

22 August 2025

Independence Project Update

Potential for extensions to MRE across entire Independence Project, Nevada.

Highlights:

- Extension potential to existing 419.6koz AuEq¹ near-surface Mineral Resource Estimate (MRE) across multiple areas, including North Hill, Rebel Trend and below the pit-constrained MRE
- 520m strike length at South Hill remains to be tested for stacked mineralised lodes below MRE
- Oxidation categorisation for all drillholes outside the MRE now complete, enabling goldequivalent (AuEq) values to be calculated. Significant drill intercepts include²:

South Hill

o AGEI-28: 39.6m @ 2.1g/t AuEq from 134.1m, incl. 19.8m @ 3.8g/t AuEq

Yukon (Central) Hill

o AGEI-2: 82.3m @ 1.2g/t AuEq from 131.1m to BOH, incl. 7.6m @ 3.9g/t AuEq

o AGEI-8: 109.7m @ 0.5g/t AuEq from 178.3m, incl. 12.2m @ 2.2g/t AuEq

42.7m @ 1.0g/t AuEq from 141.7m, incl. 6.1m @ 2.3g/t AuEq o AGEI-3:

North Hill

o JBRC009: 27.4m @ 1.3g/t AuEq from 125m, incl. 7.6m @ 2.1g/t AuEq o JBRC007: 12.2m @ 1.3g/t AuEq from 158.5m, incl. 1.5m @ 7.4g/t AuEq

Rebel Trend (East of MRE)

 AGEI-65: 19.8m @ 1.0g/t AuEq, incl. 3.1m @ 2.7g/t AuEq

JBRC001: 50.3m @ 0.4g/t AuEq from 4.6m, incl. 6.1m @ 1.0g/t AuEq,

30.5m @ 0.4g/t AuEq from 134.1m, incl. 6.1m @ 1.1g/t AuEq

James Bay Minerals (ASX: JBY) ("James Bay Minerals" or "the Company") is pleased to provide a progress update for the Independence Project ("Project"), located in Lander County, Nevada.

James Bay Executive Director, Matthew Hayes, commented:

"The successful start to the 2025 drilling campaign has continued to show the presence of additional lodes outside the extents of the existing pit-constrained MRE. The Company has now completed oxidation state categorisation for all drillholes and subsequently reviewed drill intercepts across the entire nearsurface mineralisation envelope, highlighting that further shallow drilling below the optimised pit to the south could yield similar extensions to those defined through drilling at North Hill and the Rebel Trend."

Refer to Table 1: JORC Mineral Resource Estimate and the Company's ASX announcement dated 5 March 2025.
 Oxidation state categorisation of historic drill intercepts outside of the MRE (prefixed AGEI, BH, WI and GM) now complete, enabling gold-equivalent (AuEq) values to be calculated from historic gold and silver assay results. Refer to Appendix 2 and JORC Code, 2012 Table 1 and Table 2 for further information regarding all stated drill intercepts

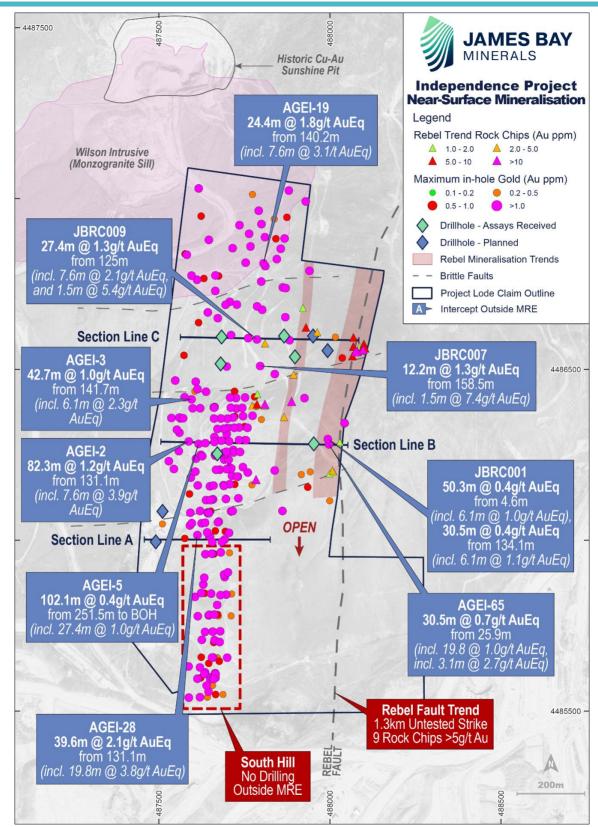


Figure 1: Drill hole assay results outside the near-surface Mineral Resource Estimate. Rebel Peak Rock Chips samples and maximum in-hole Au displayed 34.

³ For previously released rock chip samples refer to the Company's ASX announcement dated 27 November 2024. The Company confirms that it is not aware of any new information or data that materially affects the information contained in the original announcement.

Refer to Appendix 2 and JORC Code, 2012 Table 1 and Table 2 for further information regarding all stated drill intercepts.

Near Surface Mineralisation

Drilling at the Project was historically concentrated in the south, with later exploration by Americas Gold Exploration targeting mineralisation north of the Wilson Mine (South Hill). Recent drilling by the Company has confirmed mineralisation spans the full strike length of the Property, including the previously untested North Hill and Rebel Trend, and identified stacked mineralised lodes below the MRE (Figure 1).

Oxidation state categorisation of historic drill intercepts outside of the MRE is now complete, enabling gold-equivalent (AuEq) values to be calculated from gold and silver assay results⁵.

South Hill Mineralisation

or personal use o

Drilling in the southern third of the property was completed to set depths, resulting in a significant portion of drillholes ending in mineralisation (Figure 2). Crucially, the MRE in the south is limited by drillhole depths and remains open down dip and at depth. No drilling has been completed targeting additional stacked lodes, as has been observed across the rest of the Project area.

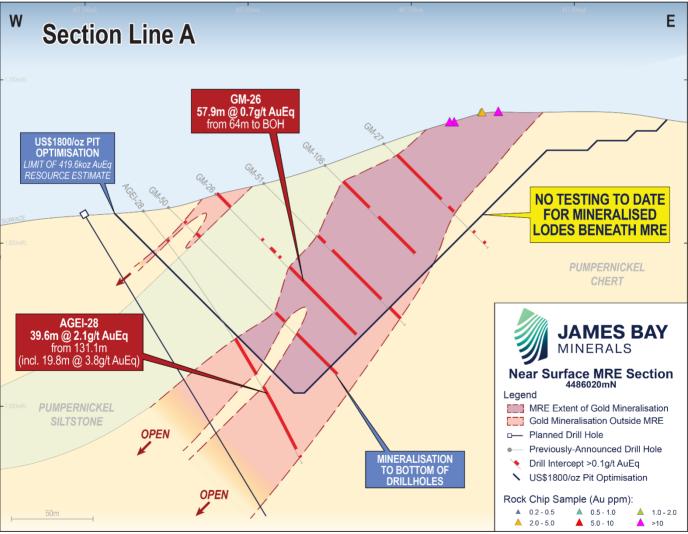


Figure 2: Cross section through the near-surface mineralisation at South Hill, displaying assay results outside the MRE. Note, no drilling has been conducted below the pit-constrained MRE⁶.

⁵ Gold Equivalent is based on a Gold Price of US\$2,412.50/oz and Silver Price of US\$28.40/oz, and metal recoveries for both gold and silver. The recovery of gold is stated as 79% in the oxide, 50% in transitional and 22% in fresh (Au Recovery). Silver averages 27% across all material. Resultantly, the AuEq calculation is = g Au/t + (g Ag/t *(28.4 x 0.27) /(2,412.5 x Au Recovery).

⁶ Refer to Appendix 2 and JORC Code, 2012 Table 1 and Table 2 for further information regarding all stated drill intercepts.

Essentially no drilling below the MRE has been conducted southwards from the intercept in AGEI-28 targeting stacked mineralisation, resulting in 520m of strike at South Hill as a high priority target for the Company to test for additional mineralised lodes beneath the pit optimisation, outside of the current MRE.

Notable drill intercepts at South Hill outside of the MRE include⁷:

AGEI-28: **39.6m @ 2.1g/t AuEg** (0.8g/t Au, 92g/t Ag) from 131.1m, including:

19.8m @ 3.8g/t AuEq (1.4g/t Au, 166g/t Ag)

BH-5C **22.1m @ 1.0g/t AuEq** (0.4g/t Au, 17g/t Ag) from 117.8m

WI-001: 15.2m @ 1.0g/t Au (gold-only analysis) from 202.7m

Yukon Hill and Rebel Trend Mineralisation

2025 Drilling has delineated multiple stacked mineralised lodes along the Rebel Trend that dip westwards ·below the extents of the optimised pit and MRE at Yukon Hill in the centre of the Project area (Figure 3). For personal use on

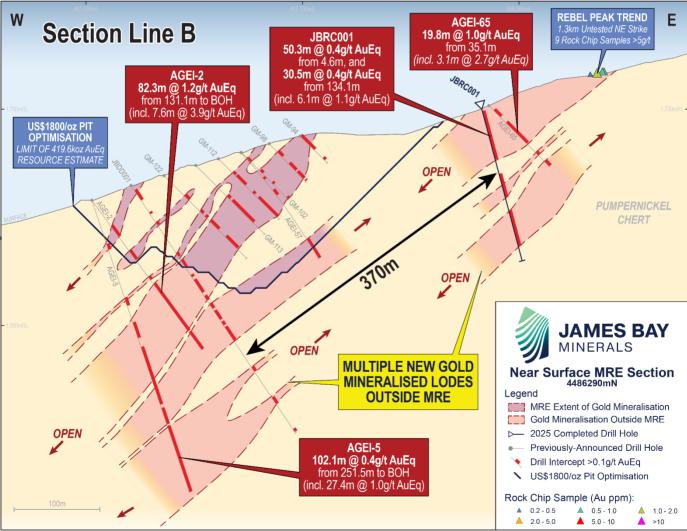


Figure 3: Cross section through the near-surface mineralisation at Yukon Hill, displaying assay results outside the MRE⁷.

Refer to Appendix 2 and JORC Code, 2012 Table 1 and Table 2 for further information regarding all stated drill intercepts.

Significant results outside of the MRE at Yukon Hill include8:

AGEI-2: **82.3m @ 1.2g/t AuEq** (1.1g/t Au, 18g/t Ag) from 131.1m to BOH, including:

7.6m @ 3.9g/t AuEq (3.5g/t Au, 76g/t Ag)

AGEI-8 **109.7m** @ **0.5g/t AuEq** (0.4g/t Au, 3g/t Ag) from 178.3m, including:

12.2m @ 2.2g/t AuEq (2.1g/t Au, 7g/t Ag)

AGEI-5: **102.1m** @ **0.4g/t AuEg** (0.3g/t Au, 9g/t Ag) from 251.5 to BOH, including:

27.4m @ 1.0g/t AuEq (0.8g/t Au, 19g/t Ag)

42.7m @ **1.0g/t AuEq** (0.9g/t Au, 10g/t Ag) from 141.7m, including:

58m @ 0.8g/t AuEq (0.7g/t Au, 6g/t Ag) from 152.4m, including:

30.5m @ 0.7g/t AuEq (0.7g/t Au, 5g/t Ag) from 25.9m, including:

19.8m @ 1.0g/t AuEq (0.9g/t Au, 5g/t Ag), including:

50.3m @ 0.4g/t AuEq (0.4g/t Au, 6g/t Ag) from 4.6m, including:

30.5m @ 0.4g/t AuEq (0.3g/t Au, 5g/t Ag) from 134.1m, including:

Recent drilling by the Company has shown that mineralisation is present at North Hill, with multiple drillholes intercepting numerous stacked mineralised lodes, including intervals that are higher gold grades than the existing near-surface mineral resource (Figure 4).

Notable intercepts outside of the MRE at North Hill include⁸:

JBRC009: **27.4m @ 1.3g/t AuEq** (1.0g/t Au, 73g/t Ag) from 125m, including:

> **7.6m @ 2.1g/t AuEq** (1.3g/t Au, 205g/t Ag), and **1.5m @ 5.4g/t AuEq** (5.3g/t Au, 29g/t Ag)

JBRC007: **12.2m @ 1.3g/t AuEq** (1.2g/t Au, 30g/t Ag) from 158.5m, including:

1.5m @ 7.4g/t AuEq (6.7g/t Au, 167g/t Ag)

⁸ Refer to Appendix 2 and JORC Code, 2012 Table 1 and Table 2 for further information regarding all stated drill intercepts

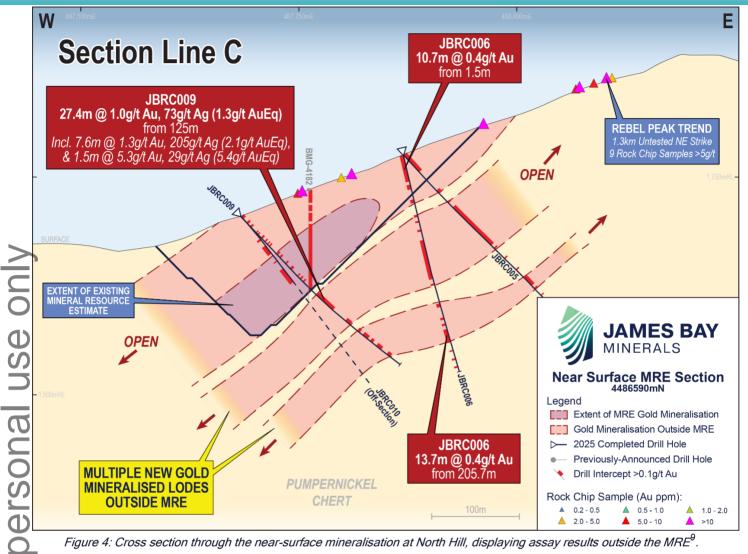


Figure 4: Cross section through the near-surface mineralisation at North Hill, displaying assay results outside the MRE9.

Next Steps

Based on the successful delineation of significant stacked mineralised lodes below the existing Mineral Resource Estimate across the northern half of the Project, the Company believes there is potential for additional stacked lodes to exist in the southern portion of the Project, which is deficient of drilling below the existing MRE.

Drilling is planned in the south of the Project to test for mineralised lodes below the MRE, analogous to those intercepted in the northern half of the Project.

Observations from drilling show that the highest-grade intercepts are present where major faults and intrusions dissect chert-hosted epithermal mineralisation, marking Rebel Peak as a priority target for highgrade from-surface mineralisation.

With the completion of oxidation categorisation of drillhole intercepts, the Company can continue to model mineralisation, with a view to incorporate the additional stacked lodes located outside the MRE into a future resource update and unlock the potential of the Independence Project.

⁹ Refer to Appendix 2 and JORC Code, 2012 Table 1 and Table 2 for further information regarding all stated drill intercepts.

Nevada Epithermal Mineralisation

Heap-leach is a widely utilised method across Nevada's epithermal deposits, including at Nevada Gold Mine's Phoenix Mine Complex located directly adjacent to the Independence Project, and the nearby SSR-operated Marigold Complex that was operating between 0.13 – 0.36 g/t Au in 2024 (Figure 5 and Figure 6).

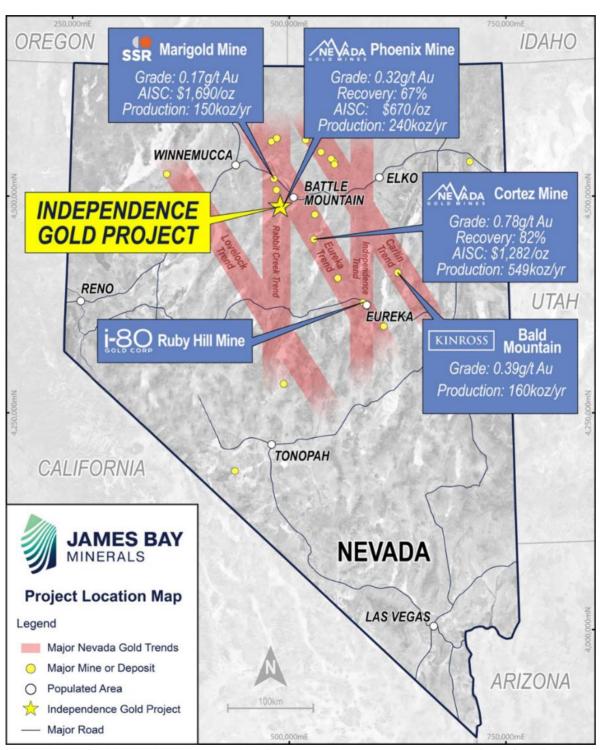


Figure 5: Independence Gold Project in relation to major infrastructure, mining operations and significant Gold Trends in Nevada.

Background on James Bay Minerals

Independence Gold Project - Nevada.

Project Overview

The Independence Project consists of 80 unpatented mining claims and 84 unpatented mill sites, situated in Lander County, Nevada, and spans approximately 1,861 acres of Bureau of Land Management (BLM) administered lands. It is adjacent to the Nevada Gold Mine's Phoenix Project and about 16km south of Battle Mountain. In addition, the Project encompasses Section 17, 470 acres of private fee surface land in the Battle Mountain Mining District where the company holds the exclusive water rights and where it will locate any future production water wells.

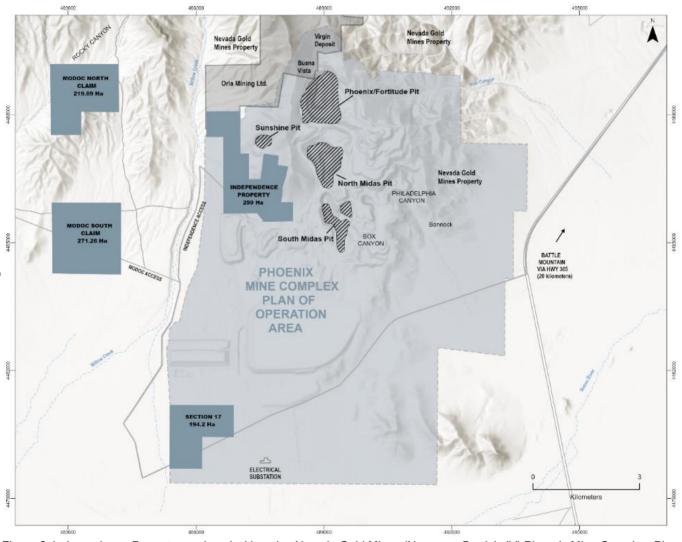


Figure 6: Independence Property overlayed with active Nevada Gold Mines (Newmont-Barrick JV) Phoenix Mine Complex, Plan of Operations.

Nevada - Tier 1 Jurisdiction

Nevada is widely regarded as one of the premier mining jurisdictions in the world, known for its rich mineral resources and supportive regulatory environment. Nevada consistently ranks within the top Fraser Institute best mining jurisdictions. Key features include:

- 1. Rich Mineral Deposits: Nevada is a leading producer of gold and silver, with numerous active mines and significant exploration potential.
- 2. **Stable Regulatory Framework**: The state offers a predictable and transparent regulatory process, which fosters investor confidence and encourages mining activities.
- 3. Infrastructure: Well-developed infrastructure, including roads, power, and water supply, supports
- 4. Skilled Workforce: A robust labour market with experienced professionals in the mining sector
- 5. Proximity to Markets: Its location in the western United States provides easy access to major
- 6. **Pro-mining Policies**: State policies generally favour mining development, with efforts to streamline

>			e : Well-develope tions and logistics		including roads,	power, and wate	er supply, supports								
only	4.		xforce : A robust erational efficienc		vith experienced	professionals in	the mining sector								
Ф	5.	•	Markets: Its lo		stern United Stat	es provides eas	sy access to major								
NS	6.	_	Policies : State po d reduce bureauc	•	avour mining dev	elopment, with e	efforts to streamline								
	These factors collectively make Nevada a highly attractive destination for mining investment and														
	exploration.														
	exploration.														
0															
	The P	roiect contain	s a JORC 2012	Mineral Resourc	e as outlined be	low:									
<u>a</u>															
0	Table 1	: JORC Mineral R	esource Estimate10												
		Description	Tonnes	Gold (Au) g/t	Gold (Au) g/t Equivalent	Gold (Au) Oz	Gold (Au) Equivalent Oz								
				Skarn – Miner	al Resource										
.0	Inferred 4,592,370 6.67 - 984,412 - Near-Surface - Mineral Resource														
		Indicated	23,176,458	Near-Surface – M	0.43	294,395	321,584								
		Inferred	8,716,172	0.40	0.45	90,702	98.015								
			-, -,			, -	/								

References to metal equivalents is a function of metal prices, the Gold Equivalent is based on a Gold Price of US\$2,412.50/oz and Silver Price of US\$28.40/oz, and metal recoveries for both gold and silver. The recovery of gold is stated as 79% in the oxide, 50% in transitional and 22% in fresh (Au Recovery). Silver averages 27% across all material. Resultantly, the AuEq calculation is = g Au/t + (g Ag/t *(28.4 x 0.27) /(2,412.5 x Au Recovery). The Company believes that all metals included in the metal equivalent calculation have a reasonable potential to be recovered and sold.

¹⁰ Refer to ASX Announcement dated 5 March 2025.

Quebec Lithium Assets

James Bay has 100% interest in one of the largest lithium exploration portfolios in the James Bay region, covering an area of 41,572Ha (416km²). The Joule, Aero, Aqua and La Grande East Properties are located in the La Grande sub-province along-trend from the Shaakichiuwaanaan deposit, where Patriot Battery Metals (ASX: PMT) reported an updated Indicated and Inferred Mineral Resource Estimate¹¹ and completed a Preliminary Economic Assessment outlining the potential for a competitive and globally significant high-grade lithium project targeting production of up to ~800ktpa spodumene concentrate¹².

This announcement is authorised for release by the Board of Directors of James Bay Minerals Ltd.

ENDS

For more information:

Investors:

Matthew Hayes

Executive Director

James Bay Minerals

info@jamesbayminerals.com.au

Media:

Nicholas Read Read Corporate Phone: (08) 9388 1474

E: nicholas@readcorporate.com.au

Forward-looking statements

This announcement may contain certain forward-looking statements, guidance, forecasts, estimates or projections in relation to future matters (Forward Statements) that involve risks and uncertainties, and which are provided as a general guide only. Forward Statements can generally be identified by the use of forward-looking words such as "potential", "anticipate", "estimate", "will", "should", "could", "may", "expects", "plans", "forecast", "target" or similar expressions and include, but are not limited to, indications of, or guidance or outlook on, future earnings or financial position or performance of the Company. The Company can give no assurance that these expectations will prove to be correct. You are cautioned not to place undue reliance on any forward-looking statements. None of the Company, its directors, employees, agents or advisers represent or warrant that such Forward Statements will be achieved or prove to be correct or gives any warranty, express or implied, as to the accuracy, completeness, likelihood of achievement or reasonableness of any Forward Statement contained in this announcement. Actual results may differ materially from those anticipated in these forward-looking statements due to many important factors, risks and uncertainties. The Company does not undertake any obligation to release publicly any revisions to any "forward-looking statement" to reflect events or circumstances after the date of this announcement, except as may be required under applicable laws.

Competent Person Statement

The Exploration Results reported in this announcement are based on, and fairly represent, information and supporting documentation reviewed, and approved by Mr Brodie Box, MAIG. Mr Box is a consultant geologist at Cadre Geology and Mining and has adequate professional experience with the exploration and geology of the style of mineralisation and types of deposits under consideration to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Box consents to the form and context in which the Exploration Results are presented in this announcement.

The information in this announcement that relates to previously reported Mineral Resource Estimates is extracted from the Company's ASX announcement dated5 March 2025 (**Original Announcement**). The Company confirms that it is not aware of any new information or data that materially affects the information contained in the Original Announcement and the Company confirms that all material assumptions and technical parameters underpinning the Mineral Resource estimates continue to apply and have not materially changed.

¹¹ See PMT ASX Announcement dated 6 August 2024

¹² See PMT ASX Announcement dated 22 August 2024

Appendix 1 Collar table

	Hole ID	Hole Type	Total Depth (m)		Collar Details (N	IAD83 UTM Zone 11			Status
	noie iD	поте туре	Total Deptil (III)	Easting	Northing	RL	Azimuth	Dip	Status
	JBRC001	RC	182.9	487954	4486292.8	1752	90	-75	Drilled
	JBRC002	RC	176.8	487951	4486298	1752	60	-45	Drilled
	JBRC003	RC	178.3	487671	4486253	1693	77	-69	Drilled
	JBRC004	RC	251.5	487897	4486522	1768	90	-45	Drilled
	JBRC005	RC	259.1	487869	4486585	1775	90	-45	Drilled
	JBRC006	RC	257.6	487869	4486585	1775	90	-75	Drilled
_ [JBRC007	RC	254.5	487684	4486508	1696	90	-45	Drilled
D	JBRC008	RC	210.3	487684	4486509	1696	90	-75	Drilled
	JBRC009	RC	251.5	487683	4486584	1705	90	-45	Drilled
"	JBRC010	RC	260.0	487685	4486586	1705	60	-45	Drilled
D	JBPR001	RC	160	487993	4486550	1815	90	-45	Planned
	JBPR002	RC	150	487944	4486590	1801	90	-45	Planned
	JBPR013	RC	180	487550	4485870	1606	130	-45	Planned
\mathcal{L}	JBPR014	RC	220	487536	4486019	1619	120	-45	Planned
	JBPR015	RC	250	487495	4486000	1612	120	-45	Planned
_[JBPR017	RC	250	487520	4486080	1627	90	-70	Planned

Appendix 2 Significant Drill Hole Intercepts (≥0.3g/t Au)

Note that all intercepts are outside the MRE except those marked with an asterisk (*) which are drillholes within the MRE included on Section Lines A-C.

		·			083 UTM Zoi		,,				daca on Geolion En		rcept Deta	ails			
	Hole ID	Hole Type	Total Depth (m)	Easting	Northing	RL (m)	Azimuth	Dip	Location	Depth From (m)	Depth To (m)	Interval (m)	Au (ppm)	Ag (ppm)	AuEq (ppm)	Gram- Metres	Oxidation Class
	AGEI-1									36.6	67.1	30.5	0.4	3	0.4	11.1	Oxide
	and	RC	189.0	487509	4486358	1649	92	-54	Yukon Hill	74.7	77.7	3.0	0.5	2	0.5	1.5	Transition
0	and	KC .	189.0	487303	4480338	1049	92	-24	TUKOTTTIII	93.0	102.1	9.2	0.7	5	0.7	6.3	Oxide
4)	and									147.8	189.0	41.2	0.4	5	0.4	17.5	Transition
Se	AGEI-2									109.7	213.4	103.6	0.9	15	1.0	103.3	Transition
3	including	RC	213.4	487507	4486289	1645	90	-54	Yukon Hill	131.1	213.4	82.3	1.1	18	1.2	96.7	Transition
	including									193.6	201.2	7.6	3.5	76	3.9	30.0	Transition
	AGEI-3									32.0	91.4	59.4	0.3	4	0.3	19.2	Oxide
13	and	RC	201.2	487520	4486414	1650	88	-56	Yukon Hill	121.9	190.5	68.6	0.6	7	0.7	45.4	Transition
	including	KC .	201.2	46/320	4400414	1030	00	-30	TUKOH HIII	141.7	184.4	42.7	0.9	10	1.0	40.7	Transition
0	and									193.6	201.2	7.6	0.3	5	0.3	2.5	Transition
rs S	AGEI-4									131.1	140.2	9.2	0.4	2	0.4	3.4	Transition
G I	and	RC	213.4	487506	4486231	1640	89	-54	Yukon Hill	152.4	210.3	57.9	0.7	6	0.8	45.9	Transition
)	including									160.0	175.3	15.2	1.9	13	2.1	31.4	Transition
	AGEI-5									118.9	121.9	3.1	0.3	3	0.4	1.1	Transition
	and									125.0	126.5	1.5	0.5	1	0.5	0.7	Transition
0	and	RC	353.6	487507	4486287	1645	88	-72	Yukon Hill	164.6	166.1	1.5	0.4	4	0.4	0.6	Transition
Щ	and	KC .	333.0	46/30/	4400207	1045	00	-72	TUKOH HIII	184.4	239.3	54.9	0.3	7	0.3	17.0	Transition
	and									251.5	353.6	102.1	0.3	9	0.4	44.2	Fresh
	including									326.1	353.6	27.4	0.8	19	1.0	28.6	Transition
	AGEI-6	RC	317.0	487506	4486289	1645	87	-47	Yukon Hill	123.4	170.7	47.3	0.4	7	0.4	19.7	Transition
	and	NC .	317.0	40/300	4400209	1043	0/	-4/	TUKUH HIII	297.2	317.0	19.8	0.8	4	0.8	16.8	Transition
	AGEI-7	RC	317.0	487506	4486290	1645	119	-71	Yukon Hill	59.4	65.5	6.1	0.3	8	0.3	1.9	Oxide
	and	NC.	317.0	40/300	4400230	1043	115	-/1	TUKUH HIII	163.1	208.8	45.7	0.3	5	0.3	15.9	Transition

			Collar D	etails (NAD	083 UTM Zor	ne 11)						Inte	rcept Deta	ails			
	Hole ID	Hole Type	Total Depth (m)	Easting	Northing	RL (m)	Azimuth	Dip	Location	Depth From (m)	Depth To (m)	Interval (m)	Au (ppm)	Ag (ppm)	AuEq (ppm)	Gram- Metres	Oxidation Class
	and									210.3	292.6	82.3	0.3	5	0.4	29.3	Fresh
	and									300.2	317.0	16.8	0.2	7	0.3	5.1	Transition
	AGEI-8									15.2	22.9	7.6	0.3	5	0.3	2.6	Oxide
	and	RC	292.6	487508	4486359	1649	89	-72	Yukon Hill	59.4	74.7	15.2	0.3	4	0.3	4.8	Oxide
	and	, KC	292.0	487308	4480333	1043	83	-72	TUKOTITIII	178.3	288.0	109.7	0.4	3	0.5	51.9	Transition
(1)	including									179.8	192.0	12.2	2.1	7	2.2	26.9	Transition
S	AGEI-9	RC	182.9	487509	4486358	1649	92	-46	Yukon Hill	125.0	175.3	50.3	0.3	2	0.3	15.5	Transition
\supset	AGEI-10	RC	225.6	487510	4486360	1650	130	-46	Yukon Hill	93.0	106.7	13.7	0.7	2	0.7	9.5	Transition
_	and	RC .	223.0	46/310	4480300	1030	130	-40	TUKOH HIII	144.8	211.8	67.1	0.5	5	0.5	33.1	Transition
B	AGEI-11									126.5	128.0	1.5	0.5	9	0.5	0.8	Transition
	and	RC	262.1	487505	4486231	1640	89	-45	Yukon Hill	140.2	181.4	41.2	0.2	5	0.3	12.4	Transition
	and	RC RC	262.1	467303	4480231	1040	89	-45	YUKON HIII	187.5	189.0	1.5	0.3	2	0.3	0.5	Transition
S	and									222.5	225.6	3.1	0.2	7	0.3	1.0	Fresh
	AGEI-12	RC	231.7	487505	4486229	1640	118	-45	Yukon Hill	134.1	185.9	51.8	0.5	19	0.6	30.8	Transition
D	AGEI-13									21.3	24.4	3.0	0.4	5	0.4	1.3	Oxide
0	and	RC	141.7	487518	4486419	1650	90	-60	Yukon Hill	48.8	56.4	7.6	0.3	3	0.3	2.3	Oxide
	and									103.6	137.2	33.5	0.3	5	0.4	12.7	Oxide
	AGEI-14	RC	213.4	487541	4486465	1653	91	-58	Yukon Hill	129.5	184.4	54.9	0.3	3	0.3	16.9	Transition
	AGEI-15	RC	210.3	487576	4486437	1660	81	-64	Yukon Hill	73.2	163.1	89.9	0.3	3	0.3	27.6	Transition
_	and	, KC	210.5	40/3/0	4460437	1000	01	-04	TUKOH HIII	204.2	210.3	6.1	0.3	31	0.5	3.2	Transition
	AGEI-18									103.6	126.5	22.9	0.3	5	0.3	7.5	Oxide
	and									176.8	181.4	4.6	0.4	9	0.4	2.0	Transition
	and	RC	309.4	487802	4486810	1719	135	-59	Sunshine	208.8	217.9	9.1	0.3	5	0.3	2.8	Oxide
	and									228.6	248.4	19.8	0.3	6	0.3	6.6	Transition
	and									285.0	292.6	7.6	0.3	3	0.4	2.8	Transition

			Collar D	etails (NAI	D83 UTM Zoi	ne 11)						Inte	rcept Deta	ails			
	Hole ID	Hole Type	Total Depth (m)	Easting	Northing	RL (m)	Azimuth	Dip	Location	Depth From (m)	Depth To (m)	Interval (m)	Au (ppm)	Ag (ppm)	AuEq (ppm)	Gram- Metres	Oxidation Class
_	and									300.2	309.4	9.1	0.6	6	0.7	6.1	Transition
	AGEI-19									140.2	164.6	24.4	1.7	11	1.8	42.8	Transition
	and	RC	320.0	487803	4486811	1719	94	-89	Sunshine	184.4	185.9	1.5	0.4	4	0.4	0.6	Transition
	and	NC .	320.0	407003	4400011	1713	34	-03	Sulisilile	199.6	210.3	10.7	0.3	6	0.4	3.8	Transition
	and									254.5	320.0	65.5	0.3	7	0.3	20.0	Transition
(1)	AGEI-20	RC	196.6	487825	4486875	1715	123	-53	Sunshine	120.4	128.0	7.6	0.4	5	0.4	3.2	Transition
S	and	ill.	130.0	407023	4400073	1713	123	33	Sunsimic	169.2	185.9	16.8	0.3	3	0.4	6.2	Transition
	AGEI-21	RC	135.6	487729	4486820	1703	106	-54	Sunshine	106.7	118.9	12.2	0.3	7	0.3	4.2	Transition
	AGEI-23	RC	214.9	487752	4486747	1706	143	-53	Sunshine	135.6	141.7	6.1	0.3	4	0.4	2.2	Oxide
Ø	and	ile.	214.5	407732	4400747	1700	143	33	Sunsimic	195.1	207.3	12.2	1.0	3	1.1	12.9	Transition
	AGEI-24									109.7	155.5	45.7	0.5	5	0.5	23.5	Oxide
	and									163.1	173.7	10.7	0.3	12	0.4	4.2	Transition
S	and	RC	274.3	487797	4486759	1716	104	-46	Sunshine	219.5	227.1	7.6	0.4	3	0.4	2.8	Transition
	and									231.7	233.2	1.5	0.3	6	0.3	0.5	Transition
O	and									246.9	262.1	15.2	0.3	5	0.3	4.9	Fresh
0	AGEI-25	RC	211.8	487627	4486759	1692	125	-49	Sunshine	147.8	163.1	15.2	0.3	6	0.3	4.7	Oxide
	and	il C	211.0	407027	4400733	1032	123	73	Sunsimic	195.1	202.7	7.6	0.4	19	0.5	4.1	Transition
	AGEI-26	RC	242.3	487625	4486434	1669	138	-49	Yukon Hill	201.2	242.3	41.2	0.3	2	0.3	12.4	Transition
H	AGEI-27									164.6	166.1	1.5	0.3	2	0.3	0.5	Transition
	and	RC	233.2	487567	4486051	1624	88	-50	South Hill	208.8	211.8	3.1	0.2	4	0.3	0.9	Fresh
	and	NC .	255.2	407507	4400031	1024	00	-30	30001111111	213.4	214.9	1.5	0.3	4	0.4	0.6	Fresh
	and									221.0	222.5	1.5	0.3	3	0.3	0.5	Transition
	AGEI-28									0.0	3.1	3.1	0.9	53	1.1	3.3	Oxide
	and	RC	182.9	487536	4486019	1619	91	-50	South Hill	100.6	109.7	9.2	0.3	8	0.3	2.8	Oxide
	and									131.1	170.7	39.6	0.8	92	2.1	81.6	Transition

			Collar D	etails (NAD	083 UTM Zor	ne 11)			Cocation Depth From (m) Depth To (m) Interval (m) Au (ppm) Au (ppm) (ppm) (ppm) Metres Oxidation Class								
	Hole ID	Hole Type	Total Depth (m)	Easting	Northing	RL (m)	Azimuth	Dip	Location	The second secon	Depth To (m)						
	including									137.2	157.0	19.8	1.4	166	3.8	75.2	Transition
	AGEI-29	RC	182.9	487528	4486047	1623	91	-48	South Hill	100.6	161.5	61.0	0.5	9	0.5	33.0	Oxide
	and	I.C	102.5	407320	4480047	1023	31	Ť	30001111111	167.6	170.7	3.1	0.3	4	0.4	1.1	Transition
	AGEI-30	RC	182.9	487529	4486078	1627	85	-51	South Hill	77.7	80.8	3.1	0.4	3	0.4	1.2	Oxide
	and	I.C	102.5	467323	4480078	1027	83	-51	30001111111	111.3	173.7	62.5	0.4	7	0.4	27.3	Transition
(AGEI-31	RC	275.8	487628	4486298	1687	86	-56	Yukon Hill	266.7	275.8	9.1	0.5	11	0.6	5.3	Transition
S	AGEI-34	RC	221.0	487726	4486186	1684	80	-61	Yukon Hill	137.2	155.5	18.3	0.3	2	0.3	5.6	Transition
	AGEI-36	RC	192.0	487560	4486203	1650	123	-66	Yukon Hill	146.3	192.0	45.7	0.3	4	0.3	13.9	Transition
	AGEI-38									24.4	25.9	1.5	0.2	30	0.3	0.5	Oxide
a	and									29.0	44.2	15.2	0.3	8	0.3	5.1	Oxide
	and	RC	288.0	487797	4486759	1716	123	-88	Sunchina	53.3	57.9	4.6	0.4	7	0.4	1.8	Transition
	and	, KC	200.0	40//9/	4460733	1710	125	-00	SullStille	99.1	111.3	12.2	1.4	15	1.5	18.6	Transition
S(and									175.3	176.8	1.5	0.5	2	0.5	0.8	Transition
	and									243.8	253.0	9.1	0.4	2	0.4	4.1	Transition
(AGEI-39									129.5	137.2	7.6	0.3	10	0.3	2.4	Transition
0	and	RC	221.0	487806	4486817	1719	83	-61	Sunchino	146.3	149.4	3.0	0.3	3	0.4	1.1	Transition
	and	, KC	221.0	487800	4480817	1719	83	-01	Sulisilile	210.3	216.4	6.1	0.3	5	0.3	1.9	Transition
	and									219.5	221.0	1.5	0.5	4	0.6	0.9	Transition
	AGEI-40	RC	202.7	487848	4486875	1721	64	-62	Sunshine	169.2	172.2	3.1	0.3	5	0.3	1.0	Oxide
_	AGEI-41	RC	184.4	487835	4486935	1724	75	-60	Sunshine	149.4	184.4	35.1	0.2	9	0.3	10.8	Oxide
	AGEI-42	RC	141.7	487715	4486740	1699	164	-61	Sunchina	102.1	132.6	30.5	0.5	2	0.5	14.6	Oxide
	including	, KC	141.7	46//15	4480740	1099	104	-01	Sunsmine	126.5	128.0	1.5	6.7	2	6.7	10.2	Oxide
	AGEI-43	RC	182.9	487641	4486691	1679	93	-43	Sunshine	179.8	181.4	1.5	0.4	2	0.4	0.6	Oxide
	AGEI-44	RC	166.1	487872	4487038	1731	130	-54	Cunchina	59.4	71.6	12.2	0.3	4	0.3	3.7	Oxide
	and	RC.	100.1	40/0/2	446/038	1/31	130	-54	Sunshine	108.2	114.3	6.1	0.3	12	0.4	2.2	Transition

			Collar D	etails (NAI	083 UTM Zoi	ne 11)						Inte	rcept Deta	ails			
	Hole ID	Hole Type	Total Depth (m)	Easting	Northing	RL (m)	Azimuth	Dip	Location	Depth From (m)	Depth To (m)	Interval (m)	Au (ppm)	Ag (ppm)	AuEq (ppm)	Gram- Metres	Oxidation Class
	and									150.9	166.1	15.2	0.4	7	0.5	7.8	Transition
	AGEI-45									173.7	179.8	6.1	0.3	6	0.4	2.3	Transition
	and	RC	289.6	487785	4486684	1729	108	-57	Sunshine	201.2	208.8	7.6	0.3	4	0.3	2.6	Transition
	and									248.4	272.8	24.4	0.3	3	0.3	7.4	Oxide
	AGEI-46									117.4	121.9	4.6	0.2	12	0.3	1.4	Oxide
(and	RC	233.2	487785	4486685	1729	87	-52	Sunshine	213.4	217.9	4.6	0.8	4	0.8	3.6	Fresh
S	and									225.6	230.1	4.6	0.3	3	0.3	1.6	Transition
	AGEI-48									131.1	137.2	6.1	0.3	4	0.3	2.1	Transition
	and	RC	286.5	487827	4486196	1684	54	-51	Yukon Hill	228.6	239.3	10.7	0.3	3	0.4	3.8	Transition
a	and									277.4	278.9	1.5	0.5	2	0.5	0.7	Transition
	AGEI-50	RC	182.9	487720	4486927	1693	87	-50	Sunshine	114.3	163.1	48.8	0.3	10	0.3	15.2	Transition
	AGEI-51									86.9	103.6	16.8	0.3	6	0.3	5.0	Oxide
S(and	RC	213.4	487716	4486956	1694	83	-51	Sunshine	117.4	134.1	16.8	0.3	6	0.3	5.6	Oxide
L	and									150.9	172.2	21.3	0.2	11	0.3	6.5	Transition
(L)	AGEI-53	RC	213.4	487593	4486248	1671	86	-47	Yukon Hill	190.5	201.2	10.7	0.3	7	0.3	3.2	Transition
0	AGEI-55									3.1	4.6	1.5	0.4	2	0.4	0.7	Oxide
	and	RC	213.4	487495	4486004	1612	86	-58	South Hill	111.3	114.3	3.1	0.5	1	0.5	1.5	Transition
	and	, KC	215.4	467493	4400004	1012	80	-36	30utii filli	143.3	144.8	1.5	0.4	6	0.4	0.5	Transition
	and									179.8	189.0	9.2	0.4	25	0.6	5.5	Transition
_	AGEI-56	RC	195.1	487481	4486043	1617	81	-59	South Hill	61.0	62.5	1.5	0.3	13	0.4	0.6	Transition
	and	NC NC	195.1	407401	4400043	1017	81	יטכי	30utii filii	82.3	83.8	1.5	0.0	1	8.6	13.0	Transition
	AGEI-57									15.2	21.3	6.1	0.3	4	0.3	1.9	Oxide
	and	RC	152.4	487678	4486292	1700	89	-45	Yukon Hill	29.0	82.3	53.3	0.3	5	0.3	16.1	Oxide
	and									123.4	152.4	29.0	1.0	8	1.0	29.0	Oxide
	AGEI-58	RC	189.0	487655	4486330	1697	92	-50	Yukon Hill	173.7	189.0	15.2	0.3	1	0.3	4.9	Transition

			Collar D	etails (NAD	083 UTM Zoi	ne 11)						Inte	rcept Deta	ails			
	Hole ID	Hole Type	Total Depth (m)	Easting	Northing	RL (m)	Azimuth	Dip	Location	Depth From (m)	Depth To (m)	Interval (m)	Au (ppm)	Ag (ppm)	AuEq (ppm)	Gram- Metres	Oxidation Class
	AGEI-61	RC	243.2	487617	4486250	1678	89	-55	Yukon Hill	169.2	170.7	1.5	0.3	2	0.3	0.5	Transition
>	AGEI-63	RC	237.7	487679	4486209	1684	90	-55	Yukon Hill	161.5	173.7	12.2	0.4	9	0.5	5.8	Transition
	and	KC	237.7	487073	4480203	1004	90	ין	TUKOTTTIII	214.9	216.4	1.5	0.4	3	0.4	0.6	Fresh
	AGEI-64	RC	205.7	487676	4486256	1695	91	-46	Yukon Hill	172.2	175.3	3.0	0.5	1	0.5	1.6	Transition
	and	INC .	203.7	487070	4480230	1033	31	-40	TUKOTTTIII	187.5	193.6	6.1	0.4	4	0.5	2.8	Transition
(1)	AGEI-65									25.9	56.4	30.5	0.7	5	0.7	21.2	Oxide
S	including	RC	96.0	487965	4486281	1753	91	-45	Rebel Trend	36.6	56.4	19.8	0.9	6	1.0	18.9	Oxide
\supset	including									45.7	48.8	3.1	2.7	4	2.7	8.3	Oxide
_	BH-2C	DDH	164.9	487522	4486082	1627	90	-51	Yukon Hill	117.7	159.4	41.8	0.4	33	0.6	26.1	Transition
Q	BH-3C	DDH	130.0	487588	4486720	1685	30	-50	Sunshine	116.2	130.0	13.8	0.3	3	0.3	4.3	Oxide
7	BH-5C	DDH	152.4	487549	4485866	1606	87	-49	South Hill	117.8	139.9	22.1	0.4	17	1.0	21.6	Oxide
\overline{C}	BMG-4182*	RC	128.0	188078	4489508	1733	0	-90	North Hill	24.4	118.9	94.5	0.4	3	0.4	33.1	Oxide
S	GM-23									7.6	9.1	1.5	0.5	2	0.5	0.8	Oxide
	and									42.7	44.2	1.5	0.9	-1	0.9	1.4	Oxide
O	and									51.8	53.3	1.5	3.9	1	3.9	5.9	Oxide
0	and									82.3	85.3	3.1	1.3	2	1.3	4.2	Oxide
	and	RC	167.6	487502	4485781	1599	90	-45	South Hill	91.4	93.0	1.5	0.4	1	0.4	0.6	Oxide
\overline{C}	and	KC .	107.0	487302	4463761	1333	90	-45	30001111111	102.1	103.6	1.5	1.3	1	1.3	1.9	Oxide
	and									115.8	118.9	3.1	1.8	19	1.9	5.8	Oxide
_	and									132.6	134.1	1.5	0.3	1	0.3	0.5	Oxide
	and									138.7	141.7	3.0	0.3	2	0.3	1.1	Transition
	and									153.9	160.0	6.1	0.4	2	0.4	2.4	Transition
	GM-24	RC	129.5	487650	4486085	1639	90	-45	Yukon Hill	123.4	126.5	3.1	0.5	1	0.5	1.6	Oxide
	GM-26*	RC	121.9	487580	4486023	1630	100	-45	South Hill	64.0	121.9	57.9	0.6	14	0.7	37.9	Oxide
	GM-27*	RC	91.4	487682	4486022	1662	90	-45	South Hill	12.2	50.3	38.1	0.3	13	0.3	11.8	Oxide

			Collar D	etails (NAD	083 UTM Zoi	ne 11)						Inte	rcept Deta	ails			
	Hole ID	Hole Type	Total Depth (m)	Easting	Northing	RL (m)	Azimuth	Dip	Location	Depth From (m)	Depth To (m)	Interval (m)	Au (ppm)	Ag (ppm)	AuEq (ppm)	Gram- Metres	Oxidation Class
	GM-28	RC	121.9	487607	4485892	1623	90	-45	South Hill	118.9	121.9	3.1	2.8	5	2.8	8.5	Oxide
\geq	GM-30	RC	76.2	487673	4485734	1634	90	-45	South Hill	73.2	74.7	1.5	1.1	1	1.1	1.7	Oxide
	GM-41	RC	96.0	487594	4485657	1597	90	-45	South Hill	83.8	89.9	6.1	0.5	21	0.5	3.3	Oxide
	GM-42	RC	121.9	487557	4485658	1594	90	-45	South Hill	93.0	120.4	27.4	0.3	11	0.3	8.4	Oxide
	GM-43	RC	137.2	487551	4485732	1605	90	-45	South Hill	129.5	137.2	7.6	0.7	17	0.8	5.7	Oxide
1)	GM-45	RC	45.7	487674	4485656	1621	90	-45	South Hill	36.6	44.2	7.6	0.4	12	0.5	3.4	Oxide
S	GM-50*	RC	144.8	487552	4486023	1621	90	-45	South Hill	109.7	125.0	15.2	0.4	10	0.4	6.1	Oxide
5	and	KC	144.8	46/332	4480023	1621	90	-45	South Hill	126.5	144.8	18.3	1.7	13	1.8	33.2	Oxide
	GM-51*	D.C.	121.0	407640	4400027	1626	90	45	Carrette Hill	57.9	64.0	6.1	0.3	13	0.3	2.0	Oxide
J	and	RC	121.9	487610	4486027	1636	90	-45	South Hill	76.2	100.6	24.4	0.4	12	0.5	11.4	Oxide
	GM-60	RC	152.4	487643	4486436	1671	90	-45	Yukon Hill	109.7	111.3	1.5	0.6	3	0.6	0.9	Transition
	GM-94*	RC	45.7	487746	4486295	1720	90	-45	South Hill	0.0	22.9	22.9	0.3	11	0.4	8.0	Oxide
S	GM-98*	RC	61.0	487710	4486293	1710	90	-45	South Hill	12.2	61.0	48.8	0.5	11	0.5	24.6	Oxide
	GM-102*	RC	76.2	487679	4486291	1701	90	-45	South Hill	29.0	59.4	30.5	0.3	8	0.3	9.2	Oxide
1)	and	KC	76.2	48/0/9	4480291	1701	90	-45	South Hill	70.1	74.7	4.6	0.3	5	0.3	1.5	Transition
Ŏ	GM-106*	RC	77.7	487647	4486026	1648	90	-45	South Hill	19.8	38.1	18.3	0.2	19	0.3	5.9	Oxide
	and	KC	77.7	46/04/	4480020	1048	90	-45	South Hill	45.7	74.7	29.0	0.3	9	0.3	8.9	Oxide
	GM-112*	RC	99.1	487652	4486289	1693	90	-45	South Hill	22.9	99.1	76.2	0.5	6	0.5	36.8	Oxide
	GM-113*	RC	114.3	487625	4486292	1687	90	-45	South Hill	33.5	103.6	70.1	0.4	3	0.4	30.5	Oxide
	GM-122*	RC	135.6	487589	4486288	1674	90	-45	South Hill	38.1	41.2	3.1	0.4	1	0.4	1.2	Oxide
	and	KC	135.6	487589	4486288	1674	90	-45	South Hill	47.2	126.5	79.3	0.3	5	0.3	25.5	Oxide
	JBDD001									146.0	157.6	11.6	0.5	4	0.6	6.4	Transition
	and	DDH	222.6	407555	4496397	1662	00	-55	Yukon Hill	161.9	173.4	11.6	0.3	2	0.3	3.7	Transition
	and	DDH	333.6	487555	4486287	1002	90	-55	TUKON HIII	187.1	192.9	5.7	0.3	2	0.3	1.9	Transition
	and									204.8	206.7	1.8	0.2	34	0.4	0.7	Transition

			Collar D	etails (NAD	083 UTM Zoi	ne 11)						Inte	rcept Deta	ails			
	Hole ID	Hole Type	Total Depth (m)	Easting	Northing	RL (m)	Azimuth	Dip	Location	Depth From (m)	Depth To (m)	Interval (m)	Au (ppm)	Ag (ppm)	AuEq (ppm)	Gram- Metres	Oxidation Class
	and									259.4	260.9	1.5	0.5	2	0.5	0.7	Transition
	and									300.8	301.8	0.9	0.9	0	0.9	0.8	Fresh
	JBRC001									4.6	54.9	50.3	0.4	6	0.4	19.1	Oxide
	including	RC	182.9	487954	4486293	1752	89	-75	Rebel	45.7	51.8	6.1	1.0	7	1.0	6.0	Oxide
	and	KC .	182.9	487334	4480233	1732	89	-73	Trend	134.1	164.6	30.5	0.3	5	0.4	11.1	Oxide
(including									149.4	155.5	6.1	1.0	9	1.1	6.6	Oxide
S	JBRC002									4.6	48.8	44.2	0.3	6	0.3	14.0	Oxide
	and									82.3	93.0	10.7	0.4	4	0.4	4.4	Oxide
	and	RC	176.8	487956	4486297	1755	61	-45	Rebel	115.8	118.9	3.1	0.3	2	0.3	0.9	Oxide
a	and	KC .	170.8	487930	4480237	1733	01	-45	Trend	140.2	150.9	10.7	0.3	3	0.3	3.6	Oxide
	and									153.9	155.5	1.5	0.4	1	0.4	0.7	Transition
	and									167.6	172.2	4.6	0.3	3	0.4	1.6	Oxide
S(JBRC004									13.7	18.3	4.6	0.3	21	0.4	1.6	Oxide
	and									30.5	32.0	1.5	0.3	1	0.3	0.5	Oxide
(L)	and									54.9	57.9	3.1	0.3	3	0.3	1.0	Transition
0	and	RC	251.5	487897	4486523	1768	88	-45	North Hill	120.4	121.9	1.5	0.4	3	0.4	0.6	Oxide
	and	KC .	231.3	487837	4480323	1708	88	-45	NOTUTTIII	172.2	173.7	1.5	0.3	3	0.3	0.5	Transition
	and									187.5	189.0	1.5	0.4	6	0.5	0.7	Oxide
	and									190.5	204.2	13.7	0.3	4	0.3	4.2	Oxide
	and									217.9	219.5	1.5	0.8	12	0.8	1.2	Oxide
	JBRC005									59.4	61.0	1.5	0.4	1	0.4	0.5	Oxide
	and	RC	259.1	487869	4486585	1775	90	-46	North Hill	99.1	106.7	7.6	0.3	7	0.3	2.3	Transition
	and	NC .	239.1	467609	4400303	1//3	90	-40	NOLULU	149.4	150.9	1.5	0.4	3	0.4	0.6	Oxide
	and									166.1	167.6	1.5	0.3	4	0.3	0.5	Oxide
	JBRC006	RC	257.6	487869	4486585	1775	89	-75	North Hill	1.5	15.2	13.7	0.3	3	0.3	4.7	Oxide

			Collar D	etails (NAD	083 UTM Zor	ne 11)						Inte	rcept Deta	ails			
	Hole ID	Hole Type	Total Depth (m)	Easting	Northing	RL (m)	Azimuth	Dip	Location	Depth From (m)	Depth To (m)	Interval (m)	Au (ppm)	Ag (ppm)	AuEq (ppm)	Gram- Metres	Oxidation Class
	and									51.8	54.9	3.0	1.5	5	1.5	4.7	Oxide
	and									125.0	129.5	4.6	0.2	23	0.3	1.4	Oxide
	and									138.7	144.8	6.1	0.4	2	0.4	2.3	Transition
	and									213.4	221.0	7.6	0.5	2	0.5	4.0	Transition
	JBRC007									158.5	170.7	12.2	1.2	30	1.3	15.8	Transition
(1)	including	RC	253.9	487684	4486509	1696	90	-46	Rebel Trend	160.0	161.5	1.5	6.7	167	7.4	11.3	Transition
S	and									224.0	240.8	16.8	0.2	6	0.3	5.0	Fresh
	JBRC008	RC	210.3	487684	4486509	1696	90	-75	Rebel	120.4	126.5	6.1	0.4	1	0.4	2.6	Transition
	and	RC	210.3	487084	4480303	1090	90	-73	Trend	195.1	199.6	4.6	0.4	2	0.4	1.8	Transition
a	JBRC009									125.0	126.5	1.5	1.3	2	1.3	2.0	Oxide
	and									131.1	158.5	27.4	0.9	74	1.2	33.4	Oxide
	including	RC	251.5	487683	4486584	1705	90	-46	North Hill	132.6	140.2	7.6	1.3	205	1.1	8.3	Oxide
S(including									147.8	149.4	1.5	5.3	29	5.4	8.2	Oxide
	and									216.4	219.5	3.1	0.2	8	0.4	1.1	Fresh
(h	JBRC010									143.3	144.8	1.5	0.3	10	0.3	0.5	Transition
0	and									149.4	155.5	6.1	0.3	3	0.3	1.9	Transition
ſ	and	RC	260.0	487685	4486586	1705	60	-46	North Hill	160.0	163.1	3.0	0.4	2	0.4	1.1	Transition
	and									175.3	176.8	1.5	0.4	2	0.4	0.6	Transition
	and									216.4	217.9	1.5	0.2	71	0.5	0.7	Oxide
_	WI-001	DDH	1030.2	487495	4486004	1612	97	-89	South Hill	202.7	217.9	15.2	1.0	NA	1.0	15.2	Transition
	and	ווטט	1030.2	+0/433	740004	1012	31	-03	Journall	230.1	231.7	1.5	0.4	NA	0.4	0.7	Transition

Note that samples were collected in 5ft intervals and converted to a sample length of 1.52m with the table rounding to one decimal place. Length-weighted Au values are rounded to the nearest one significant figure, length-weighted Ag values are rounded to the nearest whole number. Gram-metres is derived from the following formula: AuEq (ppm) x Interval (m)

"NA" refers to 'Not Analysed'

JORC Code, 2012 - Table 1

Section 1 Sampling Techniques and Data – Independence Gold Project

(Criteria in this section apply to all succeeding sections.)

	Criteria	JORC Code explanation	Commentary
_		CONC CONC OXPINITUON	Commonally
rui peisuliai use ui	Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 James Bay Minerals RC Drilling 2025 (JBRC prefix) 2 – 3kg samples were split from dry 5ft (1.52m) bulk samples that passed through the cyclone and into a metzke cone splitter. Once the full metre was drilled to completion, the drill bit was lifted off the bottom of the hole, creating a gap between samples; ensuring the entirety of the 5ft sample was collected, and over-drilling did not occur. Two even 2 – 3kg duplicate sample splits, from the A- and B-chutes of the splitter, were collected at the same time for each 5ft drilled, with the remaining reject bulk sample being collected in labelled calico bags directly below the cyclone, minimising external contamination. Original sample bags were consistently collected from the A-chute, whilst duplicate sample splits were collected from the B-chute. During the sample collection process, the original and duplicate calico sample splits, and calico bag of bulk reject sample were weighed to test for sample splitting bias and sample recovery. Calicos containing the reject were then placed in neat lines on the ground, with the draw strings tied to avoid contamination. Duplicate B-chute sample bags are retained and stored on site for follow up analysis and test work. All 5ft A-chute samples were sent to the laboratory for analysis. QA samples were inserted at a combined ratio of 1:10 throughout. Field duplicates were collected at a 1:20 ratio from the B-chute of the cone splitter at the same time as the original sample was collected from the A-chute. OREAS certified reference material (CRM) was inserted at a ratio of 1:20 with samples by the

	Criteria	JORC Code explanation	Commentary
onal use only			Company. The grade ranges of the CRMs were selected based on grade populations and economic grade ranges. The reference material type was selected based on the geology, weathering, and analysis method of the sample. • The cyclone was cleaned after each rod, at the base of oxidation, and when deemed necessary by the geologist to minimise contamination of samples. Sample condition was recorded for bias analysis. The cyclone was balanced at the start of each rod and checked after each sample to avoid split bias. • Handheld portable XRF instruments (SciAps) were utilised on site for mineral identification at the geologist's discretion. Prior to use, and at regular intervals throughout each day, the handheld pXRF instrument was calibrated, and a Certified Reference Material (MEG Au.19.10) analysed to ensure the instrument window was not contaminated with dust and the instrument was analysing correctly. Handheld XRF data was used as an aid only, gold, light elements, and most rare-earth elements cannot be analysed with the instrument in use.
TOI DEISC			 PC Drilling 2024 (AGEI prefix) 2 – 3kg samples were split from dry 5ft (1.52m) bulk samples that passed through the cyclone and into a rotary splitter. Once the full metre was drilled to completion, the drill bit was lifted off the bottom of the hole, creating a gap between samples; ensuring the entirety of the 5ft sample was collected, and over-drilling did not occur. Two even 2 – 3kg duplicate sample splits, from the A- and B-chutes of the splitter, were collected at the same time for each 5ft drilled, with the remaining reject bulk sample being collected in labelled calico bags directly below the cyclone, minimising external contamination. Original sample bags were consistently collected from the A-chute, whilst duplicate sample splits were collected from the B-chute. During the sample collection process, the original and duplicate calico sample splits, and calico bag of bulk reject sample were weighed to test for sample splitting bias and sample recovery.

	Criteria	JORC Code explanation	Commentary
-Or personal use only			 Calicos containing the reject were then placed in neat lines on the ground, with the draw strings tied to avoid contamination. Duplicate B-chute sample bags are retained and stored on site for follow up analysis and test work. All 5ft A-chute samples were sent to the laboratory for analysis. QA samples were inserted at a combined ratio of 1:10 throughout. Field duplicates were collected at a 1:20 ratio from the B-chute of the rotary splitter at the same time as the original sample was collected from the A-chute. OREAS certified reference material (CRM) was inserted at a ratio of 1:20 with samples by the Company. The grade ranges of the CRMs were selected based on grade populations and economic grade ranges. The reference material type was selected based on the geology, weathering, and analysis method of the sample. The cyclone was cleaned after each rod, at the base of oxidation, and when deemed necessary by the geologist to minimise contamination of samples. Sample condition was recorded for bias analysis. The cyclone was balanced at the start of each rod and checked after each sample to avoid split bias. Handheld portable XRF instruments (SciAps) were utilised on site for mineral identification at the geologist's discretion. Prior to use, and at regular intervals throughout each day, the handheld pXRF instrument was calibrated, and a Certified Reference Material (MEG Au.19.10) analysed to ensure the instrument window was not contaminated with dust and the instrument was analysing correctly. Handheld XRF data was used as an aid only, gold, light elements, and most rare-earth elements cannot be analysed with the instrument in use.
			DD Drilling
			 All Diamond coring was HQ size. Triple-tubing was utilised throughout to maximise recovery. Diamond core samples were collected at geologically-defined intervals, with a minimum sample length of 0.5m and a maximum of 1.2m.

	Criteria	JORC Code explanation	Commentary
> = 5			 Core samples were cut using an automated variable-speed diamond saw with half core, weighing approximately 3kg, submitted for analysis. OREAS certified reference material (CRM) was inserted at a ratio of 1:20 throughout sampling. The grade ranges of the CRMs were selected based on grade populations and economic grade ranges. The reference material type was selected based on the geology, weathering, and analysis method of the sample.
			 Reverse Circulation and Core drilling has been carried out since the 1980's and are stated to have followed industry standards and be of sufficient quality for mineral resource estimation. RC is sampled to 5ft (1.52m) intervals. Recent drilling records (prefix AGEI, BH) state samples passed through a cyclone and riffle split, while historic records are not supplied. Core has been drilled at HQ diameter, often from RC pre-collars. Pre-2021 Core was sawn or cut in half and sampled at geological boundaries. 2021 HQ core was quarter split leaving ¾ of the core. Core sample lengths are between 0.12m to 1.64m, with an average of 5ft (1.52m) Majority of drill samples sent for assay at either AAL or ALS independent laboratories in Nevada. Records are not available for all historic assays, but recent work (prefix AGEI, BH) underwent standard drying, crushing, pulverising for 30g fusion and fire assay with AA finish. Mutli-element (including silver and copper) were analysed by Aqua Regia with an ICP finish. No samples from underground workings have been used in the resource estimate but historic underground data has been utilised.
	Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	James Bay Minerals Drilling RC Drilling 2025 (JBRC prefix) RC drilling was undertaken by Alford Drilling using a Foremost MPD 1500 track mounted rig with a 1050 cfm @ 900 psi on-board compressor.

	Criteria	JORC Code explanation	Commentary
e OIII)			 RC holes were drilled with a 4 ³/₄" hammer using a face-sampling drill bit and reverse circulation to minimise contamination and maximise sample representivity. RC drilling was conducted dry, with sample condition noted. REFLEX OMNIx42, a North-Seeking Gyroscope were used for downhole dip and azimuth calculation, with multishot measurements taken every 100 ft during drilling, and a continuous IN and OUT reading taken at end-of-hole (EOH). IMDEX Rig Aligner was used to align the rig to within 0.01 degrees of the planned azimuth, dip and roll at the start of each hole.
ת			RC Drilling 2024 (AGEI prefix)
personal u			 RC drilling was undertaken by Alford Drilling using a Foremost Apex track mounted rig with a 1250 cfm @ 350 psi on-board compressor. RC holes were drilled with a 5 ½" hammer using a face-sampling drill bit and reverse circulation to minimise contamination and maximise sample representivity. RC drilling was conducted dry, with sample condition noted. REFLEX OMNIx42, a North-Seeking Gyroscope were used for downhole dip and azimuth calculation, with multishot measurements taken every 100 ft during drilling, and a continuous IN and OUT reading taken at end-of-hole (EOH). RELFEX TN-14 Rig Aligner was used to align the rig to within 0.01 degrees of the planned azimuth, dip and roll at the start of each
			hole.
			DD Drilling 2024 (JBDD prefix)
			 Diamond Drilling was undertaken by Alford Drilling using a 2021 track-mounted EF-75M drill rig. Diamond coring was undertaken at HQ size, with triple-tubing utilised to maximise recovery. REFLEX OMNI-Tool North-Seeking Gyroscopes were used for downhole dip and azimuth calculation, with multishot measurements taken every 100' during drilling, and a continuous
			IN and OUT readings taken at end-of-hole (EOH).

	Criteria	JORC Code explanation	Commentary
)II			 RELFEX TN-14 Rig Aligner was used to align the rig to within 0.01 degrees of the planned azimuth, dip and roll at the start of each hole. REFLEX ACT Orientation tools were used for core orientation for the entirety of drilled core.
			Historic Drilling
nai use c			 RC drilling since 2007 records use of track-mounted Foremost RC rig, MPD 1000 track mounted RC rig, track-mounted Boart Longyear LF-90 core rig, and Morooka MST-1500 core rig. Drilling RC wet was not uncommon. All core was drilled as HQ. Deep core drilling was undertaken with RC pre-collars up to 421m and diamond tails to EOH. 2021 core drilling for geotechnical purposes utilised split tube. No core orientation was utilised.
	Drill sample	Method of recording and assessing core and chip sample recoveries and results	James Bay Minerals Drilling
FOF DEFS	recovery	 Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 During the RC sample collection process, the original and duplicate split samples, and calico bag reject bulk samples were weighed to test for bias and sample recoveries. All intervals drilled were weighed. Once drilling reached fresh rock, a fine mist of water was used to suppress dust and limit loss of fines through the cyclone chimney. At the end of each 5ft interval, the drill bit was lifted off the bottom of hole to create an air gap, separating each 5ft drilled within the sampling system. From the collection of recovery data, no identifiable bias exists.
			DD Drilling
			 Diamond core samples are considered dry. Triple-tubing and the appropriate drill tube diameter was selected (PQ, HQ, or NQ) depending on ground competency to maximise

Crite	eria	JORC Code explanation	Commentary
OIII			sample recovery. JBDD001 was drilled at HQ diameter with triple-tubing for the entirety of the hole to maximise recovery through frequent broken ground. Sample recovery is recorded every run (average run length of 4') and is generally above 95%, except for in very broken ground. Core was cut in half, with the same half of the core submitted to the laboratory for analysis. Historic Drilling
SOLIAI USA			 Pre 2007 drilling has limited data available in this regard. Post 2007 drilling was carried out under supervision of consultant geologists. Recovery is not systematically recorded but voids (natural or mine shafts) were recorded. Drill sample recovery from core is systematically logged and was generally 'good', with 'acceptable' recovery noted in fractured ground The effect of core recovery on sample bias was not investigated. There is no evidence of significant sample contamination in any of the RC drill holes.
Logging		 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 James Bay Minerals Drilling Logging of lithology, structure, alteration, veining, mineralisation, oxidation state, weathering, mineralogy, and colour were recorded. Logging was both qualitative and quantitative in nature. RC Drilling RC chips were washed, logged and a representative sub-sample of the 5ft drill sample retained in reference chip trays for the entire length of a hole. Reference chip trays were photographed wet and dry for the entirety of the drill hole.
			DD Drilling

	Criteria	JORC Code explanation	Commentary
al use only			 Diamond core was geotechnically logged at 1cm resolution; recording recovery, RQD, orientation confidence, joint density, joint sets, joint asperity and fill mineralogy. Core trays were photographed wet and dry. Structural measurements were collected utilizing the IMDEX LOGRx, with reference measurements taken at the start of each logging session and every 20 measurements throughout the drill hole to ensure instrument calibration and data quality Historic Drilling All holes were qualitatively logged in their entirety, selectively sampled based on observations and assayed in accordance with industry standards and pre-2007 historic drilling is of sufficient quality.
For persona	Subsampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 James Bay Minerals Drilling RC Drilling RC samples were split from dry, 5ft bulk sample via a splitter directly from the cyclone. Calico bags from the A- and B-chute, as well as the reject were weighed to determine sample recovery compared to theoretical sample recovery, and check sample bias through the splitter. Field duplicates were collected from the B-chute of the splitter through the entire hole at the same time as the original sample collection from the A-chute. Approximately 3kg of sample was submitted to AAL, Reno, Nevada, USA for analysis via 50g fire assay with an ICPE-OES finish (method code: IO-FAAu50). Samples that over-ranged are subsequently analysed by 30g fire assay and gravimetric finish (method code: G-FAAu). Samples were also sent for 52 element 4A+boric acid digest with an ICP-OES and MS finish (method code: IM-4AB52). Sample duplicates (DUP) were inserted at a ratio of 1:20 throughout each drillhole.

Crite	ria	JORC Code explanation	Commentary	
For personal use only			 OREAS certified reference material (CRM) was inserted by the Company at a ratio of 1:20 throughout each drillhole. The grade ranges of the CRMs were selected based on grade populations and economic grade ranges. The reference material type was selected based on the geology, weathering, and analysis method of the sample. The total combined Company-inserted QAQC (DUPs and CRMs) to original sample ratio throughout each drillhole was 1:10. Field Duplicates and CRMs were submitted to the lab using unique Sample IDs. For Fire Assay, all samples were sorted, dried at 90°C and weighed prior to crushing to 2mm. Crushed samples were then split and pulverised to 75µm, with a QC specification of ensuring >85% passing < 75µm. 50g of pulverised sample was then analysed for Au by fire assay and ICP-OES (<10pm Au) finish. Samples that over-ranged (>10ppm Au) for Fire Assay were additionally analysed with a gravimetric finish. Detection limits of utilised Au methods: OFFAAu50 0.003 – 10ppm Au G-FAAu ppm 0.5 – 100ppm Au Detection limits of select elements for IM-4AB52 multi-element analysis: Silver (Ag) 0.3 – 100ppm Arsenic (As) 0.5 – 10,000ppm Bismuth (Bi) 0.02 – 10,000ppm Arsenic (As) 0.5 – 10,000ppm Antimony (Sb) 0.05 – 10,000ppm Antimony (Sb) 0.05 – 10,000ppm Antimony (Sb) 0.05 – 10,000ppm Tellurium (Te) 0.03 – 100ppm Zinc (Zn) 3 – 10,000ppm To every 60 samples submitted to the laboratory, three labinserted CRMs, seven check-samples and one blank are inserted/completed as part of the laboratory-internal QAQC protocols.	•

Criteria	JORC Code explanation	Commentary
		Sample size and preparation is appropriate for the grain size of the sample material.
		DD Drilling
For personal use only		 Diamond core samples were collected at geologically defined intervals, with a minimum sample length of 0.5m and maximum of 1.2m. Samples were cut using an automated variable-speed diamond saw. Core was cut in half, with the same half of the core submitted to the laboratory for analysis. Diamond core samples are considered dry. Triple-tubing and HQ drill tube diameter was selected to maximise sample recovery. Sample recovery is recorded every run (average run length of 3m) and is generally above 98%, except for in very broken ground. Samples of approximately 2-3kg in weight were sent to AAL, Reno for IO-FAAu50 50g Fire Assay (gold) and IM-4AB52 multi-element analysis by ICP with an OES and MS finish. AAL is a certified accredited laboratory and undertake preparation and analysis under industry standards. Sample duplicates (DUP) were inserted at a ratio of 1:20 throughout sampling of suspected ore zones, and 1:40 throughout sampling of suspected waste material. OREAS certified reference material (CRM) was inserted at a ratio of 1:20 throughout sampling of suspected waste material. The grade ranges of the CRMs were selected based on grade populations and economic grade ranges. The reference material type was selected based on the geology, weathering, and analysis method of the sample. The total combined QAQC (DUPs and CRMs) to sample ratio through suspected ore zone material was 1:10. For waste zones the combined QAQC to sample ratio was 1:20.
		Field Duplicates and CRMs were submitted to the lab using unique Sample IDs.

	Criteria	JORC Code explanation	Commentary
nai use oniy	Criteria	JORC Code explanation	 For every 60 samples submitted to the laboratory, AAL inserted 12 QC samples (CRMs, DUPs, Blanks) and further conduct laboratory check analysis of samples. Samples were dried at 90°C, crushed to 2mm, pulverised and riffle split to obtain a 50g pulp for fire assay and 5g pulp for multi-element analysis. Sample size and preparation is deemed appropriate for the grain size of the material. Historic Drilling Majority of core was sawn or cut in half, with only 2021 drilling recorded as submitting ¼ core for analysis. RC (Post 2007) is recorded as riffle split through a cyclone. Post 2007 drilling utilised CRMs, blanks and field duplicates for quality control. Pre 2007 data lacks details on QAQC but assays have been
50			compared to surrounding holes and show good agreement. • Sample size is considered appropriate.
LOI DEI	Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established. 	 James Bay Minerals Drilling Handheld portable XRF instruments (SciAps) were utilised on site for mineral identification at the geologist's discretion, as well as systematically for all samples collected. Prior to use, and at regular intervals throughout each day, the handheld pXRF instrument was calibrated. Certified Reference Material (MEG Au.19.10) were analysed at a 1:20 ratio with samples to ensure the instrument window was not contaminated with dust and the instrument was analysing correctly. Handheld XRF data was used as an aid only, gold, light elements, and most rare-earth elements cannot be analysed with the instrument in use. At the end of each 5ft interval, the drill bit was lifted off the bottom of hole to create an air gap, separating each 5ft drilled within the sampling system. The sampling system was systematically cleaned to minimise contamination. All bags from the A- and B- chute and the reject calico bag

	Criteria	JORC Code explanation	Commentary
personal use only			 From the collection of recovery data, no identifiable bias exists. All 5ft A-chute samples were sent to the laboratory for analysis. QA samples were inserted at a combined ratio of 1:10 throughout. Field duplicates were collected at a 1:20 ratio from the B-chute of the rotary splitter at the same time as the original sample was collected from the A-chute. OREAS certified reference material (CRM) was inserted at a ratio of 1:20. The grade ranges of the CRMs were selected based on grade populations and economic grade ranges. The reference material type was selected based on the geology, weathering, and analysis method of the sample. Field Duplicates and CRMs were submitted to the lab using unique Sample IDs. The cyclone was cleaned after each rod, at the base of oxidation, and when deemed necessary by the geologist to minimise contamination of samples. Sample condition was recorded for bias analysis. The cyclone was balanced at the start of each rod and checked after each sample to avoid split bias. For every 60 samples submitted to the laboratory, three labinserted CRMs, seven check-samples and one blank are inserted/completed as part of the laboratory-internal QAQC protocols. Sample size and preparation is appropriate for the grain size of the sample material.
FOLD	-		 Historic Drilling Analysis for gold by fire assay and copper-silver by aqua regia by independent laboratories is considered appropriate. QAQC analysis shows some CRMs failed during drill campaigns. CRMs submitted to the laboratory included uncertified and certified reference material. 2021 standards showed a bias to the low side. Blanks and duplicates generally performed well from provided records. There is no significant evidence of sample bias or "nugget effect", with assays displaying reasonable accuracy and are deemed appropriate for use in resource estimation.
			Previous Exploration

	Criteria	JORC Code explanation	Commentary
ise only	Varification of		 Historic Rock chips were submitted to ALS Chemex Elko (sample preparation) before being sent to either ALS Reno or ALS Vancouver for Au-AA23 or Au-AA30 Fire Assay (gold). 35AR-OES or ME-ICP41 (multi-element) analysis methods were conducted at ALS Vancouver. ALS is a certified accredited laboratory and undertake preparation and analysis under industry standards. Rock chips samples were dried, crushed, pulverised and split to obtain a 30g pulp for fire assay. No CRMs were inserted into the sample sequence in the field, instead relying on the laboratory-inserted CRMs, blanks and Duplicates for QAQC
personal u	Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 James Bay Minerals Drilling Logging and sampling were recorded directly into Excel and LogChief, utilising lookup tables and in-file validations by a geologist at the rig. Logs and sampling were imported daily into Micromine for further validation and geological confirmation. All data is verified by senior Company geologists. All drill hole data is collected in Imperial System units and are coverted to Metric units. No adjustments to assay data are made.
For			 Various personnel including independent consultants have reviewed the drilling and assay data. 240 pulps from the deep skarn deposit were re-submitted for laboratory analysis in 2009 and showed good correlation with original drill data. Drilling data includes 7 sets of twin holes from the 2007-2008 and 2011 drilling campaigns, including RC-RC and RC-core comparisons. The results show some variation in grade although general distribution is similar.

	Criteria	JORC Code explanation	Commentary
			No adjustments to assay data are known beyond converting between parts per million to ounce per tonne and between feet to metres.
ror personal use only	Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All collar point location data was collected using GARMIN GPSMAP 64sx and recorded in digital and hardcopy format with an expected accuracy of +/- 3m. Coordinate grid system is NAD 83 UTM Zone 11. REFLEX OMNI-Tool North-Seeking Gyroscopes were used for downhole dip and azimuth calculation, with multishot measurements taken every 100' during drilling, and a continuous IN and OUT reading taken at end-of-hole (EOH). RELFEX TN-14 Rig Aligner was used to align the rig to within 0.01 degrees of the planned azimuth, dip and roll at the start of each hole. REFLEX ACT Orientation tools were used for core orientation for the entirety of drilled core Historic Drilling Down hole surveys and collar pickups are irregular in data records. All of GMC's 131 drill hole collars plus 35 historic collars were surveyed by DGPS. The remaining drill hole collar locations were obtained from drill logs or drill maps and have been validated in the field. Collar pickups are in or have been transformed to NAD 83 Zone 11 Approximately ~70-80 holes have downhole surveys.
	Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Data spacing is often on 25x50m grid or 50x100m with local variations, including the previously undrilled Rebel Trend. Assay results show good continuity of grade and width of intercepts between JBY and Historic drill holes, both along strike, down-dip.

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralized structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 The data spacing and distribution is sufficient to demonstrate spatial and grade continuity of the mineralised horizon to support the classification of the Mineral Resources reported. Intercepts are reported as composites of individual 5 ft (1.5m) assay results from a cut-off of 0.3g/t Au. Reported intercepts include internal waste of up to 6.1m. Data spacing is sufficient to establish continuity for mineral resources. Samples are produced generally at 5' intervals from drilling. No compositing is known to have occurred for historic data besides in resource estimation. Intercepts are reported as composites of individual assay results from a cut-off of 0.3g/t Au. Historic Drilling Data spacing is often on 25x50m grid or 50x100m with local variations. Data spacing is sufficient to establish continuity for mineral resources. Samples are produced generally at 5ft intervals from drilling. No compositing is known to have occurred besides in resource estimation. James Bay Minerals Drilling Based on the drilling completed to date, the orientation (both dip and plunge) of mineralisation is based on numerical Au assay values. The orientation of primary mineralisation is dipping ~45 degrees to the west and strikes south. JBY drilling has been completed typically at 090 degrees azimuth to avoid introduction of bias to the results. Multiple holes have been drilled from one drill pad, so some holes are not perpendicular to mineralisation trends but are approximately representative of true width. Drilling intercepts are reported as down-hole width.

	Criteria	JORC Code explanation	Commentary
use only			Historic Drilling Holes appear to have generally been drilled across structures as to limit bias of sampling. Angled holes have been drilled to intersect perpendicular to near-surface epithermal mineralisation but local variations have affected this and therefore drill intercepts do not always represent true width. Deep diamond core drilling was drilled vertically in order to intercept perpendicular to the near-horizontal skarn mineralisation. It is not yet known if any bias exists. Drilling intercepts are reported as down-hole width
For personal	Sample security	The measures taken to ensure sample security.	 Chain of Custody of digital data was managed by James Bay Minerals. All samples were bagged in tied numbered calico bags, grouped into larger polyweave bags and cabled-tied. Polyweave bags were placed into larger Bulky Bags with a sample submission sheet and tied shut. Delivery address details were written on the side of the bag. Sample material was stored on site and, when necessary, collected by American Assay Laboratories and transported to the laboratory. Thereafter, laboratory samples were controlled by the nominated laboratory. Sample collection was controlled by digital sample control files and hardcopy ticket books. Sample submissions and primary data exports are sent to the Company database manager. Historic Drilling Unknown for pre-AGEI drilling AGEI and BH holes were hand-delivered by field personnel to the laboratory.

	Criteria	JORC Code explanation	Commentary
>=こ い	Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 Historic rock chip sample locations were visited and verified that collection of each rock sample was from in-situ outcrop. Discussions were held with Americas Gold regarding sample collection in the field. Discussions are ongoing with previous claim holders to obtain raw and original datafiles. Locations of all drill holes have been visited and coordinates confirmed. Diamond drill core is being re-sampled where core is available to check results at an independent laboratory (ongoing work).

Section 2 Reporting of Exploration Results – Independence Gold Project

(Criteria listed in the preceding section also apply to this section.)

	Criteria	JORC Code explanation	Commentary
aı	Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Independence Gold Project is located wholly within third party mining claims held by Independence Mining LLC, a Delaware limited liability company that owns 100% of all claims, rights, title and interest in the Independence Gold Project. James Bay Minerals has entered into an agreement to acquire and earn-in 100% of Independence Gold Project via the acquisition of Battle Mountain Resources Pty Ltd. (See acquisition terms pages 9 & 10 of the ASX announcement dated 14 October 2024 for details on the earn in agreement and associated entities.) The Independence Gold Project has a total of 14 unpatented lode mining claims and 84 Unpatented Mill Sites, situated in sections 28, 29, 32 and 33, T.31 N., R. 43 E., MDM, in Lander County, Nevada. Independence project spans approximately 627 acres of Bureau of Land Management (BLM) administered lands. All lode claim and mineral claim locations are detailed in the NI 43-101 report. The Unpatented load claims and Mill site claims are in good standing and the pertinent annual Federal BLM fees are paid until September 01, 2025. James Bay Minerals through its acquisition of Battle Mountain Resources has an agreement to own and earn in 100% of all Independence Gold Projects Water rights. Permit #90547 & #90548, currently held 100% by the Golden Independence Nevada Corp, an entity being acquired by James Bay Minerals via its third party fully owned entities. The water rights were fully permitted by the State of Nevada on the 29th March 2024 and valid until the 29th of March 2027. If BMR acquires the Stage 1 Interest and the Stage 2 Interest (such that it holds 100% of the Interest in the Company), BMR agrees to grant AGEI a 2.0% net smelter return royalty (Royalty), with the right to buy-back 50% of the Royalty (i.e., 1% of the 2% Royalty) at any

	Criteria	JORC Code explanation	Commentary
l use only			 time by paying US\$4,000,000 to AGEI, which may be satisfied in cash and JBY Shares based on the 30-day VWAP. All the land the claims are contained within the Federal Bureau of Land Management Land (BLM). Independence Gold mine directly neighbours the NGM operating Phoenix Open Pit Gold Mine, and is contained within the boundary of the NGM Phoenix Gold Mine Plan Of Operations (PoO). As such, The Independence Gold Project is subject to all rights and permits associated with the PoO. As such the site is fully permitted to commence exploration drilling and geophysical surveys. The project contains liabilities associated with the historic Independence Underground Mine including a mill, tailings, waste rock dump, and some buildings.
For persona	Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Activity in the area dates back to mining and silver discoveries in the late 1800's and early 1900s. The Independence Underground Mine on the property was mined intermittently between 1938 and 1987 with several miles of underground workings developed. Mine production totals ~750,000oz silver and 11,000oz gold by operators including Wilson & Broyles, Bonner Cole, Agricola, APCO, Silver King, United Mining and Harrison Mining. Post-mining, various companies held the ground for exploration, defining the deep skarn gold mineralisation and later the shallow oxide potential. Various owners during this period include Union Pacific Minerals, APCO Oil Corp, United Mining, Noranda, Battle Mountain Gold, Landsdowne Minerals, Teck Corporation, Great Basin Gold, and General Metals Corp (GMC). GMC carried out the most significant drilling to define mineralisation and conduct resource estimations (outdated and or non-compliant). To date, over 240 holes have been drilled for over 28,000m.
	Geology	Deposit type, geological setting and style of mineralisation.	The Independence project lies in the Battle Mountain Mining District located on the west side of Pumpernickel Ridge in north central Nevada. The regional geology of north central Nevada is defined by episodic tensional deformation, rifting, sedimentation and erosion,

	Criteria	JORC Code explanation	Commentary
			followed by widespread thrusting resulting from compressional deformation. • Episodic tensional events followed by compressional events include the Robert Mountains Allochthon emplaced during the Antler orogeny. • The Antler sequence hosts the Golconda Allochthon that was emplaced during the Sonoma orogeny and contains the Havallah Sequence of Mississippian to Permian age rocks, including the Pumpernickel Formation, host to near surface mineralisation at the Independence Project. • Rocks of the Roberts Mountain Allochthon hosted the adjacent Fortitude deposit and are the principal host for the Phoenix deposit and the Independence Project Skarn Target. These rocks are structurally overlain by the Mississippian, Pennsylvanian, and Permian Havallah sequence of the Golconda allochthon. • The near surface mineralisation at Independence is best characterised as a high-level epithermal system formed as a leakage halo above the Independence gold skarn, both related to emplacement of Eocene age granodiorite porphyry's and related faults. The shallow oxide chert-hosted gold-silver mineralisation consists of iron oxides and clays derived from primary sulphide stockworks and replacements, deeply weathered and oxidised. • The Independence gold skarn target is a high-grade, gold-rich skarn system developed in the carbonate rich portions of the Battle Mountain, Antler Peak and Edna Mountain Formations in the lower portion of the Roberts Mountain Allochthon.
_	Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	Exploration results pertinent to this report are detailed in Appendix I and Appendix II. All previous or historic data referenced has previously been reported.

	Criteria	JORC Code explanation	Commentary
		If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case	
'OI DEISONAI USE OMY	Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated 	 All historic drill intercept results are downhole interval lengthweighted with a lower cut-off of 0.2g/t Au. JBY drill holes are reported with a lower cut-off of 0.1g/t Au with a final minimum grade of 0.3g/t Au and include 6.1m (~20ft) maximum consecutive internal waste unless explicitly stated in the body of the announcement. The Gold Equivalent (AuEq) grade used in reporting assay intervals and in the Near Surface Epithermal JORC Resource Estimate has been calculated using metal prices of USD\$2,412.50/oz for gold (Au) and USD\$28.40/oz for silver (Ag). The calculation incorporates a recovery factor for gold and silver, with the following assumptions: Gold recovery: 79% for oxide, 50% for transitional, and 22% for sulphide material Silver recovery: 27% for all material types The Gold Equivalent (AuEq) grade is calculated using the following formula: AuEq (g/t) = Au (g/t) + (Ag (g/t) × (USD\$28.40/oz × 0.27) / (USD\$2,412.50/oz × Au Recovery)). The logged oxidation state of intercepts outside the Mineral Resource Estimate are used to infer metallurgical characteristics for each sample. For example, the AuEq grade from JBRC009 is calculated using gold recovery of 79% based on all drill samples within the reported intercept being oxide material.
_	Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known'). 	Vertical and angled holes transect mineralisation at different angles. Mineralisation in near-surface oxide dips west approximately 45-55 degrees. The majority of drill holes have been drilled perpendicular (azimuth to the East) in order to maximise the representivity of reported downhole intercept lengths but local variations and crosscutting structures exist.

	Criteria	JORC Code explanation	Commentary
<u>></u>			Near surface angled holes are 95-100% true thickness while vertical and fan holes are 80-95% true thickness. Deep skarn is ~95%-100% true thickness.
0	Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Adequate maps, tables and diagrams are provided in the announcement above.
USE	Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results	Down-hole length-weighted results above 0.3g/t Au cut-off have been reported in the significant intercepts table. Intercepts above a 0.25g/t Au cut-off have been displayed on Section Line A. Assay results below this cut-off are not considered material or practical to report.
For personal	Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances	 Metallurgical tests undertaken by GMC in 2012 included bottle roll and column leach testing on bulk sample, and 2021 tests by GIMC involved bottle roll tests on drill core. The recovery of gold is stated as 79% in the oxide, 50% in transitional and 22% in Fresh. Silver averages 27% across all material. Geotechnical logging has historically been undertaken. Hydrological drilling has historically been conducted. No deleterious or contaminating substances are known. Copper-gold mineralisation exists immediately northwest of the property in the neighbouring Sunshine Pit. Nevada mine site resource report sources: Bald Mountain Mine North (2023): https://miningdataonline.com/property/93/Bald-Mountain-Mine.aspx Marigold (2023): https://www.ssrmining.com/operations/production/marigold/Marigold Marigold (2024): SSR Mining Third Quarter 2024 Financial Results Phoenix (2023): https://www.barrick.com/English/operations/mineral-reserves-and-resources/default.aspx

Criteria	JORC Code explanation		Commentary								
		• Ruby Hill (2	II (2021): https://www.i80gold.com/ruby-l						hill		
		Mine	Meas	ured and In	dicated	Inferred			Combined (M, I & I)		& I)
			Mt	g/t Au	Koz	kt	g/t Au	Koz	Mt	g/t Au	Koz
^		Bald Mountain North Phoenix Mine	241 254	0.50	3,686	49	0.30	489 310	290 283	0.47	4,175 4,210
		Ruby Hill Mine	224	0.54	3,874	163	0.39	2,062	387	0.48	5,936
		Marigold Complex	104	0.44	1,471	19	0.36	220	123	0.43	1,691
Further work	 The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	RC drilling a the MRE. RC Drilling mineral reso optimisation Analysis of additional m	below ource 1. previo	the so to test ously u	outhern for ext	n portio tensio	on of th	ne nea n dip a	r surfa and be	ice oxid	de e pit