Securities Exchange (ASX:L1M) and focused on the exploration of gold, critical minerals and lithium. The Mt Turner gold and copper project provides the Company with access to these strong markets through near term, brownfields projects in Australia as well as the Boree Creek copper and gold porphyry project in the Lachlan Fold Belt of NSW. The Company also owns the Caraíbas, Canabrava and Esperança lithium projects in Minas Gerais, Brazil, the Dundas projects in Western Australia, the Dalmas and Hiver lithium projects in Quebec, Canada. The Company also holds other projects in Western Australia which include Mt Bartle and Mailman Hill which are prospective for gold, base metals and critical minerals.

FORWARD LOOKING STATEMENTS

Information included in this release constitutes forward-looking statements. Often, but not always, forward looking statements can generally be identified by the use of forward-looking words such as "may", "will", "expect", "intend", "plan", "estimate", "anticipate", "continue", and "guidance", or other similar words and may include, without limitation, statements regarding plans, strategies and objectives of management, anticipated production or construction commencement dates and expected costs or production outputs.

Forward looking statements inherently involve known and unknown risks, uncertainties and other factors that may cause the Company's actual results, performance and achievements to differ materially from any future results, performance or achievements. Relevant factors may include, but are not limited to, changes in commodity prices, foreign exchange fluctuations and general economic conditions, increased costs and demand for production inputs, the speculative nature of exploration and project development, including the risks of obtaining necessary licences and permits and diminishing quantities or grades of reserves, political and social risks, changes to the regulatory framework within which the Company operates or may in the future operate, environmental conditions including extreme weather conditions, recruitment and retention of personnel, industrial relations issues and litigation.

Forward looking statements are based on the Company and its management's good faith assumptions relating to the financial, market, regulatory and other relevant environments that will exist and affect the Company's business and operations in the future. The Company does not give any assurance that the assumptions on which forward looking statements are based will prove to be correct, or that the Company's business or operations will not be affected in any material manner by these or other factors not foreseen or foreseeable by the Company or management or beyond the Company's control.

Although the Company attempts and has attempted to identify factors that would cause actual actions, events or results to differ materially from those disclosed in forward looking statements, there may be other factors that could cause actual results, performance, achievements or events not to be as anticipated, estimated or intended, and many events are beyond the reasonable control of the Company. Accordingly, readers are cautioned not to place undue reliance on forward looking statements. Forward looking statements in these materials speak only at the date of issue. Subject to any continuing obligations under applicable law or any relevant stock exchange listing rules, in providing this information the Company does not undertake any obligation to publicly update or revise any of the forward-looking statements or to advise of any change in events, conditions or circumstances on which any such statement is based.

COMPETENT PERSONS STATEMENT

The information contained herein that relates to exploration results is based on information compiled or reviewed by Mr Matthew Watson, who is a Competent Person and a member of the Australasian Institute of Mining and Metallurgy. Mr Watson is a full-time employee of the Company. Mr Watson has sufficient experience which is relevant to the style of mineralisation and types of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Persons as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Watson consents to the inclusion of his name in the matters based on the information in the form and context in which it appears. Mr Watson holds options in Lightning Minerals.

REFERENCES TO PREVIOUS ANNOUNCEMENTS

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements, and that all material assumptions and technical parameters have not materially changed. The Company also confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

Appendix 1: Mt Turner Project - JORC Code 2012 Table 1 Criteria

The Table below summarises the assessment and reporting criteria used for exploration results for the Mt Turner Project and reflects the guidelines in Table 1 of The Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves (The JORC 2012 Code).

Section 1 - Sampling Techniques and Data

_	Criteria	JORC Code explanation	Commer	ntary
use only	Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be	•	With respect to the 2025 drilling by Lightning Minerals Drilling consisted of 9 HQ diamond holes. All samples were processed in Townsville by ALS Global, an independent accredited laboratory. Gold assays were completed by 50g screen fire assay with atomic absorption finish. Silver and 33 multi-element analysis was undertaken by a four-acid digest followed by inductively coupled plasma atomic emission spectroscopy (ICPAES). With respect to the 2021 drilling by ISMINS on behalf of Essex Minerals ²
sonal u	relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	•	Drilling consisted of two HQ diamond holes with RC pre-collars, the remaining four holes were completed as Reverse Circulation using a 4.5-inch drill bit, and a cone splitter. All samples were processed in Townsville by ALS Global, an independent accredited laboratory. Gold assays were completed by 50g screen fire assay with atomic absorption finish. Silver and 33 multi-element analysis was undertaken by a four-acid digest followed by inductively coupled plasma atomic emission spectroscopy (ICPAES). With respect to the 2025 rock sampling by Lightning Minerals	
For per			•	Rock sampling consisted of 46 grab samples. Samples were removed from insitu surface outcrop using a geo pick and placed into a labelled calico bag with a sample ticked. A nominal sample size of 2kg was taken. For each sample location, a photograph was taken of the outcrop along with GPS coordinates and geological log describing the sample. Mineralised material was preferentially sampled. With respect to the 2020/21 rock sampling by ISMINS on behalf of Essex Minerals ² Rock sampling consisted of 46 grab samples. Samples were removed from insitu surface outcrop using a geo pick and
				placed into a labelled calico bag with a sample ticked. A nominal sample size of 2kg was taken. For each sample location, a photograph was taken of the outcrop along with GPS coordinates and geological log describing the sample. Mineralised material was preferentially sampled. With respect to the 2025 soil sampling by Lightning Minerals

/			• Soil sampling consisted of 492 grab samples. Samples were collected over a predefined sampling grid. Where the location was over a track, creek or worked surface, the location was moved 10-15 metres. Sampling was taken through the B-horizon (20-50cm depth) to maximise geochemical stability and reduce organic content. Prior to sampling, surface organic matter and loose debris were removed, with tools cleaned using a Nylon brush to reduce cross contamination. A geopick/mattock was used to break up soil and remove the top 10-20cm of the soil horizon, not to be sampled. Sample collection involved excavation to target depth using an auger or a shovel. Sampled material was collected evenly from around the sides of the hole to reduce sampling bias. A 1kg sample was collected for laboratory preparation. For each sample location, a sample ID was recorded including GPS coordinates, depth and horizon, regolith type, colour, texture, moisture, and a description of the surrounding terrane.
			With respect to the 2021 soil sampling by ISMINS on behalf of Essex Minerals ²
Il use or			Soil sampling consisted of 703 grab samples. Samples were collected over a predefined sampling grid. Where the location was over a track, creek or worked surface, the location was moved 10-15 metres. Sampling was taken through the B-horizon (20-50cm depth) to maximise geochemical stability and reduce organic content. Prior to sampling, surface organic matter and loose debris were removed, with tools cleaned using a Nylon brush to reduce cross contamination. A geopick/mattock was used to break up soil and remove the top 10-20cm of the soil horizon, not to be sampled. Sample collection involved excavation to target depth using an auger or a shovel. Sampled material was collected evenly from around the sides of the hole to reduce sampling bias. A 1kg sample was collected for laboratory preparation. For each sample location, a sample ID was recorded including GPS coordinates, depth and horizon, regolith type, colour, texture, moisture, and a description of the surrounding terrane.
<u> </u>			With respect to the 1996 soil sampling by KNX
rsor			 Soil sampling consisted of 2261 grab samples. Samples were collected over a predefined sampling grid. No additional information is available on the sampling methodology employed by Kidston Gold Mines
$\overline{\Phi}$	Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or	With respect to the 2025 drilling by Lightning Minerals
9		standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Drilling consisted of 9 x HQ3 diamond holes.
_			Core was orientated using a Reflex Act III down hole survey tool.
HO			With respect to the 2021 drilling by ISMINS on behalf of Essex Minerals ²
			 Drilling consisted of two HQ diamond holes with RC pre-collars, the remaining four holes were completed as Reverse Circulation using a 4.5-inch face sampling drill bit.
			Core was not orientated.

Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and	With respect to the 2025 drilling by Lightning Minerals
	ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 Core sample recoveries were quantitatively measured comparing length of core recovered vs expected length as recorded on the driller run sheet. Drilling consisted of 9 HQ diamond holes. Core recovery average 97.75% over 398.34m of samples submitted for assay.
	37 3,	 The drilling rate was purposefully slowed in through brecciated ground to improve core recovery.
		 No relationship has been established between sample recovery and grade. No sample bias has been observed due to preferential loss/gain of fine/coarse material.
		With respect to the 2021 drilling by ISMINS on behalf of Essex Minerals ²
		 Core sample recoveries were quantitatively measured comparing length of core recovered vs expected length as recorded on the driller run sheet. Drilling consisted of 2 HQ diamond tail holes. Core recovery average 98% over 200m of drilling.
		The drilling rate was purposefully slowed in through brecciated ground to improve core recovery.
		 No relationship has been established between sample recovery and grade. No sample bias has been observed due to preferential loss/gain of fine/coarse material.
		No sample recovery information is available for the RC pre-collars and drill holes.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	With respect to the 2025 drilling by Lightning Minerals The drill core has been qualitatively logged by geologists with experience in orogenic, epithermal and porphyry mineralisation systems. The diamond core logging has recorded colour, texture, grainsize, weathering, alteration and minerals present in the drill core. The reported drill holes have been logged in full.
		 Core has been photographed in the wet form. Core photography is currently ongoing. With respect to the 2021 drilling by ISMINS on behalf of Essex Minerals²
		 The RC chips have been qualitatively logged by geologists with experience in orogenic, epithermal and porphyry mineralisation systems. The RC logging has recorded colour, texture, grainsize, weathering, alteration and minerals present in the drill core. The reported drill holes have been logged in full.
		The availability of chip tray photography is currently unknown.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	With respect to the 2025 drilling by Lightning Minerals
and cample preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	• The drill core was drilled with HQ3 size and sampled as complete half core to produce bulk sample for analysis. Intervals selected varied from 0.4m to 1.6m (minimum-maximum), with a nominal sample length of 1m. The core is cut in half length ways just to the right of the orientation line where available using a diamond core saw. All samples are collected from the same side of the core where practicable. Assay preparation procedures ensure the entire sample is first crushed coarse crushed, then fine crushed to better than 85% mass passing 3.15mm screen sizing, with a 250g rotary split taken and

	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	 pulverised to 75 microns, from which a sub-sample is taken for analysis. This removes the potential for the significant sub-sampling bias that can be introduced at this stage. No second-half sampling of the core has not been undertaken. With respect to the 2021 drilling by ISMINS on behalf of Essex Minerals² The RC chips were drilled with 4.5" face sampling hammer. Samples were taken at 1m Intervals. The core is cut in half length ways just to the right of the orientation line where available using a diamond core saw. Assay preparation procedures ensure the entire sample is pulverised to 75 microns, from which a sub-sample is taken for analysis. This removes the potential for the significant sub-sampling bias that can be introduced at this stage. No second-half sampling of the core was undertaken. No field duplicates were submitted to the laboratory. With respect to the rock sampling by Lightning Minerals and by ISMINS on behalf of Essex Minerals² The rock samples were delivered to the ALS laboratory in Townsville where the entire sample was coarse crushed, then fine crushed to 85% passing 3.15mm, and rotary split and pulverised to generate 50g aliquots for analysis. No duplicates or second half splits were carried out on samples. Lab repeats were carried out on the pulverised aliquot material. No grade bias was observed. No relationship has been observed between sample size and reported grade.
		 With respect to the soil sampling by Lightning Minerals and by ISMINS on behalf of Essex Minerals² The soil samples were sieved using an 80micron mesh to generate a 50-100g aliquot for analysis. No duplicates or second half splits were carried out on samples. A subset of samples (60) were riffle split, with one sequence going for analysis, and the second sequence having an interim pulverisation stage to ensure 85% passing 75micron. No relationship has been observed between sample size and reported grade. With respect to the soil sampling by KNX The soil samples were sieved using an 80micron mesh to generate a 50-100g aliquot for analysis. Several locations were duplicated by ISMINS in 2021, no sample bias and reasonable precision was observed.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument	With respect to the 2025 drilling by Lightning Minerals Sample preparation and assay analysis were carried out at the ALS Global Laboratory in Townsville and Brisbane.

		make and model, reading times, calibrations factors applied and their derivation. etc.	•	Analysis procedures are considered appropriate for sulphide bearing minerals, with the technique considered near total, with Iron content being under reported when high sulphur values are encountered.
		Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	•	Samples are prepared and analysed using ALS Global technique Four Acid Digest with Atomic Absorption (50g) for Ore Grade Au, and a multi-element ICP-AES fusion for Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, La, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sr, Th, Ti, Tl, U, V, W and Zn.
			•	Multiple standards (OREAS 600c, OREAS 608b and OREAS 609c) are submitted with each sample batch sent to the laboratory. Standards are inserted at a rate of 1:10. Data review suggests that the ALS laboratory has generated results with acceptable levels of accuracy and precision.
<u> </u>			•	An external laboratory umpire check will be schedule after all assays have been received and reviewed against QAQC CRM standards.
5				With respect to the rock sampling carried out by Lightning Minerals and by ISMINS on behalf of Essex Minerals ²
)				with respect to the rock sampling carried out by Lightning Minerals and by Ismin's on behalf of Essex Minerals
5			•	Sample preparation and assay analysis were carried out at the ALS Global Laboratory in Townsville and Brisbane.
ź I			•	Analysis procedures are considered appropriate for sulphide bearing minerals.
			•	Samples are prepared and analysed using ALS Global technique Fire Assay with Atomic Absorption (50g) for Ore Grade Au, and a multi-element ICP-AES fusion for Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, Ge, Hf, Hg, In, K, La, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Rb, Re, S, Sb, Sc, Se, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn and Zr.
3			•	No standards were inserted by ISMINS.
			•	
5				
2				With respect to the soil sampling carried out by KNX in 1996
5			•	The name of the laboratory is unknown.
2			•	A 12 hour bulk cyanide leach with atomic absorption finish was used to analyse Au, Ag, and Cu. A four-acid digest with ICP finish was used to determine As, Bi, Ca, Co, Fe, K, Mg, Mn, Mo, Na, Ni, Pb, S, Sb, Sr, Zn. Analysis procedures are considered appropriate for sulphide bearing minerals.
5			•	No information is available for standards.
V	erification of sampling	The verification of significant intersections by either independent or	•	Significant intersections have been verified by the Company's geological staff.
— a	nd assaying	alternative company personnel.	•	No twinned holes have been completed.
		The use of twinned holes. Documentation of primary data, data entry procedures, data	•	Primary data is collected into field logs for geology, sampling and QAQC data. Data is then transferred to company database
		verification, data storage (physical and electronic) protocols.		for validation prior to be sent to an external contractor in Perth Western Australia to be managed.
		Discuss any adjustment to assay data.	•	Assay values below half detection limit were assigned a grade of half the detection limit.

Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	 Handheld Garmin GPS instruments were used to geo locate each drill collar location, these instruments are understood to be accurate within a ±5m in the horizontal and vertical planes. Drill hole collar locations will be recorded by a licensed surveyor upon completion of the drilling program. The level of topographic control is provided by a LiDAR survey flown in 2020, with an expected horizontal accuracy of ±0.05m and vertical accuracy of ±0.5m. A compass clino has been used to align the drill rig, with a downhole north seeking gyro-based system used for downhole measurements on all holes, hole deviation is minimal and within acceptable tolerances. All collar locations were recorded in GDA94 Zone 54.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	 Exploration holes are orientated as best possible to intersect the Fault Breccia System. 1m downhole sample spacing is considered appropriate for the reporting of the exploration diamond drilling assay results. No Mineral Resource or Ore Reserve Estimates have been completed. Interval length weighted compositing has been used to generate significant intercept grades.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 The drilling has been designed to intercept the downdip orientation of the mineralisation at a perpendicular angle, with sampling size designed to delineate grade variability across the mineralisation. The drilling orientation relative to key mineralised structures is not thought to have introduced any material sampling bias.
Sample security	The measures taken to ensure sample security.	 Samples are collected from the drill rig and processed at a facility in Georgetown. Samples are then driven by representatives of the company into Cairns, where they are freighted directly to the receiving laboratory in Townsville. The company has no reason to suspect any tampering with the samples.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews of sampling techniques have been conducted to date.

iteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 The 'Mt Turner' Tenements are in the process of being transferred to Lightning Minerals Ltd from FNQ Resources Pty Ltd (t project vendors) in accordance with agreement entered into in June 2025. The Mt Turner Project includes exploration licences EPM27525, and EPM27170. The Tenements are considered to be in good standing at the time of this announcement. 3% NSR from all minerals on the property payable to Optegra Ventures Inc
parties	er Acknowledgment and appraisal of exploration by other parties.	 Exploration undertaken by prior parties includes: Essex Minerals 2020-2022 Meryllion Resource Corp 2020-2022 KNX Resources Australia 2015-2020 Mega Uranium 2006-2014 Union Mining 1993-2003 CRA Exploration 1985-1990
Geology	Deposit type, geological setting and style of mineralisation.	 The Mt Turner Project is prospective for Epithermal and Orogenic gold, silver and base metals, and Porphyry hosted cop and molybdenum.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: oeasting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar odown hole length and interception depth, hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	● See main body of the announcement, Figures 1 – 6 and Tables 1 – 5.
Đata aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Exploration results have been weight averaged using sample interval length.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	Drill holes are designed to intersect the down dip direction of the Drummer Fault system as close to perpendicular as possil All reporting in the body of text above adequately describes intercepts as 'downhole lengths' and not true width.

Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate reporting of results has been included in the body of this announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Comprehensive reporting of assay results for gold and silver results are presented in the main body of the report. Historic assay results for rock and soil samples are presented in the Appendices.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples — size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All meaningful data and relevant information have been included in the body of the report.
For Dersonal USA	The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Further works will consist of: Surface Sampling Review Conduct a detailed reinterpretation of all 2025 soil and rockOchip datasets Integrate results with multi-element geochemistry (pathfinders, ratios and alteration vectors) to refine targeting Assess spatial geochemical patterns to identify trends and new target areas Target Prospectivity Update and Re-Ranking Update the project wide target inventory by incorporating data from the 2025 exploration program(s) Re-rank targets using the company's prospectivity matrix Identify newly emerging high-priority targets and downgrade targets where appropriate Integration with Historic Data Correlate new surface geochemistry with historic soil grids, rock chips and previous drilling Assess reliability and representativeness of historic methods, sampling density and analytical accuracy Identify areas where historic datasets require replacement, re-sampling or re-interpretation Geological Understanding and Mineral System Interpretation Refine geological model Assess newly acquired data and geological observations to update mineral system footprint and vectors to mineralisation Drill Core Review Using Assay Data Conduct a second pass detailed review of all logged drill core, focussing on mineralised and anomalous intervals Validate and refine lithology, alteration, veining, mineralogy and structure using assay support Identify mis-logged intervals, re-define contacts and update stratigraphic/intrusive relationships Logging Code and Interpretation Updates Update logging codes, templates and classification schemes based on improved geological understanding Produce reviewed downhole interpretation logs, cross-sections and geological models Establish improved multi-element signatures for recognised fertile vs barren host lithologies

>		
_	•	
=		
_		
J		
1		

Petrological Study

- Select representative samples from key mineralised intervals and critical lithological units
- Submit for thin section, polished section, SEM/EDS
- Use results to refine understanding of alteration, paragenesis, ore mineralogy and fluid evolution

Development of Follow-Up Exploration Program

- A) Drilling: Lateral step-out drilling around high priority intercepts, depth extensions to determine down-dip
 continuity of mineralisation and scout drilling of newly identified surface anomalies
- B) Surface sampling: Infill soil sampling to refine geochemical definition at key prospects and rock chip sampling of new exposures, artisanal workings and structural positions
- C) Geophysics: Assess suitability of geophysical methods to explore for blind targets
- D) Mapping and structural review: Further mapping along key areas in the Mt Turner project area, focussing on intrusive contacts, breccias, alterations zones and key mineralised structures
- E) New target testing: Apply a combination of geochemistry, mapping, geophysics and targeted scout drilling to assess new anomalies prior to full-scale testing

Ongoing Review Framework

 Work program will be refined as 2025 data, historic datasets and petrology results are progressively integrated

Appendix 1 - Historic Rock Samples Reported above an Au cut-off grade of 0.2g/t

Company	Year	Area	Sample ID	Easting GDA94z54 (m)	Northing GDA94z54 (m)	RL AHD (m)	Au (g/t)	Ag (g/t)	As (ppm)	Cu (%)	Pb (%)	Zn (%)
ISMINS	2020	Cobar Line	CB12	759334	7977548	280	8.3	164.0	1780	0.23	8.49	0.34
ISMINS	2020	Cobar Line	CB8	759334	7977548	280	7.3	183.0	4720	0.05	4.73	0.30
ISMINS	2020	Cobar Line	CB7	759347	7977620	280	1.2	263.0	1535	0.06	22.30	0.23
ISMINS	2020	Cobar Line	CB9	759322	7977499	280	1.1	226.0	1530	0.09	19.90	0.20
ISMINS	2020	Cobar Line	CB1	759378	7977900	280	0.9	65.3	582	0.05	2.12	0.37
ISMINS	2020	Cobar Line	CB5	759380	7977825	280	0.8	91.4	1200	0.07	1.29	0.25
ISMINS	2020	Cobar Line	CB4	759381	7977850	280	0.5	355.0	2210	0.13	2.60	0.36
ISMINS	2020	Cobar Line	CB2	759378	7977878	280	0.3	78.6	660	0.04	5.22	0.21
ISMINS	2021	Dingo Hill	DW-1	755192	7982688	280	2.7	30.8	4770	0.02	0.07	0.00
ISMINS	2021	Dingo Hill	DW-2	755245	7982644	280	1.1	26.6	2270	0.02	0.06	0.00
ISMINS	2021	Dingo Hill	DW-3	755202	7982331	280	0.7	13.4	2750	0.06	0.34	0.13
ISMINS	2021	Dingo Hill	DH5	756215	7982652	280	0.5	10.9	1310	0.04	0.02	0.00
ISMINS	2021	Dingo Hill	DH8	756067	7982144	280	0.4	10.8	5770	0.43	0.08	0.20
ISMINS	2021	Dinky Di	DD-005	757492	7977159	280	36.2	217.0	22700	0.19	1.57	0.36
ISMINS	2021	Dinky Di	DD-008	757493	7977185	280	34.9	139.0	25600	1.11	8.16	0.57
ISMINS	2021	Dinky Di	DD-006	757486	7977142	280	12.5	21.8	13600	0.48	0.10	0.11
ISMINS	2021	Dinky Di	DD-001	757582	7976872	280	7.2	99.0	84000	0.29	27.40	0.71
ISMINS	2021	Dinky Di	DD-003	757557	7976921	280	4.5	435.0	20200	0.17	14.60	0.21
ISMINS	2021	Dinky Di	DD-004	757557	7976921	280	4.3	104.0	29900	0.24	11.55	0.80
ISMINS	2021	Dinky Di	DD-007	757490	7977149	280	0.7	2.4	6310	0.01	0.37	1.55
ISMINS	2021	Dinky Di	DD-009	757706	7977384	280	0.6	131.0	9160	0.05	15.10	0.38
ISMINS	2021	Dinky Di	DD-010	757753	7977543	280	0.4	65.1	22500	0.18	8.20	1.81
ISMINS	2021	Dinky Di	DD-012	757753	7977543	280	0.3	107.0	16900	0.17	8.18	1.42
ISMINS	2021	Dinky Di	DD-011	757763	7977559	280	0.2	20.0	1050	0.06	1.12	9.00
ISMINS	2021	Drummer Fault	DNE-1	757714	7983756	280	29.8	12.6	719	0.00	0.16	0.01
ISMINS	2020	Drummer Fault	DF-10	757447	7983336	280	29.4	31.4	1875	0.03	0.12	0.17
ISMINS	2020	Drummer Fault	DF2	755858	7983193	280	24.5	44.6	1875	0.04	0.37	0.02
ISMINS	2021	Drummer Fault	DDW 1	756962	7983293	280	15.4	13.1	10001	0.04	0.29	0.10
ISMINS	2021	Drummer Fault	DGN4	755892	7983167	280	15.3	32.2	3380	0.11	0.61	0.04
ISMINS	2021	Drummer Fault	NA 1	757659	7983757	280	14.5	11.6	1075	0.02	0.17	0.00
ISMINS	2021	Drummer Fault	DGS1	756943	7983284	280	13.9	21.3	734	0.03	0.20	0.04
ISMINS	2020	Drummer Fault	DF-7	757447	7983336	280	11.2	45.0	2290	0.05	1.07	0.01
ISMINS	2021	Drummer Fault	DE-3	757134	7983350	280	4.8	8.0	457	0.01	0.02	0.00

ISMINS	2020	Drummer Fault	DF-6	757447	7983336	280	4.2	24.1	1030	0.04	0.06	0.01
ISMINS	2021	Drummer Fault	DGN2	755857	7983186	280	4.0	15.4	1255	0.01	0.21	0.01
ISMINS	2020	Drummer Fault	DF1	756351	7983233	280	3.6	14.3	1400	0.02	0.03	0.00
ISMINS	2020	Drummer Fault	DF-4	757154	7983333	280	3.5	42.3	1310	0.04	0.31	0.00
ISMINS	2021	Drummer Fault	BC 1	756347	7983236	280	3.4	25.2	1430	0.07	0.05	0.01
ISMINS	2020	Drummer Fault	DF-12	757447	7983336	280	3.3	55.1	1175	0.04	0.19	0.01
ISMINS	2020	Drummer Fault	DF-5	757154	7983333	280	2.6	6.3	4830	0.12	0.09	0.01
ISMINS	2021	Drummer Fault	BC 2	756315	7983232	280	2.3	13.1	2380	0.02	0.03	0.00
ISMINS	2020	Drummer Fault	DF-11	757447	7983336	280	2.1	49.6	531	0.07	0.61	0.01
ISMINS	2021	Drummer Fault	DGN1	755852	7983194	280	2.1	14.9	2770	0.03	0.01	0.11
ISMINS	2020	Drummer Fault	DF-1	757047	7983228	280	1.8	5.1	635	0.01	0.07	0.01
ISMINS	2021	Drummer Fault	DFE-5	758833	7983925	280	1.7	0.6	750	0.04	0.00	0.02
ISMINS	2021	Drummer Fault	DFE-1	758300	7983628	280	1.6	12.1	2300	0.06	1.00	0.13
ISMINS	2021	Drummer Fault	DFW-1	757175	7976989	280	1.6	64.7	6460	0.02	2.73	0.02
ISMINS	2021	Drummer Fault	NA 2	757804	7983421	280	1.5	4.9	130	0.00	0.01	0.00
ISMINS	2021	Drummer Fault	DFE-8	759928	7983382	280	1.3	17.0	414	0.01	0.02	0.01
ISMINS	2020	Drummer Fault	DF-2	757047	7983228	280	1.3	13.4	2120	0.00	0.89	0.02
ISMINS	2020	Drummer Fault	DF-3	757047	7983228	280	1.2	3.4	1080	0.00	0.03	0.00
ISMINS	2021	Drummer Fault	DGW1	755662	7983106	280	1.2	10.2	2910	0.00	0.04	0.02
ISMINS	2021	Drummer Fault	DFE-7	758950	7983850	280	0.6	13.3	3210	0.06	0.01	0.14
ISMINS	2020	Drummer Fault	DF-9	757447	7983336	280	0.6	10.0	368	0.02	0.11	0.01
ISMINS	2020	Drummer Fault	DF7	756799	7983271	280	0.4	4.6	585	0.05	0.01	0.02
ISMINS	2020	Drummer Fault	DF-8	757447	7983336	280	0.4	2.0	373	0.01	0.01	0.15
ISMINS	2021	Drummer Fault	DFE-9	759928	7983382	280	0.2	4.0	117	0.00	0.01	0.00
ISMINS	2021	Moonlight	ML-1	756020	7983595	280	3.7	5.1	1280	0.00	0.02	0.03
ISMINS	2020	Moonlight	DF6	756008	7983506	280	0.6	2.6	1275	0.02	0.09	0.01
ISMINS	2021	Mt Turner	MT38	756705	7981845	280	1.5	7.3	3630	0.11	0.29	0.23
ISMINS	2020	Mt Turner	DF3	756769	7982224	280	0.6	18.3	2280	0.05	1.35	0.25
ISMINS	2021	Mt Turner	104111	759111	7980512	280	0.3	4.4	1680	0.01	0.00	0.00
ISMINS	2021	Western Zone	DH18	755829	7979449	280	3.4	126.0	505	2.20	0.00	0.01
ISMINS	2021	Western Zone	104141	756253	7980165	280	1.9	138.0	1860	3.04	1.39	0.10
ISMINS	2021	Western Zone	104136	756228	7980052	280	1.5	7.9	2030	0.13	0.14	0.19
ISMINS	2021	Western Zone	104142	756253	7980165	280	1.3	130.0	1160	0.97	1.09	0.11
ISMINS	2021	Western Zone	104140	755954	7980053	280	1.1	5.0	3880	0.05	0.36	0.28
ISMINS	2021	Western Zone	104133	756247	7980145	280	0.8	44.9	1885	0.12	0.41	0.01
ISMINS	2021	Western Zone	104138	756353	7980173	280	0.8	33.0	2530	0.17	0.25	0.24

Appendix 2 - L1M Soil Samples between 20ppm and 100ppm As, and Historic Soil Samples reported above a cut-off of 20ppm As

Company	Sample ID	Easting GDA94z54 (m)	Northing GDA94z54 (m)	RL AHD (m)	As (ppm)	Au (ppm)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
L1M	105616	751600	7982850	280	99.1	0.021	2.320	210	18	22
L1M	105631	751800	7982850	280	97.6	0.013	0.460	3	23	11
L1M	105677	748000	7982933	280	97.4	0.125	0.510	18	190	12
L1M	105801	755000	7982944	280	90.9	0.011	0.750	25	614	971
L1M	105679	748006	7982888	280	87.5	0.024	0.230	4	70	8
L1M	105861	755500	7983050	280	86	0.020	1.070	107	178	261
L1M	105929	756900	7983290	280	83	0.426	0.550	78	98	184
L1M	105611	751500	7982800	280	80.8	0.048	0.520	6	29	16
L1M	105583	750700	7982760	280	80.4	0.015	0.350	2	47	41
L1M	105582	750700	7982780	280	78.8	0.007	0.130	1	28	17
L1M	105615	751600	7982870	280	78	0.012	0.420	42	13	4
L1M	105811	755600	7983150	280	76.5	0.020	0.280	6	113	129
L1M	105598	751300	7982760	280	71.1	0.105	0.290	3	28	14
L1M	105692	748200	7982930	280	70.1	0.217	4.300	366	765	36
L1M	105653	747700	7982958	280	68.2	0.020	0.380	36	92	17
L1M	105589	751200	7982790	280	67.2	0.057	0.220	2	22	9
L1M	105901	756600	7983250	280	67.2	0.031	0.330	33	234	384
L1M	105676	748003	7982951	280	66	0.038	0.340	16	90	26
L1M	105581	750700	7982800	280	65	0.070	0.120	2	18	9
L1M	105584	751200	7982890	280	64.6	0.038	0.090	4	24	25
L1M	105591	751200	7982750	280	64.4	0.028	0.150	3	19	16
L1M	105585	751200	7982870	280	63.1	0.052	0.120	6	30	31
L1M	105613	751500	7982760	280	62.8	0.018	0.090	2	20	5
L1M	105680	748002	7982869	280	60.9	0.008	0.070	2	50	22
L1M	105636	751800	7982750	280	60.4	0.021	0.170	10	19	5
L1M	106011	758700	7983350	280	60.4	0.023	1.260	87	46	144
L1M	105592	751300	7982880	280	59.7	0.064	0.160	1	25	27
L1M	105858	755500	7983110	280	57.9	0.040	1.160	85	103	173
L1M	105686	748105	7982895	280	57.7	0.007	0.060	1	43	15
L1M	105795	754900	7982970	280	55.7	0.016	0.170	23	220	189
L1M	106010	758700	7983370	280	55	0.016	0.450	95	43	145
L1M	105792	754900	7983030	280	54.9	0.010	0.220	3	50	19

ISM	102693	755600	7983100	280	234	0.144	0.765	36	176	363
ISM	102715	757600	7982900	280	151.5	0.030	0.566	37	25	114
ISM	102782	756000	7982600	280	127	0.090	0.644	33	130	372
ISM	102674	757600	7983100	280	110	0.118	3.400	163	2010	727
ISM	102658	755600	7983200	280	103	0.025	0.516	4	183	105
ISM	102659	755700	7983200	280	90.9	0.049	0.311	35	510	448
ISM	102517	756100	7983900	280	90	0.009	0.232	16	30	48
ISM	102643	757300	7983300	280	84.6	0.052	0.450	47	69	73
ISM	102644	756900	7983300	280	75.9	0.445	1.050	80	76	148
ISM	102662	756400	7983200	280	73.4	0.029	1.060	81	314	381
ISM	102776	755700	7982700	280	64	0.022	0.380	41	222	370
ISM	102927	755800	7981900	280	63.7	0.007	0.106	143	97	33
ISM	103027	756300	7981400	280	63.4	0.017	0.146	58	22	33
ISM	102784	756200	7982600	280	63	0.018	4.440	130	1295	1285
ISM	102836	756000	7982400	280	58.9	0.007	0.402	128	65	370
ISM	102865	755900	7982200	280	56.8	0.002	0.412	35	136	64
ISM	102910	756200	7982000	280	55.8	0.032	0.559	357	63	349
ISM	102823	757300	7982400	280	54.8	0.011	0.299	62	30	237
ISM	102857	756000	7982300	280	53.7	0.003	0.239	140	67	101
ISM	102632	756100	7983400	280	52.7	0.012	0.629	53	41	49
ISM	102650	756300	7983300	280	52.7	0.037	0.628	88	45	182
ISM	102989	755700	7981600	280	51.7	0.049	0.173	223	50	16
ISM	102802	755900	7982500	280	51.1	0.005	0.248	129	61	113
ISM	102721	757000	7982900	280	48.7	0.007	0.374	19	766	361
ISM	102621	756100	7983500	280	46.6	0.006	0.060	12	22	23
KGM	42174	758870	7983923	280	649	0.052	0.089	43	35	44
KGM	43548	757320	7977973	280	643	0.053	0.112	99	68	1040
KGM	41544	760120	7982573	280	371	0.130	0.047	59	978	578
KGM	43537	756220	7977973	280	307	0.006	0.017	199	144	427
KGM	43466	755720	7978173	280	303	0.024	0.037	35	137	126
KGM	43483	757420	7978173	280	295	0.040	0.152	122	169	1130
KGM	43592	756120	7977773	280	225	0.009	0.070	42	80	552
KGM	43593	756220	7977773	280	163	0.016	0.049	15	80	189
KGM	43660	757320	7977573	280	146	0.018	0.044	29	163	347
KGM	41601	760020	7982373	280	142	0.091	0.028	45	1390	296
KGM	43661	757420	7977573	280	140	0.015	0.048	54	234	1110
KGM	41819	758920	7983873	280	118	0.031	0.090	24	174	139
KGM	40428	755870	7979223	280	118	0.187	0.028	43	213	146
KGM	42175	758920	7983923	280	114	0.032	0.075	51	85	150

KGM	43484	757520	7978173	280	111	0.004	0.032	23	141	1150
KGM	41602	760120	7982373	280	104	0.035	0.035	48	621	385
KGM	42162	758970	7983823	280	102	0.039	0.061	45	86	115
KGM	41573	760120	7982473	280	100	0.157	0.090	43	1200	378
KGM	43409	757120	7978373	280	91	0.029	0.188	51	174	165
KGM	41535	759220	7982573	280	90	0.017	0.055	25	421	68
KGM	43531	755620	7977973	280	88	0.012	0.065	36	167	521
KGM	42058	760120	7982623	280	85	0.027	0.032	28	277	496
KGM	41543	760020	7982573	280	85	0.060	0.043	55	872	481
KGM	43471	756220	7978173	280	84	0.023	0.030	36	124	170
KGM	41536	759320	7982573	280	83	0.009	0.068	30	339	92
KGM	42046	760070	7982573	280	81	0.073	0.104	80	1110	193
KGM	43545	757020	7977973	280	74	0.004	0.025	100	71	221
KGM	41825	758920	7983973	280	71	0.032	0.061	32	126	90
KGM	42169	758970	7983873	280	67	0.009	0.042	32	75	93
KGM	42037	760170	7982523	280	67	0.033	0.022	61	795	597
KGM	43605	757420	7977773	280	66	0.013	0.090	22	104	613
KGM	41324	758420	7983273	280	65	0.016	0.111	34	38	283
KGM	42012	760020	7982423	280	64	0.251	0.066	46	1960	253
KGM	43411	757320	7978373	280	63	0.001	0.033	33	283	620
KGM	43482	757320	7978173	280	63	0.003	0.041	20	118	706
KGM	41462	757720	7982773	280	61	0.011	0.071	83	97	175
KGM	43600	756920	7977773	280	61	0.002	0.043	29	117	261
KGM	42182	758870	7983973	280	58	0.017	0.035	45	81	69
KGM	41388	759020	7983073	280	58	0.055	0.067	69	173	184
KGM	43544	756920	7977973	280	57	0.009	0.061	53	157	278
KGM	42036	760120	7982523	280	54	0.078	0.035	66	973	513
KGM	43566	759120	7977973	280	54	0.025	0.029	13	706	590
KGM	42024	760070	7982473	280	51	0.128	0.029	40	542	1010
KGM	41419	759220	7982973	280	50	0.004	0.020	110	122	114
KGM	42074	759920	7982723	280	50	0.016	0.032	42	140	284
KGM	41069	755520	7980373	280	50	0.003	0.011	39	77	69
KGM	40414	755870	7979123	280	50	0.060	0.211	135	72	335
KGM	43601	757020	7977773	280	50	0.013	0.059	22	153	440
KGM	43486	757720	7978173	280	49	0.030	0.020	15	193	525
KGM	41820	759020	7983873	280	48	0.015	0.031	17	91	124
KGM	42163	759020	7983823	280	48	0.029	0.072	45	81	306
KGM	43549	757420	7977973	280	48	0.007	0.029	10	96	253
KGM	43647	756020	7977573	280	48	0.010	0.039	9	89	226

	KGM	41340	760020	7983273	280	47	0.021	0.036	154	83	533
L	KGM	43611	758020	7977773	280	47	0.016	0.062	22	574	1170
	KGM	41574	760220	7982473	280	46	0.020	0.034	30	892	239
	KGM	43599	756820	7977773	280	46	0.002	0.041	52	124	261
	KGM	41298	758720	7983373	280	45	0.011	0.116	78	46	317
L	KGM	41443	758720	7982873	280	45	0.023	0.032	48	94	245
	KGM	41597	759620	7982373	280	45	0.002	0.045	58	36	151
	KGM	42003	760170	7982373	280	45	0.147	0.082	43	303	741
L	KGM	41036	755620	7980173	280	44	0.002	0.037	100	17	123
L	KGM	40421	755870	7979173	280	43	0.018	0.053	81	59	379
	KGM	43416	757820	7978373	280	43	0.065	0.038	19	245	806
L	KGM	43656	756920	7977573	280	43	0.002	0.015	11	133	127
	KGM	43412	757420	7978373	280	42	0.004	0.062	60	307	221
L	KGM	43650	756320	7977573	280	42	0.005	0.065	22	279	555
L	KGM	43659	757220	7977573	280	42	0.004	0.062	9	281	643
	KGM	41056	755920	7980273	280	41	0.004	0.011	119	82	145
	KGM	43594	756320	7977773	280	41	0.002	0.046	10	160	278
	KGM	42155	758970	7983773	280	40	0.007	0.023	42	59	126
L	KGM	41814	759020	7983773	280	40	0.005	0.024	22	67	137
	KGM	41613	758320	7982273	280	40	0.022	0.047	89	135	175
L	KGM	43663	757620	7977573	280	40	0.008	0.033	16	718	1370
	KGM	44576	760820	7981873	280	39	0.019	0.022	153	346	1340
L	KGM	41375	757720	7983073	280	38	0.008	0.020	88	64	280
	KGM	41894	760220	7982323	280	38	0.076	0.025	37	265	418
L	KGM	43485	757620	7978173	280	38	0.003	0.071	8	107	352
	KGM	43606	757520	7977773	280	38	0.010	0.066	7	180	1290
L	KGM	43607	757620	7977773	280	38	0.004	0.047	16	189	419
	KGM	41307	759620	7983373	280	37	0.033	0.130	120	53	340
L	KGM	43487	757820	7978173	280	37	0.003	0.043	6	85	346
L	KGM	41328	758820	7983273	280	36	0.018	0.048	90	45	722
L	KGM	41396	759820	7983073	280	36	0.023	0.077	42	56	286
L	KGM	43415	757720	7978373	280	36	0.008	0.037	14	149	438
	KGM	42026	760270	7982473	280	35	0.106	0.053	41	594	560
L	KGM	41583	758220	7982373	280	35	0.003	0.037	64	54	245
	KGM	41074	756020	7980373	280	35	0.003	0.047	193	42	191
	KGM	43479	757020	7978173	280	35	0.001	0.057	69	125	325
	KGM	43595	756420	7977773	280	35	0.001	0.034	13	138	185
	KGM	43677	759020	7977573	280	35	0.003	0.055	14	106	232
	KGM	42189	758920	7984023	280	34	0.011	0.020	15	93	69
_				•	•		•	•	•		

KGM	42177	759020	7983923	280	34	0.004	0.023	13	61	72
KGM	41418	759120	7982973	280	34	0.023	0.035	133	158	282
KGM	41521	757820	7982573	280	34	0.001	0.051	164	94	277
KGM	41379	758120	7983073	280	33	0.018	0.034	254	48	844
KGM	42188	758870	7984023	280	32	0.010	0.028	22	97	54
KGM	42190	758970	7984023	280	32	0.011	0.017	20	73	64
KGM	41331	759120	7983273	280	32	0.007	0.154	22	46	125
KGM	41358	758920	7983173	280	32	0.011	0.074	47	52	180
KGM	42010	759920	7982423	280	32	0.132	0.024	28	684	404
KGM	41090	755920	7980473	280	32	0.002	0.002	31	38	59
KGM	40360	756020	7978823	280	32	0.006	0.015	109	23	61
KGM	43551	757620	7977973	280	32	0.006	0.024	20	142	964
KGM	43665	757820	7977573	280	32	0.004	0.066	21	788	759
KGM	42130	759170	7983373	280	31	0.010	0.075	62	69	319
KGM	41359	759020	7983173	280	31	0.006	0.098	21	39	151
KGM	41389	759120	7983073	280	31	0.011	0.062	169	32	502
KGM	41497	758320	7982673	280	31	0.004	0.057	106	70	206
KGM	41572	760020	7982473	280	31	0.135	0.048	45	1100	662
KGM	42001	759970	7982373	280	31	0.002	0.021	32	927	329
KGM	41692	760420	7982073	280	31	0.010	0.111	285	91	238
KGM	40974	756220	7979773	280	31	0.005	0.029	79	70	57
KGM	40409	755970	7979073	280	31	0.004	0.038	106	30	80
KGM	43478	756920	7978173	280	31	0.002	0.031	57	76	247
KGM	43480	757120	7978173	280	31	0.004	0.042	38	104	378
KGM	43590	755920	7977773	280	31	0.007	0.027	18	70	158
KGM	43603	757220	7977773	280	31	0.003	0.057	16	132	650
KGM	43604	757320	7977773	280	31	0.002	0.069	16	187	365
KGM	43658	757120	7977573	280	31	0.005	0.053	8	183	330
KGM	41515	760120	7982673	280	30	0.023	0.025	29	236	322
KGM	43410	757220	7978373	280	30	0.003	0.030	32	118	267
KGM	43420	758220	7978373	280	30	0.004	0.012	8	246	748
KGM	43490	758120	7978173	280	30	0.002	0.038	9	313	399
KGM	41341	760120	7983273	280	29	0.003	0.049	31	79	384
KGM	42015	760170	7982423	280	29	0.150	0.040	68	467	1210
KGM	41892	760120	7982323	280	29	0.004	0.028	70	253	403
KGM	43481	757220	7978173	280	29	0.003	0.025	31	86	200
KGM	43538	756320	7977973	280	29	0.001	0.016	13	254	566
KGM	43546	757120	7977973	280	29	0.001	0.012	14	92	217
KGM	43591	756020	7977773	280	29	0.001	0.035	6	53	76

KGM	42034	760020	7982523	280	28	0.019	0.044	45	600	574
KGM	42035	760070	7982523	280	28	0.103	0.029	45	505	1160
KGM	42025	760170	7982473	280	28	0.096	0.031	51	1250	437
KGM	43550	757520	7977973	280	28	0.002	0.057	13	64	162
KGM	43654	756720	7977573	280	28	0.004	0.077	42	132	257
KGM	43664	757720	7977573	280	28	0.003	0.047	9	282	450
KGM	42183	758970	7983973	280	27	0.005	0.021	12	59	59
KGM	42170	759070	7983873	280	27	0.004	0.019	22	77	135
KGM	42014	760120	7982423	280	27	0.084	0.028	52	515	980
KGM	41643	758420	7982173	280	27	0.024	0.017	112	61	574
KGM	40432	755920	7979273	280	27	0.007	0.063	45	72	81
KGM	41365	759620	7983173	280	26	0.121	0.051	12	66	350
KGM	41395	759720	7983073	280	26	0.005	0.046	11	57	199
KGM	41070	755620	7980373	280	26	0.006	0.017	32	129	110
KGM	43536	756120	7977973	280	26	0.009	0.035	18	142	493
KGM	43587	755620	7977773	280	26	0.055	0.034	17	76	152
KGM	41259	757720	7983473	280	25	0.016	0.044	57	109	247
KGM	41281	759920	7983473	280	25	0.005	0.047	23	50	170
KGM	41306	759520	7983373	280	25	0.019	0.192	136	110	289
KGM	41327	758720	7983273	280	25	0.013	0.022	86	65	293
KGM	41357	758820	7983173	280	25	0.009	0.081	82	27	387
KGM	41525	758220	7982573	280	25	0.002	0.028	197	130	279
KGM	41575	760320	7982473	280	25	0.034	0.055	31	418	368
KGM	42009	759870	7982423	280	25	0.060	0.023	30	200	299
KGM	43419	758120	7978373	280	25	0.003	0.035	10	123	258
KGM	42176	758970	7983923	280	24	0.003	0.022	9	39	47
KGM	41299	758820	7983373	280	24	0.008	0.036	39	43	258
KGM	42122	759570	7983173	280	24	0.010	0.028	14	65	329
KGM	41467	758220	7982773	280	24	0.005	0.032	179	35	464
KGM	41480	759520	7982773	280	24	0.006	0.038	409	62	370
KGM	42033	759970	7982523	280	24	0.094	0.030	41	585	741
KGM	42002	760070	7982373	280	24	0.002	0.046	31	1200	355
KGM	41603	760220	7982373	280	24	0.123	0.035	31	333	541
KGM	41057	756020	7980273	280	24	0.002	0.021	123	91	121
KGM	43501	759220	7978173	280	24	0.010	0.074	1	336	185
KGM	43648	756120	7977573	280	24	0.010	0.070	15	310	336
KGM	43649	756220	7977573	280	24	0.004	0.047	15	311	332
KGM	42168	758870	7983873	280	23	0.004	0.023	32	51	169
KGM	41202	757820	7983673	280	23	0.007	0.012	189	103	649

KGM	41217	759320	7983673	280	23	0.007	0.019	6	186	204
KGM	41300	758920	7983373	280	23	0.005	0.041	33	47	171
KGM	41466	758120	7982773	280	23	0.003	0.030	275	43	501
KGM	41479	759420	7982773	280	23	0.009	0.082	156	31	478
KGM	40351	755920	7978773	280	23	0.019	0.118	110	44	174
KGM	43472	756320	7978173	280	23	0.001	0.061	36	132	632
KGM	43543	756820	7977973	280	23	0.001	0.068	30	45	225
KGM	43547	757220	7977973	280	23	0.001	0.011	9	106	252
KGM	43608	757720	7977773	280	23	0.001	0.055	10	391	261
KGM	43643	755620	7977573	280	23	0.002	0.028	8	100	136
KGM	41364	759520	7983173	280	22	0.002	0.028	13	91	517
KGM	41413	758620	7982973	280	22	0.004	0.031	44	37	100
KGM	41420	759320	7982973	280	22	0.008	0.060	118	61	253
KGM	41448	759220	7982873	280	22	0.003	0.039	53	88	172
KGM	41499	758520	7982673	280	22	0.002	0.074	321	51	602
KGM	42047	760170	7982573	280	22	0.068	0.019	25	252	400
KGM	42011	759970	7982423	280	22	0.149	0.033	38	1430	463
KGM	41630	760020	7982273	280	22	0.059	0.022	35	165	346
KGM	41632	760220	7982273	280	22	0.027	0.029	119	91	515
KGM	41053	755620	7980273	280	22	0.010	0.017	42	34	89
KGM	41021	755820	7980073	280	22	0.006	0.069	220	39	179
KGM	41116	756420	7979073	280	22	0.001	0.047	117	31	91
KGM	43535	756020	7977973	280	22	0.005	0.032	44	82	247
KGM	43554	757920	7977973	280	22	0.001	0.024	6	142	122
KGM	43564	758920	7977973	280	22	0.005	0.048	11	426	290
KGM	43598	756720	7977773	280	22	0.003	0.025	19	112	174
KGM	43644	755720	7977573	280	22	0.017	0.036	7	75	103
KGM	41824	758820	7983973	280	21	0.001	0.016	84	58	265
KGM	41289	757820	7983373	280	21	0.004	0.026	193	38	414
KGM	41311	760020	7983373	280	21	0.004	0.044	27	32	172
KGM	41329	758920	7983273	280	21	0.009	0.020	27	34	186
KGM	42124	759520	7983223	280	21	0.001	0.013	20	47	354
KGM	41376	757820	7983073	280	21	0.003	0.023	210	57	306
KGM	41392	759420	7983073	280	21	0.009	0.064	44	78	262
KGM	41449	759320	7982873	280	21	0.008	0.024	116	54	419
KGM	41465	758020	7982773	280	21	0.002	0.026	353	57	446
KGM	41496	758220	7982673	280	21	0.003	0.064	100	27	191
KGM	42060	760220	7982623	280	21	0.067	0.014	26	219	372
KGM	42038	760220	7982523	280	21	0.041	0.029	72	539	842

KGM	41791	758720	7981673	280	21	0.002	0.008	73	77	48
KGM	41113	756420	7978973	280	21	0.001	0.051	117	31	119
KGM	43646	755920	7977573	280	21	0.002	0.043	8	43	150
KGM	43662	757520	7977573	280	21	0.002	0.032	8	83	95
KGM	41251	759820	7983573	280	20	0.007	0.028	26	105	209
KGM	41330	759020	7983273	280	20	0.007	0.023	21	39	141
KGM	41349	758020	7983173	280	20	0.002	0.042	108	58	273
KGM	42110	759920	7983023	280	20	0.013	0.019	67	38	649
KGM	42111	759970	7983023	280	20	0.013	0.072	53	37	915
KGM	41507	759320	7982673	280	20	0.005	0.037	30	66	184
KGM	42069	760170	7982673	280	20	0.007	0.022	27	122	276
KGM	42059	760170	7982623	280	20	0.027	0.011	26	228	436
KGM	41545	760220	7982573	280	20	0.025	0.056	40	415	504
KGM	41547	760420	7982573	280	20	0.002	0.025	42	188	710
KGM	41564	759220	7982473	280	20	0.013	0.027	31	177	166
KGM	41076	756220	7980373	280	20	0.009	0.045	579	75	511
KGM	41037	755720	7980173	280	20	0.003	0.019	67	40	83
KGM	41023	756020	7980073	280	20	0.002	0.022	108	106	205
KGM	40422	755920	7979173	280	20	0.073	0.045	131	25	127
KGM	40423	755970	7979173	280	20	0.007	0.025	31	40	52
KGM	43465	755620	7978173	280	20	0.002	0.022	12	56	86
KGM	43498	758920	7978173	280	20	0.010	0.028	10	209	615
KGM	43503	759420	7978173	280	20	0.003	0.031	11	342	843
KGM	43552	757720	7977973	280	20	0.001	0.033	1	87	7
KGM	43602	757120	7977773	280	20	0.005	0.030	15	81	204