

Intersections up to 94m Width at Esperança Project in Brazil

ASX Announcement **26 September 2025**

Lightning Minerals (L1M or the Company) is pleased to provide an update on its inaugural drilling campaign at its Esperança lithium project in the prolific Lithium Valley region of Minas Gerais, Brazil. The inaugural drilling campaign has now been completed with a total of 1,442m drilled and assays received from the SGS GEOSOL laboratory in Belo Horizonte Minas Gerais Brazil.

Drilling has confirmed the presence of a pegmatite system in the locality. Low lithium grades have been encountered but geochemical analysis and vectoring will be utilised to determine correct fractionation and potential lithium source. Drilling was expedited on the Esperança project area following the discovery of spodumene at Esperança in artisanal workings (ASX Announcement 18 November 2024) and subsequent confirmation of spodumene through Raman Spectroscopy (ASX Announcement 17 January 2025). Soil sampling programs at the Esperança, Caraíbas and Canabrava projects have provided peak soil assays of up to 429ppm lithium at Caraíbas, 320ppm lithium at Canabrava and multiple target areas for follow up detailed surface mapping across all three project areas.

HIGHLIGHTS

- Drilling of the 14 diamond drill holes is now complete at the Esperança project for a total of 1,442m
- Multiple downhole pegmatite intersections have been recorded, the thickest downhole intercept is in DHLM010 with 94.62m (true width estimated at ~80m)
- 9 of 14 holes drilled have intersected significant zones of pegmatite, intercepts over 25m downhole include:
 - O Hole DHLM001: Downhole pegmatite intersection of 26.20m from 1.60m
 - Hole DHLM002: Downhole pegmatite intersection of 22.35m from 27.15m
 - Hole DHLM004: Downhole pegmatite intersection of 30.05m from 2.05m
 - Hole DHLM005: Downhole pegmatite intersection of 45.58m from 5.10m
 - o Hole DHLM007: Downhole pegmatite intersection of 19.08m from 5.95m
 - o Hole DHLM008: Downhole pegmatite intersection of 39.90m from 6.88m
 - Hole DHLM009: Downhole pegmatite intersection of 47.69m from 55.75m
 - Hole DHLM010: Downhole pegmatite intersection of 94.62m from 59m
 - Hole DHLM011: Downhole pegmatite intersection of 18.65m from 77.55m
- The drill hole geochemistry in association with follow up reconnaissance mapping will guide the next round of drilling, vectoring towards additional spodumene bearing pegmatites on the Esperança Project
- Reconnaissance mapping and rock sampling vectoring towards spodumene bearing pegmatites on the Caraíbas and Canabrava Projects
- Drilling underway at the Company's Mt Turner project in Queensland targeting gold and siler mineralization along the 14km Drummer Fault

Lightning Minerals Managing Director Alex Biggs said, "Early indictors at Esperança are promising that we are potentially close to a lithium system. Intersecting pegmatites is important as these lithologies are what typically host lithium bearing spodumene. It's also worth noting the significant downhole thickness up to 94m. We know we have spodumene at Esperança based on our discovery in November 2024; we are now trying to vector in on a source and economic concentrations. We look forward to continuing our works and evolving our exploration thesis through geochemical analysis and vectoring of our assays. Vectoring is an important process in determining the state of fractionation and future targeting. Having information at depth as well as surface data increases our chances of locating lithium bearing pegmatites. We are currently completing drilling at our Mt Turner project in Queensland targeting gold and silver mineralisation along the 14km Drummer Fault. As the Company evolves we are excited to be involved in the gold, silver and copper sectors in Australia and with our Brazil focus on lithium this provides some optionality on the future electrification and battery thematic. Partitioning of the Company in this way provides our investors the opportunity to benefit from two of the most relevant thematics in the mining sector today".

Multiple Pegmatite Intersections up to 94m at Esperança Project

The inaugural drill program at the Esperança Project completed 1,442m of diamond drilling, with nine of the fourteen holes intersecting significant zones of pegmatites. A full table of collar locations is available in Appendix 1 - Table 1. Mineralogy consists of a feldspar-quartz-muscovite pegmatite mineral assemblage, hosted within schists of the Salinas Formation. A full table of geological descriptions is available in Appendix 2 - Table 2 and drill hole laboratory assay results available in Appendix 3 - Table 3 showing lithium grades.

8,187,500N

SIRGAS 2000 / UTM zone 23S

SIRGAS 2000 / UTM zone 2000 / UTM zone 20S

SIRGAS 2000 / UTM zone 20S

SI

Figure 1: Plan view of drill locations and identified pegmatite trend at the Esperança project

Figure 2: Cross section of drillholes DHLM001, 002, 007, 008, and 009 at the Esperança project

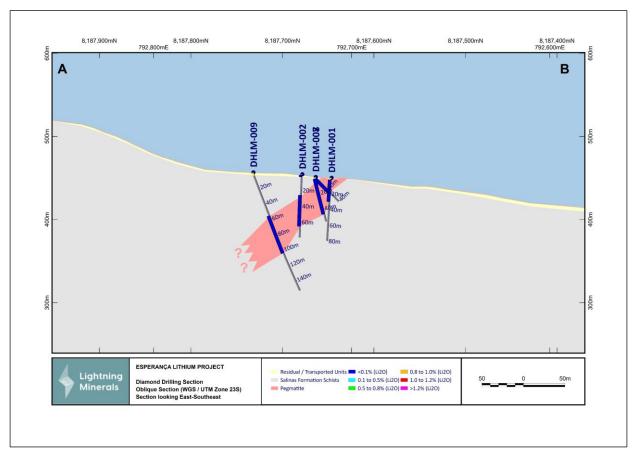
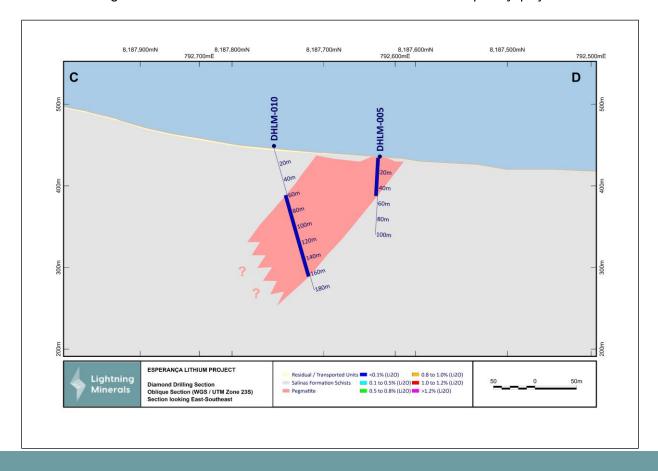



Figure 3: Cross section of drillhole DHLM005 and DHLM010 at the Esperança project

Thesis Development - Esperança Project Thick Pegmatite Intersections Demonstrate Potential

The Company's inaugural drill program at Esperança was developed following the discovery of lithium bearing spodumene in artisanal workings in November 2024 (ASX Announcement 18 November 2024 and ASX Announcement 17 January 2025). Drilling was planned to test for pegmatites along strike from the artisanal workings and to further test the lithium in soil anomalies previously identified across the Esperança project area (ASX Announcement 17 January 2025).

Drilling at Esperança has now been completed, with thirteen of the fourteen drill holes intersecting pegmatites of significant thickness. The pre-drilling interpretation regarding the strike and dip of the outcropping pegmatite has required modification, with changes coming during the drill program. Review of the drilling data now suggests a south-easterly strike (115°) and shallow dip (35°-45°) to the northeast. The drill program was modified to intersect the revised pegmatite interpretation at an approximately perpendicular angle to the strike and dip plane of the pegmatite. The pegmatites intersected are encouraging, with the scale of the downhole pegmatite intercepts considered a positive indicator by the local geology team. Targeting of the mineralised portions remains as an ongoing priority with geochemical analysis now being conducted to identify the correct fractionation point for lithium emplacement.

Orientation of Pegmatites Defined

The drill program has provided essential spatial information on the shape and orientation of the Esperança pegmatite, suggesting the pegmatite has been truncated by a late-stage sinistral strike slip fault located approximately 120m to the east of the spodumene discovery in the artisanal workings hosting occurrences of spodumene minerals. The location is shown in Figure 1.

The Field geology team are focusing their reconnaissance activities to search for repeating structures on the eastern side of the fault where the pegmatite may continue within the Esperança tenement. Focus is also on reconnaissance to the south of the identified pegmatites to identify repeating structures that may be in a more favourable fractionation location.

The scale of the identified pegmatites is considered encouraging however the depth of weathering has been greater than expected, to vertical depths of up to 50m below surface. The drill program has mainly targeted pegmatites in the top 80m from surface, with the exception of drill hole DHLM010 that intercepted pegmatites down to a depth of 140m below surface. This approach has been deliberate to maximise near surface identification of pegmatites and strike extent. With geochemical data now available at depth the potential for deeper drilling is being evaluated as well as identification of pegmatites both to the east and south of the currently drilled area.

Esperança Project Location and Prospectivity Potential

The Esperança project is considered to be of excellent prospectivity given its position proximal to fertile S-type granites within the region. The project has Palaeozoic S-type granites as mapped by the Brazilian Geological Survey to the north, east and west of the project area (Figure 4). Lithium deposits are often associated with these S-type granite batholiths as they are theorised to be the fundamental source for the lithium in hard rock deposits. The granites surrounding the project are documented with 'rich black tourmaline and, more rarely, garnet, pink and green tourmaline and lepidolite', the thesis is that these granites could represent a potential source for primary hydrothermal fluids that have the correct geochemistry for lithium formation.

In global context lithium deposits are usually not found within the granite themselves, but rather at a critical distance of 1 to 12 kilometres away from the source granitic rocks. The Esperança project is located between 3-4 kilometres away from S-type granitoids which is well situated based on this thesis.

790000 795000 800000 8190000 2.8km 8185000 Lightning Minerals **ESPERANÇA PROJECT** Esperança Project Tenement Detrital-lateritic Cover: Detrital-lateritic 3km **Pegmatoid Granites** Salinas Formation - Unit

Figure 4: Esperança project location and proximity to S-Type pegmatites

Next Steps - Exploration to Continue at Esperança

Results from drilling at Esperança are highly encouraging and warrant ongoing exploration. The scale potential that has so far been demonstrated is a crucial component. Further identification of spodumene mineralisation is now a priority as well as vectoring in on what may be considered as ideal fractionation conditions for lithium emplacement. Reconnaissance and ground truthing to achieve these targets is now a key strategic approach for the team.

Ongoing Works in Brazil

In addition to reviewing the drilling data collected across the northwest corner of the Esperança Project, detailed field mapping and rock sampling works are continuing at the Caraíbas and Canabrava projects where peak lithium in soil anomalism has been identified up to 429ppm lithium and 320ppm lithium respectively. The Company aims to identify multiple drill targets that will be ready to drill when the lithium market improves.

500000 460000 Pilbara Minerals - ASX:PLS Colina Deposit (70.9Mt @ 1.25% Li₂O) Pilbara Minerals - ASX:PLS Fogs Block Deposit (6.8Mt @ 0.87% Li₂O) MINAS GERAIS Lightning Minerals - ASX:L1M Caraíbas Project Lightning Minerals REGIONAL GEOLOGY L1M Caraíbas Tenements Lightning Minerals - ASX:L1M
Minerals Canabrava Project L1M Sidrônio Tenements L1M Esperança Tenements Pilbara Minerals Lightning Lightning Minerals - ASX:L1M Sigma Lithium Resources Esperanca Project Rio Tinto Atlas Lithium Corporation Lithium Ionic Inactive Mine as recorded by the CPRM - Geological Service Of Brazil GEOLOGY Ferruginous detrital-lateritic Chapada Acauā Formation Nova Aurora Formation Sigma Lithium - TSX:SGML Ribeirão da Folha Formation Grota Do Cirilo Project (108.9Mt @ 1.41% Li₂O) Salinas Formation Córrego da Chuva Granite N S-type granites, late to 25km Type-I granites, post-collisional **WGS84 UTM 23S**

Figure 5: Esperança, Caraíbas and Canabrava project location, Minas Gerais, Brazil

480000 500000 Pilbara Minerals - ASX:PLS Colina Deposit (63.5Mt @ 1.30% Li₂O) × Pilbara Minerals - ASX:PLS Planalto Prospect Pilbara Minerals - ASX:PLS Fogs Block Deposit (6.8Mt @ 0.87% Li₂O) Pilbara Minerals - ASX:PLS Salinas South Prospect MINAS GERAIS Lightning Minerals REGIONAL GEOLOGY Lightning Lightning Minerals - ASX:L1M Caraíbas Project Minerals 8200000 L1M Caraíbas Tenements L1M Sidrônio Tenements L1M Esperança Tenements Pilbara Minerals Inactive Mine as recorded by the CPRM - Geological Service Of Brazil ★ Mineral Occurrence as recorded by the CPRM - Geological Service Of Brazil CPRM regional structural data GEOLOGY Detrital-lateritic covers Salinas Formation - Unit 1 Lightning Minerals - ASX:L1M Canabrava Project Minerals Salinas Formation - Unit 3 S-type granities N Pegmatoid Granites Lightning Lightning Minerals - ASX:L1M 5km Morro do Frade Granite Minerals Esperança Project Granite - Facies 3 **WGS84 UTM 23S**

Figure 6: Location of Lightning Minerals' lithium projects in the Lithium Valley region of Minas Gerais

Approved for release by the Board of Directors

-END-

More information at www.lightningminerals.com.au

ABOUT LIGHTNING MINERALS

Lightning Minerals is a mineral exploration company, listed on the Australian Securities Exchange (ASX:L1M) and focused on the exploration of critical minerals, lithium, and gold. The acquisition of the Caraíbas, Canabrava and Esperança lithium projects in Minas Gerais, Brazil are potentially transformational to the Company's success in the lithium sector. The Company also owns the Dundas project in the prolific Dundas lithium region of Western Australia, the Dalmas and Hiver lithium projects in Quebec, Canada, another significant and evolving lithium region globally. The Company also owns other projects in Western Australia, Queensland, New South Wales and Victoria which are prospective for gold, base metals and critical minerals.

FORWARD LOOKING STATEMENTS

Information included in this release constitutes forward-looking statements. Often, but not always, forward looking statements can generally be identified by the use of forward-looking words such as "may", "will", "expect", "intend", "plan", "estimate", "anticipate", "continue", and "guidance", or other similar words and may include, without limitation, statements regarding plans, strategies and objectives of management, anticipated production or construction commencement dates and expected costs or production outputs.

Forward looking statements inherently involve known and unknown risks, uncertainties and other factors that may cause the Company's actual results, performance and achievements to differ materially from any future results, performance or achievements. Relevant factors may include, but are not limited to, changes in commodity prices, foreign exchange fluctuations and general economic conditions, increased costs and demand for production inputs, the speculative nature of exploration and project development, including the risks of obtaining necessary licences and permits and diminishing quantities or grades of reserves, political and social risks, changes to the regulatory framework within which the Company operates or may in the future operate, environmental conditions including extreme weather conditions, recruitment and retention of personnel, industrial relations issues and litigation.

Forward looking statements are based on the Company and its management's good faith assumptions relating to the financial, market, regulatory and other relevant environments that will exist and affect the Company's business and operations in the future. The Company does not give any assurance that the assumptions on which forward looking statements are based will prove to be correct, or that the Company's business or operations will not be affected in any material manner by these or other factors not foreseen or foreseeable by the Company or management or beyond the Company's control.

Although the Company attempts and has attempted to identify factors that would cause actual actions, events or results to differ materially from those disclosed in forward looking statements, there may be other factors that could cause actual results, performance, achievements or events not to be as anticipated, estimated or intended, and many events are beyond the reasonable control of the Company. Accordingly, readers are cautioned not to place undue reliance on forward looking statements. Forward looking statements in these materials speak only at the date of issue. Subject to any continuing obligations under applicable law or any relevant stock exchange listing rules, in providing this information the Company does not undertake any obligation to publicly update or revise any of the forward-looking statements or to advise of any change in events, conditions or circumstances on which any such statement is based.

COMPETENT PERSONS STATEMENT

The information contained herein that relates to exploration results is based on information compiled or reviewed by Mr Matthew Watson, who is a Competent Person and a member of the Australasian Institute of Mining and Metallurgy. Mr Watson is a full-time employee of the Company. Mr Watson has sufficient experience which is relevant to the style of mineralisation and types of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Persons as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Watson consents to the inclusion of his name in the matters based on the information in the form and context in which it appears. Mr Watson holds options in Lightning Minerals.

REFERENCES TO PREVIOUS ANNOUNCEMENTS

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements, and that all material assumptions and technical parameters have not materially changed. The Company also confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

Appendix 1: Brazilian Projects - JORC Code 2012 Table 1 Criteria

The Table below summarises the assessment and reporting criteria used for exploration results for the Exploration Projects and reflects the guidelines in Table 1 of The Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves (The JORC 2012 Code).

Section 1 - Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may	 Data in this document relates to results and preliminary logging of diamond drill core, all diamond drill core is NQ (48mm diameter). No drill core has been sampled to date. Diamond core samples intervals are logged for lithology, structural and geotechnical information, measured, photographed, and placed into numbered trays prior to sampling. Core is to be processed on nominal ~2m intervals (1.80– 2.20m) where possible unless geological boundaries dictate otherwise. Geological boundaries are crossed by sample intervals. ½ core samples are to be split by core saw, collected, and submitted for analysis to SGS Laboratories along with regular duplicates, standards and blanks in line with QAQC procedures. The same side of the core is always sampled in line with company procedure. Collar site locations are recorded using a Garmin Map 62s handheld device and are reported in projection SIRGAS 2000 / UTM 23S
Drilling techniques	warrant disclosure of detailed information. Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 All holes are NQ diamond drill holes. A Gyro based system has been used for both rig alignment and downhole measurements on all holes.
Dill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	 All core is depth marked and oriented to check against drillers measurements (blocks), ensuring that all core loss is considered. Diamond core recovery is recorded into the database. No significant core loss has been observed to date.
Logging		 Logging of diamond core records lithology, mineralogy, mineralisation, structures (core only), weathering, colour and other noticeable features. Core was photographed in both dry and wet form.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	 Soil Samples are collected in the field into small kraft cardboard bags and are 200gm per unit. Rock chip samples are approximately 1-3kg and are collected into pre numbered calico bags.

, link	For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	 Industry standard QAQC practices and the appropriate use of laboratory provided Certified Reference Material for low level lithium are used for all laboratory sample submissions. Standards, blanks and crushed core split duplicates are utilised by the company at a rate of 1:30 samples for each control type. Diamond core was drilled with NQ size and sampled as complete half core to produce a bulk sample for analysis. Intervals selected varied from 1.06 – 2.71m (minimum-maximum) The core is cut in half length ways just to the right of the orientation line where available using a diamond core saw. All samples are collected from the same side of the core where practicable. Assay preparation procedures ensure the entire sample is first crushed to >75% mass passing 3mm screen sizing, with a 250g split taken and pulverised to 75 microns, from which a sub-sample is taken for analysis. This removes the potential for the significant sub-sampling bias that can be introduced at this stage.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	 No Assay data is reported within this announcement Samples are to be submitted to SGS Geosol Laboratórios Ltd' of Belo Horizonte Minas Gerais Brazil. Analysis procedures are considered appropriate for Lithium and Multi element analysis. Samples are prepared and analysed using SGS technique PRP70J and are analysed via multi spectral and optical emission spectroscopy analysis using code ICM90A. Determination by Fusion with Sodium Peroxide - ICP OES / ICP MS. Elements analysed at ppm limits for rock chip samples included Ag, Al,As, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Ho, In, K, La, Li, Lu, Mg, Mn, Mo, Nb, Nd, Ni, P, Pb, Pr, Rb, Sb, Sc, Sm, Sn, Sr, Ta, Tb, Th, Ti, Tl, Tm, U, V, W, Y, Yb, Zn, Zr.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	 Significant intersections are verified by the company in country geological staff. No twinned holes have yet been completed. Primary data is collected onto a company field laptop and includes geology, sampling and QAQC data. Data is then transferred to company databases managed by an external contractor in Perth Western Australia. No assay data has been reported; no assay adjustments have been made.
tocation of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	 Handheld Garmin GPS instruments were used to geo locate each sample location, these instruments are understood to be accurate within a ±5m in the horizontal and vertical planes. A Gyro based system has been used for both rig alignment and downhole measurements on all holes, hole deviation is minimal and within acceptable tolerances. The level of topographic control offered by a handheld GPS is considered sufficient for early exploration diamond drilling. Collars will be picked up using differential GPS upon the discretion of the field geology team. All samples were collected in the SIRGAS 2000 / UTM zone 23S, WGS84 / UTM Zone 23S
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	 At this early stage of exploration holes are orientated as best possible to intersect targeted pegmatites. A 2m downhole sample spacing is considered appropriate for the reporting of the exploration diamond drilling assay results. No Mineral Resource or Ore Reserve Estimates have been completed. No sample compositing has been applied.

Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 The orientation of drill design and sampling data is targeted as best possible at this early stage of exploration activities. At present, no mineralised structures have been identified.
Sample security	The measures taken to ensure sample security.	• The chain of custody for sampling procedures and sample analysis was managed by the in country geological staff during collection and core processing.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews of sampling techniques have been conducted to date.

Section 2 - Reporting of Exploration Results

Crit eria Crit	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 The Esperança Project is located approximately 18km south-south east of the town of Salinas, Minas Gerais, Brazil. The Esperança Project area totals ~16.7km² and comprises two granted exploration licences 830440/2015 and 830439/2015 The Tenements are considered in good standing at the time of this report.
parties	rAcknowledgment and appraisal of exploration by other parties.	 The Esperança Project is at a very early stage and little to no recorded work has been completed by prior explorers. Recent exploration has included a small reconnaissance exploration program by project vendor Bengal Mining.
Geology O	Deposit type, geological setting and style of mineralisation.	 No known mineral deposits occur within project tenure. The Esperança Project geology comprises Neoproterozoic age sedimentary rocks of Araçuaí Orogen intruded by pegmatites interpreted to originate from the fractionation of magmatic fluids from the peraluminous S-type post tectonic granitoids of Araçuaí Orogen. The target commodity is hardrock lithium spodumene within lithium-caesium-tantalum pegmatites.
Orill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: oeasting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar elevel in metres) of the length and interception depth, elevel in formation of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Appendices 1 to 3 below contain all relevant drill hole data.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such	to the results. Plan images have been generated using OGIS software

Relationship between mineralisation widths and intercept lengths	aggregation should be stated and some typical examples of such aggregations should be shown in detail. These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	 At this early stage of exploration no true widths of pegmatites are known. All reporting in the body of text above adequately describes intercepts as 'downhole lengths' and not true width. No mineralisation is being reported.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate reporting of results has been included in the body of this announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	• Comprehensive reporting of all assay results is provided for Li, Cs, Ta, Sn, and Nb.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All meaningful data and relevant information have been included in the body of the report.
Further work	The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 Further works will consist of: Detailed reconnaissance mapping will initially focus on the area immediately to the south of the recent drilling program on the Esperança tenement, looking for additional pegmatite outcrops surrounding the previously reported spodumene occurrence. Continued outcrop sampling will be completed to inform pegmatite fractionation maps for spodumene vectoring. Acquisition of aerial LiDAR data will be reviewed as a tool to identifying pegmatite outcrops through the vegetation cover.

Appendix 1 - Table 1: Drill Collar Positions

Hol	le ID	Project	Easting (WGS84 / UTM Z23S)	Northing (WGS84 / UTM Z23S)	RL	Azi (°)	Dip (°)	Depth (m)
DHLI	M-001	Esperança	792728	8187638	450	307	-71	80.00
DHL	M-002	Esperança	792747	8187668	454	301	-73	79.62
DHLI	M-003	Esperança	792772	8187617	444	302	-61	122.59
DHLI	M-004	Esperança	792669	8187661	446	120	-74	79.77
DHL	M-005	Esperança	792612	8187637	436	306	-73	100.36
DHL	M-006	Esperança	792779	8187693	458	309	-73	64.81
DHL	M-007	Esperança	792715	8187665	451	206	-45	40.45
DHLI	M-008	Esperança	792715	8187665	451	243	-73	55.90
DHLI	DHLM-009 Esperança		792751	8187731	457	205	-69	153.05
DHLI	M-010	Esperança	792654	8187758	446	205	-74	180.40
DHLI	M-011	Esperança	792514	8187865	457	202	-67	157.89
DHLI	M-012	Esperança	792283	8187830	470	208	-84	103.74
DHLI	M-013	Esperança	792245	8187834	475	24	-46	58.43
DHLI	M-014	Esperança	792435	8187889	464	204	-74	164.96

Appendix 2 - Table 2: Visual Geology estimates of Mineral species within pegmatites. Intervals are down hole lengths. Refer to Cautionary Statement - Visual Estimate on page 1

nly	Hole ID	Pegmatite From Downhole m)	Pegmatite To (Downhole m)	Major Minerals (>30%)	Secondary Minerals (<30%, >5%)	Minor Minerals <5%	Comments
use c	DHLM001	1.60	27.80	Feldspar, Muscovite	Quartz	Tourmaline, Green mica	Moderately weathered pegmatite with high occurrence of fractures alongside the body. Composed by K-feldspar (microcline), muscovite, quartz, with associated schorl and an 8cm green mica interval (from 20,10m to 20,18). Microcline may show graphic texture in some intervals.
For personal	DHLM002	27.15	49.50	Feldspar, Quartz	Muscovite	Tourmaline	Weakly to moderately weathered pegmatite, composed by K-feldspar (microcline), albite, quartz, muscovite (in pockets and disseminated) and schorl. Graphic texture on microcline is still present throughout pegmatite interval. Minor intervals may have finer texture, similar to a fine grained granite.
	DHLM004	2.05	32.10	Feldspar, Quartz	Muscovite	Green Muscovite, Tourmaline	Very weathered pegmatite with very fractured passages. From 10m it becomes moderately weathered. K-feldspar, quartz, muscovite, green muscovite and black tourmaline can be seen.
	DHLM005	5.10	50.68	Feldspar, Muscovite	Quartz	Tourmaline	Weathered pegmatite, Quartz core with green muscovite @ ~ 17.6m, garnet, schorl, green mica disseminated throughout. Radial micas at 46-48m
	DHLM007 5.95 25.03		25.03	Feldspar, Quartz	Muscovite	Tourmaline, Green Muscovite Spodumene (Trace)	Extremely weathered pegmatite, saprolitic with fracture infill of fine tourmaline and opaque oxides. Green muscovite present ~11m, Kaolinised pseudomorph crystal @ 21.15m (Spo?), suspect 2cm spodumene @ 22.75m moderately weathered.

	DHLM008	6.88	46.78	Feldspar, Quartz	Muscovite	Tourmaline	Weathered pegmatite, Quartz core with disseminated muscovite, minor tourmaline.
nlv	DHLM009	55.75	103.44	Feldspar	Quartz	Muscovite, Tourmaline, Garnet	Pegmatite, variable grainsize from coarse to medium.
ise or	DHLM010	59.00	153.62	Feldspar	Muscovite	Biotite, Garnet, Tourmaline	Pegmatite, variable grainsize from coarse to medium.
nal u	DHLM011	77.55	96.2	Feldspar	Muscovite	Biotite, Garnet, Tourmaline	Pegmatite, coarse grainsize.
Dersol	DHL014	75.06	101.80	Feldspar	Quartz	Tourmaline	Pegmatite, coarse grainsize.

Appendix 3 - Table 3: Drill hole laboratory assay results

Hole ID	Depth From (m)	Depth To (m)	Interval Length (m)	Li₂O (%)	Li (ppm)	Cs (ppm)	Ta (ppm)	Sn (ppm)	Nb (ppm)
DHLM-001	2.93	4.93	2.00	0.02	73.00	6.10	5.00	6.00	20.00
DHLM-001	4.93	6.93	2.00	0.01	68.00	5.80	5.00	9.00	23.00
DHLM-001	6.93	8.93	2.00	0.01	53.00	9.30	5.00	5.00	11.00
DHLM-001	8.93	10.93	2.00	0.01	47.00	9.90	5.00	9.00	18.00
DHLM-001	10.93	12.93	2.00	0.01	47.00	10.70	5.00	11.00	22.00
DHLM-001	12.93	14.93	2.00	0.01	30.00	43.80	5.00	10.00	16.00
DHLM-001	14.93	16.93	2.00	0.00	5.00	381.60	5.00	19.00	5.00
DHLM-001	16.93	18.93	2.00	0.01	56.00	20.00	5.00	6.00	12.00
DHLM-001	18.93	20.93	2.00	0.01	52.00	29.00	5.00	8.00	5.00
DHLM-001	20.93	22.93	2.00	0.00	11.00	10.50	5.00	2.50	5.00
DHLM-001	22.93	24.93	2.00	0.01	48.00	10.40	5.00	8.00	15.00
DHLM-001	24.93	26.93	2.00	0.00	16.00	8.70	5.00	6.00	12.00
DHLM-001	26.93	28.93	2.00	0.01	29.00	8.40	5.00	12.00	27.00
1 DHLM-001	28.93	30.35	1.42	0.02	98.00	12.20	5.00	11.00	41.00
DHLM-002	1.27	3.35	2.08	0.00	16.00	12.50	5.00	6.00	5.00
DHLM-002	26.57	28.57	2.00	0.01	65.00	10.40	5.00	7.00	13.00
DHLM-002	28.57	30.57	2.00	0.01	62.00	10.10	5.00	6.00	15.00
DHLM-002	30.57	32.57	2.00	0.01	67.00	7.70	5.00	2.50	12.00
DHLM-002	32.57	34.57	2.00	0.01	30.00	8.60	5.00	2.50	12.00
DHLM-002	34.57	36.57	2.00	0.01	57.00	5.90	5.00	2.50	15.00
DHLM-002	36.57	38.57	2.00	0.01	24.00	3.70	5.00	2.50	15.00
DHLM-002	38.57	40.57	2.00	0.00	5.00	11.00	10.00	8.00	29.00
DHLM-002	40.57	42.57	2.00	0.00	17.00	6.60	17.00	11.00	31.00
DHLM-002	42.57	44.57	2.00	0.00	13.00	5.70	5.00	5.00	13.00

	Hole ID	Depth From (m)	Depth To (m)	Interval Length (m)	Li ₂ O (%)	Li (ppm)	Cs (ppm)	Ta (ppm)	Sn (ppm)	Nb (ppm)
	DHLM-002	44.57	46.57	2.00	0.01	48.00	4.70	5.00	6.00	17.00
	DHLM-002	46.57	48.57	2.00	0.01	59.00	9.20	5.00	7.00	16.00
	DHLM-002	48.57	50.57	2.00	0.02	76.00	11.40	5.00	7.00	13.00
	DHLM-002	50.57	52.57	2.00	0.02	107.00	8.50	5.00	2.50	11.00
	DHLM-002	52.57	54.57	2.00	0.02	75.00	5.10	5.00	5.00	17.00
0	DHLM-002	54.57	56.57	2.00	0.00	5.00	7.10	11.00	6.00	42.00
a	DHLM-002	56.57	58.57	2.00	0.00	20.00	2.10	5.00	2.50	5.00
S	DHLM-002	58.57	60.57	2.00	0.00	16.00	7.80	5.00	13.00	20.00
5	DHLM-002	60.57	63.06	2.49	0.02	87.00	4.80	5.00	2.50	14.00
	DHLM-002	63.06	65.56	2.50	0.02	72.00	3.60	5.00	5.00	15.00
Q	DHLM-004	2.05	4	1.95	0.02	116.00	3.70	5.00	2.50	14.00
	DHLM-004	4	6	2.00	0.01	55.00	7.40	5.00	2.50	5.00
O	DHLM-004	6	8	2.00	0.02	72.00	6.90	5.00	6.00	15.00
S	DHLM-004	8	10	2.00	0.02	104.00	5.30	5.00	2.50	5.00
7	DHLM-004	10	12	2.00	0.02	106.00	4.40	5.00	2.50	14.00
7	DHLM-004	12	14	2.00	0.03	118.00	10.50	5.00	5.00	5.00
	DHLM-004	14	16	2.00	0.03	118.00	4.10	5.00	2.50	15.00
\preceq	DHLM-004	16	18	2.00	0.03	124.00	4.40	5.00	6.00	21.00
	DHLM-004	18	20	2.00	0.01	68.00	8.50	5.00	2.50	12.00
	DHLM-004	20	22	2.00	0.02	97.00	16.20	5.00	5.00	10.00
	DHLM-004	22	24	2.00	0.01	64.00	12.00	5.00	2.50	11.00
	DHLM-004	24	26	2.00	0.01	67.00	8.80	5.00	8.00	11.00
	DHLM-004	26	28	2.00	0.02	74.00	4.60	5.00	2.50	10.00
	DHLM-004	28	30	2.00	0.02	70.00	6.40	5.00	10.00	13.00
	DHLM-004	30	32.13	2.13	0.01	56.00	8.60	5.00	7.00	14.00

	Hole ID	Depth From (m)	Depth To (m)	Interval Length (m)	Li ₂ O (%)	Li (ppm)	Cs (ppm)	Ta (ppm)	Sn (ppm)	Nb (ppm)
	DHLM-005	2.2	4	1.80	0.01	59.00	15.40	5.00	2.50	5.00
	DHLM-005	4	6	2.00	0.01	66.00	17.90	5.00	5.00	5.00
	DHLM-005	6	8	2.00	0.02	89.00	4.30	5.00	2.50	5.00
	DHLM-005	8	10	2.00	0.02	81.00	4.90	5.00	2.50	13.00
	DHLM-005	10	12	2.00	0.01	56.00	11.40	5.00	9.00	5.00
0	DHLM-005	12	14	2.00	0.02	78.00	4.50	5.00	2.50	11.00
a	DHLM-005	14	16	2.00	0.02	81.00	3.30	5.00	2.50	10.00
S	DHLM-005	16	18	2.00	0.01	60.00	8.40	5.00	2.50	5.00
5	DHLM-005	18	20	2.00	0.01	60.00	11.50	5.00	2.50	5.00
	DHLM-005	20	22	2.00	0.01	68.00	3.20	5.00	2.50	12.00
d	DHLM-005	22	24	2.00	0.01	43.00	9.10	5.00	12.00	15.00
	DHLM-005	24	26	2.00	0.01	50.00	6.30	5.00	2.50	5.00
0	DHLM-005	26	28	2.00	0.02	82.00	6.80	5.00	2.50	5.00
S	DHLM-005	28	30	2.00	0.02	88.00	3.80	5.00	2.50	11.00
7	DHLM-005	30	32	2.00	0.02	102.00	3.70	5.00	2.50	14.00
\mathcal{T}	DHLM-005	32	34	2.00	0.03	117.00	3.80	5.00	5.00	18.00
	DHLM-005	34	36	2.00	0.01	58.00	0.90	5.00	2.50	5.00
\exists	DHLM-005	36	38	2.00	0.01	32.00	23.90	10.00	2.50	33.00
	DHLM-005	38	40	2.00	0.01	53.00	151.30	19.00	38.00	18.00
	DHLM-005	40	42	2.00	0.01	44.00	8.40	5.00	2.50	5.00
	DHLM-005	42	44	2.00	0.02	93.00	4.70	5.00	2.50	10.00
	DHLM-005	44	46	2.00	0.02	83.00	5.00	5.00	2.50	12.00
	DHLM-005	46	48	2.00	0.02	76.00	5.70	5.00	2.50	13.00
	DHLM-005	48	49.33	1.33	0.01	52.00	10.20	5.00	11.00	14.00
	DHLM-005	49.33	50.67	1.34	0.01	25.00	4.10	5.00	2.50	5.00

	Hole ID	Depth From (m)	Depth To (m)	Interval Length (m)	Li ₂ O (%)	Li (ppm)	Cs (ppm)	Ta (ppm)	Sn (ppm)	Nb (ppm)
	DHLM-006	41.07	42.13	1.06	0.00	11.00	11.30	5.00	35.00	42.00
	DHLM-007	1.45	3	1.55	0.01	62.00	7.70	5.00	7.00	20.00
	DHLM-007	3	5	2.00	0.01	26.00	11.00	12.00	6.00	24.00
	DHLM-007	5	7	2.00	0.01	33.00	5.50	5.00	5.00	14.00
	DHLM-007	7	9	2.00	0.01	40.00	4.50	5.00	2.50	14.00
0	DHLM-007	9	11	2.00	0.01	44.00	10.00	5.00	6.00	13.00
<u>(1)</u>	DHLM-007	11	13	2.00	0.01	39.00	9.60	5.00	8.00	11.00
S	DHLM-007	13	15	2.00	0.01	48.00	28.70	5.00	6.00	12.00
5	DHLM-007	15	17	2.00	0.02	72.00	4.00	5.00	2.50	5.00
\Box	DHLM-007	17	19	2.00	0.02	70.00	4.30	5.00	2.50	10.00
Q	DHLM-007	19	21	2.00	0.01	56.00	4.00	5.00	2.50	10.00
	DHLM-007	21	23	2.00	0.01	35.00	7.00	18.00	9.00	68.00
0	DHLM-007	23	25.04	2.04	0.01	37.00	8.60	5.00	11.00	17.00
S	DHLM-008	2.1	4	1.90	0.01	49.00	7.60	5.00	11.00	23.00
7	DHLM-008	4	6	2.00	0.01	32.00	5.80	5.00	2.50	13.00
K	DHLM-008	6	8	2.00	0.01	37.00	9.10	5.00	9.00	22.00
	DHLM-008	8	10	2.00	0.01	44.00	7.30	5.00	5.00	15.00
\forall	DHLM-008	10	12	2.00	0.01	45.00	6.30	5.00	2.50	13.00
7	DHLM-008	12	14	2.00	0.01	41.00	3.10	5.00	2.50	12.00
_	DHLM-008	14	16	2.00	0.01	30.00	9.80	5.00	2.50	5.00
	DHLM-008	16	18	2.00	0.01	55.00	4.20	5.00	5.00	14.00
	DHLM-008	18	20	2.00	0.01	65.00	5.70	5.00	6.00	13.00
F	DHLM-008	20	22	2.00	0.02	93.00	3.50	5.00	2.50	5.00
F	DHLM-008	22	24	2.00	0.02	86.00	4.80	5.00	2.50	5.00
	DHLM-008	24	26	2.00	0.02	81.00	9.90	5.00	2.50	16.00

	Hole ID	Depth From (m)	Depth To (m)	Interval Length (m)	Li ₂ O (%)	Li (ppm)	Cs (ppm)	Ta (ppm)	Sn (ppm)	Nb (ppm)
-	DHLM-008	26	28	2.00	0.02	73.00	29.20	5.00	10.00	13.00
	DHLM-008	28	30	2.00	0.01	62.00	17.70	5.00	2.50	5.00
	DHLM-008	30	32	2.00	0.02	76.00	5.00	5.00	2.50	5.00
	DHLM-008	32	34	2.00	0.02	85.00	10.60	5.00	6.00	5.00
	DHLM-008	34	36	2.00	0.02	93.00	7.90	5.00	8.00	19.00
0	DHLM-008	36	38	2.00	0.02	71.00	4.70	5.00	2.50	5.00
<u>(1)</u>	DHLM-008	38	40	2.00	0.01	62.00	13.00	5.00	2.50	5.00
S	DHLM-008	40	42	2.00	0.01	49.00	12.50	5.00	12.00	17.00
5	DHLM-008	42	44	2.00	0.01	46.00	13.60	5.00	11.00	13.00
\Box	DHLM-008	44	46.46	2.46	0.01	47.00	9.10	5.00	11.00	18.00
d	DHLM-009	55.55	58	2.45	0.01	50.00	7.40	5.00	2.50	11.00
₫	DHLM-009	58	60	2.00	0.01	53.00	10.30	5.00	2.50	5.00
0	DHLM-009	60	62	2.00	0.02	83.00	3.90	5.00	2.50	15.00
S	DHLM-009	62	64	2.00	0.01	64.00	11.70	5.00	6.00	14.00
컶	DHLM-009	64	66	2.00	0.02	110.00	20.00	5.00	10.00	21.00
X	DHLM-009	66	68	2.00	0.01	41.00	10.50	5.00	7.00	14.00
	DHLM-009	68	70	2.00	0.01	55.00	6.50	5.00	6.00	14.00
\supset	DHLM-009	70	72	2.00	0.02	91.00	4.80	5.00	7.00	21.00
\mathcal{T}	DHLM-009	72	74	2.00	0.01	61.00	4.40	5.00	2.50	16.00
	DHLM-009	74	76	2.00	0.02	83.00	3.50	5.00	2.50	18.00
	DHLM-009	76	78	2.00	0.02	84.00	4.60	5.00	2.50	16.00
ļ	DHLM-009	78	80	2.00	0.03	124.00	4.70	5.00	7.00	21.00
	DHLM-009	80	82	2.00	0.02	72.00	6.30	5.00	2.50	5.00
ļ	DHLM-009	82	84	2.00	0.02	77.00	6.70	5.00	2.50	5.00
	DHLM-009	84	86	2.00	0.01	45.00	3.90	5.00	2.50	5.00

	Hole ID	Depth From (m)	Depth To (m)	Interval Length (m)	Li ₂ O (%)	Li (ppm)	Cs (ppm)	Ta (ppm)	Sn (ppm)	Nb (ppm)
	DHLM-009	86	88	2.00	0.01	33.00	4.50	5.00	2.50	5.00
	DHLM-009	88	90	2.00	0.02	75.00	5.10	5.00	2.50	14.00
	DHLM-009	90	92	2.00	0.01	64.00	8.30	5.00	2.50	5.00
	DHLM-009	92	94	2.00	0.02	88.00	3.30	5.00	6.00	16.00
	DHLM-009	94	96	2.00	0.02	107.00	3.90	5.00	2.50	22.00
0	DHLM-009	96	98	2.00	0.02	102.00	4.30	5.00	6.00	23.00
a	DHLM-009	98	100	2.00	0.02	77.00	6.00	5.00	2.50	17.00
S	DHLM-009	100	102	2.00	0.02	71.00	3.80	5.00	5.00	23.00
\neg	DHLM-009	102	103.48	1.48	0.01	47.00	6.40	5.00	6.00	11.00
	DHLM-010	59	61	2.00	0.01	59.00	4.20	5.00	8.00	22.00
d	DHLM-010	61	63	2.00	0.01	69.00	14.60	15.00	5.00	29.00
	DHLM-010	63	65	2.00	0.02	115.00	8.40	5.00	6.00	19.00
0	DHLM-010	65	67	2.00	0.02	110.00	20.20	18.00	11.00	23.00
S	DHLM-010	67	69	2.00	0.02	112.00	15.60	5.00	6.00	15.00
7	DHLM-010	69	71	2.00	0.02	115.00	4.20	5.00	6.00	17.00
\mathcal{T}	DHLM-010	71	73	2.00	0.03	142.00	38.80	5.00	14.00	27.00
	DHLM-010	73	75	2.00	0.02	108.00	8.10	5.00	2.50	5.00
	DHLM-010	75	77	2.00	0.03	128.00	8.70	5.00	2.50	11.00
\mathcal{T}	DHLM-010	77	79	2.00	0.02	95.00	4.00	5.00	2.50	5.00
_	DHLM-010	79	81	2.00	0.03	134.00	3.30	5.00	2.50	13.00
	DHLM-010	81	83	2.00	0.03	143.00	7.70	5.00	6.00	11.00
	DHLM-010	83	85	2.00	0.03	139.00	3.80	5.00	2.50	16.00
f	DHLM-010	85	87	2.00	0.02	91.00	6.00	5.00	2.50	13.00
f	DHLM-010	87	89	2.00	0.02	104.00	4.50	5.00	2.50	13.00
	DHLM-010	89	91	2.00	0.03	126.00	5.90	5.00	2.50	14.00

	Hole ID	Depth From (m)	Depth To (m)	Interval Length (m)	Li ₂ O (%)	Li (ppm)	Cs (ppm)	Ta (ppm)	Sn (ppm)	Nb (ppm)
-	DHLM-010	91	93	2.00	0.03	152.00	8.20	5.00	7.00	19.00
	DHLM-010	93	95	2.00	0.02	97.00	7.80	5.00	6.00	20.00
	DHLM-010	95	97	2.00	0.03	142.00	5.30	5.00	6.00	19.00
	DHLM-010	97	99	2.00	0.02	105.00	3.80	5.00	2.50	14.00
	DHLM-010	99	101	2.00	0.02	102.00	16.40	5.00	8.00	13.00
0	DHLM-010	101	103	2.00	0.03	132.00	7.50	5.00	2.50	5.00
<u>(D</u>	DHLM-010	103	105	2.00	0.03	123.00	5.00	5.00	2.50	16.00
S	DHLM-010	105	107	2.00	0.02	100.00	7.00	5.00	2.50	12.00
5	DHLM-010	107	109	2.00	0.02	110.00	6.60	5.00	2.50	13.00
\Box	DHLM-010	109	111	2.00	0.02	103.00	6.50	5.00	2.50	13.00
d	DHLM-010	111	113	2.00	0.02	104.00	4.10	5.00	2.50	16.00
₫	DHLM-010	113	115	2.00	0.03	123.00	3.80	5.00	2.50	17.00
0	DHLM-010	115	117	2.00	0.02	78.00	3.40	5.00	2.50	5.00
S	DHLM-010	117	119	2.00	0.01	60.00	7.00	5.00	2.50	5.00
컶	DHLM-010	119	121	2.00	0.02	101.00	3.70	5.00	2.50	10.00
X	DHLM-010	121	123	2.00	0.01	49.00	8.60	5.00	14.00	19.00
7	DHLM-010	123	125	2.00	0.01	42.00	22.30	5.00	9.00	5.00
X	DHLM-010	125	127	2.00	0.02	107.00	4.70	5.00	2.50	14.00
\mathcal{A}	DHLM-010	127	129	2.00	0.03	118.00	4.80	5.00	2.50	14.00
_	DHLM-010	129	131	2.00	0.02	102.00	6.20	5.00	2.50	10.00
Ī	DHLM-010	131	133	2.00	0.03	146.00	4.70	5.00	7.00	23.00
	DHLM-010	133	135	2.00	0.02	100.00	5.90	5.00	2.50	14.00
ļ	DHLM-010	135	137	2.00	0.02	86.00	3.20	5.00	2.50	15.00
F	DHLM-010	137	139	2.00	0.03	118.00	3.40	5.00	2.50	19.00
	DHLM-010	139	141	2.00	0.02	110.00	4.70	5.00	2.50	16.00

	Hole ID	Depth From (m)	Depth To (m)	Interval Length (m)	Li ₂ O (%)	Li (ppm)	Cs (ppm)	Ta (ppm)	Sn (ppm)	Nb (ppm)
	DHLM-010	141	143	2.00	0.02	92.00	5.80	5.00	2.50	17.00
	DHLM-010	143	145	2.00	0.02	94.00	9.70	101.00	2.50	131.00
	DHLM-010	145	147	2.00	0.02	84.00	3.70	5.00	2.50	14.00
	DHLM-010	147	149	2.00	0.02	86.00	5.90	5.00	2.50	15.00
	DHLM-010	149	151	2.00	0.02	86.00	4.40	5.00	5.00	19.00
0	DHLM-010	151	153	2.00	0.01	51.00	6.70	5.00	2.50	5.00
<u>(1)</u>	DHLM-010	153	155	2.00	0.05	214.00	16.40	5.00	8.00	21.00
S	DHLM-010	155	157	2.00	0.01	63.00	7.60	5.00	2.50	12.00
$\overline{}$	DHLM-010	157	159	2.00	0.01	56.00	5.90	5.00	2.50	11.00
_	DHLM-010	159	161	2.00	0.01	32.00	9.60	5.00	2.50	5.00
ർ	DHLM-010	161	162.27	1.27	0.01	43.00	3.90	5.00	7.00	15.00
	DHLM-011	77.54	80	2.46	0.01	64.00	40.80	18.00	15.00	43.00
0	DHLM-011	80	82	2.00	0.02	75.00	16.00	12.00	14.00	37.00
S	DHLM-011	82	84	2.00	0.02	89.00	13.00	5.00	10.00	23.00
$\frac{1}{2}$	DHLM-011	84	86	2.00	0.02	105.00	9.60	12.00	9.00	32.00
Ξ	DHLM-011	86	88	2.00	0.03	137.00	10.90	5.00	5.00	17.00
	DHLM-011	88	90	2.00	0.03	157.00	18.00	5.00	8.00	20.00
\supset	DHLM-011	90	92	2.00	0.02	112.00	12.30	12.00	9.00	33.00
Y	DHLM-011	92	94	2.00	0.02	79.00	9.80	5.00	2.50	5.00
_	DHLM-011	94	95.75	1.75	0.01	58.00	6.70	5.00	8.00	20.00
İ	DHLM-013	6.12	7.85	1.73	0.01	30.00	11.80	5.00	2.50	24.00
İ	DHLM-013	21.47	22.68	1.21	0.00	15.00	10.60	11.00	6.00	29.00
f	DHLM-014	49.57	51.82	2.25	0.01	24.00	14.10	5.00	7.00	17.00
	DHLM-014	75.06	77	1.94	0.01	36.00	7.00	5.00	6.00	17.00
	DHLM-014	77	79	2.00	0.01	35.00	21.00	5.00	10.00	24.00

	Hole ID	Depth From (m)	Depth To (m)	Interval Length (m)	Li ₂ O (%)	Li (ppm)	Cs (ppm)	Ta (ppm)	Sn (ppm)	Nb (ppm)
	DHLM-014	79	81	2.00	0.01	35.00	7.10	5.00	6.00	13.00
	DHLM-014	81	83	2.00	0.02	70.00	8.40	5.00	2.50	5.00
	DHLM-014	83	85	2.00	0.01	26.00	6.70	5.00	6.00	13.00
	DHLM-014	85	87	2.00	0.02	70.00	11.70	5.00	9.00	24.00
	DHLM-014	87	89	2.00	0.01	28.00	5.70	5.00	5.00	14.00
0	DHLM-014	89	91	2.00	0.01	34.00	8.40	5.00	10.00	20.00
<u>(1)</u>	DHLM-014	91	93	2.00	0.01	40.00	8.10	5.00	10.00	30.00
S	DHLM-014	93	95	2.00	0.01	35.00	11.30	5.00	7.00	20.00
3	DHLM-014	95	97	2.00	0.01	50.00	9.90	5.00	6.00	16.00
	DHLM-014	97	99	2.00	0.01	52.00	5.30	5.00	6.00	20.00
Q	DHLM-014	99	100.4	1.40	0.01	32.00	18.30	5.00	8.00	20.00
	DHLM-014	100.4	101.8	1.40	0.01	43.00	8.80	11.00	8.00	32.00
0	DHLM-014	103.26	104.82	1.56	0.00	15.00	15.50	5.00	7.00	24.00
(1)	DHLM-014	113.97	116.68	2.71	0.01	27.00	12.10	5.00	10.00	25.00
<u>1</u>	DHLM-014	126.96	129	2.04	0.01	62.00	9.10	5.00	2.50	11.00
X	DHLM-014	129	131	2.00	0.00	19.00	4.50	5.00	2.50	12.00
	DHLM-014	131	133	2.00	0.00	13.00	11.00	5.00	2.50	5.00
X	DHLM-014	133	135	2.00	0.01	31.00	6.10	11.00	6.00	31.00
7	DHLM-014	135	137	2.00	0.01	31.00	5.80	5.00	6.00	39.00
_	DHLM-014	137	139	2.00	0.00	19.00	13.30	5.00	9.00	34.00
	DHLM-014	139	141	2.00	0.03	153.00	19.60	5.00	11.00	24.00
	DHLM-014	141	142.6	1.60	0.01	52.00	10.40	5.00	10.00	15.00
	DHLM-014	142.6	144.2	1.60	0.01	31.00	6.20	5.00	10.00	17.00