10 June 2025

STRONG NEW DRILL RESULTS AT RIVERINA, WAIHI & LITTLE GEM

Highlights:

Riverina Deeps - Exploration

- Infill drilling between 500 to 1,000 metres below surface returns numerous highgrade intersections (>20 gram-metres) delivering at a very high hit ratio
- Mineralised system continues strongly at depth with the Company continuing to work towards an updated Mineral Resource Estimate (MRE)
- Significant results include:

0	1.7m @ 76.4 g/t	Inc.	1.0m @ 129.5 g/t	0	4.7m @ 12.5 g/t	Inc.	0.5m @ 108.0 g/t
0	11.8m @ 9.8 g/t	Inc.	2.2m @ 21.0 g/t	0	2.0m @ 28.2 g/t	Inc.	1.2m @ 43.9 g/t
		& Inc.	4.2m @ 11.8 g/t	0	3.1m @ 18.0 g/t	Inc.	1.0m @ 51.2 g/t
0	4.3m @ 24.6 g/t	Inc.	0.8m @ 34.4 g/t	0	2.5m @ 19.7 g/t	Inc.	1.3m @ 36.2 g/t
		& Inc.	0.3m @ 229.0 g/t	0	3.7m @ 12.2 g/t	Inc.	1.0m @ 26.6 g/t
0	1.0m @ 92.4 g/t			0	1.4m @ 24.5 g/t	Inc.	1.0m @ 32.0 g/t
0	1.2m @ 53.2 g/t	Inc.	0.9m @ 73.6 g/t	0	1.0m @ 33.2 g/t		
0	9.3m @ 6.5 g/t	Inc.	0.7m @ 71.5 g/t	0	6.0m @ 5.5 g/t	Inc.	1.0m @ 24.1 g/t
0	3.0m @ 20.0 g/t	Inc.	0.7m @ 81.3 g/t	0	5.0m @ 6.4 g/t	Inc.	1.0m @ 17.3 g/t
0	5.0m @ 11.8 g/t			0	4.2m @ 7.5 g/t	Inc.	2.2m @ 10.5 g/t

Waihi Exploration

- An initial seven-hole program has been completed at Waihi providing material depth extensions to the known mineralisation
- Hole WHDD25004W1 intersected a new mineralised zone in the footwall of the main mineralisation at 330 metres below surface, returning 8.7m @ 9.3g/t, including 1.1m @ 30.2 g/t and 0.4m @ 90.6 g/t. The zone remains open in all directions
- Other significant intersections include:
 - o 1.5m @ 18.6g/ Inc. 0.4m @ 72.5g/t
 - o 0.4m @ 18.0g/t & Inc. 0.3m @ 229.0 g/t
 - o 5.8m @ 2.5 g/t
 - o 1.5m @ 8.1 g/t

Little Gem

- Wide spacing exploration drilling on 400 metre step outs successfully extended the mineralised carbonate system, confirming a regionally significant >5km continuous strike trend
- Multiple carbonate unit intersections returned in each hole drilled to date, with gold mineralisation identified in assay returns
- To date, of the 16 hole second round program, assays have been received from 3 holes, a further 9 holes are complete awaiting assay return and 4 holes are currently being drilled
- Significant intersections to date include:
 - o 7.0m @ 3.7g/t Inc. 1.0m @ 10.7g/t
 - o 4.0m @ 4.8g/t
 - o 5.0m @ 4.8g/t Inc. 1.0m @ 17.6g/t
 - o 10.0m @ 1.3g/t
 - o 5.2m @ 2.0 g/t

Ora Banda Mining Limited (ASX: OBM) ("Ora Banda", "Company") is pleased to provide an update on its continued exploration success at its high-grade Riverina Gold Camp, Waihi and Little Gem prospect.

Riverina Deeps

Recent deep drilling at Riverina has confirmed a robust and continuous mineralised system expanding to 1,000 vertical metres, highlighting strong mineralised continuity and significant potential for future mine life extensions.

The Riverina stratigraphy comprises a 500-metre-wide sequence of mafic–ultramafic and metasedimentary units, bounded by the 'Barra Ultramafic' in the west and a thick metasedimentary package of the eastern hanging wall. This sequence hosts multiple sub-parallel high grade gold shears.

Gold mineralisation across Main Lode, Murchison, Reggie's, and the Durham lodes is consistently located within 100 metres of the eastern metasedimentary contact. Riverina's Main Lodes are hosted within a well-defined, 25-metre-wide mylonitic shear corridor, demonstrating excellent continuity at depth. Coarse free gold is closely associated with zones of base metal sulphidation and is preferentially concentrated in low-strain structural domains within the broader deformed rock package. The eastern metasedimentary unit also hosts mineralisation in shear zones and late-stage carbonate veining, consistent with the styles observed at the 'Little Gem' and 'Sunraysia' prospects to the south.

Since the commencement of resource extension drilling on 11 October 2024, a total of 20,548 metres of diamond drilling and 9,468 metres of reverse circulation (RC) drilling have been completed. The deepest diamond hole drilled to date, RVDD25008, reached a vertical depth of 1,200 metres and successfully intersected the targeted mineralised corridor, further validating the system's depth potential.

Waihi

The first seven hole program has been completed at Waihi, which was designed to target highgrade shoots beneath the historical open pits.

Hole WHDD25004W1 intersected a new previously unidentified mineralised zone in the footwall of the main mineralisation at **330 metres below surface, returning 8.7m @ 9.3g/t, including 1.1m @ 30.2 g/t and 0.4m @ 90.6 g/t.** This position is largely untested both up and down plunge and presents a broad new target zone for additional drilling. Additional drilling is currently being planned and will be scheduled in the near term.

Assay results from WHDD25002 also returned significant high grade gold mineralisation including 0.4m @ 18.0 g/t and 1.5m @ 18.6g/t from a wider zone of strong alteration/vein.

A significant follow-up drill program is currently being designed and will be scheduled to commence in FY26.

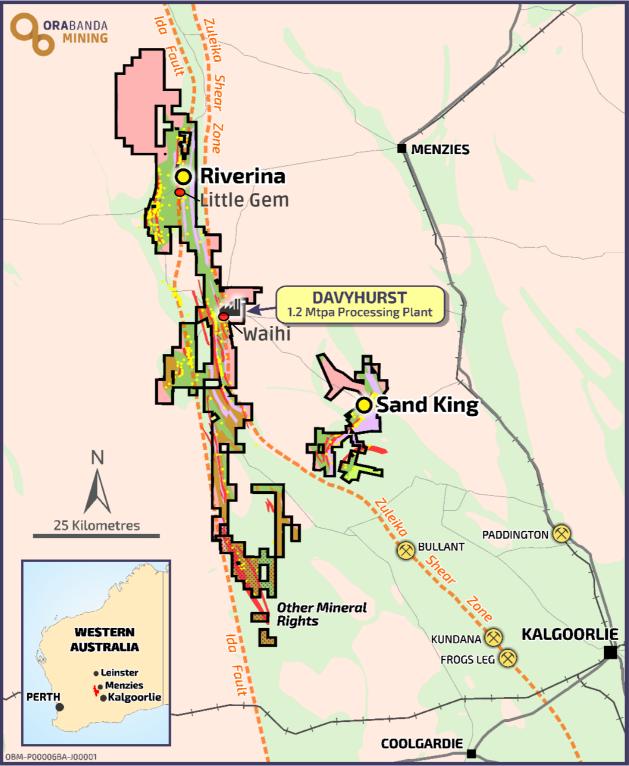
Little Gem

Subsequent to the highly successful five hole drill program (Phase 1 drill program) at Little Gem which returned **22.7m @ 5.0 g/t** and **10.9m @ 6.4g/t**, Ora Banda committed to a 16-hole broad spaced diamond drilling program (Phase 2 drill program) to test the prospective carbonate horizons over 4.7 kms and down to a depth of 400 vertical metres below the surface. In respect to the Phase 2 drill program, assays have been received from 3 holes, with a further 9 holes are complete awaiting assay return, and another 4 holes are currently being drilled.

The Phase 2 drill program is a very broad spaced (400m section lines), early-stage drill testing of the greenfields potential of the Little Gem – Sunraysia system. It has been designed as geological reconnaissance to determine the structural & lithological architecture of the system and to further test and enhance the regional geological exploration model.

Significantly, target carbonate units have been intersected along the entire length of drilling todate, confirming a continuous 5km strike between Little Gem and Sunraysia, and which remains open to the north and south. A fault zone at the southern end of Sunraysia has offset the carbonate lodes up to 150m west, opening up at least an additional 400m strike extending to the south. This area has only been tested by a single historical RAB hole, which returned a highly significant intersection of 4m @ 11.5g/t.

The carbonate units are highly linear and continuous along strike and down dip, and are variable in thickness, ranging from 0.2m to >6m. Current assay results show all carbonate units intersected by drilling are mineralised with variable gold tenor.


The working geological model is currently proving to be robust with a high drilling success rate. The Phase 2 drill program continues with further infill drilling planned at Little Gem. Ora Banda's Managing Director, Luke Creagh, said:

"These strong new drill results across three distinctly different areas are testament to prospectivity of the Davyhurst Gold Project.

"We remain extremely active on the drilling front, with five surface rigs turning and five underground rigs active which combined are producing more than 850 metres of diamond core a day. This accelerated drill rate is a key driver for the business as we look to rapidly grow our mineral resources, extend existing project mine life and identify new mines to develop.

"We think the Waihi results in particular are very significant as they continue to promote this deposit's potential to become Ora Banda's third underground mine.

"Likewise, the Little Gem – Sunraysia results are also exceptional given this is at an early greenfields stage on very wide space drilling. Proving approximately five kilometres of consistent and highly prospective strike, again with multiple lode surfaces, is an outstanding start to exploration in this area and we remain excited about the potential size of this system."

Figure 1 – Overview showing location of Riverina Underground, Little Gem and Waihi compared to Davyhurst processing hub.

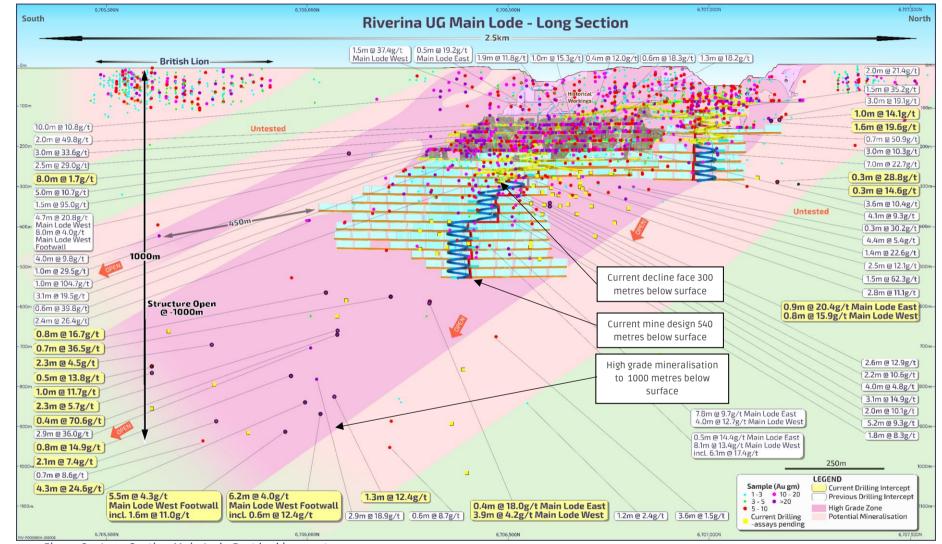


Figure 2 – Long Section Main Lode East looking west

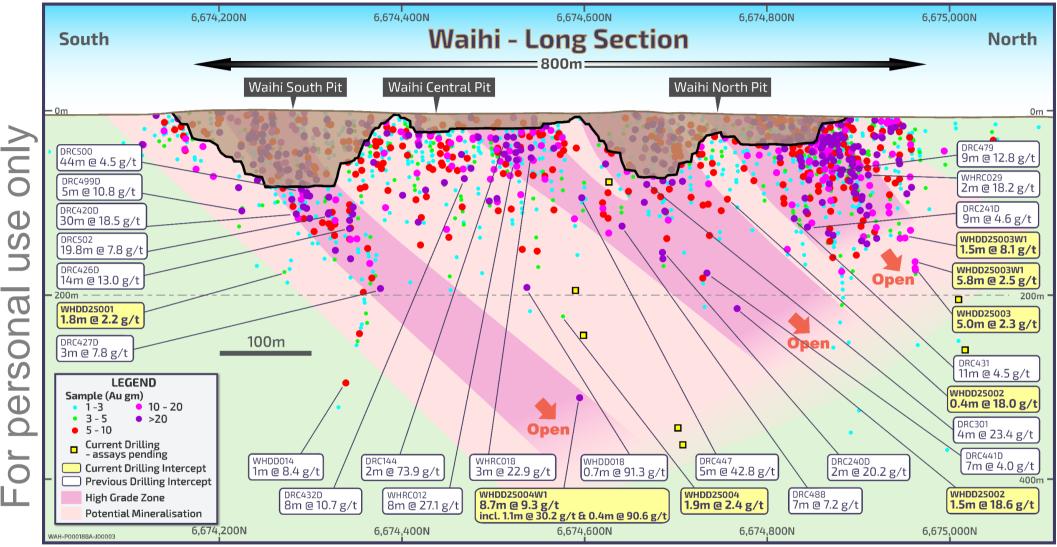


Figure 3 – Waihi Long Section looking west

7

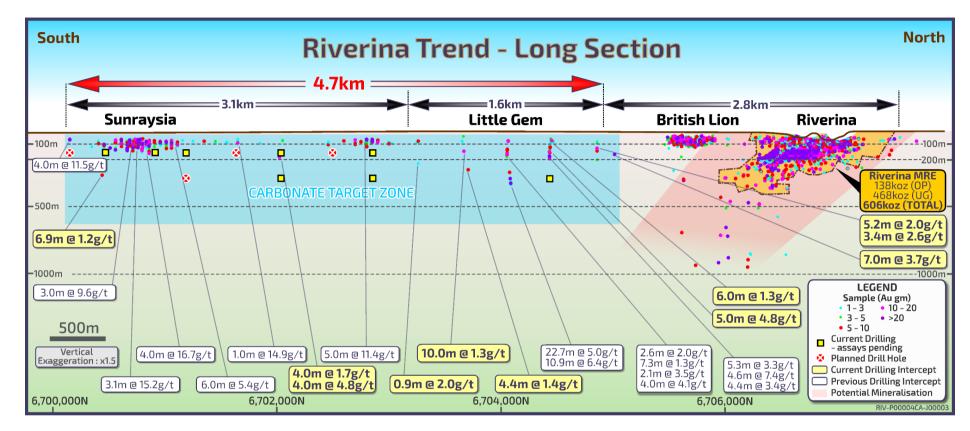


Figure 4– Long Section – Riverina Trend looking west showing Little Gem in relation to Riverina Underground and the Sunraysia deposit.

This announcement was authorised for release to the ASX by the Ora Banda Board of Directors. For further information about Ora Banda Mining Ltd and its projects please visit the Company's website at www.orabandamining.com.au.

Investor & Media Queries: Luke Creagh Managing Director +61 8 6365 4548 admin@obmltd.com.au

Competent Persons Statement

The information in this announcement that relates to new exploration results is based on, and fairly represents, information and supporting documentation prepared by Mr Andrew Czerw, an employee of Ora Banda Mining Limited, who is a Member of the Australian Institute of Mining and Metallurgy. Mr Czerw has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Czerw consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

The information in this announcement that relates to Mineral Resources and Ore Reserves are set out in the Company's ASX announcement, 'Mineral Resource and Ore Reserve Statement' dated 2 July 2024, which is available to view at <u>www.orabandamining.com.au</u>. The Company confirms that it is not aware of any new information or data that materially affects the information included in that announcement and that all material assumptions and technical parameters underpinning the estimates in that announcement continue to apply and have not materially changed.

The information in this announcement that relates to prior Riverina and Little Gem exploration results has been extracted from the Company's ASX announcements set out below, which are available to view at <u>www.orabandamining.com.au</u>. The Company confirms that it is not aware of any new information or data that materially affects the information included in those ASX announcements. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from those ASX announcements. For further information on historical significant intercepts please also refer to the Company's website www.orabandamining.com.au/technical-data.

- 'Outstanding Exploration Results at Little Gem Confirm Greenfields Discovery' dated 13 March 2025 and 'Exploration Results at Little Gem' dated 19 March 2025.
- 'Successful Exploration Drilling at Riverina Paves the Way for Multi-year Mine Life Extension' dated 13 February 2025.
- 'Exploration Update' dated 3 August 2023
- 'First Pass Exploration Success ' dated 30 July 2021
- 'Riverina South & Riverina Underground Infill and Extension Drilling Delivers Further Strong Results' dated 8 March 2021.

The information in this announcement that relates to prior Waihi exploration results has been extracted from the Company's ASX announcements set out below, which are available to view at <u>www.orabandamining.com.au</u>. The Company confirms that it is not aware of any new information or data that materially affects the information included in those ASX announcements. The Company confirms that

the form and context in which the Competent Person's findings are presented have not been materially modified from those ASX announcements. For further information on historical significant intercepts please also refer to the Company's website <u>www.orabandamining.com.au/technical-data</u>.

- 'Further High Grade Assay Results for Waihi' dated 21 January 2020.
- 'High Grade Assay Results Continue at Waihi' dated 24 December 2019, 22 November 2019 and 6 November 2019.
- 'Shallow High Grade Results from Waihi Resource Drilling' dated 14 October 2019.
- 'High Grade Assay Results Received including <u>23m@9.1g/t</u> Au' dated 29 July 2019.
- 'Impressive Results from Initial Drilling at Waihi Complex' dated 22 February 2017.

Forward-looking Statements

This announcement contains forward-looking statements which may be identified by words such as "forecast", "guidance", "target", "outlook", "estimates", "believes", "expects", "anticipates", "intends", "may", "will", "would", "could", or "should" and other similar words that involve risks and uncertainties. These statements are based on an assessment of present economic and operating conditions, and on a number of assumptions regarding future events and actions that, as at the date of this announcement, are expected to take place.

Such forward-looking statements are provided as a general guide only, are not guarantees of future performance and involve known and unknown risks, uncertainties, assumptions and other important factors, many of which are beyond the control of the Company, the Directors and management of the Company. When forecasting or providing guidance on costs and production the Company has taken into account current operating costs, design, plans for the mine, cost escalation, required personnel numbers and inputs including capital estimates, submitted tender rates from contractors and suppliers, and average industry productivity and mining specification metrics. These and other factors could cause actual results to differ materially from those expressed or implied in any forward-looking statements.

The Company has no intention to update or revise forward-looking statements, or to publish prospective financial information in the future, regardless of whether new information, future events or any other factors affect the information contained in this announcement, except where required by law (including the ASX Listing Rules). The Company cannot and does not give assurances that the results, performance or achievements expressed or implied in the forward-looking statements contained in this announcement will actually occur and investors are cautioned not to place undue reliance on these forward-looking statements.

Appendix 1 – Significant Intersection Table

Little Gem -0.5g/t cut-off, maximum 2m internal dilution, minimum width 0.2m

Project	Hole ID	MGA	MGA East	RL	Azi	Dip	End	Hole	Depth	Depth	Interval	Gram	Aug/tinterval
SUNRAYSIA	LGDD25002	North 6704446	264716	439	267	-50	270	Type DDH	From 36.00	To 37.50	1.50	Metres 1.2	1.5m @ 0.8 g/t
	LGDD25002								37.90	40.00	2.10	3.2	2.1m @ 1.5 g/t
	LGDD25002								84.00	87.00	3.00	2.8	3.0m @ 0.9 g/t
	LGDD25002								96.70	97.00	0.30	0.2	0.3m @ 0.8 g/t
	LGDD25002								137.00	143.00	6.00	8.0	6.0m @ 1.3 g/t
	LGDD25002								163.00	166.00	3.00	3.9	3.0m @ 1.3 g/t
	LGDD25002								168.07	170.00	1.93	2.5	1.9m @ 1.3 g/t
	LGDD25002								180.00	181.00	1.00	0.7	1.0m @ 0.7 g/t
	LGDD25002								184.00	185.00	1.00	0.6	1.0m @ 0.6 g/t
SUNRAYSIA	LGDD25003	6704859	264663	440	269	-50	336	DDH	52.00	53.00	1.00	0.8	1.0m @ 0.8 g/t
	LGDD25003								72.00	73.00	1.00	1.9	1.0m @ 1.9 g/t
	LGDD25003								91.66	93.70	2.04	3.4	2.0m @ 1.6 g/t
	LGDD25003								148.77	154.00	5.23	10.7	5.2m @ 2.0 g/t
	LGDD25003								180.70	184.08	3.38	8.8	3.4m @ 2.6 g/t
	LGDD25003								195.33	196.00	0.67	0.5	0.7m @ 0.8 g/t
	LGDD25003								286.00	287.90	1.90	2.8	1.9m @ 1.5 g/t
	LGDD25003								290.45	292.30	1.85	3.8	1.9m @ 2.0 g/t
	LGDD25003								333.00	334.00	1.00	0.6	1.0m @ 0.6 g/t
SUNRAYSIA	LGDD25004	6703262	264965	432	270	-52	348	DDH	54.00	58.00	4.00	5.9	4.0m @ 1.5 g/t
	LGDD25004								143.00	144.00	1.00	0.9	1.0m @ 0.9 g/t
	LGDD25004								183.60	184.50	0.90	0.6	0.9m @ 0.7 g/t
	LGDD25004								187.70	188.70	1.00	0.7	1.0m @ 0.7 g/t
	LGDD25004								311.98	312.86	0.88	1.7	0.9m @ 2.0 g/t
SUNRAYSIA	LGDD25006	6703660	264910	430	268	-50	366	RCDD	101.75	102.07	0.32	0.3	0.3m @ 1.1 g/t
	LGDD25006								148.51	149.00	0.49	0.5	0.5m @ 1.0 g/t
	LGDD25006								160.88	170.85	9.97	13.4	10.0m @ 1.3 g/t
	LGDD25006								172.00	172.77	0.77	0.6	0.8m @ 0.7 g/t
	LGDD25006								174.38	175.46	1.08	0.9	1.1m @ 0.8 g/t
	LGDD25006								175.59	176.00	0.41	0.3	0.4m @ 0.6 g/t
	LGDD25006								180.00	180.74	0.74	0.5	0.7m @ 0.7 g/t
	LGDD25006								216.00	216.83	0.83	1.6	0.8m @ 1.9 g/t
	LGDD25006								338.00	339.50	1.50	1.8	1.5m @ 1.2 g/t
SUNRAYSIA	LGDD25010	6700450	265420	430	269	-50	643	DDH	495.00	495.34	0.34	0.3	0.3m @ 0.9 g/t
	LGDD25010								504.46	504.80	0.34	0.5	0.3m @ 1.4 g/t
	LGDD25010								510.04	516.95	6.91	8.2	6.9m @ 1.2 g/t
	LGDD25010								533.50	533.88	0.38	0.5	0.4m @ 1.3 g/t
SUNRAYSIA	LGDD25016	6702050	265190	450	270	-51	612	RCDD	276.00	280.00	4.00	6.7	4.0m @ 1.7 g/t
	LGDD25016								296.00	300.00	4.00	19.4	4.0m @ 4.8 g/t
SUNRAYSIA	LGRC25001	6704445	264715	440	265	-60	250	RC	118.00	124.00	6.00	5.3	6.0m @ 0.9 g/t
	LGRC25001								168.00	171.00	3.00	4.6	3.0m @ 1.5 g/t
	LGRC25001								174.00	180.00	6.00	5.9	6.0m @ 1.0 g/t
	LGRC25001								209.00	214.00	5.00	23.9	5.0m @ 4.8 g/t
	LGRC25001								Incl 211.00	212.00	1.00	17.6	1.0m @ 17.6 g/t
SUNRAYSIA	LGRC25002	6705055	264650	440	269	-55	292	RC	181.00	188.00	7.00	25.75	7.0m @ 3.7 g/t
	LGRC25002								Incl 182.00	183.00	1.00	10.7	1.0m @ 10.7 g/t
	LGRC25002								196.00	198.00	2.00	3.76	2.0m @ 1.9 g/t
	LGRC25002								202.00	205.00	3.00	1.73	3.0m @ 0.6 g/t
	LGRC25002	1							288.00	291.00	3.00	2.85	3.0m @ 1.0 g/t

Riverina Resource - 1.0g/t cut-off, maximum 2m internal dilution, minimum width 0.2m

Project	Hole ID	MGA	MGA	RL	Azi	Dip	End	Hole	Depth	Depth	Interval	Gram	Au g/t interval
	RCV24510	North 6706370	East 264635		217	-30	Depth 288	Type UGD	From 56.65	To 57.00	0.35	0.5	0.4m @ 1.3 g/t
	RCV24510								62.00	63.00	1.00	1.1	1.0m @ 1.1 g/t
	RCV24510								67.95	71.00	3.05	5.4	3.1m @ 1.8 g/t
	RCV24510								80.20	80.82	0.62	1.1	0.6m @ 1.8 g/t
RIVERINA	RCV24510								153.75	154.35	0.60	0.7	0.6m @ 1.2 g/t
	RCV24510								177.40	177.75	0.35	0.4	0.4m @ 1.2 g/t
	RCV24510								185.00	186.35	1.35	8.7	1.4m @ 6.5 g/t
	RCV24510								192.20	192.80	0.60	6.6	0.6m @ 11.1 g/t
	RCV24510								Incl 192.50	192.80	0.30	6.2	0.3m @ 20.7 g/t
	RCV24514	6706370	264635	274	208	-30	344	UGD	94.00	95.00	1.00	1.2	1.0m @ 1.2 g/t
RIVERINA	RCV24514								109.90	110.56	0.66	1.7	0.7m @ 2.5 g/t
	RCV24514								226.27	230.65	4.38	12.5	4.4m @ 2.9 g/t
	RCV24515	6706370	264635	274	214	-34	342	UGD	70.00	71.00	1.00	3.9	1.0m @ 3.9 g/t
	RCV24515								76.00	77.00	1.00	1.7	1.0m @ 1.7 g/t
	RCV24515								83.13	83.45	0.32	0.7	0.3m @ 2.2 g/t
	RCV24515								188.55	189.00	0.45	2.5	0.5m @ 5.6 g/t
	RCV24515								213.65	214.90	1.25	1.8	1.3m @ 1.4 g/t
RIVERINA	RCV24515								219.70	220.00	0.30	0.9	0.3m @ 3.2 g/t
	RCV24515								227.60	228.65	1.05	22.1	1.1m @ 21.0 g/t
	RCV24515								Incl 227.60	228.35	0.75	19.8	0.8m @ 26.5 g/t
	RCV24515								238.00	239.00	1.00	3.3	1.0m @ 3.3 g/t
	RCV24515								242.00	243.00	1.00	5.9	1.0m @ 5.9 g/t
	RCV24516	6706369	264635	274	222	-38	317	UGD	51.20	53.00	1.80	2.2	1.8m @ 1.2 g/t
	RCV24516								82.00	83.00	1.00	1.3	1.0m @ 1.3 g/t
	RCV24516								138.00	139.00	1.00	2.6	1.0m @ 2.6 g/t
RIVERINA	RCV24516								191.90	192.30	0.40	2.3	0.4m @ 5.7 g/t
	RCV24516								214.00	215.00	1.00	2.1	1.0m @ 2.1 g/t
	RCV24516								259.77	260.07	0.30	0.4	0.3m @ 1.3 g/t
	RCV24517	6706370	264635	274	234	-44	291	UGD	44.00	45.00	1.00	1.8	1.0m @ 1.8 g/t
RIVERINA	RCV24517								168.00	168.30	0.30	0.5	0.3m @ 1.8 g/t
	RCV24517								192.70	193.00	0.30	1.3	0.3m @ 4.5 g/t
	RCV24522	6706369	264635	274	210	-37	362	UGD	14.00	15.00	1.00	1.5	1.0m @ 1.5 g/t
	RCV24522								58.73	59.20	0.47	1.9	0.5m @ 4.0 g/t
	RCV24522								77.00	78.00	1.00	1.4	1.0m @ 1.4 g/t
	RCV24522								80.45	83.00	2.55	3.9	2.6m @ 1.5 g/t
	RCV24522								93.10	94.32	1.22	1.7	1.2m @ 1.4 g/t
RIVERINA	RCV24522								102.60	108.00	5.40	12.8	5.4m @ 2.4 g/t
	RCV24522								188.36	188.66	0.30	2.4	0.3m @ 8.0 g/t
	RCV24522								243.70	244.10	0.40	1.6	0.4m @ 4.1 g/t
	RCV24522								279.00	284.00	5.00	31.9	5.0m @ 6.4 g/t
	RCV24522								Incl 280.00	281.00	1.00	17.3	1.0m @ 17.3 g/t
	RCV24522								Incl 283.00	284.00	1.00	12.0	1.0m @ 12.0 g/t
	RCV24523	6706369	264636	274	217	-43	344	UGD	20.43	21.00	0.57	1.3	0.6m @ 2.3 g/t
	RCV24523								55.37	56.46	1.09	2.7	1.1m @ 2.5 g/t
	RCV24523								82.05	83.00	0.95	12.2	1.0m @ 12.9 g/t
	RCV24523								95.57	99.00	3.43	6.4	3.4m @ 1.9 g/t
	RCV24523								156.62	157.00	0.38	0.6	0.4m @ 1.6 g/t
00/50/00	RCV24523								159.84	160.90	1.06	6.7	1.1m @ 6.3 g/t
RIVERINA	RCV24523								Incl 159.84	160.23	0.39	5.5	0.4m @ 14.1 g/t
	RCV24523								225.57	226.57	1.00	92.4	1.0m @ 92.4 g/t
	RCV24523								239.35	239.75	0.40	0.4	0.4m @ 1.1 g/t
	RCV24523								272.96	273.50	0.54	0.6	0.5m @ 1.1 g/t
	RCV24523								293.16	293.77	0.61	9.3	0.6m @ 15.2 g/t
	RCV24523								306.40	306.70	0.30	0.3	0.3m @ 1.2 g/t

Project	Hole ID	MGA North	MGA East	RL	Azi	Dip	End Depth	Hole Type	Depth From	Depth To	Interval	Gram Metres	Au g/t interval
RIVERINA	RCV24524	6706370		274	228	-46	331	UGD	10.00	11.00	1.00	1.1	1.0m @ 1.1 g/t
	RCV24524								46.02	49.90	3.88	4.5	3.9m @ 1.2 g/t
	RCV24524								57.07	57.46	0.39	0.7	0.4m @ 1.7 g/t
	RCV24524								76.96	77.62	0.66	1.5	0.7m @ 2.3 g/t
	RCV24524								83.04	83.57	0.53	1.3	0.5m @ 2.4 g/t
	RCV24524								146.91	147.37	0.46	0.5	0.5m @ 1.1 g/t
	RCV24524								184.10	184.60	0.50	7.7	0.5m @ 15.4 g/t
	RCV24524								204.76	205.07	0.31	1.1	0.3m @ 3.5 g/t
	RCV24527	6706371	264635	274	278	-53	327	UGD	39.15	44.00	4.85	9.9	4.9m @ 2.0 g/t
	RCV24527								54.80	57.00	2.20	5.8	2.2m @ 2.6 g/t
	RCV24527								Incl 54.80	55.15	0.35	4.4	0.4m @ 12.5 g/t
	RCV24527								60.00	63.00	3.00	7.7	3.0m @ 2.6 g/t
	RCV24527								150.30	150.60	0.30	0.5	0.3m @ 1.6 g/t
RIVERINA	RCV24527								174.90	176.00	1.10	1.7	1.1m @ 1.5 g/t
	RCV24527								192.00	193.00	1.00	3.4	1.0m @ 3.4 g/t
	RCV24527								192.00	200.10	1.99	6.4	2.0m @ 3.2 g/t
	RCV24527								286.05	287.00	0.95	13.8	1.0m @ 14.5 g/t
	RCV24527								291.00	292.00	1.00	7.8	1.0m @ 7.8 g/t
	RGC24439	6706476	264572	217	224	-28	132	UGD	7.56	8.57	1.00	7.5	1.0m @ 7.4 g/t
	RGC24439	0700470	204372	217	224	-20	152	000	11.00	11.70	0.70	2.0	0.7m @ 2.9 g/t
	RGC24439								21.00	22.00	1.00	1.6	1.0m @ 1.6 g/t
	RGC24439								32.36	32.67	0.31	0.4	0.3m @ 1.3 g/t
RIVERINA												7.8	
	RGC24439								92.00	92.75	0.75		0.8m @ 10.4 g/t
	RGC24439								Incl 92.45	92.75	0.30	6.9	0.3m @ 23.1 g/t
	RGC24439								103.40	103.70	0.30	0.9	0.3m @ 3.0 g/t
	RGC24439	6706476	264572	247	224	22	400	LICD	120.00	121.00	1.00	1.8	1.0m @ 1.8 g/t
	RGC24440	6706476	264572	217	234	-32	123	UGD	10.00	11.00	1.00	6.0	1.0m @ 6.0 g/t
	RGC24440								24.00	25.00	1.00	1.1	1.0m @ 1.1 g/t
RIVERINA	RGC24440								70.00	71.00	1.00	1.5	1.0m @ 1.5 g/t
	RGC24440								82.34	82.64	0.30	2.2	0.3m @ 7.5 g/t
	RGC24440	6706477					105		95.14	95.65	0.51	1.9	0.5m @ 3.8 g/t
	RGC24441	6706477	264572	217	246	-35	105	UGD	15.56	18.00	2.44	5.9	2.4m @ 2.4 g/t
	RGC24441								53.27	53.57	0.30	0.6	0.3m @ 1.8 g/t
RIVERINA	RGC24441								75.60	78.00	2.40	14.4	2.4m @ 6.0 g/t
	RGC24441								Incl 77.00	78.00	1.00	10.2	1.0m @ 10.2 g/t
	RGC24441								91.30	91.97	0.67	4.7	0.7m @ 7.0 g/t
	RGC24441			<u>.</u>	a = 1	-			Incl 91.30	91.67	0.37	4.4	0.4m @ 11.8 g/t
	RGC24442	6706482	264571	217	252	-35	107	UGD	14.40	15.00	0.60	0.8	0.6m @ 1.4 g/t
	RGC24442								22.60	23.00	0.40	1.0	0.4m @ 2.5 g/t
	RGC24442								39.00	40.00	1.00	2.6	1.0m @ 2.6 g/t
RIVERINA	RGC24442								46.80	47.10	0.30	0.6	0.3m @ 2.1 g/t
	RGC24442								72.10	72.70	0.60	8.7	0.6m @ 14.5 g/t
	RGC24442								Incl 72.40	72.70	0.30	8.2	0.3m @ 27.4 g/t
	RGC24442								87.00	87.74	0.74	4.1	0.7m @ 5.5 g/t
	RGC24445	6706476	264572	217	221	-34	146	UGD	2.73	3.30	0.57	1.2	0.6m @ 2.1 g/t
	RGC24445								20.13	21.00	0.87	1.7	0.9m @ 1.9 g/t
	RGC24445								24.00	26.32	2.32	6.6	2.3m @ 2.8 g/t
	RGC24445								50.30	52.00	1.70	3.1	1.7m @ 1.8 g/t
RIVERINA	RGC24445								99.17	100.33	1.16	17.1	1.2m @ 14.8 g/t
	RGC24445								Incl 99.17	100.00	0.83	16.1	0.8m @ 19.4 g/t
	RGC24445								102.40	103.00	0.60	1.5	0.6m @ 2.5 g/t
	RGC24445								115.63	116.86	1.23	8.9	1.2m @ 7.3 g/t
	RGC24445								Incl 116.26	116.56	0.30	5.4	0.3m @ 18.0 g/t

Project	Hole ID	MGA North	MGA East	RL	Azi	Dip	End Depth	Hole Type	Depth From	Depth To	Interval	Gram Metres	Au g/t interval
RIVERINA	RGC24455	6706477		216	245	-50	134	UGD	19.00	22.00	3.00	5.3	3.0m @ 1.8 g/t
	RGC24455								49.00	50.00	1.00	1.2	1.0m @ 1.2 g/t
	RGC24455								54.94	55.54	0.60	1.2	0.6m @ 2.0 g/t
	RGC24455								92.93	95.47	2.54	49.9	2.5m @ 19.7 g/t
	RGC24455								Incl 93.87	95.17	1.30	47.0	1.3m @ 36.2 g/t
	RGC24455								112.62	112.92	0.30	1.7	0.3m @ 5.5 g/t
	RGC24457	6706477	264572	216	233	-46	153	UGD	21.00	26.00	5.00	8.5	5.0m @ 1.7 g/t
	RGC24457								30.45	30.92	0.47	0.6	0.5m @ 1.3 g/t
RIVERINA	RGC24457								50.40	51.00	0.60	1.1	0.6m @ 1.8 g/t
	RGC24457								54.00	58.46	4.46	5.2	4.5m @ 1.2 g/t
	RGC24457								96.57	97.66	1.09	3.4	1.1m @ 3.1 g/t
	RGC24458	6706476	264572	216	227	-51	164	UGD	22.55	29.00	6.45	8.7	6.5m @ 1.3 g/t
	RGC24458								34.00	34.62	0.62	0.7	0.6m @ 1.1 g/t
	RGC24458								59.00	63.00	4.00	5.3	4.0m @ 1.3 g/t
	RGC24458								89.00	90.00	1.00	1.2	1.0m @ 1.2 g/t
RIVERINA	RGC24458								111.58	112.73	1.15	23.0	1.2m @ 20.0 g/t
	RGC24458								Incl 111.58	112.40	0.82	22.1	0.8m @ 26.9 g/t
	RGC24458								133.15	133.68	0.53	0.8	0.5m @ 1.6 g/t
	RGC24458								135.32	136.00	0.68	1.1	0.7m @ 1.6 g/t
	RGC24459	6706476	264572	216	224	-42	155	UGD	24.00	25.00	1.00	1.5	1.0m @ 1.5 g/t
	RGC24459								60.43	61.00	0.57	1.8	0.6m @ 3.2 g/t
	RGC24459								88.00	89.00	1.00	3.6	1.0m @ 3.6 g/t
RIVERINA	RGC24459								102.50	104.00	1.50	26.0	1.5m @ 17.3 g/t
	RGC24459								Incl 102.80	103.35	0.55	23.4	0.6m @ 42.5 g/t
	RGC24459								109.00	110.00	1.00	1.2	1.0m @ 1.2 g/t
	RGC24459								118.03	119.30	1.27	22.5	1.3m @ 17.7 g/t
	RGC24460	6706476	264572	216	219	-46	174	UGD	31.00	34.00	3.00	19.7	3.0m@6.6g/t
	RGC24460								Incl 33.00	34.00	1.00	16.9	1.0m @ 16.9 g/t
	RGC24460								68.80	75.00	6.20	9.9	6.2m @ 1.6 g/t
RIVERINA	RGC24460								Incl 69.10	69.40	0.30	5.1	0.3m @ 17.1 g/t
	RGC24460								113.75	114.88	1.13	12.4	1.1m @ 11.0 g/t
	RGC24460								Incl 114.05	114.58	0.53	11.0	0.5m @ 20.8 g/t
	RGC24460								132.03	133.72	1.69	7.8	1.7m @ 4.6 g/t
	RGC24529	6706370	264635	274	273	-41	261	UGD	7.84	8.14	0.30	0.3	0.3m @ 1.0 g/t
	RGC24529								33.87	34.17	0.30	0.3	0.3m @ 1.2 g/t
	RGC24529								46.00	47.00	1.00	3.6	1.0m @ 3.6 g/t
DI (53.1.1	RGC24529								57.88	58.25	0.37	0.5	0.4m @ 1.4 g/t
RIVERINA	RGC24529								113.34	114.61	1.27	17.8	1.3m @ 14.0 g/t
	RGC24529								Incl 113.34	113.65	0.31	15.7	0.3m @ 50.5 g/t
	RGC24529								155.88	156.18	0.30	0.8	0.3m @ 2.7 g/t
	RGC24529								163.43	163.73	0.30	0.4	0.3m @ 1.3 g/t
	RGC24530	6706371	264635	274	283	-40	253	UGD	34.75	38.10	3.35	4.9	3.4m @ 1.5 g/t
	RGC24530								47.00	48.00	1.00	2.3	1.0m @ 2.3 g/t
	RGC24530								53.00	54.00	1.00	1.7	1.0m @ 1.7 g/t
	RGC24530								57.00	57.55	0.55	0.9	0.6m @ 1.6 g/t
	RGC24530								93.00	94.00	1.00	2.8	1.0m @ 2.8 g/t
RIVERINA	RGC24530								119.00	120.00	1.00	1.4	1.0m @ 1.4 g/t
	RGC24530								123.70	124.00	0.30	0.4	0.3m @ 1.3 g/t
	RGC24530								157.00	157.60	0.60	16.3	0.6m @ 27.2 g/t
	RGC24530								Incl 157.00	157.30	0.30	14.1	0.3m @ 46.9 g/t
	RGC24530								164.64	165.40	0.76	2.5	0.8m @ 3.3 g/t
	RGC24530								182.00	183.00	1.00	1.2	1.0m @ 1.2 g/t

Project	Hole ID	MGA North	MGA East	RL	Azi	Dip	End Depth	Hole Type	Depth From	Depth To	Interval	Gram Metres	Au g/t interval
	RGC24532	6706370	264635	274	273	-46	274	UGD	36.00	37.00	1.00	1.4	1.0m @ 1.4 g/t
	RGC24532								42.00	44.00	2.00	3.0	2.0m @ 1.5 g/t
	RGC24532								121.24	123.10	1.86	4.8	1.9m @ 2.6 g/t
RIVERINA	RGC24532								138.15	138.45	0.30	0.6	0.3m @ 1.9 g/t
	RGC24532								146.64	147.00	0.36	0.6	0.4m @ 1.7 g/t
	RGC24532								167.51	172.00	4.49	30.2	4.5m @ 6.7 g/t
	RGC24532								Incl 167.51	168.37	0.86	26.6	0.9m @ 30.9 g/t
RIVERINA	RGC25016	6706772	264550	239	97	25	131	UGD	29.52	29.99	0.47	1.5	0.5m @ 3.1 g/t
	RGC25016								35.70	38.64	2.94	3.0	2.9m @ 1.0 g/t
	RGC25016								63.00	64.00	1.00	1.1	1.0m @ 1.1 g/t
	RGC25016								71.00	72.00	1.00	2.7	1.0m @ 2.7 g/t
	RGC25016								78.00	78.85	0.85	1.0	0.9m @ 1.2 g/t
	RGC25016								79.80	80.20	0.40	0.4	0.4m @ 1.1 g/t
	RGC25016								97.00	98.00	1.00	1.1	1.0m @ 1.1 g/t
	RGC25016								123.50	123.80	0.30	0.3	0.3m @ 1.0 g/t
	RGC25024	6706708	264551	235	142	-35	86	UGD	1.00	2.00	1.00	33.2	1.0m @ 33.2 g/t
	RGC25024								46.30	46.60	0.30	0.4	0.3m @ 1.4 g/t
	RGC25024								48.00	48.40	0.40	0.4	0.4m @ 1.1 g/t
	RGC25024								51.50	58.10	6.60	22.4	6.6m @ 3.4 g/t
	RGC25024								Incl 51.85	52.25	0.40	10.8	0.4m @ 27.0 g/t
RIVERINA	RGC25024								60.35	60.95	0.60	22.6	0.6m @ 37.6 g/t
	RGC25024								Incl 60.65	60.95	0.30	22.1	0.3m @ 73.7 g/t
	RGC25024								63.00	63.55	0.55	0.6	0.6m @ 1.0 g/t
	RGC25024								66.10	70.00	3.90	4.5	3.9m @ 1.2 g/t
	RGC25024								74.00	75.00	1.00	1.2	1.0m @ 1.2 g/t
	RGC25024								80.00	82.00	2.00	10.4	2.0m @ 5.2 g/t
	RGC25046	6707083	264609	323	276	-3	231	UGD	16.00	17.10	1.10	1.4	1.1m @ 1.3 g/t
	RGC25046								54.00	55.00	1.00	1.5	1.0m @ 1.5 g/t
	RGC25046								72.20	73.00	0.80	1.1	0.8m @ 1.3 g/t
	RGC25046								77.08	77.70	0.62	17.4	0.6m @ 28.1 g/t
RIVERINA	RGC25046								97.53	97.96	0.43	1.1	0.4m @ 2.6 g/t
	RGC25046								153.00	154.00	1.00	1.0	1.0m @ 1.0 g/t
	RGC25046								173.27	174.00	0.73	29.9	0.7m @ 41.0 g/t
	RGC25046								219.00	220.39	1.39	4.4	1.4m @ 3.1 g/t
	RGC25047	6707083	264609	323	281	-3	237	UGD	12.00	13.00	1.00	1.5	1.0m @ 1.5 g/t
	RGC25047								55.00	56.00	1.00	2.0	1.0m @ 2.0 g/t
	RGC25047								93.00	96.50	3.50	3.8	3.5m @ 1.1 g/t
RIVERINA	RGC25047								97.86	98.28	0.42	0.5	0.4m @ 1.2 g/t
	RGC25047								122.35	122.65	0.30	0.7	0.3m @ 2.4 g/t
	RGC25047								154.00	155.00	1.00	1.2	1.0m @ 1.2 g/t
	RGC25047								225.10	225.40	0.30	2.2	0.3m @ 7.3 g/t
	RGC25048	6707083	264609	323	286	-3	240	UGD	1.75	2.38	0.63	0.8	0.6m @ 1.3 g/t
	RGC25048					-			76.00	76.49	0.49	0.8	0.5m @ 1.6 g/t
RIVERINA	RGC25048								115.70	116.15	0.45	1.9	0.5m @ 4.3 g/t
	RGC25048								125.00	126.00	1.00	4.0	1.0m @ 4.0 g/t
	RGC25048								230.25	231.84	1.59	31.1	1.6m @ 19.6 g/t
RIVERINA	RGC25048	6707083	264609	323	290	-2	244	UGD	14.35	15.00	0.65	3.8	0.7m @ 5.8 g/t
	RGC25049		_0.005	525	200	-	- 17	0.00	53.00	53.37	0.37	0.5	0.4m @ 1.4 g/t
	RGC25049								77.00	78.67	1.67	1.7	1.7m @ 1.0 g/t
	NGC23049		-						77.00	/0.0/	1.07	1.7	1.7 III @ 1.0 g/t

Project	Hole ID	MGA	MGA	RL	Azi	Dip	End	Hole	Depth	Depth	Interval	Gram	Au g/t interval
	RGC25163	North 6706395	East 264489	214	277	14	Depth 45	Type UGD	From 16.00	To 27.75	11.75	Metres 115.3	11.8m @ 9.8 g/t
	RGC25163	0,00000	201105		277			000	Incl 17.85	20.00	2.15	45.2	2.2m @ 21.0 g/t
RIVERINA	RGC25163								Incl 23.60	27.75	4.15	48.9	4.2m @ 11.8 g/t
	RGC25163								33.30	33.90	0.60	2.1	0.6m @ 3.5 g/t
	RGC25164	6706395	264489	212	267	-23	47	UGD	4.20	4.50	0.30	0.5	0.3m @ 1.7 g/t
RIVERINA	RGC25164	0,00000	201105		207	20	.,	000	6.10	7.32	1.22	1.6	1.2m @ 1.4 g/t
RIVERINA	RGC25165	6706384	264484	214	224	0	30	UGD	16.00	16.35	0.35	1.2	0.4m @ 3.5 g/t
RIVERINA	RGC25168	6706610			254	-62	312	UGD	1.85	2.15	0.30	0.3	0.3m @ 1.1 g/t
	RGC25168								14.55	15.00	0.45	0.7	0.5m @ 1.6 g/t
	RGC25168								16.00	16.50	0.50	0.5	0.5m @ 1.1 g/t
	RGC25168								17.00	17.55	0.55	0.9	0.6m @ 1.7 g/t
	RGC25168								32.04	34.58	2.54	2.9	2.5m @ 1.1 g/t
	RGC25168								46.45	46.75	0.30	0.4	0.3m @ 1.5 g/t
	RGC25168								50.35	52.04	1.69	8.4	1.7m @ 5.0 g/t
	RGC25168								Incl 50.35	50.65	0.30	3.3	0.3m @ 11.1 g/t
	RGC25168								57.38	60.78	3.40	3.9	3.4m @ 1.1 g/t
	RGC25168								98.52	99.79	1.27	4.4	1.3m @ 3.4 g/t
	RGC25168								136.00	137.00	1.00	1.9	1.0m @ 1.9 g/t
	RGC25168								142.05	142.39	0.34	1.4	0.3m @ 4.0 g/t
	RGC25168								165.00	165.50	0.50	9.5	0.5m @ 19.0 g/t
	RGC25168								167.79	168.43	0.64	1.7	0.6m @ 2.7 g/t
	RGC25168								173.56	174.00	0.44	3.5	0.4m @ 7.8 g/t
	RGC25168								231.00	231.89	0.89	1.8	0.9m @ 2.0 g/t
	RGC25168								259.50	264.17	4.67	58.5	4.7m @ 12.5 g/t
	RGC25168								Incl 259.50	260.00	0.50	54.0	0.5m @ 108.0 g/t
	RGC25168								268.61	269.00	0.39	0.6	0.4m @ 1.5 g/t
	RGC25168								270.30	270.60	0.30	0.7	0.3m @ 2.4 g/t
	RGC25196	6706570	264553	188	241	-19	81	UGD	0.00	0.82	0.82	19.5	0.8m @ 23.8 g/t
	RGC25196	0,000,0	20.000	100	2.12	10	01	000	15.69	16.35	0.66	9.4	0.7m @ 14.2 g/t
	RGC25196								20.65	22.49	1.84	5.7	1.8m @ 3.1 g/t
	RGC25196								Incl 20.65	21.00	0.35	4.4	0.4m @ 12.7 g/t
	RGC25196								24.93	25.45	0.52	0.6	0.5m @ 1.2 g/t
RIVERINA	RGC25196								41.69	42.60	0.91	1.4	0.9m @ 1.6 g/t
	RGC25196								55.62	56.57	0.95	7.1	1.0m @ 7.4 g/t
	RGC25196								Incl 55.92	56.27	0.35	5.6	0.4m @ 15.9 g/t
	RGC25196								67.81	69.50	1.69	129.2	1.7m @ 76.4 g/t
	RGC25196								Incl 67.81	68.80	0.99	128.2	1.0m @ 129.5 g/t
	RGC25197	6706570	264553	190	262	5	54	UGD	14.40	15.10	0.70	1.4	0.7m @ 2.1 g/t
	RGC25197					5	2.	2.00	18.05	18.76	0.70	6.1	0.7m @ 8.6 g/t
	RGC25197								Incl 18.05	18.46	0.41	5.7	0.4m @ 13.8 g/t
RIVERINA	RGC25197								22.07	22.37	0.30	0.7	0.3m @ 2.5 g/t
	RGC25197								28.00	29.00	1.00	1.2	1.0m @ 1.2 g/t
	RGC25197								48.58	49.50	0.92	12.4	0.9m @ 13.5 g/t
	RGC25197								Incl 48.58	49.20	0.62	10.5	0.6m @ 16.9 g/t
	RGC25197 RGC25198	6706571	264552	188	274	-18	87	UGD	10.62	10.92	0.82	2.1	0.3m @ 7.0 g/t
	RGC25198		-0-333	100	2/4	10	07	000	53.07	53.72	0.65	5.3	0.7m @ 8.1 g/t
RIVERINA	RGC25198 RGC25198								64.44	66.95	2.51	3.2	2.5m @ 1.3 g/t
	RGC25198	6706571	264552	180	294	-16	90	UGD	13.50	15.80	2.31	2.4	2.3m @ 1.0 g/t
	RGC25199		-0-333	105	2.54	10	50	000	20.30	24.00	3.70	45.3	3.7m @ 12.2 g/t
	RGC25199								Incl 20.30	20.60	0.30	16.5	0.3m @ 55.0 g/t
	RGC25199								Incl 23.00	24.00	1.00	26.6	1.0m @ 26.6 g/t
RIVERINA	RGC25199								60.56	61.41	0.85	5.1	0.9m @ 6.0 g/t
													-
	RGC25199								73.34	74.64	1.30	7.4	1.3m @ 5.7 g/t
	RGC25199			-	-	-			Incl 74.22	74.64	0.42	6.7	0.4m @ 15.9 g/t

Project	Hole ID	MGA North	MGA East	RL	Azi	Dip	End Depth	Hole	Depth From	Depth To	Interval	Gram Metres	Au g/t interval
	RGC25201	6706434		214	209	13	51	Type UGD	33.00	35.31	2.31	2.6	2.3m @ 1.1 g/t
RIVERINA	RGC25201								37.38	42.42	5.04	59.4	5.0m @ 11.8 g/t
	RGC25201								48.08	48.60	0.52	0.5	0.5m @ 1.0 g/t
	RGC25202	6706434	264484	214	199	17	69	UGD	8.86	12.00	3.14	4.7	3.1m @ 1.5 g/t
RIVERINA	RGC25202								22.00	22.53	0.53	1.1	0.5m @ 2.0 g/t
	RGC25202								32.67	33.30	0.63	2.4	0.6m @ 3.8 g/t
	RGC25205	6706680	264633	184	273	-22	194	UGD	112.10	112.40	0.30	4.6	0.3m @ 15.3 g/t
	RGC25205								130.00	131.00	1.00	2.6	1.0m @ 2.6 g/t
RIVERINA	RGC25205								159.91	160.21	0.30	0.5	0.3m @ 1.7 g/t
	RGC25205								168.00	169.56	1.56	7.2	1.6m @ 4.6 g/t
	RGC25205								Incl 168.55	168.85	0.30	3.1	0.3m @ 10.4 g/t
	RGC25207	6706630	264637	192	260	-11	171	UGD	3.00	5.00	2.00	2.8	2.0m @ 1.4 g/t
	RGC25207								7.50	7.80	0.30	0.5	0.3m @ 1.7 g/t
	RGC25207								10.00	12.57	2.57	2.8	2.6m @ 1.1 g/t
	RGC25207								15.00	15.32	0.32	0.7	0.3m @ 2.3 g/t
	RGC25207								35.65	36.00	0.35	1.5	0.4m @ 4.3 g/t
	RGC25207								45.32	46.29	0.97	1.3	1.0m @ 1.3 g/t
	RGC25207								50.00	50.69	0.69	0.7	0.7m @ 1.1 g/t
RIVERINA	RGC25207								52.00	55.00	3.00	3.7	3.0m @ 1.2 g/t
	RGC25207								60.00	60.93	0.93	0.9	0.9m @ 1.0 g/t
	RGC25207								77.70	87.00	9.30	60.5	9.3m @ 6.5 g/t
	RGC25207								Incl 81.32	82.00	0.68	48.6	0.7m @ 71.5 g/t
	RGC25207								98.06	98.58	0.52	2.4	0.5m @ 4.6 g/t
	RGC25207								108.83	109.28	0.45	1.0	0.5m @ 2.3 g/t
	RGC25207								144.60	145.28	0.68	3.0	0.7m @ 4.4 g/t
	RGC25208	6706630	264637	192	252	-20	182	UGD	4.00	5.00	1.00	1.6	1.0m @ 1.6 g/t
	RGC25208								12.00	12.44	0.44	0.6	0.4m @ 1.5 g/t
	RGC25208								14.90	16.00	1.10	1.5	1.1m @ 1.4 g/t
	RGC25208								17.40	17.70	0.30	0.6	0.3m @ 2.0 g/t
	RGC25208								20.40	21.40	1.00	2.2	1.0m @ 2.2 g/t
	RGC25208								36.85	37.31	0.46	0.5	0.5m @ 1.1 g/t
	RGC25208								37.91	38.32	0.41	0.7	0.4m @ 1.8 g/t
	RGC25208								47.94	48.27	0.33	2.4	0.3m @ 7.4 g/t
RIVERINA	RGC25208								55.00	63.33	8.33	13.5	8.3m @ 1.6 g/t
	RGC25208								Incl 57.39	57.80	0.41	4.1	0.4m @ 10.1 g/t
	RGC25208								80.35	80.65	0.30	0.4	0.3m @ 1.4 g/t
	RGC25208								81.62	84.26	2.64	2.8	2.6m @ 1.1 g/t
	RGC25208								86.00	87.60	1.60	2.0	1.6m @ 1.3 g/t
	RGC25208								102.00	102.37	0.37	0.4	0.4m @ 1.1 g/t
	RGC25208								151.17	152.20	1.03	3.2	1.0m @ 3.1 g/t
	RGC25208								162.25	163.27	1.02	2.7	1.0m @ 2.6 g/t
	RGC25208								182.00	182.40	0.40	1.0	0.4m @ 2.5 g/t
RIVERINA	RGC25209	6706630	264637	192	259	-27	180	UGD	4.00	5.00	1.00	1.1	1.0m @ 1.1 g/t
	RGC25209								6.88	8.48	1.60	1.8	1.6m @ 1.1 g/t
	RGC25209								14.26	15.00	0.74	0.8	0.7m @ 1.0 g/t

Project	Hole ID	MGA	MGA	RL	Azi	Dip	End	Hole	Depth	Depth	Interval	Gram	Au g/t interval
	RGC25209	North	East				Depth	Туре	From 21.02	To 21.32	0.30	0.4	0.3m @ 1.4 g/t
	RGC25209								23.00	23.40	0.40	0.9	0.4m @ 2.3 g/t
	RGC25209								25.00	26.00	1.00	1.0	1.0m @ 1.0 g/t
	RGC25209								38.95	40.18	1.23	12.6	1.2m @ 10.2 g/t
	RGC25209								Incl 39.88	40.18	0.30	11.1	0.3m @ 37.0 g/t
	RGC25209								49.67	50.16	0.49	0.8	0.5m @ 1.6 g/t
	RGC25209								56.90	60.60	3.70	4.8	3.7m @ 1.3 g/t
	RGC25209								82.81	87.00	4.19	31.5	4.2m @ 7.5 g/t
	RGC25209								Incl 83.90	84.23	0.33	3.9	0.3m @ 11.9 g/t
	RGC25209								Incl 84.83	87.00	2.17	22.8	2.2m @ 10.5 g/t
	RGC25209								115.13	115.47	0.34	0.4	0.3m @ 1.2 g/t
	RGC25209								125.58	125.88	0.30	0.3	0.3m @ 1.1 g/t
	RGC25209								131.00	131.50	0.50	1.0	0.5m @ 2.1 g/t
	RGC25209								158.66	159.10	0.44	1.8	0.4m @ 4.2 g/t
	RGC25209								168.91	170.04	1.13	5.2	1.1m @ 4.6 g/t
	RGC25210	6706630	264637	192	276	-26	189	UGD	4.57	7.09	2.52	5.1	2.5m @ 2.0 g/t
	RGC25210					_ 0			14.00	14.43	0.43	0.9	0.4m @ 2.1 g/t
	RGC25210								19.53	19.83	0.30	0.9	0.3m @ 2.9 g/t
	RGC25210								22.34	22.71	0.37	1.1	0.4m @ 2.9 g/t
	RGC25210								40.00	41.00	1.00	2.0	1.0m @ 2.0 g/t
	RGC25210								47.00	52.40	5.40	16.8	5.4m @ 3.1 g/t
	RGC25210								Incl 50.41	50.88	0.47	9.6	0.5m @ 20.5 g/t
	RGC25210								55.60	56.00	0.40	0.5	0.4m @ 1.2 g/t
	RGC25210								59.31	64.72	5.41	11.6	5.4m @ 2.1 g/t
	RGC25210								Incl 59.31	59.62	0.31	6.8	0.3m @ 22.1 g/t
RIVERINA	RGC25210								83.61	85.50	1.89	5.8	1.9m @ 3.1 g/t
	RGC25210								85.70	87.16	1.46	1.6	1.5m @ 1.1 g/t
	RGC25210								105.43	105.73	0.30	0.3	0.3m @ 1.1 g/t
	RGC25210								117.60	118.58	0.98	7.6	1.0m @ 7.7 g/t
	RGC25210								Incl 117.60	118.00	0.40	6.2	0.4m @ 15.5 g/t
	RGC25210								137.00	138.00	1.00	1.0	1.0m @ 1.0 g/t
	RGC25210								152.00	154.00	2.00	5.5	2.0m @ 2.7 g/t
	RGC25210								163.91	165.98	2.07	15.3	2.1m @ 7.4 g/t
	RGC25210								Incl 164.80	165.24	0.44	8.8	0.4m @ 20.0 g/t
	RGC25210								174.29	175.83	1.54	19.6	1.5m @ 12.7 g/t
	RGC25211	6706630	264637	192	251	-33	198	UGD	4.90	11.00	6.10	6.5	6.1m @ 1.1 g/t
	RGC25211					20	0		15.00	15.30	0.30	0.3	0.3m @ 1.1 g/t
	RGC25211								21.49	23.00	1.51	3.5	1.5m @ 2.3 g/t
	RGC25211								44.20	45.00	0.80	1.4	0.8m @ 1.8 g/t
	RGC25211								54.00	57.00	3.00	8.0	3.0m @ 2.7 g/t
	RGC25211								61.60	65.50	3.90	8.9	3.9m @ 2.3 g/t
	RGC25211								68.64	69.54	0.90	2.0	0.9m @ 2.2 g/t
	RGC25211								92.26	94.62	2.36	17.0	2.4m @ 7.2 g/t
RIVERINA	RGC25211 RGC25211								Incl 94.00	94.62	0.62	7.4	0.6m @ 12.0 g/t
	RGC25211 RGC25211								113.00	113.90	0.02	1.7	0.9m @ 1.9 g/t
	RGC25211 RGC25211								113.00 125.40	113.90 126.40	1.00	20.1	1.0m @ 20.1 g/t
	RGC25211 RGC25211								Incl 125.80	126.40	0.60	18.6	0.6m @ 31.0 g/t
	RGC25211 RGC25211								143.00	144.00	1.00	18.6	
									143.00 170.00	144.00 172.00			1.0m @ 1.7 g/t 2.0m @ 6.7 g/t
	RGC25211 RGC25211								Incl 170.60	172.00	2.00 0.40	13.4 10.2	-
	RGC25211												0.4m @ 25.6 g/t
	RGC25211								182.80	183.90	1.10	4.6	1.1m @ 4.2 g/t

Project	Hole ID	MGA North	MGA East	RL	Azi	Dip	End Depth	Hole Type	Depth From	Depth To	Interval	Gram Metres	Au g/t interval
	RGC25212							.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	20.00	21.00	1.00	1.6	1.0m @ 1.6 g/t
	RGC25212								33.00	34.00	1.00	1.3	1.0m @ 1.3 g/t
	RGC25212								49.00	53.66	4.66	20.7	4.7m @ 4.4 g/t
	RGC25212								Incl 50.00	50.61	0.61	13.9	0.6m @ 22.8 g/t
	RGC25212								58.00	59.00	1.00	3.0	1.0m @ 3.0 g/t
	RGC25212								62.00	64.00	2.00	3.4	2.0m @ 1.7 g/t
	RGC25212								67.31	68.28	0.97	3.8	1.0m @ 3.9 g/t
	RGC25212								Incl 67.98	68.28	0.30	3.1	0.3m @ 10.4 g/t
	RGC25212								90.20	91.00	0.80	1.1	0.8m @ 1.4 g/t
	RGC25228	6706678	264633	187	267	-3	170	UGD	3.00	4.00	1.00	1.0	1.0m @ 1.0 g/t
	RGC25228								45.30	53.70	8.40	28.2	8.4m @ 3.4 g/t
	RGC25228								Incl 53.40	53.70	0.30	17.3	0.3m @ 57.6 g/t
D.11/501014	RGC25228								75.00	76.60	1.60	7.0	1.6m @ 4.4 g/t
RIVERINA	RGC25228								105.48	108.00	2.52	5.9	2.5m @ 2.3 g/t
	RGC25228								149.84	150.60	0.76	3.4	0.8m @ 4.5 g/t
	RGC25228								158.03	159.12	1.09	16.1	1.1m @ 14.8 g/t
	RGC25228								Incl 158.52	159.12	0.60	12.5	0.6m @ 20.9 g/t
	RGC25229	6706678	264633	187	278	-2	173	UGD	46.59	52.60	6.01	14.3	6.0m @ 2.4 g/t
	RGC25229								Incl 50.13	50.43	0.30	7.8	0.3m @ 26.1 g/t
	RGC25229								76.20	81.00	4.80	10.6	4.8m @ 2.2 g/t
	RGC25229								98.00	99.00	1.00	1.0	1.0m @ 1.0 g/t
RIVERINA	RGC25229								107.00	109.61	2.61	5.8	2.6m @ 2.2 g/t
	RGC25229								Incl 108.73	109.06	0.33	4.0	0.3m @ 12.1 g/t
	RGC25229								155.01	155.31	0.30	0.3	0.3m @ 1.2 g/t
	RGC25229								164.33	166.00	1.67	13.9	1.7m @ 8.3 g/t
	RGC25229								Incl 164.33	165.00	0.67	13.2	0.7m @ 19.7 g/t
	RGC25231	6706678	264633	187	301	-2	230	UGD	132.96	133.92	0.96	2.6	1.0m @ 2.7 g/t
	RGC25231								178.00	179.00	1.00	4.7	1.0m @ 4.7 g/t
RIVERINA	RGC25231								207.79	208.51	0.72	5.6	0.7m @ 7.7 g/t
	RGC25231								215.77	216.82	1.05	4.5	1.1m @ 4.3 g/t
RIVERINA	RRD24383	6706447	264625	272	253	-64	311	UGD	25.99	26.55	0.56	0.6	0.6m @ 1.1 g/t
	RRD24383								28.00	31.00	3.00	3.5	3.0m @ 1.2 g/t
	RRD24383								51.60	53.00	1.40	34.3	1.4m @ 24.5 g/t
	RRD24383								Incl 52.00	53.00	1.00	32.0	1.0m @ 32.0 g/t
	RRD24383								55.00	56.00	1.00	1.4	1.0m @ 1.4 g/t
	RRD24383								67.70	68.50	0.80	1.4	0.8m @ 1.8 g/t
	RRD24383								112.00	115.50	3.50	4.8	3.5m @ 1.4 g/t
	RRD24383								141.00	142.00	1.00	2.1	1.0m @ 2.1 g/t
	RRD24383								221.00	222.00	1.00	1.1	1.0m @ 1.1 g/t
	RRD24383								231.00	232.00	1.00	9.7	1.0m @ 9.7 g/t
	RRD24383								245.18	232.00 246.36	1.18	10.7	1.2m @ 9.1 g/t
	RRD24383								243.18	240.30	4.45	14.7	4.5m @ 3.3 g/t
	RRD24383								Incl 267.00	267.34	4.45 0.34	4.4	4.5m @ 3.3 g/t 0.3m @ 12.9 g/t
DIV/FORM		6706402	264622	272	224	-70	521						-
RIVERINA	RRD25055	6706403	204032	2/3	224	-70	531	UGD	104.00	104.44	0.44	0.5	0.4m @ 1.2 g/t
	RRD25055								115.00	116.00	1.00	1.1	1.0m @ 1.1 g/t
	RRD25055								134.75	135.10	0.35	0.5	0.4m @ 1.5 g/t
	RRD25055								230.10	230.69	0.59	0.9	0.6m @ 1.5 g/t
	RRD25055								240.06	241.00	0.94	3.3	0.9m @ 3.6 g/t

Project	Hole ID	MGA North	MGA East	RL	Azi	Dip	End Depth	Hole Type	Depth From	Depth To	Interval	Gram Metres	Au g/t interval
	RRD25055							11 -	325.35	325.65	0.30	20.1	0.3m @ 66.9 g/t
	RRD25055								335.50	336.89	1.39	3.0	1.4m @ 2.2 g/t
	RRD25055								367.00	368.00	1.00	1.4	1.0m @ 1.4 g/t
	RRD25055								387.35	388.15	0.80	0.8	0.8m @ 1.0 g/t
	RRD25055								416.35	419.00	2.65	4.6	2.7m @ 1.8 g/t
	RRD25055								442.50	442.90	0.40	7.2	0.4m @ 18.0 g/t
	RRD25055								445.30	449.20	3.90	16.5	3.9m @ 4.2 g/t
	RRD25055								Incl 447.65	448.60	0.95	11.1	1.0m @ 11.7 g/t
	RRD25055								480.55	483.55	3.00	4.9	3.0m @ 1.6 g/t
	RRD25071	6707089	264610	322	249	-37	356	UGD	2.00	3.00	1.00	2.0	1.0m @ 2.0 g/t
	RRD25071								13.00	13.30	0.30	0.3	0.3m @ 1.1 g/t
	RRD25071								82.50	82.80	0.30	0.6	0.3m @ 1.8 g/t
	RRD25071								84.90	85.20	0.30	0.3	0.3m @ 1.0 g/t
RIVERINA	RRD25071								131.15	132.25	1.10	1.2	1.1m @ 1.1 g/t
	RRD25071								141.50	142.65	1.15	1.7	1.2m @ 1.5 g/t
	RRD25071								146.65	147.10	0.45	0.6	0.5m @ 1.4 g/t
	RRD25071								252.00	252.45	0.45	0.5	0.5m @ 1.2 g/t
	RRD25073	6707089	264610	322	299	-15	141	UGD	1.98	2.60	0.62	0.9	0.6m @ 1.5 g/t
	RRD25073								93.00	93.73	0.73	1.5	0.7m @ 2.0 g/t
RIVERINA	RRD25073								125.13	127.38	2.25	7.5	2.3m @ 3.3 g/t
	RRD25073								Incl 127.00	127.38	0.38	5.5	0.4m @ 14.6 g/t
	RRD25073								134.73	135.28	0.55	0.7	0.6m @ 1.2 g/t
	RRD25076	6707089	264609	322	294	-27	288	UGD	2.29	2.59	0.30	0.4	0.3m @ 1.2 g/t
	RRD25076								24.56	25.20	0.64	0.7	0.6m @ 1.0 g/t
	RRD25076								47.00	48.00	1.00	1.1	1.0m @ 1.1 g/t
	RRD25076								82.50	83.03	0.53	1.9	0.5m @ 3.5 g/t
	RRD25076								93.85	94.15	0.30	11.6	0.3m @ 38.6 g/t
	RRD25076								127.00	128.00	1.00	1.4	1.0m @ 1.4 g/t
RIVERINA	RRD25076								137.72	139.77	2.05	9.8	2.1m @ 4.8 g/t
	RRD25076								Incl 138.63	139.16	0.53	6.5	0.5m @ 12.2 g/t
	RRD25076								143.00	146.00	3.00	6.6	3.0m @ 2.2 g/t
	RRD25076								153.60	153.91	0.31	1.0	0.3m @ 3.4 g/t
	RRD25076								161.44	164.00	2.56	8.6	2.6m @ 3.4 g/t
	RRD25076								268.00	269.00	1.00	1.2	1.0m @ 1.2 g/t
	RRD25077	6707089	264610	323	282	-29	262	UGD	15.20	15.65	0.45	0.5	0.5m @ 1.1 g/t
	RRD25077								75.00	75.30	0.30	0.8	0.3m @ 2.8 g/t
	RRD25077								85.00	86.00	1.00	1.4	1.0m @ 1.4 g/t
	RRD25077								122.25	123.45	1.20	4.4	1.2m @ 3.7 g/t
RIVERINA	RRD25077								127.95	128.45	0.50	2.8	0.5m @ 5.5 g/t
	RRD25077								131.15	136.75	5.60	20.1	5.6m @ 3.6 g/t
	RRD25077								156.00	157.00	1.00	2.0	1.0m @ 2.0 g/t
	RRD25077								192.00	193.00	1.00	1.3	1.0m @ 1.3 g/t
	RRD25078	6707089	264610	323	268	-29	255	UGD	2.00	2.65	0.65	1.1	0.7m @ 1.8 g/t
	RRD25078								17.00	18.00	1.00	1.2	1.0m @ 1.2 g/t
	RRD25078								73.55	73.85	0.30	0.8	0.3m @ 2.5 g/t
RIVERINA	RRD25078								84.00	85.55	1.55	4.1	1.6m @ 2.6 g/t
	RRD25078								233.65	235.05	1.40	2.1	1.4m @ 1.5 g/t
	RRD25078								248.65	249.00	0.35	0.6	0.4m @ 1.6 g/t
RIVERINA	RRD25079	6707089	264610	323	256	-29	254	UGD	73.00	75.25	2.25	2.9	2.3m @ 1.3 g/t
	RRD25079								82.32	82.92	0.60	0.7	0.6m @ 1.1 g/t
	RRD25079								85.09	85.53	0.44	0.5	0.4m @ 1.2 g/t
	RRD25079								115.25	115.57	0.32	0.4	0.3m @ 1.2 g/t
	RRD25079								139.46	140.00	0.54	1.0	0.5m @ 1.9 g/t

Project	Hole ID	MGA North	MGA East	RL	Azi	Dip	End Depth	Hole Type	Depth From	Depth To	Interval	Gram Metres	Au g/t interval
	RRD25079		2000				Deptil	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	236.55	238.40	1.85	2.4	1.9m @ 1.3 g/t
	RRD25080	6707089	264610	322	298	-34	336	UGD	24.00	25.00	1.00	5.7	1.0m @ 5.7 g/t
	RRD25080								114.00	116.10	2.10	2.3	2.1m @ 1.1 g/t
	RRD25080								165.04	165.34	0.30	5.9	0.3m @ 19.6 g/t
	RRD25080								212.00	213.00	1.00	1.6	1.0m @ 1.6 g/t
RIVERINA	RRD25080								215.00	216.00	1.00	1.6	1.0m @ 1.6 g/t
	RRD25080								222.00	224.00	2.00	3.9	2.0m @ 2.0 g/t
	RRD25080								232.00	233.00	1.00	1.1	1.0m @ 1.1 g/t
	RRD25080								306.00	306.30	0.30	4.4	0.3m @ 14.6 g/t
	RRD25081	6707089	264610	322	287	-36	309	UGD	157.30	159.30	2.00	5.6	2.0m @ 2.8 g/t
RIVERINA	RRD25081								280.20	280.50	0.30	8.6	0.3m @ 28.8 g/t
	RRD25081								286.65	287.07	0.42	0.8	0.4m @ 1.8 g/t
	RRD25082	6707089	264610	322	275	-38	288	UGD	95.00	96.00	1.00	2.8	1.0m @ 2.8 g/t
	RRD25082								138.00	139.00	1.00	1.0	1.0m @ 1.0 g/t
	RRD25082								148.60	150.00	1.40	5.0	1.4m @ 3.6 g/t
RIVERINA	RRD25082								153.50	154.10	0.60	0.9	0.6m @ 1.5 g/t
	RRD25082								235.40	236.30	0.90	1.5	0.9m @ 1.6 g/t
	RRD25082								259.70	260.00	0.30	0.4	0.3m @ 1.3 g/t
	RRD25083	6707089	264610	322	262	-39	281	UGD	81.28	81.58	0.30	0.4	0.3m @ 1.2 g/t
	RRD25083								133.35	135.15	1.80	6.2	1.8m @ 3.5 g/t
	RRD25083								152.53	152.91	0.38	0.5	0.4m @ 1.3 g/t
RIVERINA	RRD25083								194.18	194.60	0.42	0.6	0.4m @ 1.4 g/t
	RRD25083								210.78	211.25	0.47	0.7	0.5m @ 1.5 g/t
	RRD25083								249.81	250.42	0.61	0.8	0.6m @ 1.4 g/t
	RRD25084	6706610	264610	197	256	-17	171	UGD	15.00	16.00	1.00	1.3	1.0m @ 1.3 g/t
	RRD25084	0,00010	201010	107	200		1/1	000	23.00	29.00	6.00	32.8	6.0m @ 5.5 g/t
	RRD25084								Incl 26.00	27.00	1.00	24.1	1.0m @ 24.1 g/t
	RRD25084								32.60	33.00	0.40	1.4	0.4m @ 3.4 g/t
	RRD25084								50.00	51.00	1.00	1.8	1.0m @ 1.8 g/t
	RRD25084								59.00	59.55	0.55	0.6	0.6m @ 1.1 g/t
RIVERINA	RRD25084								74.00	74.60	0.60	0.6	0.6m @ 1.1 g/t
RIVERINA	RRD25084								91.00	92.00	1.00	5.7	1.0m @ 5.7 g/t
	RRD25084								101.00	102.00	1.00	2.4	1.0m @ 2.4 g/t
	RRD25084								116.50	117.60	1.10	6.1	1.1m @ 5.5 g/t
	RRD25084								Incl 117.30	117.60	0.30	4.5	0.3m @ 15.1 g/t
	RRD25084								128.00	129.00	1.00	1.2	1.0m @ 1.2 g/t
	RRD25084								152.00	153.00	1.00	1.4	1.0m @ 1.4 g/t
	RRD25085	6706608	264610	107	235	-29	206	UGD	23.00	26.00	3.00	4.3	3.0m @ 1.4 g/t
	RRD25085	0700000	204010	157	235	-25	200	000	29.00	31.00	2.00	2.3	2.0m @ 1.1 g/t
	RRD25085								35.10	35.50	0.40	7.6	0.4m @ 18.9 g/t
	RRD25085								68.55	68.85	0.30	0.4	0.3m @ 1.3 g/t
RIVERINA	RRD25085								70.90	71.20	0.30	0.5	0.3m @ 1.6 g/t
RIVERINA	RRD25085								97.67	97.98	0.30	0.6	0.3m @ 1.9 g/t
													2.0m @ 3.1 g/t
	RRD25085 RRD25085								124.00	126.00 143.09	2.00	6.2	1.4m @ 5.3 g/t
	RRD25085 RRD25085								141.69 156.00	143.09	1.40 1.20	7.4 1.7	1.4m @ 5.3 g/t 1.2m @ 1.4 g/t
		6706608	264610	106	226	-37	240	UGD		14.05			
RIVERINA	RRD25086 RRD25086	0,00008	204010	190	220	-5 /	240	JGD	13.20 27.00	28.00	0.85	6.9	0.9m @ 8.1 g/t
											1.00	3.6	1.0m @ 3.6 g/t
	RRD25086								33.67	39.00	5.33	8.5	5.3m @ 1.6 g/t
	RRD25086								42.87	43.70	0.83	2.7	0.8m @ 3.3 g/t
	RRD25086								89.56	91.55	1.99	2.1	2.0m @ 1.0 g/t
	RRD25086								92.90	93.59	0.69	0.8	0.7m @ 1.1 g/t
	RRD25086								106.48	106.86	0.38	0.6	0.4m @ 1.5 g/t

Project	Hole ID	MGA North	MGA East	RL	Azi	Dip	End Depth	Hole Type	Depth From	Depth To	Interval	Gram Metres	Au g/t interval
	RRD25086								148.00	149.00	1.00	5.9	1.0m @ 5.9 g/t
	RRD25086								168.36	169.86	1.50	10.1	1.5m @ 6.8 g/t
	RRD25086								Incl 168.66	168.96	0.30	5.2	0.3m @ 17.3 g/t
	RRD25086								179.00	181.72	2.72	6.5	2.7m @ 2.4 g/t
	RRD25086								Incl 179.65	180.00	0.35	4.0	0.4m @ 11.4 g/t
	RRD25087	6706608	264611	196	226	-45	270	UGD	15.40	16.00	0.60	0.6	0.6m @ 1.0 g/t
	RRD25087								30.00	31.25	1.25	1.5	1.3m @ 1.2 g/t
	RRD25087								39.00	42.00	3.00	60.0	3.0m @ 20.0 g/t
	RRD25087								Incl 41.28	42.00	0.72	58.5	0.7m @ 81.3 g/t
	RRD25087								45.00	46.97	1.97	2.8	2.0m @ 1.4 g/t
	RRD25087								52.32	54.05	1.73	1.9	1.7m @ 1.1 g/t
	RRD25087								81.43	82.40	0.97	3.0	1.0m @ 3.1 g/t
RIVERINA	RRD25087								94.44	94.74	0.30	2.4	0.3m @ 7.9 g/t
	RRD25087								104.22	104.82	0.60	0.8	0.6m @ 1.3 g/t
	RRD25087								131.35	131.70	0.35	0.7	0.4m @ 2.0 g/t
	RRD25087								172.00	173.00	1.00	4.1	1.0m @ 4.1 g/t
	RRD25087								196.50	198.30	1.80	12.1	1.8m @ 6.7 g/t
	RRD25087								Incl 197.65	198.30	0.65	10.1	0.7m @ 15.5 g/t
	RRD25087								211.55	212.55	1.00	10.1	1.0m @ 10.1 g/t
	RRD25087								Incl 212.25	212.55	0.30	5.3	0.3m @ 17.5 g/t
	RRD25089	6706611	264610	197	276	-31	193	UGD	20.85	21.16	0.31	0.5	0.3m @ 1.7 g/t
	RRD25089								23.71	26.71	3.00	3.4	3.0m @ 1.1 g/t
	RRD25089								28.91	31.52	2.61	3.0	2.6m @ 1.2 g/t
	RRD25089								36.21	36.51	0.30	0.4	0.3m @ 1.3 g/t
	RRD25089								56.69	59.69	3.00	6.0	3.0m @ 2.0 g/t
	RRD25089								76.96	77.84	0.88	0.9	0.9m @ 1.0 g/t
	RRD25089								88.44	90.06	1.62	4.4	1.6m @ 2.7 g/t
	RRD25089								111.12	111.69	0.57	0.7	0.6m @ 1.3 g/t
RIVERINA	RRD25089								136.40	137.36	0.96	22.0	1.0m @ 23.0 g/t
	RRD25089								Incl 136.94	137.36	0.90	19.0	0.4m @ 45.3 g/t
	RRD25089								147.27	149.60	2.33	17.9	2.3m @ 7.7 g/t
	RRD25089								Incl 147.27	143.00	0.56	6.5	-
													0.6m @ 11.5 g/t
	RRD25089								Incl 148.40	149.09	0.69	7.2	0.7m @ 10.4 g/t
	RRD25089								187.90	189.83	1.93	14.6	1.9m @ 7.6 g/t
	RRD25089								Incl 188.55	189.11	0.56	9.2	0.6m @ 16.4 g/t
RIVERINA	RRD25092	6706612	264610	197	294	-40	255	UGD	21.83	22.21	0.38	0.7	0.4m @ 1.7 g/t
	RRD25092								24.31	24.88	0.57	0.6	0.6m @ 1.1 g/t
	RRD25092								26.27	26.60	0.33	0.6	0.3m @ 1.8 g/t
	RRD25092								31.25	32.00	0.75	1.6	0.8m @ 2.2 g/t
	RRD25092								35.82	37.00	1.18	2.3	1.2m @ 2.0 g/t
	RRD25092								38.60	38.94	0.34	0.4	0.3m @ 1.1 g/t
	RRD25092								68.46	71.84	3.38	7.8	3.4m @ 2.3 g/t
	RRD25092								95.44	95.78	0.34	2.9	0.3m @ 8.6 g/t
	RRD25092								113.86	114.29	0.43	4.3	0.4m @ 10.0 g/t
	RRD25092								177.18	177.49	0.31	0.6	0.3m @ 1.8 g/t
	RRD25092								180.52	180.86	0.34	3.1	0.3m @ 9.1 g/t
	RRD25092								188.05	190.23	2.18	5.1	2.2m @ 2.3 g/t
RIVERINA	RRD25095	6706610	264610	197	245	-24	200	UGD	10.00	10.64	0.64	0.7	0.6m @ 1.1 g/t
	RRD25095								24.96	27.03	2.07	3.0	2.1m @ 1.4 g/t
	RRD25095								30.51	31.01	0.50	1.6	0.5m @ 3.2 g/t

Project	Hole ID	MGA North	MGA East	RL	Azi	Dip	End Depth	Hole Type	Depth From	Depth To	Interval	Gram Metres	Au g/t interval
	RRD25095	Horen	Lust				Deptil	Type	52.68	53.00	0.32	0.6	0.3m @ 1.9 g/t
	RRD25095								62.72	65.46	2.74	14.1	2.7m @ 5.2 g/t
	RRD25095								77.91	79.95	2.04	2.6	2.0m @ 1.3 g/t
	RRD25095								86.39	87.16	0.77	4.3	0.8m @ 5.5 g/t
	RRD25095								127.18	128.33	1.15	3.6	1.2m @ 3.1 g/t
	RRD25095								134.12	134.80	0.68	13.9	0.7m @ 20.4 g/t
	RRD25097	6706611	264610	197	277	-15	179	UGD	0.72	1.06	0.34	3.3	0.3m @ 9.7 g/t
	RRD25097								11.80	12.20	0.40	0.7	0.4m @ 1.7 g/t
	RRD25097								18.58	19.68	1.10	1.8	1.1m @ 1.7 g/t
	RRD25097								20.62	20.98	0.36	0.4	0.4m @ 1.1 g/t
	RRD25097								23.00	26.71	3.71	9.0	3.7m @ 2.4 g/t
	RRD25097								31.66	32.45	0.79	0.8	0.8m @ 1.1 g/t
RIVERINA	RRD25097								51.70	59.50	7.80	11.3	7.8m @ 1.4 g/t
	RRD25097								75.54	76.00	0.46	0.5	0.5m @ 1.1 g/t
	RRD25097								82.28	83.20	0.92	1.5	0.9m @ 1.7 g/t
	RRD25097								85.42	85.72	0.30	2.3	0.3m @ 7.6 g/t
	RRD25097								121.72	122.45	0.73	2.0	0.7m @ 2.7 g/t
	RRD25097								134.02	134.32	0.30	0.9	0.3m @ 3.0 g/t
	RRD25098	6706611	264610	107	268	-25	189	UGD	10.95	11.31	0.36	0.4	0.4m @ 1.1 g/t
	RRD25098	0700011	204010	197	208	-23	105	UGD	19.02	21.55	2.53	2.8	2.5m @ 1.1 g/t
	RRD25098								24.55	26.19	1.64	4.3	1.6m @ 2.6 g/t
	RRD25098								32.19	33.02	0.83	1.0	0.8m @ 1.2 g/t
													-
	RRD25098								51.32	51.66	0.34	0.4	0.3m @ 1.2 g/t
	RRD25098								52.50	53.10	0.60	0.7	0.6m @ 1.1 g/t
RIVERINA	RRD25098								54.34	54.64	0.30	0.3	0.3m @ 1.1 g/t
	RRD25098								56.57	57.03	0.46	0.7	0.5m @ 1.5 g/t
	RRD25098								74.38	75.00	0.62	8.7	0.6m @ 14.0 g/t
	RRD25098								83.84	85.40	1.56	6.8	1.6m @ 4.4 g/t
	RRD25098								Incl 85.10	85.40	0.30	5.4	0.3m @ 18.1 g/t
	RRD25098								127.04	127.59	0.55	12.2	0.6m @ 22.3 g/t
	RRD25098								130.71	131.36	0.65	0.8	0.7m @ 1.2 g/t
	RRD25098	6706640	264640	407	25.6	22	470		138.90	139.40	0.50	1.0	0.5m @ 2.0 g/t
	RRD25099	6706610	264610	197	256	-32	179	UGD	2.00	3.00	1.00	1.1	1.0m @ 1.1 g/t
	RRD25099								20.36	21.51	1.15	2.2	1.2m @ 1.9 g/t
	RRD25099								23.91	24.40	0.49	0.8	0.5m @ 1.7 g/t
	RRD25099								35.80	36.62	0.82	2.2	0.8m @ 2.7 g/t
	RRD25099								39.05	39.50	0.45	1.0	0.5m @ 2.2 g/t
	RRD25099								52.81	53.13	0.32	2.4	0.3m @ 7.6 g/t
	RRD25099								57.60	58.23	0.63	1.3	0.6m @ 2.1 g/t
RIVERINA	RRD25099								61.00	61.54	0.54	0.9	0.5m @ 1.7 g/t
	RRD25099								63.05	63.45	0.40	0.6	0.4m @ 1.5 g/t
	RRD25099								77.90	78.22	0.32	0.6	0.3m @ 2.0 g/t
	RRD25099								88.03	89.92	1.89	4.0	1.9m @ 2.1 g/t
	RRD25099								111.56	112.15	0.59	17.1	0.6m @ 29.0 g/t
	RRD25099								132.92	135.93	3.01	13.4	3.0m @ 4.4 g/t
	RRD25099								Incl 133.72	134.35	0.63	8.5	0.6m @ 13.5 g/t
	RRD25099								144.72	146.45	1.73	8.7	1.7m @ 5.0 g/t
	RRD25099						<u></u>		Incl 146.15	146.45	0.30	3.6	0.3m @ 11.9 g/t
RIVERINA	RRD25101	6706611	264610	197	285	-22	215	UGD	11.00	13.00	2.00	13.1	2.0m@6.6g/t
	RRD25101								19.95	29.00	9.05	28.1	9.1m @ 3.1 g/t
	RRD25101								Incl 27.50	28.00	0.50	19.3	0.5m @ 38.6 g/t
	RRD25101								34.00	34.63	0.63	1.0	0.6m @ 1.7 g/t
	RRD25101								53.20	57.32	4.12	10.1	4.1m @ 2.5 g/t

Project	Hole ID	MGA North	MGA East	RL	Azi	Dip	End Depth	Hole	Depth	Depth	Interval	Gram	Au g/t interval
	RRD25101	North	EdSL				Depth	Туре	From 88.98	To 89.28	0.30	Metres 1.2	0.3m @ 4.0 g/t
	RRD25101								133.75	134.05	0.30	1.0	0.3m @ 3.4 g/t
	RRD25101								144.65	145.45	0.80	1.7	0.8m @ 2.2 g/t
	RRD25101								175.00	176.00	1.00	1.3	1.0m @ 1.3 g/t
	RRD25102	6706611	264610	197	266	-40	210	UGD	26.52	26.82	0.30	0.6	0.3m @ 1.9 g/t
	RRD25102								29.02	29.32	0.30	0.5	0.3m @ 1.6 g/t
	RRD25102								38.30	39.00	0.70	0.7	0.7m @ 1.0 g/t
	RRD25102								62.00	66.00	4.00	9.9	4.0m @ 2.5 g/t
	RRD25102								83.85	84.29	0.44	5.8	0.4m @ 13.3 g/t
RIVERINA	RRD25102								97.70	98.40	0.70	1.9	0.7m @ 2.7 g/t
	RRD25102								108.95	109.74	0.79	1.8	0.8m @ 2.3 g/t
	RRD25102								147.76	148.61	0.85	17.3	0.9m @ 20.4 g/t
	RRD25102								161.54	162.38	0.84	13.4	0.8m @ 15.9 g/t
	RRD25102								Incl 161.84	162.38	0.54	12.5	0.5m @ 23.1 g/t
	RRD25103	6706610	264610	197	244	-50	249	UGD	3.00	4.00	1.00	1.2	1.0m @ 1.2 g/t
	RRD25103								26.00	28.10	2.10	2.6	2.1m @ 1.3 g/t
	RRD25103								30.00	30.50	0.50	0.5	0.5m @ 1.0 g/t
	RRD25103								34.00	45.00	11.00	16.1	11.0m @ 1.5 g/t
	RRD25103								Incl 36.90	37.20	0.30	3.7	0.3m @ 12.2 g/t
	RRD25103								48.45	49.35	0.90	3.9	0.9m @ 4.3 g/t
RIVERINA	RRD25103								81.15	83.08	1.93	3.6	1.9m @ 1.9 g/t
	RRD25103								107.00	107.30	0.30	0.4	0.3m @ 1.2 g/t
	RRD25103								109.00	110.00	1.00	1.3	1.0m @ 1.3 g/t
	RRD25103								144.00	145.00	1.00	6.7	1.0m @ 6.7 g/t
	RRD25103								162.00	163.00	1.00	4.1	1.0m @ 4.1 g/t
	RRD25103								181.40	181.70	0.30	0.3	0.3m @ 1.1 g/t
	RRD25103								193.65	194.68	1.03	5.1	1.0m @ 5.0 g/t
	RRD25106	6706612	264610	197	301	-20	216	UGD	20.21	23.61	3.40	3.9	3.4m @ 1.1 g/t
	RRD25106								28.26	29.18	0.92	2.5	0.9m @ 2.8 g/t
	RRD25106								32.78	33.53	0.75	1.8	0.8m @ 2.4 g/t
	RRD25106								51.50	52.50	1.00	1.1	1.0m @ 1.1 g/t
	RRD25106								60.40	66.30	5.90	22.6	5.9m @ 3.8 g/t
	RRD25106								Incl 63.18	63.90	0.72	9.0	0.7m @ 12.4 g/t
	RRD25106								83.10	83.57	0.47	0.5	0.5m @ 1.0 g/t
RIVERINA	RRD25106								97.17	97.55	0.38	1.2	0.4m @ 3.2 g/t
	RRD25106								113.00	114.00	1.00	1.8	1.0m @ 1.8 g/t
	RRD25106								120.28	120.89	0.61	9.7	0.6m @ 15.9 g/t
	RRD25106								150.07	151.77	1.70	3.4	1.7m @ 2.0 g/t
	RRD25106								161.74	163.22	1.48	3.2	1.5m @ 2.1 g/t
	RRD25106								195.55	196.09	0.54	0.6	0.5m @ 1.1 g/t
	RRD25106								201.00	201.38	0.38	1.0	0.4m @ 2.7 g/t
	RRD25107	6706612	264610	197	294	-28	198	UGD	103.94	104.55	0.61	1.1	0.6m @ 1.9 g/t
	RRD25107								106.00	106.51	0.51	0.7	0.5m @ 1.3 g/t
	RRD25107								115.13	115.60	0.47	0.5	0.5m @ 1.1 g/t
RIVERINA	RRD25107								120.25	120.69	0.44	1.2	0.4m @ 2.7 g/t
	RRD25107								152.05	153.59	1.54	22.6	1.5m @ 14.7 g/t
	RRD25107								Incl 152.71	153.59	0.88	18.0	0.9m @ 20.5 g/t
	RRD25107								160.69	164.40	3.71	24.5	3.7m@6.6g/t
	RRD25107								Incl 162.90	163.50	0.60	17.6	0.6m @ 29.3 g/t
RIVERINA	RRD25145	6706440	264631	181	262	-41	309	UGD	1.00	4.00	3.00	9.9	3.0m @ 3.3 g/t
	RRD25145								9.28	11.32	2.04	6.2	2.0m @ 3.0 g/t
	RRD25145				-	-			Incl 9.28	9.72	0.44	5.5	0.4m @ 12.5 g/t

Project	Hole ID	MGA North	MGA East	RL	Azi	Dip	End Depth	Hole Type	Depth From	Depth To	Interval	Gram Metres	Au g/t interval
	RRD25145							. // .	16.50	17.00	0.50	0.7	0.5m @ 1.4 g/t
	RRD25145								19.70	20.35	0.65	2.8	0.7m @ 4.3 g/t
	RRD25145								29.00	29.33	0.33	0.7	0.3m @ 2.1 g/t
	RRD25145								68.00	70.15	2.15	4.6	2.2m @ 2.1 g/t
	RRD25145								118.00	118.63	0.63	1.6	0.6m @ 2.6 g/t
	RRD25145								134.00	134.43	0.43	0.6	0.4m @ 1.4 g/t
	RRD25145								146.64	147.68	1.04	7.9	1.0m @ 7.6 g/t
	RRD25145								Incl 147.34	147.68	0.34	3.7	0.3m @ 11.0 g/t
	RRD25145								161.36	163.92	2.56	4.2	2.6m @ 1.7 g/t
	RRD25145								260.00	260.40	0.40	0.8	0.4m @ 1.9 g/t
	RRD25146	6706439	264631	181	225	-34	246	UGD	54.40	57.50	3.10	3.1	3.1m @ 1.0 g/t
	RRD25146								88.48	88.78	0.30	0.7	0.3m @ 2.3 g/t
RIVERINA	RRD25146								106.00	106.70	0.70	1.0	0.7m @ 1.5 g/t
	RRD25146								167.70	168.20	0.50	0.6	0.5m @ 1.1 g/t
	RRD25147	6706440	264631	181	240	-49	258	UGD	1.00	3.68	2.68	11.8	2.7m @ 4.4 g/t
	RRD25147								14.00	15.00	1.00	1.5	1.0m @ 1.5 g/t
	RRD25147								25.00	29.50	4.50	7.6	4.5m @ 1.7 g/t
	RRD25147								79.55	88.00	8.45	17.8	8.5m @ 2.1 g/t
RIVERINA	RRD25147								Incl 79.55	80.00	0.45	10.2	0.5m @ 22.7 g/t
	RRD25147								164.34	165.00	0.66	1.0	0.7m @ 1.5 g/t
	RRD25147								181.00	182.00	1.00	1.3	1.0m @ 1.3 g/t
	RRD25147								198.60	199.00	0.40	0.7	0.4m @ 1.7 g/t
	RRD25148	6706420	264636	178	217	-40	301	UGD	180.84	181.16	0.32	0.4	0.3m @ 1.2 g/t
	RRD25148								219.18	220.08	0.90	20.0	0.9m @ 22.2 g/t
	RRD25148								Incl 219.18	219.78	0.60	19.4	0.6m @ 32.4 g/t
RIVERINA	RRD25148								225.95	226.67	0.72	5.5	0.7m @ 7.6 g/t
	RRD25148								Incl 225.95	226.25	0.30	5.0	0.3m @ 16.6 g/t
	RRD25148								229.00	230.00	1.00	1.1	1.0m @ 1.1 g/t
	RRD25148	6706440	264621	190	261	-59	377	UGD	1.45			8.8	-
		6706440	204031	180	201	-59	5//	UGD		3.82	2.37		2.4m @ 3.7 g/t
	RRD25149								Incl 1.45	1.97	0.52	6.9	0.5m @ 13.3 g/t
	RRD25149								14.80	15.27	0.47	1.1	0.5m @ 2.3 g/t
	RRD25149								28.30	29.36	1.06	3.9	1.1m @ 3.7 g/t
	RRD25149								60.68	62.46	1.78	6.2	1.8m @ 3.5 g/t
	RRD25149								Incl 60.68	60.98	0.30	5.1	0.3m @ 16.9 g/t
	RRD25149								82.25	84.31	2.06	3.3	2.1m @ 1.6 g/t
	RRD25149								88.00	88.50	0.50	1.0	0.5m @ 1.9 g/t
	RRD25149								91.00	91.37	0.37	0.4	0.4m @ 1.2 g/t
RIVERINA	RRD25149								93.44	94.04	0.60	24.4	0.6m @ 40.6 g/t
	RRD25149								110.00	111.00	1.00	1.1	1.0m @ 1.1 g/t
	RRD25149								121.00	122.00	1.00	1.2	1.0m @ 1.2 g/t
	RRD25149								218.00	220.00	2.00	27.5	2.0m @ 13.7 g/t
	RRD25149								Incl 218.00	219.00	1.00	24.6	1.0m @ 24.6 g/t
	RRD25149								228.65	229.20	0.55	0.6	0.6m @ 1.0 g/t
	RRD25149								235.19	235.93	0.74	22.1	0.7m @ 29.8 g/t
	RRD25149								Incl 235.50	235.93	0.43	19.8	0.4m @ 46.0 g/t
	RRD25149								243.35	243.70	0.35	0.7	0.4m @ 2.0 g/t
	RRD25149								250.33	250.67	0.34	14.7	0.3m @ 43.3 g/t
	RRD25149								255.24	256.30	1.06	4.4	1.1m @ 4.2 g/t
RIVERINA	RRD25151	6706439	264631	180	241	-39	210	UGD	1.46	3.71	2.25	8.0	2.3m @ 3.5 g/t
	RRD25151								12.00	12.45	0.45	1.4	0.5m @ 3.1 g/t
	RRD25151	1							14.75	15.05	0.30	0.4	0.3m @ 1.3 g/t

Project	Hole ID	MGA North	MGA East	RL	Azi	Dip	End Depth	Hole Type	Depth From	Depth To	Interval	Gram Metres	Au g/t interval
	RRD25151	North	Lasi				Deptii	туре	75.00	78.48	3.48	5.5	3.5m @ 1.6 g/t
	RRD25151								94.00	95.00	1.00	1.1	1.0m @ 1.1 g/t
	RRD25151								96.40	96.90	0.50	0.6	0.5m @ 1.3 g/t
	RRD25151								123.46	123.81	0.35	0.5	0.4m @ 1.4 g/t
	RRD25151								126.08	126.38	0.30	0.6	0.3m @ 1.9 g/t
	RRD25151								164.84	166.80	1.96	55.3	2.0m @ 28.2 g/t
	RRD25151								Incl 165.56	166.80	1.24	54.5	1.2m @ 43.9 g/t
	RRD25153	6706440	264631	180	250	-46	219	UGD	1.15	4.50	3.35	19.5	3.4m @ 5.8 g/t
	RRD25153								Incl 1.15	1.78	0.63	12.7	0.6m @ 20.2 g/t
	RRD25153								Incl 2.70	3.06	0.36	4.1	0.4m @ 11.3 g/t
	RRD25153								18.10	18.47	0.37	1.3	0.4m @ 3.4 g/t
	RRD25153								22.50	23.17	0.67	1.6	0.7m @ 2.4 g/t
	RRD25153								71.00	71.73	0.73	1.5	0.7m @ 2.1 g/t
RIVERINA	RRD25153								73.75	79.20	5.45	7.7	5.5m @ 1.4 g/t
	RRD25153								84.90	85.24	0.34	0.7	0.3m @ 1.9 g/t
	RRD25153								131.89	132.19	0.30	0.3	0.3m @ 1.1 g/t
	RRD25153								144.13	144.50	0.37	0.4	0.4m @ 1.1 g/t
	RRD25153								151.00	152.00	1.00	1.6	1.0m @ 1.6 g/t
	RRD25153								155.40	155.70	0.30	3.2	0.3m @ 10.6 g/t
	RRD25153								181.56	182.05	0.49	1.6	0.5m @ 3.2 g/t
	RRD25154	6706439	264631	180	232	-42	252	UGD	2.13	4.26	2.13	14.6	2.1m @ 6.9 g/t
	RRD25154								Incl 2.13	2.43	0.30	6.7	0.3m @ 22.3 g/t
	RRD25154								Incl 3.66	3.96	0.30	6.2	0.3m @ 20.5 g/t
	RRD25154								11.00	11.30	0.30	0.4	0.3m @ 1.4 g/t
	RRD25154								14.46	15.28	0.82	2.1	0.8m @ 2.6 g/t
RIVERINA	RRD25154								24.60	26.53	1.93	3.7	1.9m @ 1.9 g/t
	RRD25154								52.60	53.66	1.06	1.3	1.1m @ 1.2 g/t
	RRD25154								83.60	86.30	2.70	4.7	2.7m @ 1.7 g/t
	RRD25154								189.21	190.11	0.90	6.9	0.9m @ 7.7 g/t
	RRD25154								Incl 189.21	189.53	0.32	3.2	0.3m @ 10.1 g/t
	RRD25158	6706439	264631	180	231	-52	291	UGD	2.42	4.68	2.26	2.7	2.3m @ 1.2 g/t
	RRD25158								11.00	11.51	0.51	1.3	0.5m @ 2.5 g/t
RIVERINA	RRD25158								31.00	32.67	1.67	6.4	1.7m @ 3.8 g/t
	RRD25158								95.86	96.64	0.78	1.8	0.8m @ 2.3 g/t
	RRD25158								129.00	129.60	0.60	1.1	0.6m @ 1.8 g/t
	RRD25162	6706438	264632	181	188	-39	561	UGD	22.00	26.20	4.20	20.1	4.2m @ 4.8 g/t
	RRD25162								Incl 22.65	23.00	0.35	4.1	0.4m @ 11.6 g/t
	RRD25162								Incl 25.60	26.20	0.60	11.5	0.6m @ 19.1 g/t
	RRD25162								131.00	132.00	1.00	7.4	1.0m @ 7.4 g/t
RIVERINA	RRD25162								258.00	258.65	0.65	0.9	0.7m @ 1.4 g/t
	RRD25162								369.00	370.00	1.00	3.4	1.0m @ 3.4 g/t
	RRD25162								492.45	492.75	0.30	0.6	0.3m @ 1.9 g/t
	RRD25162								499.10	499.85	0.75	12.5	0.8m @ 16.7 g/t
	RRD25162								507.55	508.00	0.45	2.1	0.5m @ 4.6 g/t
	RRD25176A	6706686	264634	184	302	-24	290	UGD	9.82	10.12	0.30	0.6	0.3m @ 1.9 g/t
	RRD25176A								11.82	12.17	0.35	0.4	0.4m @ 1.2 g/t
	RRD25176A								17.00	17.75	0.75	3.4	0.8m @ 4.6 g/t
	RRD25176A								32.00	32.42	0.42	0.6	0.4m @ 1.4 g/t
	RRD25176A								66.04	66.34	0.30	2.2	0.3m @ 7.3 g/t
	RRD25176A								69.26	69.56	0.30	0.5	0.3m @ 1.5 g/t
RIVERINA	RRD25176A								89.73	90.17	0.44	8.1	0.4m @ 18.3 g/t
	RRD25176A								134.90	135.20	0.30	1.3	0.3m @ 4.3 g/t
	RRD25176A								152.00	152.40	0.40	0.6	0.4m @ 1.5 g/t
	RRD25176A								182.25	183.00	0.75	1.7	0.8m @ 2.2 g/t
	RRD25176A								227.57	231.83	4.26	7.9	4.3m @ 1.9 g/t
	RRD25176A								261.00	261.30	0.30	0.5	0.3m @ 1.8 g/t

Project	Hole ID	MGA North	MGA East	RL	Azi	Dip	End Depth	Hole Type	Depth From	Depth To	Interval	Gram Metres	Au g/t interval
	RRD25178		2000				Pepti	.,,,,,	10.00	11.00	1.00	2.1	1.0m @ 2.1 g/t
	RRD25178								16.55	17.36	0.81	1.0	0.8m @ 1.2 g/t
	RRD25178								49.29	51.44	2.15	3.8	2.2m @ 1.8 g/t
	RRD25178								54.07	55.98	1.91	5.4	1.9m @ 2.8 g/t
	RRD25178								81.82	82.70	0.88	4.3	0.9m @ 4.8 g/t
	RRD25178								105.55	105.85	0.30	2.6	0.3m @ 8.5 g/t
	RRD25178								123.32	125.12	1.80	8.7	1.8m @ 4.8 g/t
	RRD25178								Incl 124.64	125.12	0.48	8.1	0.5m @ 16.8 g/t
	RRD25178								129.81	130.67	0.86	1.4	0.9m @ 1.6 g/t
	RRD25178								134.95	135.39	0.44	0.8	0.4m @ 1.9 g/t
	RRD25185	6706681	264634	184	293	-37	200	UGD	0.00	0.91	0.91	2.0	0.9m @ 2.2 g/t
	RRD25185								4.90	5.43	0.53	0.7	0.5m @ 1.3 g/t
	RRD25185								25.03	25.52	0.49	13.4	0.5m @ 27.4 g/t
	RRD25185								60.11	61.09	0.98	11.7	1.0m @ 11.9 g/t
	RRD25185								Incl 60.41	61.09	0.68	11.3	0.7m @ 16.6 g/t
	RRD25185								73.51	76.00	2.49	6.2	2.5m @ 2.5 g/t
RIVERINA	RRD25185								91.53	91.96	0.43	6.9	0.4m @ 16.1 g/t
	RRD25185								133.20	134.00	0.80	2.5	0.8m @ 3.1 g/t
	RRD25185								150.58	152.46	1.88	3.6	1.9m @ 1.9 g/t
	RRD25185								158.26	158.90	0.64	1.1	0.6m @ 1.7 g/t
	RRD25185								175.00	176.00	1.00	1.4	1.0m @ 1.4 g/t
	RRD25185								179.25	179.77	0.52	0.7	0.5m @ 1.3 g/t
	RRD25185A	6706680	264634	184	293	-37	294	UGD	4.00	4.36	0.36	2.0	0.4m @ 5.7 g/t
	RRD25185A								19.85	20.15	0.30	0.3	0.3m @ 1.2 g/t
	RRD25185A								24.76	25.16	0.40	0.6	0.4m @ 1.4 g/t
	RRD25185A								43.70	44.00	0.30	0.8	0.3m @ 2.8 g/t
	RRD25185A								58.61	61.05	2.44	7.1	2.4m @ 2.9 g/t
	RRD25185A								65.80	66.14	0.34	1.8	0.3m @ 5.2 g/t
RIVERINA	RRD25185A								73.60	76.00	2.40	3.0	2.4m @ 1.3 g/t
	RRD25185A								91.60	92.56	0.96	8.7	1.0m @ 9.1 g/t
	RRD25185A								Incl 92.26	92.56	0.30	3.4	0.3m @ 11.2 g/t
	RRD25185A								130.30	130.60	0.30	0.9	0.3m @ 3.0 g/t
	RRD25185A								150.92	151.22	0.30	2.3	0.3m @ 7.7 g/t
	RRD25185A								230.97	234.29	3.32	8.4	3.3m @ 2.5 g/t
	RRD25185A								269.50	269.80	0.30	0.5	0.3m @ 1.8 g/t
	RRD25190	6706680	264634	184	279	-49	314	UGD	2.61	5.00	2.39	5.2	2.4m @ 2.2 g/t
	RRD25190								8.00	8.54	0.54	0.6	0.5m @ 1.2 g/t
	RRD25190								13.19	13.54	0.35	0.6	0.4m @ 1.8 g/t
	RRD25190								21.75	22.20	0.45	1.8	0.5m @ 4.1 g/t
	RRD25190								26.26	27.00	0.74	2.8	0.7m @ 3.8 g/t
	RRD25190								65.00	65.51	0.51	1.4	0.5m @ 2.8 g/t
RIVERINA	RRD25190								68.58	69.10	0.52	1.4	0.5m @ 2.7 g/t
	RRD25190								71.55	71.86	0.31	0.4	0.3m @ 1.4 g/t
	RRD25190								78.98	79.58	0.60	1.9	0.6m @ 3.2 g/t
	RRD25190								96.90	98.10	1.20	5.8	1.2m @ 4.8 g/t
	RRD25190								187.92	188.36	0.44	0.6	0.4m @ 1.3 g/t
	RRD25190								235.95	236.78	0.83	4.1	0.8m @ 4.9 g/t
RIVERINA	RVDD24003	6705945	264848	438	272	-55	820	RCDD					N.S.I.
RIVERINA	RVDD24007	6705867			277	-61	1049	RCDD	314.50	319.40	4.90	6.1	4.9m @ 1.2 g/t

Project	Hole ID	MGA	MGA East	RL	Azi	Dip	End	Hole	Depth	Depth	Interval	Gram	Au g/t interval
	RVDD24007	North	EdSL				Depth	Туре	From 349.00	To 350.60	1.60	Metres 23.2	1.6m @ 14.5 g/t
	RVDD24007								Incl 349.00	350.00	1.00	20.0	1.0m @ 20.0 g/t
	RVDD24007								391.00	392.00	1.00	1.1	1.0m @ 1.1 g/t
	RVDD24007								404.00	405.00	1.00	6.1	1.0m @ 6.1 g/t
	RVDD24007								412.76	413.06	0.30	0.4	0.3m @ 1.2 g/t
	RVDD24007								417.86	419.90	2.04	5.2	2.0m @ 2.5 g/t
	RVDD24007								423.95	428.38	4.43	14.7	4.4m @ 3.3 g/t
	RVDD24007								Incl 425.40	425.88	0.48	6.2	0.5m @ 12.9 g/t
	RVDD24007								433.51	435.04	1.53	2.9	1.5m @ 1.9 g/t
	RVDD24007								438.58	439.50	0.92	1.1	0.9m @ 1.1 g/t
	RVDD24007								560.70	561.08	0.38	1.5	0.4m @ 4.0 g/t
	RVDD24007								802.00	803.00	1.00	4.1	1.0m @ 4.1 g/t
	RVDD24007								812.16	816.53	4.37	27.5	4.4m @ 6.3 g/t
	RVDD24007								Incl 813.00	814.00	1.00	20.2	1.0m @ 20.2 g/t
	RVDD24007								832.88	833.20	0.32	0.3	0.3m @ 1.1 g/t
	RVDD24007								856.00	857.00	1.00	1.0	1.0m @ 1.0 g/t
	RVDD24007								882.80	883.80	1.00	5.3	1.0m @ 5.3 g/t
	RVDD24007								973.00	974.00	1.00	2.7	1.0m @ 2.7 g/t
	RVDD24007								984.77	990.25	5.48	23.6	5.5m @ 4.3 g/t
	RVDD24007								Incl 985.97	987.55	1.58	17.4	1.6m @ 11.0 g/t
	RVDD24007								1021.60	1022.00	0.40	1.5	0.4m @ 3.9 g/t
	RVDD24007								1038.00	1038.35	0.35	0.9	0.4m @ 2.6 g/t
	RVDD24007								1044.16	1044.55	0.39	0.5	0.4m @ 1.3 g/t
	RVDD24007W1	6705867	264925	437	277	-61	1018	DDHW	396.00	396.44	0.44	0.5	0.4m @ 1.2 g/t
	RVDD24007W1								402.91	403.34	0.43	3.9	0.4m @ 9.1 g/t
	RVDD24007W1								406.83	407.13	0.30	0.8	0.3m @ 2.6 g/t
	RVDD24007W1								416.00	431.00	15.00	26.7	15.0m @ 1.8 g/t
	RVDD24007W1								690.44	693.80	3.36	26.3	3.4m @ 7.8 g/t
	RVDD24007W1								Incl 690.44	691.00	0.56	7.7	0.6m @ 13.7 g/t
	RVDD24007W1								Incl 693.00	693.80	0.80	8.8	0.8m @ 11.0 g/t
RIVERINA	RVDD24007W1								772.00	772.96	0.96	1.5	1.0m @ 1.6 g/t
	RVDD24007W1								847.39	848.00	0.61	2.8	0.6m @ 4.6 g/t
	RVDD24007W1								862.25	863.00	0.75	11.2	0.8m @ 14.9 g/t
	RVDD24007W1								893.07	893.37	0.30	0.7	0.3m @ 2.4 g/t
	RVDD24007W1								898.00	898.56	0.56	0.7	0.6m @ 1.3 g/t
	RVDD24007W1								962.88	967.22	4.34	106.9	4.3m @ 24.6 g/t
	RVDD24007W1								Incl 962.88	963.67	0.79	27.2	0.8m @ 34.4 g/t
	RVDD24007W1								Incl 966.92	967.22	0.30	68.7	0.3m @ 229.0 g/t
	RVDD24007W3	6705867	264925	437	277	-61	967	DDHW	348.00	349.00	1.00	6.5	1.0m @ 6.5 g/t
	RVDD24007W3								353.00	354.00	1.00	1.1	1.0m @ 1.1 g/t
	RVDD24007W3								359.54	360.30	0.76	1.3	0.8m @ 1.7 g/t
	RVDD24007W3								391.00	391.51	0.51	1.8	0.5m @ 3.5 g/t
	RVDD24007W3								397.00	398.00	1.00	2.3	1.0m @ 2.3 g/t
	RVDD24007W3								409.00	410.00	1.00	2.3	1.0m @ 2.3 g/t
	RVDD24007W3								413.00	421.79	8.79	13.8	8.8m@1.6g/t
RIVERINA	RVDD24007W3								529.00	530.00	1.00	3.2	1.0m @ 3.2 g/t
	RVDD24007W3								646.31	648.62	2.31	4.1	2.3m @ 1.8 g/t
	RVDD24007W3								654.63	655.00	0.37	0.6	0.4m @ 1.7 g/t
	RVDD24007W3								656.00	656.35	0.35	0.6	0.4m @ 1.8 g/t
	RVDD24007W3								664.73	665.14	0.41	0.7	0.4m @ 1.8 g/t
	RVDD24007W3								673.28	678.00	4.72	16.3	4.7m@3.5g/t
	RVDD24007W3								Incl 673.58	673.88	0.30	3.7	0.3m @ 12.4 g/t
	RVDD24007W3		-	_				_	935.60	936.02	0.42	0.6	0.4m @ 1.3 g/t

Project	Hole ID	MGA North	MGA East	RL	Azi	Dip	End Depth	Hole Type	Depth From	Depth To	Interval	Gram Metres	Au g/t interval
	RVDD24012W1	North	Last				Depth	турс	365.00	365.50	0.50	0.9	0.5m @ 1.9 g/t
	RVDD24012W1								748.00	751.36	3.36	4.1	3.4m @ 1.2 g/t
	RVDD24012W1								760.00	761.00	1.00	1.1	1.0m @ 1.1 g/t
	RVDD24012W1								763.30	765.55	2.25	10.2	2.3m @ 4.5 g/t
	RVDD24012W1								Incl 764.20	764.50	0.30	4.6	0.3m @ 15.4 g/t
	RVDD24012W1								769.65	770.00	0.35	1.2	0.4m @ 3.5 g/t
	RVDD24012W1								775.00	775.35	0.35	0.4	0.4m @ 1.1 g/t
	RVDD24012W1								777.15	777.45	0.30	0.3	0.3m @ 1.0 g/t
	RVDD24012W1								826.00	827.90	1.90	2.0	1.9m @ 1.0 g/t
	RVDD24012W1								854.85	856.42	1.57	1.7	1.6m @ 1.1 g/t
	RVDD24012W1								865.72	866.15	0.43	3.7	0.4m @ 8.6 g/t
	RVDD24012W1								874.67	876.20	1.53	2.5	1.5m @ 1.6 g/t
	RVDD24012W1								944.62	945.12	0.50	2.5	0.5m @ 5.0 g/t
	RVDD24012W1								994.80	996.94	2.14	15.8	2.1m @ 7.4 g/t
	RVDD24012W1								Incl 995.79	996.60	0.81	13.8	0.8m @ 17.0 g/t
	RVDD24022	6705611	265044	433	271	-57	1078	DDH	463.87	464.45	0.58	0.6	0.6m @ 1.0 g/t
	RVDD24022								468.00	469.00	1.00	1.6	1.0m @ 1.6 g/t
	RVDD24022								476.50	478.46	1.96	2.1	2.0m @ 1.1 g/t
	RVDD24022								546.60	547.29	0.69	1.0	0.7m @ 1.5 g/t
	RVDD24022								567.56	568.00	0.44	1.0	0.4m @ 2.3 g/t
	RVDD24022								574.00	576.42	2.42	8.4	2.4m @ 3.5 g/t
	RVDD24022								Incl 574.00	574.35	0.35	6.5	0.4m @ 18.4 g/t
RIVERINA	RVDD24022								742.83	743.57	0.74	1.7	0.7m @ 2.4 g/t
	RVDD24022								839.90	840.36	0.46	6.3	0.5m @ 13.8 g/t
	RVDD24022								858.00	859.00	1.00	11.7	1.0m @ 11.7 g/t
	RVDD24022								943.50	943.85	0.35	0.5	0.4m @ 1.4 g/t
	RVDD24022								955.70	956.00	0.30	0.3	0.3m @ 1.1 g/t
	RVDD24022								962.50	963.00	0.50	0.6	0.5m @ 1.3 g/t
	RVDD24022								993.05	994.00	0.95	2.8	1.0m @ 2.9 g/t
	RVDD24022W1	6705611	265044	433	271	-57	869	DDHW	430.00	430.60	0.60	0.8	0.6m @ 1.3 g/t
	RVDD24022W1								456.90	457.40	0.50	0.7	0.5m @ 1.3 g/t
	RVDD24022W1								457.95	458.50	0.55	0.7	0.6m @ 1.3 g/t
	RVDD24022W1								460.95	461.30	0.35	1.1	0.4m @ 3.0 g/t
RIVERINA	RVDD24022W1								621.00	621.35	0.35	0.5	0.4m @ 1.4 g/t
	RVDD24022W1								724.00	724.86	0.86	1.5	0.9m @ 1.8 g/t
	RVDD24022W1								786.87	787.20	0.33	0.5	0.3m @ 1.5 g/t
	RVDD24022W1								789.58	790.02	0.44	0.5	0.4m @ 1.1 g/t
	RVDD24022W1								796.78	797.69	0.91	4.1	0.9m @ 4.5 g/t
	RVDD24022W1								808.57	808.91	0.34	1.8	0.3m @ 5.2 g/t
RIVERINA	RVDD24023	6705555	264702	439	268	-66	564	RCDD	337.30	337.80	0.50	1.6	0.5m @ 3.1 g/t
	RVDD24033B	6706046	264974	435	273	-60	1025	RCDD	978.06	978.40	0.34	1.8	0.3m @ 5.2 g/t
RIVERINA	RVDD24033B								982.00	988.21	6.21	24.6	6.2m@4.0g/t
	RVDD24033B								Incl 985.70	986.32	0.62	7.7	0.6m @ 12.4 g/t
RIVERINA	RVDD24033BW1	6706046	264974	435	273	-60	959	DDHW	473.65	474.37	0.72	2.2	0.7m @ 3.0 g/t
	RVDD24033BW1								540.21	541.12	0.91	0.9	0.9m @ 1.0 g/t
	RVDD24033BW1								559.04	559.60	0.56	1.2	0.6m @ 2.2 g/t
	RVDD24033BW1								567.30	567.69	0.39	1.2	0.4m @ 3.0 g/t
	RVDD24033BW1								659.10	659.40	0.30	0.3	0.3m @ 1.2 g/t
	RVDD24033BW1								660.90	661.79	0.89	0.9	0.9m @ 1.0 g/t

Project	Hole ID	MGA North	MGA East	RL	Azi	Dip	End Depth	Hole Type	Depth From	Depth To	Interval	Gram Metres	Au g/t interval
	RVDD24033BW1		2001				Popul	.,,,,	691.22	692.02	0.80	0.8	0.8m @ 1.0 g/t
	RVDD24033BW1								704.59	706.36	1.77	2.8	1.8m @ 1.6 g/t
	RVDD24033BW1								721.62	721.92	0.30	3.3	0.3m @ 11.0 g/t
	RVDD24033BW1								735.76	736.60	0.84	1.2	0.8m @ 1.5 g/t
	RVDD24033BW1								743.87	744.69	0.82	0.8	0.8m @ 1.0 g/t
	RVDD24033BW1								750.10	750.40	0.30	1.5	0.3m @ 4.9 g/t
	RVDD24033BW1								760.00	760.40	0.40	1.3	0.4m @ 3.2 g/t
	RVDD24033BW1								803.30	803.80	0.50	0.8	0.5m @ 1.6 g/t
	RVDD24033BW2	6706046	264974	435	273	-60	870	DDHW	418.51	419.25	0.74	6.1	0.7m @ 8.3 g/t
	RVDD24033BW2								422.18	425.84	3.66	4.3	3.7m @ 1.2 g/t
	RVDD24033BW2								430.86	432.00	1.14	2.5	1.1m @ 2.2 g/t
	RVDD24033BW2								477.00	477.86	0.86	1.7	0.9m @ 1.9 g/t
	RVDD24033BW2								531.22	534.25	3.03	7.0	3.0m @ 2.3 g/t
	RVDD24033BW2								Incl 531.94	532.28	0.34	4.5	0.3m @ 13.1 g/t
	RVDD24033BW2								539.62	542.00	2.38	3.5	2.4m @ 1.5 g/t
	RVDD24033BW2								620.00	621.00	1.00	1.1	1.0m @ 1.1 g/t
	RVDD24033BW2								637.50	641.00	3.50	4.9	3.5m @ 1.4 g/t
	RVDD24033BW2								647.56	647.90	0.34	0.4	0.3m @ 1.2 g/t
	RVDD24033BW2								649.00	653.00	4.00	4.3	4.0m @ 1.1 g/t
RIVERINA	RVDD24033BW2								658.00	658.30	0.30	0.8	0.3m @ 2.7 g/t
	RVDD24033BW2								694.52	694.86	0.34	0.8	0.3m @ 2.2 g/t
	RVDD24033BW2								697.75	698.05	0.30	0.5	0.3m @ 1.6 g/t
	RVDD24033BW2								713.17	713.59	0.42	1.2	0.4m @ 2.7 g/t
	RVDD24033BW2								717.23	717.68	0.45	0.7	0.5m @ 1.5 g/t
	RVDD24033BW2								747.43	747.73	0.30	2.1	0.3m @ 7.0 g/t
	RVDD24033BW2								751.33	751.70	0.37	2.7	0.4m @ 7.3 g/t
	RVDD24033BW2								754.60	755.71	1.11	4.0	1.1m @ 3.6 g/t
	RVDD24033BW2								Incl 755.40	755.71	0.31	3.1	0.3m @ 10.0 g/t
	RVDD24033BW2								758.62	760.12	1.50	3.1	1.5m @ 2.1 g/t
	RVDD24033BW2								822.49	823.00	0.51	0.7	0.5m @ 1.4 g/t
	RVDD24033BW2								837.31	837.78	0.47	0.5	0.5m @ 1.1 g/t
	RVDD24034W1	6706176	264973	434	276	-59	1058	DDHW	621.00	621.35	0.35	0.5	0.4m @ 1.6 g/t
	RVDD24034W1	0/001/0	204575	434	270	55	1050	DDIIW	729.00	730.00	1.00	1.1	1.0m @ 1.1 g/t
	RVDD24034W1								742.00	742.83	0.83	0.9	0.8m @ 1.1 g/t
	RVDD24034W1								815.93	816.40	0.47	1.0	0.5m @ 2.1 g/t
	RVDD24034W1								844.81	845.13	0.32	1.6	0.3m @ 4.9 g/t
RIVERINA	RVDD24034W1								933.50	933.80	0.32	1.0	0.3m @ 3.5 g/t
	RVDD24034W1 RVDD24034W1								935.00	936.00	1.00	1.0	1.0m @ 1.2 g/t
	RVDD24034W1 RVDD24034W1								966.00	967.78	1.78	5.7	1.8m @ 3.2 g/t
	RVDD24034W1 RVDD24034W1								1046.35	1046.65	0.30	0.4	0.3m @ 1.2 g/t
		6706176	264072	124	276	-59	1041	DDHW					
		6706176	204975	454	270	-39	1041	DDHW	616.00	617.00	1.00	1.1	1.0m @ 1.1 g/t
	RVDD24034W2								636.15	636.57	0.42	0.5	0.4m @ 1.2 g/t
	RVDD24034W2								707.00	708.00	1.00	5.4	1.0m @ 5.4 g/t
RIVERINA	RVDD24034W2								801.88	802.88	1.00	2.0	1.0m @ 2.0 g/t
	RVDD24034W2								916.27	917.24	0.97	1.1	1.0m @ 1.1 g/t
	RVDD24034W2								953.22	953.67	0.45	0.7	0.5m @ 1.6 g/t
	RVDD24034W2	6706175	264276	40.4	270		4027		981.76	982.06	0.30	0.6	0.3m @ 2.0 g/t
RIVERINA	RVDD24034W3	6706176	264973	434	276	-59	1037	DDHW	444.59	444.95	0.36	0.6	0.4m @ 1.6 g/t
	RVDD24034W3								582.20	583.20	1.00	1.0	1.0m @ 1.0 g/t
	RVDD24034W3								600.80	601.25	0.45	0.5	0.5m @ 1.1 g/t
	RVDD24034W3								707.50	707.80	0.30	5.8	0.3m @ 19.2 g/t
	RVDD24034W3								723.00	725.00	2.00	3.0	2.0m @ 1.5 g/t
	RVDD24034W3								731.25	731.55	0.30	0.7	0.3m @ 2.4 g/t

Project	Hole ID	MGA North	MGA East	RL	Azi	Dip	End Depth	Hole Type	Depth From	Depth To	Interval	Gram Metres	Aug/tinterval
	RVDD24034W3								776.70	777.15	0.45	2.6	0.5m @ 5.7 g/t
	RVDD24034W3								811.17	811.57	0.40	0.6	0.4m @ 1.4 g/t
	RVDD24034W3								815.40	815.71	0.31	0.4	0.3m @ 1.4 g/t
	RVDD24034W3								852.58	852.90	0.32	0.5	0.3m @ 1.5 g/t
	RVDD24034W3								966.79	967.44	0.65	1.3	0.7m @ 2.0 g/t
	RVDD24034W3								987.00	987.45	0.45	0.7	0.5m @ 1.6 g/t
	RVDD24034W6	6706176	264973	434	276	-59	716	DDHW	590.50	591.00	0.50	0.6	0.5m @ 1.2 g/t
RIVERINA	RVDD24034W6								674.00	675.00	1.00	1.9	1.0m @ 1.9 g/t
RIVERINA	RVDD24036	6706480	264933	433	279	-52	841	RCDD					N.S.I.
RIVERINA	RVDD24037	6706724	264900	433	264	-58	1008	RCDD					N.S.I.
	RVDD24041W3	6706176	264966	434	278	-53	828	DDHW	718.55	719.20	0.65	23.7	0.7m @ 36.5 g/t
RIVERINA	RVDD24041W3								728.09	728.45	0.36	0.5	0.4m @ 1.3 g/t
	RVDD25003	6706829	264933	268	268	-50	330	RCDD	96.00	100.00	4.00	4.9	4.0m @ 1.2 g/t
RIVERINA	RVDD25003								112.00	116.00	4.00	4.1	4.0m @ 1.0 g/t
	RVDD25003								252.00	256.00	4.00	6.6	4.0m @ 1.7 g/t
	RVDD25004	6706112	264869	437	270	-66	957	RCDD	224.00	232.00	8.00	13.8	8.0m@1.7g/t
	RVDD25004								292.96	293.34	0.38	0.5	0.4m @ 1.2 g/t
	RVDD25004								607.17	607.48	0.31	0.3	0.3m @ 1.0 g/t
	RVDD25004								639.25	642.63	3.38	9.7	3.4m @ 2.9 g/t
	RVDD25004								651.90	652.45	0.55	2.2	0.6m @ 4.1 g/t
	RVDD25004								675.20	676.00	0.80	2.2	0.8m @ 2.7 g/t
	RVDD25004								711.22	713.50	2.28	13.0	2.3m @ 5.7 g/t
	RVDD25004								Incl 712.06	712.45	0.39	6.3	0.4m @ 16.1 g/t
	RVDD25004								716.02	716.40	0.38	4.3	0.4m @ 11.2 g/t
	RVDD25004								723.35	723.70	0.35	24.7	0.4m @ 70.6 g/t
RIVERINA	RVDD25004								726.33	726.64	0.31	4.1	0.3m @ 13.2 g/t
	RVDD25004								810.13	810.43	0.30	0.7	0.3m @ 2.4 g/t
	RVDD25004								866.77	867.15	0.38	0.8	0.4m @ 2.1 g/t
	RVDD25004								870.32	872.72	2.40	2.9	2.4m @ 1.2 g/t
	RVDD25004								892.53	894.78	2.25	7.2	2.3m @ 3.2 g/t
	RVDD25004								Incl 892.53	892.85	0.32	5.0	0.3m @ 15.5 g/t
	RVDD25004								898.00	899.25	1.25	15.5	1.3m @ 12.4 g/t
	RVDD25004								Incl 898.50	899.25	0.75	15.0	0.8m @ 19.9 g/t
	RVDD25004								902.00	903.00	1.00	2.3	1.0m @ 2.3 g/t
	RVDD25004								912.44	912.93	0.49	1.0	0.5m @ 2.1 g/t
RIVERINA	RVDD25004W1	6706112	264869	437	270	-66	866	DDHW	743.20	859.35			N.S.I.
	RVDD25005	0	0	0	267	-52	300	RCDD	28.00	36.00	8.00	14.8	8.0m @ 1.9 g/t
RIVERINA	RVDD25005								204.00	208.00	4.00	10.5	4.0m @ 2.6 g/t
RIVERINA	RVDD25006	0	0	0	269	-62	946	DDH	88.00	92.00	4.00	4.4	4.0m @ 1.1 g/t
	RVDD25007	6706407		450	273	-66	1104	DDH	23.00	25.00	2.00	4.0	2.0m @ 2.0 g/t
	RVDD25007								34.00	35.00	1.00	6.7	1.0m @ 6.7 g/t
	RVDD25007								43.00	44.00	1.00	1.1	1.0m @ 1.1 g/t
	RVDD25007								55.00	56.00	1.00	1.1	1.0m @ 1.1 g/t
	RVDD25007								64.00	65.00	1.00	1.5	1.0m @ 1.5 g/t
	RVDD25007								67.00	68.00	1.00	1.2	1.0m @ 1.2 g/t
RIVERINA	RVDD25007								90.00	91.00	1.00	3.1	1.0m @ 3.1 g/t
	RVDD25007								775.00	775.82	0.82	1.1	0.8m @ 1.3 g/t
	RVDD25007								802.24	802.54	0.30	0.8	0.3m @ 2.7 g/t
	RVDD25007								851.30	851.69	0.39	0.4	0.4m @ 1.1 g/t
	RVDD25007								892.05	894.00	1.95	3.1	2.0m @ 1.6 g/t
	RVDD25007								1037.80	1038.10	0.30	0.5	0.3m @ 1.7 g/t
RIVERINA	RVDD25008	6705830	264934	436	276	-68	1326	RCDD	0.00	251.90			N.S.I.
	RVRC23002W1	6705615	264758	437	268	-56	551	DDHW			[N.S.I.

Waihi - 1.0g/t cut-off, maximum 2m internal dilution, minimum width 0.2m

Project	Hole ID	MGA North	MGA East	RL	Azi	Dip	End Depth	Hole Type	Depth From	Depth To	Interval	Gram Metres	Au g/t interval
ROUND DAM	WHDD25001A	6674287		460	265	-57	360	DDH	96	97.05	1.05	4.5	1.1m @ 4.3 g/t
	WHDD25001A								220	221.78	1.78	3.9	1.8m @ 2.2 g/t
	WHDD25001A								240	243	3	4.1	3.0m @ 1.4 g/t
	WHDD25001A								260	261	1	1.2	1.0m @ 1.2 g/t
	WHDD25001A								265.74	266.04	0.3	1.4	0.3m @ 4.7 g/t
ROUND DAM	WHDD25002	6674703	271711	460	53	-60	360	DDH	98.33	98.75	0.42	7.6	0.4m @ 18.0 g/t
	WHDD25002								150.8	157.35	6.55	7.5	6.6m @ 1.2 g/t
	WHDD25002								159.9	160.25	0.35	1.3	0.4m @ 3.8 g/t
	WHDD25002								218.8	219.1	0.3	0.5	0.3m @ 1.7 g/t
	WHDD25002								247	248	1	1.1	1.0m @ 1.1 g/t
	WHDD25002								250.6	251	0.4	0.6	0.4m @ 1.5 g/t
	WHDD25002								258.25	259.7	1.45	26.9	1.5m @ 18.6 g/t
	WHDD25002								Incl 258.25	258.6	0.35	25.4	0.4m @ 72.5 g/t
ROUND DAM	WHDD25003	6674914	271795	459	46	-63	345	DDH	112.92	115.34	2.42	5.0	2.4m @ 2.1 g/t
	WHDD25003								136.67	140.34	3.67	5.0	3.7m @ 1.4 g/t
	WHDD25003								145	150	5	11.3	5.0m @ 2.3 g/t
	WHDD25003								155	155.93	0.93	1.8	0.9m @ 2.0 g/t
	WHDD25003								160	161	1	1.4	1.0m @ 1.4 g/t
	WHDD25003								163.33	164.12	0.79	1.1	0.8m @ 1.5 g/t
ROUND DAM	WHDD25003W1	6674914	271795	459	46	-63	301	DDHW	110.26	111.76	1.5	12.1	1.5m @ 8.1 g/t
	WHDD25003W1								Incl 110.26	110.61	0.35	9.2	0.4m @ 26.3 g/t
	WHDD25003W1								114.39	114.7	0.31	0.9	0.3m @ 2.9 g/t
	WHDD25003W1								134.73	135.04	0.31	0.6	0.3m @ 1.9 g/t
	WHDD25003W1								138.85	144.64	5.79	14.5	5.8m @ 2.5 g/t
	WHDD25003W1								149.28	149.68	0.4	1.4	0.4m @ 3.5 g/t
	WHDD25003W1								176.99	178	1.01	1.6	1.0m @ 1.6 g/t
	WHDD25003W1								187.24	188.02	0.78	3.5	0.8m @ 4.5 g/t
	WHDD25003W1								250.68	251.43	0.75	0.8	0.8m @ 1.1 g/t
	WHDD25003W1								251.88	252.35	0.47	0.6	0.5m @ 1.3 g/t
ROUND DAM	WHDD25004	6674537	271763	460	65	-70	462	DDH	22	22.5	0.5	0.9	0.5m @ 1.9 g/t
	WHDD25004								177.52	177.88	0.36	0.4	0.4m @ 1.0 g/t
	WHDD25004								179.11	179.46	0.35	1.0	0.4m @ 2.8 g/t
	WHDD25004								192	192.3	0.3	0.3	0.3m @ 1.2 g/t
	WHDD25004								228.8	230.69	1.89	4.5	1.9m @ 2.4 g/t
	WHDD25004								266.55	267.05	0.5	0.8	0.5m @ 1.6 g/t
	WHDD25004								287.68	288.12	0.44	0.8	0.4m @ 1.8 g/t
	WHDD25004								297	297.3	0.3	0.6	0.3m @ 1.9 g/t
	WHDD25004								300.9	301.84	0.94	1.1	0.9m @ 1.2 g/t
	WHDD25004								305.32	305.62	0.3	0.5	0.3m @ 1.6 g/t
	WHDD25004								308	308.53	0.53	0.7	0.5m @ 1.3 g/t
	WHDD25004								329.63	329.93	0.3	0.6	0.3m @ 2.0 g/t
	WHDD25004								331.55	332.2	0.65	0.8	0.7m @ 1.3 g/t
	WHDD25004								380.7	382.75	2.05	2.6	2.1m @ 1.3 g/t
	WHDD25004								383.8	384.1	0.3	0.4	0.3m @ 1.3 g/t
	WHDD25004								450	450.3	0.3	0.8	0.3m @ 2.8 g/t
ROUND DAM	WHDD25004W1	6674537	271763	460	65	-70	441	DDHW	96.35	96.65	0.3	1.1	0.3m @ 3.7 g/t
	WHDD25004W1								205.32	206	0.68	5.7	0.7m @ 8.5 g/t
	WHDD25004W1								214.25	214.98	0.73	2.0	0.7m @ 2.7 g/t
	WHDD25004W1								219.57	219.95	0.38	0.5	0.4m @ 1.4 g/t
	WHDD25004W1								220.66	221.6	0.94	1.1	0.9m @ 1.2 g/t
	WHDD25004W1								259.71	260.5	0.79	2.0	0.8m @ 2.5 g/t
	WHDD25004W1								341.94	342.9	0.96	5.5	1.0m @ 5.7 g/t
	WHDD25004W1								350.47	351.73	1.26	3.5	1.3m @ 2.8 g/t
	WHDD25004W1								357.76	366.41	8.65	80.2	8.7m @ 9.3 g/t
	WHDD25004W1								Incl 357.76	358.81	1.05	31.7	1.1m @ 30.2 g/t
	WHDD25004W1								Incl 363.80	364.24	0.44	39.9	0.4m @ 90.6 g/t

Appendix 2 - JORC CODE, 2012 EDITION – TABLE 1 REPORT

Section 1 Sampling Techniques and Data - GREATER RIVERINA AREA

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Australian Consolidated Minerals Ltd (ACM); Unknown Aztec Expl Ltd; Unknown Croesus Mining NL; All samples were dried, crushed and split to obtain a sample less than 3.5kg, and finely pulverised prior to a 50gm charge being collected for analysis by fire assay. Monarch Gold Mining Company Ltd; Industry standard work. RC samples collected and sent to certified laboratories for crushing, pulverising and assay by fire assay (RC) and aqua regia (RAB). Pancontinental Mining Ltd; Samples (>2kg) were crushed to 1mm, 1kg split taken and pulverised to 90% minus 20 mesh from which a 50gm aliquot was taken for assay by aqua regia or fire assay. Consolidated Gold NL/DPPL(Davyhurst Project PTY. LTD); Industry standard work, RAB samples crushed, pulverised and a 50g charge taken for fire assay. 200gm soil samples oven dried, and pulverised, 50g charge taken for aqua regia assay. Riverina Resources Pty Ltd; Industry standard work. RAB samples taken every metre, composited to 4m using a spear. Samples crushed, pulverised and 50g charge taken for fire assay and/or 4 acid digest. Any gold anomalous 4m composite samples were e-sampled ore 1m intervals using a riffle splitter and also sent to Kalgoorlie Assay Laboratory for gold analysis by 50g fire assay. Barra Resources Itd; Industry standard work. The entirety of each hole was sampled. Each RC and RAB hole was initially sampled by 4m composites using a spear or scoop. To obtain a representative sample, the entire 1m sample was split using a riffle splitter into a calico bag. Whole diamond core samples for ore zones were sampled. Entire sasy. Greater Pacific Gold; Core sampling method unknown, assumed to be cut half core. RC sampling method unknown. Analysis method unknown. However, work completed by accredited laboratories, Analabs and Genalysis. Carpentaria Exploration Company Pty Ltd; Samples were collected using a sample spear. About 2kg samples w

Criteria	JORC Code explanation	Commentary
		 WMC; Unknown Electrolytic Zinc Company (EZNCO); RAB samples collected by "tubing" bagged 2m sample intervals to give ~ 5kg from a 6-8m composite interval. Nickel Australia; RAB samples were laid out in 1m piles and sampled as 2m composites in ultramafics, 4m composites elsewhere via a scoop. RC samples were laid out in 1m piles and sampled in 2m composites within ultramafics, 1m samples at the ultramafic basal contact and in 4m composites throughout the rest of the hole via a scoop. Ora Banda Mining Limited (OBM) - 1m RC samples using face sampling hammer with samples collected under cone splitter. 4m composite RC samples collected using a PVC spear from the sample piles at the drill site. For drilling up to April 2020, RC samples were dispatched for pulverising and 50g charge Fire Assay. For drillholes RVRC20036 to RVRC20104 inclusive, 1m and 4m composite samples were dispatched to the lab, crushed to a nominal 3mm, split to 500 grams and analysed by Photon Assay method at MinAnalytical in Kalgoorlie. 4m composite samples with gold values greater than 0.2 g/t Au were re-sampled as 1m split samples and submitted to the lab for Photon Assay analysis. Half-core samples, cut by automated core saw. Core sample intervals selected by geologist and defined by geological boundaries. Samples are crushed, pulverized and a 40g charge is analysed by Fire Assay. For all surface resource and exploration drilling since 2022, -1 m RC samples were taken outside of mineralised zone, collected using a scoop from the sample piles at the drill site. 1m cone split samples were taken within the expected mineralised zones. Core sample intervals selected by geological boundaries. All samples were dispatched to the Lab for mineralised zone, collected using a scoop from the sample piles at the drill site. 1m cone split samples were taken within the expected mineralised zones. Core sample intervals selected by geological boundaries. All samples were dispatched to the SGS laboratory at th
Drilling techniques	 Drill type (eg core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Australian Consolidated Minerals Ltd (ACM); RAB drilling, details unknown. Aztec Expl Ltd; Rc and diamond drilling, details unknown. Croesus Mining N.L; Auger samples were drilled by Prodrill Pty Ltd using Toyota mounted auger rig. RAB holes were drilled by either Kennedy, or Arronika or Challenge Drilling of Kalgoorlie. Challenge drilling employed a custom built RAB/AC rig. RC holes were drilled by Ausdrill Pty Ltd and diamond holes were drilled by Sandersons. Core was oriented. Monarch Gold Mining Company Ltd; Aircore and RAB holes were drilled by Challenge Drilling. All RC holes were drilled by Kennedy Drilling Contractors with 5^{1/2}" hammer. Pancontinental Mining Ltd; Drilling was undertaken by Davies Drilling of Kalgoorlie using a Schramn T64 rig. Consolidated Gold N.L/DPPL; Auger samples were collected using a power auger fitted to a 4WD vehicle. RAB drilling was undertaken by Bostech Drilling Pty Ltd. Riverina Resources Pty Ltd; RC holes drilled with 5^{1/4}" hammer. Unknown diamond core diameter. Barra Resources Ltd; Holes were drilled by Resource Drilling Pty Ltd using a Schramm 450 drill rig. Greater Pacific Gold; Schramm RC Rig with face sampling hammer, 5^{1/8}" diameter. NQ core, Edson Rig Carpentaria Exploration Company Pty Ltd; RC drilling by Robinson contractors. Face sampling hammer used.

	Criteria	JORC Code explanation	Commentary
			 Malanti Pty Ltd; Holes were drilled by Redmond Drilling of Kalgoorlie using a truck mounted Schramm rig with a compressor rated at 900 cfm 350 psi. Riverina Gold Mines NL; Vacuum holes were drilled by G & B Drilling using a Toyota Landcruiser mounted Edsom vacuum rig fitted with a 2 inch (5.08cm) diameter blade. RAB holes were drilled by PJ and RM Kennedy using a Hydro RAB 50 drill rig mounted on a 4 wheel Hino truck with 600 cfm/200 PSI air capacity. A 51/4 inch hammer and blade were used. RC holes were drilled by either Civil Resources Ltd using an Ingersoll Rand T4W heavy duty percussion rig fitted with a 900 cfm at 350 PSI air compressor and a 51/4 inch (13,34cm diameter) RC hollow hammer or by Swick Drilling using an Ingersoll Rand TH 60 reverse circulation drill rig with 750 cfm/350 PSI air capacity and a 51/4 inch RC hollow hammer or by B. Stockwell of Murray Black's Spec Mining Services using a rig mounted on an 8 x 4 Mercedes. Riverina Gold NL; RC hole were drilled by Green Drilling using Schramm T66 rig. Diamond holes were drilled by Longyear. Diamond holes were sometimes drilled with a RC pre-collar, HQ core and a NQ2 core drilled. Norgold Ltd.; RAB and RC drilling. WMC; RC Drilling, details unknown Electrolytic Zinc Company (EZNCO); RAB drilling by Grimwood Drilling. Nickel Australia; AC holes drilled by Challenge Drilling, RC by Ausdrill OBM – 5.25 to 5.5 inch diameter RC holes using face sampling hammer with samples collected under cone splitter. HQ and HQ3 coring to approx. 40m, then NQ2 to BOH. Metallurgical and geotechnical core holes drilled using HQ3 exclusively. All core oriented by reflex instrument. All core drilled from 2022 was orientated by Axis instrument. Underground diamond drilling – NQ2 coring with standard tubing (triple tubing for geotechnical), all core is oriented by Axis Champ Ori tool, rig alignment via DeviAligner tool, downhole surveys via DeviGyro-Ox tool.
I	Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Auger, RAB and RC drill recoveries were not recoded by Aztec Expl Ltd.Croesus Mining N.L, Monarch Gold Mining Company Ltd, Pancontinental Mining Ltd, Consolidated Gold N.L/DPPL, Riverina Resources Pty Ltd, Barra Resources Ltd, Carpentaria Exploration Company Pty Ltd, Malanti Pty Ltd, Riverina Gold Mines NL., Riverina Gold Mines NL., Electrolytic Zinc Company (EZNCO), WMC, Norgold, ACM, Nickel Australia or Aztec. However, Monarch, in a Riverina resource report state that "Good recoveries for RMRC series RC drilling were observed. Minor water was encountered in 27 of the RMRC series drill holes" Diamond Core recoveries are very high due to the competent ground. Any core recovery issues are noted on core blocks and logged. OBM - Diamond drill recoveries are recorded as a percentage calculated from measured core against downhole drilled intervals (core blocks). There is no known relationship between sample recovery and grade.
	Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Australian Consolidated Minerals Ltd (ACM); Geology logs noting weathering, lithology, mineralisation, alteration, texture, veining and sulphide. Quantitative; percent sulphide percent qtz vein. Aztec Expl Ltd; Hand written logs noting lithology, mineralisation, alteration, veining and sulphide. Quantitative; percent sulphide percent qtz vein. Croesus Mining N.L; RAB drill logs were recorded both on paper and later electronically by a Casiopia datalogger. Diamond core was geologically, geotechnically and magnetic susceptibility logged. Qualitative: alteration, colour, contact, grainsize, joint, matrix, texture, rocktype, mineral, structure, sulphide, percent sulphide, vein type, percent vein, weathering. Quantitative; percent sulphide, percent vein. Diamond core was photographed. Monarch Gold Mining Company Ltd; Qualitative: lithology, mineralisation code, alteration, vein code, sulphide code. Quantitative; percent mineralisation, alteration intensity, percent vein, percent sulphide.

Criteria	JORC Code explanation	Commentary
		 Pancontinental Mining Ltd; All drill data was recorded on computer forms and the lithological descriptions were produced by Control Data' Bordata program. Qualitative: colour, weathering, minerals, grainsize, rock, structure, alteration. Quantitative: alteration intensity. Consolidated Gold NL/DPPL; Holes were logged at Lm intervals using a standard logging sheet directly onto a palmtop logger. Qualitative: colour, weathering, minerals, grainsize, rock, structure, alteration. Quantitative: alteration intensity. Riverina Resources Pty Ltd; Qualitative: lithology, minerals, grainsize, rock, structure, alteration. Quantitative: alteration intensity. percent sulphide, percent quartz veins. Barra Resources Ltd; Each meter from all RC drill holes was washed, sieved and collected in chip trays and stored at the Barminco First Hi Mine office. These rock chips were geologicall logged using the Barminco First Hi Mine office. Each diamond drill holes was recovered according to the driller's core blocks and metre marked. The core was logged to the centimetre, and samples were marked up accordingly. The core was geologicall logging codes. This data was manually recorded on logging sheets in the field and entered into a digital database at the Barminco First Hi Mine office. Each diamond drill holes does. This data was manually recorded on logging sheets in the field and entered into a digital database at the Barminco First Hi Mine office. Qualitative: qualifier, lithology, mineralisation, alteration, alteration and veining. Greater Pacific Coid; Qualitative logging of lithology, oxidation, alteration and veining. Greater Pacific Coid; Qualitative logging of lithology, oxidation, alteration minerals, rock type, structure, vein type, sulphides, oxidation and comments. Quantitative: percent vains, percent sulphides. Qualitative: for Choles from RV296 to RV350: geology, oxidation, colour and description. Quantitative: RAB holes and R holes from RV10 to

Criteria	JORC Code explanation	Commentary
		• All holes were geologically logged in their entirety to a level of detail to support mineral resource estimation.
Sub- sampling techniques and sample preparatio n	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampled. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Australian Consolidated Minerals Ltd (ACM); Unknown. Aztec Expl Ltd; Unknown Croesus Mining NL; Auger samples were taken from an average depth of 1.5m to 2m. RAB and Aircore samples were collected in buckets below a free standing cyclone and laid out at 1m intervals in rows of tens adjacent to the drill collar. Composite analytical samples Asky were initially collected over 5m intervals for each hole and a 1m bottom of hole analytical sample. Analytical composite samples were formed by taking a representative scoop through each 1m drill sample. R drill samples were collected in large plastic retention bags below a freestanding cyclone at 1m intervals, with analytical samples initially formed by composite sampling over 5m intervals. Where samples were dry, analytical composites were formed by spear sampling, using a 50mm diameter plastic pipe pushed through the drill cuttings in the sample retention bag to the base of the bag. The pipe is removed carefully with the contents of the pipe containing a representation of the retained metre. Wet Cd fill samples where thorough the time sample retention bag and 'scoop' sampled to form a 5m composite samples. Mol diamond core was cut using a diamond saw, with half core being submitted to the laboratory for analysis and the other stored. Field samples were taken for RAB, RC and diamond core samples at a rate of 1 in 20. Composite analytical samples returning values greater than 0.1 g/t Au were re-sampled at 1m intervals. Monarch Gold Mining Company tut; Orill hole samples were collected at 4m and 3m composite intervals. All samples at ALS Kalgoorile were sorted, dried, split via a riffle splittre using the standard splitting procedure laboratory Method Code SPL-21, pulverised in a ring mill using a standard low chrome steler ring set to -85% passing 75 micron. If sample was 2 kg kt was split prior to pulverising and the remainder retained or discarded. A 250g representative split sample was callected at every 25th sample

Criteria	JORC Code explanation	Commentary
		 sampled by 4m composites using a spear or scoop. Once each hole was logged, intervals considered to be geologically significant were re-sampled at 1m intervals. To obtain a representative sample, the entire 1m sample was split using a riffle splitter into a calico bag. Whole diamond core samples for ore zones were sampled. Samples greater than 2.5kg were riffle splitt to <2.5kg using a lones riffle splitter. The entire sample was then pulverised in a labtechnics LMS to better than 85% passing 75 microns. A Sogm pulp was taken for assaying in appropriately numbered satchels. Composite samples that returned gold assays greater than 0.1 g/t Au and that had not been previously sampled at 1m intervals, were re-sampled at 1m intervals. In addition, any highly anomalous 1m samples were also sampled again to confirm their assay results. Greater Pacific Gold, Sample repearation for RC and core sample unknown. Carpentaria Exploration Company Pty Ltd; Samples were collected over 1m intervals. 2m and 4m composite samples were collected using a sample spear. About 2kg sample spear and a charge taken for analysis. Malanti Pty Ltd; 1m samples were collected in plastic bags via a cyclone and passed through a triple splitter giving a 12.5% split of about 2kg which was placed in a calico bag and marked with the drill hole number and interval sampled. The 87.5% was returned to the similarly numbered large plastic bag and laid in rows on site. A trowel was used to scoop the samples were also user were and off in intervals. Samples for assay were than every metre through a cyclone and triple splits were salected for analysis. Riverina Gold Mines NL; Yacuum hole samples were composited to 4m intervals. Rds amples were taken every metre through a cyclone and riffe split to a valuer and some more split and submitted for analysis. Riverina Gold Mines NL; Wacuum hole samples were collected every metre and split. Rds amples were taken every metre through a cycl

Criteria	JORC Code explanation	Commentary
		 50g charge Fire Assay (GO_FAP50V10). From 10 March 2025 samples were analysed by 500g photon analysis by SGS. Field duplicates, blanks and standards were submitted for QAQC analysis. Underground diamond drilling – Core sample intervals selected by geologist and defined by geological boundaries, selected holes cut by saw and submitted as half core and remainder of holes are whole-core sampled. All samples were dispatched to the SGS laboratory at the Davyhurst site for crushing and pulverising. Prepared samples were then despatched to SGS laboratories in Kalgoorlie for a 50g charge Fire Assay (GO_FAP50V10). Flushes, blanks and standards were submitted for QAQC analysis. Underground face samples as per diamond drilling, including field duplicates, rock chip samples taken via hammer sampling per geology domain. Repeat assays were undertaken on pulp samples at the discretion of the laboratory.
<i>Quality of</i> <i>assay data</i> <i>and</i> <i>laboratory</i> <i>tests</i>	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Australian Consolidated Minerals Ltd (ACM); Unknown. Aztec Expl Ltd; Unknown Croesus Mining N.L; Auger samples were sent to Ultratrace Laboratories, Perth, to be assayed for gold using the Aqua Regia method with a detection limit of 1ppb. RAB, aircore, RC and diamond samples were sent to Ultratrace Laboratories in Perth to be analysed for gold using Fire assay/ICP Optical Spectrometry. Diamond core check samples were analysed at Genalysis of Perth. Some diamond core samples were also analysed for platinum and palladium by fire assay. Monarch Gold Mining Company Ltd; RC samples were sent to ALS Kalgoorlie to be analysed gold by fire assay (lab code Au-Aa26). This was completed using a 50grm sample charge that was fused with a lead concentrate using the laboratory digestion method FA-Fusion and digested and analysed by Atomic Absorption Spectroscopy against matrix matched standard. RC samples were also sent to Ultra Trace Pty Ltd, Canning Vale Western Australia for gold analysis by lead collection fire assay. Samples were also analysed for platidium and platinum. The Quality control at ALS involved 84 pot fire assay system. The number and position of quality control blanks, laboratory standards were inserted randomly and usually two certified internal standards were analysed with a batch, but it was at the discretion of the 'run builder' as to how many standards to add to the batch and where to place them in the run. QAQC at Ultra Trace Pty Ltd was undertaken for every 27th sample. At random, two repeat samples were chosen if the first pass of fire assay shows anomalous value. Pancontinental Mining Ltd; Samples were sent to Genalysis Laboratory Services Pty Ltd in Perth to be analysed for gold to a detection limit of 0.01 ppm. They were also analysed for gold at SGS laboratory using aqua regia with AAS finish. A number of samples were sent to Genalysis Laboratory Services Pty Ltd in Perth to be analysed for calcium, magnesium and arsenic using ALS's

Criteria	JORC Code explanation	Commentary
Criteria	JORC Code explanation	 Commentary Zn using a four acid digest with ICP-OES finish and for Au using a Sogm fire assay digest with flame AAS finish. Some samples were also sent to Ultra Trace in Perth for analysis. 312 end of hole RAB samples from the Forehand Prospect were sent to AusSpec International in Sydney for HyChips spectral analysis developed by AusSpec International and CSIRO capable of analyzing dry samples stored in chip trays at a rate of at least 1,600 per day. This was undertaken to identify alteration minerals, weathered clays, Fe oxides, and weathering intensity as well as sample mineralogy including mineral crystall inity and mineral composition. (Results are in appendix 4 of Riverina Project Combined ATR 2006,pdf). Down Hole Electro-Magnetic (DHEM) surveys were completed by Outer Rim Exploration Services using a Crone Pulse EM probe. (Southern Geoscience Consultants were contracted to plan the DHEM surveys and interpret the results). Barra Resources Lifd. Auger Samples were sent to Ultra Trace Analytical Laboratories in Perth to be analysed for gold and arsenic. Gold was determined by Aqua Regia with ICP-Mass Spectrometry to a detection limit of 0.2ppb. All RC pulp samples were sent to Kalgoorile Assay Laboratories or Australian Laboratory Services Pty Ltd (ALS) in Kalgoorile for gold analysis. Gold analysis was completed using the Sogm fire assay technique with an AS finish to a detection limit of 0.04ppm. Each was weighed and data captured, with the charge then intimately mixed with flux. Kwed sample and flux were rused in a core arcine crucible at 1100°C in a reducing furnace. The resultant dore bead was parted and digested, being made up to volume with distilled water. The analyte solution was aspirated against known calibrating standards using AS. All diamond core sample pulps were sent to Leonora Laverton Assay Laboratory Pty Ltd to be assayed for gold by fire with an AS finish to a detection limit of 0.01ppm Au. Some drill hole samples were analysed for gold by fire assa
		Analabs in Kalgoorlie to be analysed for gold by fire with fusion AAA, copper, lead and silver by ASS with perchloric acid digestion and, arsenic by ASS with vapour generation and density using an air pycnometer.

Criteria	JORC Code explanation	Commentary
		 Norgold Ltd.; Unknown WMC; Unknown. Electrolytic Zinc Company (EZNCO); Unknown. Nickel Australia; AC sample Samples were dispatched to Ultra Trace Laboratory in Perth for analysis the standard nickel suite of elements of Au, Pt and Pd by method FA002 (Fire Assay) and Ag, Al, As, Bi, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pd, S, Ti and Zn via ICP302 (A acid digest ICP/MS or ICPOES) method. RC samples were dispatched to Ultra Trace Laboratory in Perth and analysed for Ni, Cu Pt+Pd. OBM – Up to April 2020, all samples were sent to an accredited laboratory (Nagrom Laboratories in Perth, Intertek-Genalysis in Kalgoorile or SGS in Kalgoorile). The samples have been analysed by firing a 50gm portion of the sample. This is the classical fire assay process and will give total separation of gold. An ICPOES finish is used. Commercially prepared standard samples and blanks are inserted in the sample stream at a rate of 1:12. Sizing results (percentage of pulverised sample samples are disaving are acceptable. For drillholes RVRC20036 to RVRC20104, 1m and 4m composite RC samples were sent to MinAnalytical Laboratory Services in Kalgoorile. Sample pareid story which 500 grams is linear split into assay jars for analysis. Samples are analysed by the Photon assay method which utilises gamma radiation to excite the nucleus of the target atoms (gold). The excited nucleus then emits a characteristic photon, which is counted to determine the abundance of gold in the sample stream at a naverage rate of 1:25. Sizing results (percentage of pulverised sample rate at a naverage rate of 1:20. Sizing results (paradist and precision (repeats) of assaying reacuracy (standards) and precision (repeats) of assaying reacuracy (standards) and precisions in Kalgoorile for a 50g charge Fire Assay (GO_FAPSOV10) with MP-AES finish. Commercially prepared standard samples and blanks are inserted in the sample stream at a naverage rate of 1:20. Sizing results (percentage of pulverised sample pas
<i>Verification of sampling and assaying</i>	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Holes are not deliberately twinned. OBM - Geological and sample data logged directly into field computer at the drill rig or core yard using Field Marshall or Geobank Mobile. Data is transferred to Perth via email or through a shared server and imported into Geobank SQL database by the database administrator (DBA). Assay files are received in .csv format and loaded directly into the database by the DBA. Hardcopy and/or digital copies of data are kept for reference if necessary.

Criteria	JORC Code explanation	Commentary
		 Monarch Gold Mining Company Ltd; Geological and sample data was logged digitally and .csv or .xls files imported into Datashed SQL database with in-built validation. Samples bags were put into numbered plastic bags and then cable tied. Samples collected daily from site by laboratory.
		Data entry, verification and storage protocols for remaining operators is unknown.
		No adjustments have been made to assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Australian Consolidated Minerals Ltd (ACM); Surveyed north parallel local grid by J.F. Mort and Company. Aztec Expl Ltd; All holes drilled on a True North parallel local grid. Croesus Mining N.L; All drilling was located using a Trimble/Omnistar DGPS with an accuracy of plus or minus 1m. Down hole surveys were either as planned or taken using electronic multi shot camera. The gird system used is AGD 1984 AMG Zone 51. Monarch Gold Mining Company Ltd; The collar co-ordinates of holes RMRC086 to RMRC177 were surveyed using the RTKGPS. All surveying was undertaken by staff of Monarch Gold Mining Company Ltd. Down hole surveys were undertaken every 5m by Ausmine using electronic multi-shot (EMS). The gird system used is GAD44 MG AZ one 51. Pancontinental Mining Ltd; RC drilling at Mulwarrie was surveyed by MCGay Surveys. The grid system used is AMG Zone 51. RAB drilling at Riverina South – holes drilled on local Riverina grid and transformed to MGA using 2 point transformation. Holes were not routinely downhole surveyed. Consolidated Gold N.L/DPPL; Auger holes located on AMG grid. Some RAB holes were drilled on an AMG grid installed by Kingston Surveys Pty Ltd of Kalgoorlie. Each 40m grid peg had an accurate (plus or minus 10 cm) northing, easting and elevation position. Other RAB holes drilled on local grid. Holes located using compass and hip chain from surveyed baselines. The grid system used is AGD 1984 AMG Zone 51. Barra Resources Pty Ltd; Collar co-ordinates were surveyed using a DGPS. Collar azimuth and inclination were recorded. Drill hole collar data was collected by the First Hit mine surveyor and down hole surveys for most GNRC holes was by single shot and on rare occasions by gyro. Diamond holes surveyed by electronic multishot. The gird system used is AGD 1984 AMG Zone 51. Barra Resources Ltd; Collar co-ordinates for northings, eastings and elevation have been recorded. Collar azimuth and inclination

.

1.0000

Criteria	JORC Code explanation	Commentary
		 Norgold Ltd.; Local grid with 10,400 running parallel with northern boundary of tenement P30/178. Topography has been surveyed by recent operators. Collar elevations are consistent with surrounding holes and the natural surface elevation. WMC; All drilling on AMG 84 grid. Electrolytic Zinc Company (EZNCO); Local Grid. Nickel Australia; RC holes were located via DGPS on gridded pegs on an MGA-zone 51 grid. AC holes were located on gridded pegs which had been located via DGPS in MGA co-ordinates (zone 51). OBM (RC, DD) MGA94, zone 51. Drill hole collar positions were picked up by a contract surveyor using RTKGPS subsequent to drilling. Drill-hole, downhole surveys are recorded every 30m using a reflex digital downhole camera. Some RC holes not surveyed if holes short and/or drilling an early stage exploration project. Diamond drillholes completed in 2019 and 2020 by OBM were surveyed using a Gyro tool. For all drilling from 2022 Drill hole collar positions were picked up by an OBM mining surveyor using RTKGPS subsequent to drilling. All downhole surveys using RTKGPS surveys were taken every 10m by Gyro. Underground diamond drilling – diamond drilling collar locations picked up by mine surveyors via theodolite and known survey control points. UG diamond drill rig alignment via surveyed collar locations and DeviAligner tool, downhole surveys via DeviGyro-Ox tool. Underground face sample locations measured via laser distometer to known surveyed control points and development surveys via theodolite.
Data spacing and distributio n	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Exploration results are reported for single holes only. Australian Consolidated Minerals Ltd (ACM); 15m to 20m along very widely (up to 1km) spaced east-west lines. Aztec Expl Ltd; Wide spaced first pass RC and Diamond drilling. Drill hole spacing is adequate for the current resources reported externally. (Examples are discussed below) Croesus Mining N.L; Auger samples were collected to infill a 250m x 100m grid, Riverina South RAB samples were collected to infill a 400m x 80m grid and Sunraysia RC drilling was completed on a 40m x 200m grid. Monarch Gold Mining Company Ltd; RAB holes were drilled on 200m x 40m grids and RC holes were drilled on a 20m x 20m and 40m x 20m grids. Riverina Resources Pty Ltd; Auger soil sampling program was taken over 50m x 50m, 50m x 100m and 50m x 200m spaced grids, Silver Tongue RAB and RC holes were drilled on 25m x 25m, 25m x 50m and 50m x 50m spaced grids and Corporate James RAB holes were drilled on 50m x 100m and 25m x 100m and 50m x 200m spaced grids, Silver Tongue RAB and RC holes were drilled on 25m x 50m, 50m x 100m and 50m x 200m spaced grids, Silver Tongue RAB and RC holes were drilled on 25m x 50m and 50m x 50m spaced grids, Corporate James RAB holes were drilled on 50m x 100m and 25m x 100m spaced grids, Corporate James RAB holes were drilled on 50m x 100m and 25m x 100m spaced grids, Corporate James RAB holes were drilled on 50m x 100m and 25m x 100m spaced grids, Forehand RAB and RC holes were drilled on 50m x 100m and 50m x 50m spaced grids, Corporate James RAB holes were drilled on 50m x 50m spaced grids and Cactus RC holes were drilled on 10m x 10m, 20m x 20m and 40m x50m spaced grids. Ora Banda Mining Ltd – underground diamond drilling – typical spacing for grade control purposes is 20m x 20m. Underground face samples are taken each 3m/4m ore development cut. Drill intercepts are length weighted, 1.0g/t lower cut-off, not top-cut, maximum 2m int
<i>Orientation of data in relation to</i>	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling 	 Drilling was oriented at 90° to the strike of mineralisation and inclined at 600. Examples are discussed below. Australian Consolidated Minerals Ltd (ACM); RAB drilling oriented east or west, perpendicular to mineralisation and lithology. Aztec Expl Ltd; All holes drilled grid east or west, perpendicular to mineralisation. Croesus Mining N.L; Holes were either vertical or inclined at 60° and oriented towards the west.

Criteria	JORC Code explanation	Commentary
geological structure	orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 Monarch Gold Mining Company Ltd; Holes were inclined at 60° and oriented towards the west. Consolidated Gold N.L/DPPL; Holes were inclined at 60° and oriented towards either the west or east. Riverina Resources Pty Ltd; Holes were either vertical or inclined at 60° and oriented towards either the west or east. Barra Resources Ltd; Holes were either vertical or inclined at 60° and oriented towards the west. Greater Pacific Gold; Holes drilled to the east inclined at -58 to -60. Suitable for sub vertical N-S striking mineralisation. Carpentaria Exploration Company Pty Ltd; Holes were inclined at 60° and oriented towards either the west or east. Malanti Pty Ltd; Holes were inclined at 60° and oriented towards either the west or east. Malanti Pty Ltd; Holes were inclined at 60° and oriented towards either the west or east. Riverina Gold Mines NL; Vacuum holes from RVV1 to RVV69 and from RVV125 to RVV204 were drilled vertically. Vacuum holes from RVV125 were inclined at 60° and oriented either east or west. Riverina Gold NL; RC holes were inclined at 60° and oriented either east or west. Riverina Gold NL; RC holes were inclined at 60° and oriented either east or west. Norgold Ltd.; RAB and RC holes drilled grid east, almost perpendicular to lithology and mineralisation. WMC; 100m drill spacing along lines60 towards 270, perpendicular to lithology and structures. Electrolytic Zinc Company (EZNCO); East or west dipping holes, perpendicular to lithology and structures. Nickel Australia; All AC and RC holes drilled -60 towards the west. Perpendicular to lithology OBM – RC drilling is predominately inclined at between -50 and -60 degrees towards the west. Some bias is present for the Murchison lodes, given their close proximity to the drill cuddies and this impact is mitigated through detailed wall/backs mapping o
Sample security	• The measures taken to ensure sample security.	 Unknown for all drilling except for the following; Barra Resources Ltd. Samples received at the laboratory were logged in ALS Chemex's unique sample tracking system. A barcode was attached to the original sample bag. The label was then scanned and the weight of sample recorded together with information such as date, time, equipment used and operator name. Monarch; Sample calicos were put into numbered plastic bags and cable tied. Any samples that going to SGS were collected daily by the lab. Samples sent to ALS were placed into sample crates and sent via courier on a weekly basis. OBM - Samples were bagged, tied and stored in a secure yard on site. Once submitted to the laboratories they are stored in cages within a secure fenced compound. Samples are tracked through the laboratory via their LIMS.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	OBM has reviewed historic digital data and compared it to hardcopy and digital (Wamex) records.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and	• Type, reference name/number, location and ownership including agreements or	All tenure pertaining to this report is listed below:
land tenure	material issues with third parties such	TENEMENT HOLDER AGREEMENTS
status	 as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	M30/256 CARNEGIE GOLD PTY LTD. Farm-in and JV with Davyston Exploration Pty Ltd for all minerals other than gold and its byproducts (portion of tenement only) Davyston Exploration Pty Ltd holds a consent caveat and a mortgage South32 Ltd holds royalty rights (portion of tenement only) Province Resources Ltd holds royalty rights (portion of tenement only) Province Resources Ltd holds royalty rights (portion of tenement only) There are no known heritage or native title issues. There are no known impediments to obtaining a licence to operate in the area.
<i>Exploration done by other parties</i>	• Acknowledgment and appraisal of exploration by other parties.	 Drilling, sampling and assay procedures and methods as stated in the database and confirmed from Wamex repor and hard copy records are considered acceptable and to industry standards of the time.
Geology	 Deposit type, geological setting and style of mineralisation. 	 The geology of the Riverina South area consists of an interlayered sequence of meta-basalts, meta-sediments and ultramafics, rarely cross-cut by narrow pegmatite dykes. The local stratigraphy strikes roughly N-S with primarily steep east to sub-vertical dips. The area has been affected by greenschist grade metamorphism with many minerals exhibiting strong preferred orientations. All rock units exhibit strain via zones of foliation, with strongly sheared zones more common in ultramafic lithologies. Contemporaneous strike faults and late stage thrust faults have dislocated the stratigraphy and hence, mineralisation. Gold mineralisation is hosted by quartz-sulphide and quartz-Fe oxide veining primarily in the metabasalts. Metasediments and ultramafics may also contain gold mineralised quartz veining, although much less abundant. Gold mineralisation is also seen in silica-biotite-sulphide and silica-sericite-sulphide alteration zones in the metabasalts. The geology of Little Gem is entirely consistent of metasediments. Gold mineralisation is associated with calcsilicate alteration. A Carbonate unit is a high grade host
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the 	See Tables of Significant Intercepts.

Criteria	JORC Code explanation	Commentary
	 drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Original assays are length weighted. Grades are not top cut. Riverina resource is reported at a Lower cut off of nominally 1.0g/t. Due to the narrow nature of mineralisation a minimum sample length of 0.2m was accepted when calculating intercepts. Maximum 2m internal dilution. Exploration drilling Little Gem is reported at a lower cut off is nominally 0.5g/t. Metal equivalents not reported.
Relationship between mineralisati widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Intercept widths are down hole lengths. True widths are not reported given the varying orientation of drilling and mineralisation at each deposit/prospect mentioned in the report. The geometry of the mineralisation at Riverina and Little Gem is approx. N-S and sub vertical. Surface drilling is oriented perpendicular the strike of the mineralisation. UG drilling from drill cuddy with hole radiating in fans. Holes testing strike extremities are at lower angles to the ore lode and therefore not true widths, while those perpendicular to the lode can approximate true widths.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view	See plans and cross-sections.

Criteria	JORC Code explanation	Commentary
	of drill hole collar locations and appropriate sectional views.	
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 The location of drill hole intersections is shown on the plans and 2D/3D diagrams and are coloured according to grade to provide context for the highlighted intercepts
<i>Other substantive exploration data</i>	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Riverina has no known reported metallurgical issues. Results from previous processing have demonstrated that good gold recovery can be expected from conventional CIL processing methods. Recent baseline metallurgical test work demonstrated the following gold recoveries: Oxide - 90% Transitional - 97% Fresh - 94.3% Additional variation test-work remains ongoing.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further GC drilling at Riverina underground will continue as the access into the mine is deepened. Further resource definition drilling will be conducted from the surface, when beyond the reach of the underground drills, aimed and continued mineral resource growth and resource conversion. Ongoing Exploration

Section 1 Sampling Techniques and Data - Waihi

Criteria JORC Code explanation	Commentary
 Sampling Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 of 1m sampling or 2m composites. Lady Eileen programs RC drilling made use of roller, Blade or hammer with crossov sub all nominally 5.5 inch diameter to obtain 2-3kg sample. Composite 2m samples were hammer milled, mixed and split to 200g then pulverised. 1m samples single stage mix and ground. Sub –samples taken for aqua regia and fire assay. Cons Gold (Consolidated Gold) – RC 1m samples where alteration is visible. Remainder of hole composited to 4m. 2 to kg samples, including core, sent to laboratory for crushing, pulverising and 50g Fire Assay. Croesus – RC 1m samples collected under cyclone. 5m comps assayed for gold by 50g Fire assay. NQ diamond except f geotechnical purposes (HQ triple). Delta - RAB 5 metre composites (Aqua-regia with 50g charge) with 1m re-samples (Fire assay). DPPL (Davyhurst Project Pty. Ltd.)- 4.25 to 5.5 inch RC drilling with face hammer. Potential mineralisation sampled and assayed on a metre basis otherwise 4m composites. Samples jaw crushed and pulverised before taking a 50gm charge

Criteria	JORC Code explanation	Commentary	
		Splitter maintained on level site to ensure sample representivity. 1m samples are dried, crushed, pulverised and a 50g charge is analysed by Fire Assay. Half core samples, cut by saw. Core sample intervals selected by geologist and defined by geological and/or mineralisation boundaries, or sampled to 1m. Samples are crushed, pulverized and a 40g or 50g charge is analysed by Fire Assay. For all drilling since 2022, - 1m RC samples using face sampling hammer with samples collected under cone splitter. 4m composite RC samples were taken outside of mineralised zone, collected using a scoop from the sample piles at the drill site. 1m cone split samples were taken within the expected mineralised zones. Core sample intervals selected by geologist and defined by geological boundaries. All samples were dispatched to the SGS laboratory at the Davyhurst site for pulverising. Prepared samples were then despatched to SGS laboratories in Kalgoorlie for a 50g charge Fire Assay. From 7 March 2025 samples were analysed by 500g photon analysis by SGS.	
Drilling techniques	 Drill type (eg core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Aberfoyle/Bardoc - RC, RAB and Diamond details undocumented however NQ diamond known to be used. RC drilling between 4 and 6 inch diameter with use of face sampling hammer known from 1992 onwards. Ashton RAB drilling. Details undocumented Billiton RAB and RC (Conventional hammer) diameter undocumented with use of roller/blade and hammer. NQ Diamond core ConsEx - RC drilling with roller, blade or hammer with crossover sub. Cons Gold – NQ diamond and HQ (triple) for geotechnical holes. RAB and RC. 4.25 to 5.5 inch RC drilling with stabilisers and face sampling hammers. Croesus – Diamond holes NQ2 diameter. RC and RAB details undocumented but assumed to be industry standard at the time being 5.5 inch face sampling hammers and 4 inch diameter respectively. Delta – RAB - details undocumented DPPL - NQ core and HQ for geotechnical holes. RC drilling with stabilisers and face sampling hammers. Hill Minerals - RC - details undocumented. Intrepid – RC drilling and diamond/diamond tails. Size and types undocumented. Monarch - RC samples were collected by Kennedy Drilling using a 4 inch blade and 5.5 inch face sampling hammer. RAB drill details undocumented. Kersey - Details of RC and RAB drilling details undocumented but assumed to be industry standard at the time being 5.5 inch face sampling hammers and 4 inch diameter respectively. Normandy – RAB with both hammer and blade using Schramm 42. Pancontinental – Details of RAB drilling undocumented. Texas Gulf – Conventional RC hammer, diameter undocumented. West Coast Holdings - 4 inch blade, roller and open hole hammer used for RAB drilling. WMC – Conventional RC hammer, diameter undocumented. OBM - HQ3 coring to approx. 40m, then NQ2 to BOH. All core oriented by reflex instrument. All core drilled from 2022 was orientated by Axis instrument.	
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias 	 RC drill recoveries were not recorded by Aberfoyle/Bardoc, Annaconda, Ashton, Consolidated Gold, Croesus, Delta, DPPL, OBM, Hill Minerals, Intrepid, Monarch, Mt Kersey, Normandy, Pancontinental, Texas Gulf, West coast holdings or WMC Billiton – Recoveries for some RC drilling programs were examined in 1986 but raw data not available. ConsEx – 2 metre plastic pipe inserted into cyclone vent. Cyclone washed at the end of each hole or if water injected. Sample weights measured for Homeward bound (no bias observed) and Lady Eileen prospects (generally no bias observed aside from two high grade samples perceived to be due to coarse grained gold) Perilya - Method undocumented but quality, moisture, sample quality and % recovery logged 	

Criteria	JORC Code explanation	Commentary
	<i>may have occurred due to preferential loss/gain of fine/coarse material.</i>	 OBM - Diamond drill recoveries are recorded as a percentage calculated from measured core against downhole drilled intervals (core blocks). RC sample recoveries are approximated based on the size of the bulk sample and recorded in drill log tables. It is unknown whether a relationship exists between sample recovery and grade or whether sample bias may have occurred.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Aberfoyle/Bardoc - Qualitative: lithology, colour, grainsize, structures, alteration. Quantitative: Quartz mineralisation Ashton - Qualitative: colour, lithology, alteration, oxidation. Quantitative: Quartz Billiton - Qualitative: lithology, alteration for Diamond and RAB. RC logging details unavailable Consolidated Exploration- Qualitative: lithology, colour, alteration, grainsize (at times). Quantitative: Quartz mineralisation at times Consolidated Gold/ DPPL - Qualitative: lithology, colour, oxidation, alteration, with grainsize, texture and structure often recorded in diamond drilling. Quantitative: Quartz veining. Core photographed. Logging entered directly into HPLX200 data loggers. Croesus - Most holes photographed, geologically logged and geotechnical and magnetic susceptibility measurements were taken. Qualitative: lithology, colour, grainsize, alteration, oxidation, texture, structures, regolith. Quantitative: Quartz veining Delta - Qualitative: lithology, colour, Quantitative: Quartz veining Hill Minerals - Qualitative: lithology, colour, Quantitative: Quartz veining Intrepid - No detailed logging kept for RC drilling. Diamond logging: Colour, lithology, oxidation, texture, alteration, mineralisation, grain size, structure Monarch - Qualitative: lithology, colour, oxidation, grainsize, texture, structure, hardness, regolith. Quantitative: estimates are made of quartz veining, sulphide percentages. Core photographed Mt Kersey - Qualitative: lithology, colour, alteration, oxidation, fabric, hardness, BOCO, grainsize. Quantitative: minerals, quartz Normandy - Qualitative: lithology, colour, oxidation, mineralogy, oxidation Pancontinental - logging details undocumented Perilya - Qualitative: lithology, colour, oxidation, lithology, alteration. Quantitative: Quartz, Iron WMC RC: Qualitative: lithology, Colour, oxi
<i>Sub- sampling techniques and</i>	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	 Ashton - Compositing and re splitting methods undocumented. Classic Laboratories methods undocumented. Genalysis: single stage mix and grind. Pulp duplicates taken at the pulverising stage and selective repeats conducted at the discretion of the laboratory. Billiton – Sub-sampling methods undocumented. 1m repeat fire assays of 2m RAB comps at Lady Eileen were done.

Criteria	JORC Code explanation	Commentary
sample preparatio n	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Duplicates for RAB and RC inserted however frequency unknown. Aberfoyle/Bardoc – Diamond core sawn in half. RC and RAB samples with variable compositing lengths and often 1m samples. Method undocumented before 1992, but thereafter riffle split to approximately 2kg samples. RC and RAB was usually prepared by single stage mixer and grind. Diamond, when known was jaw crushed and ring milled for a 50g charge fire assay. Sample duplicate studies undertaken at times, usually with good correlation ConsEx – RC holes sampled on 1m basis and riffle split to 12kg samples for 3m composites or 2-3kg samples for 2m composites. Composite 2m samples were hammer milled, mixed and split to 200g then pulverised to 2004. Im samples single stage mix and ground to 2006. Consgold - RC Samples collected via cyclone at 1m intervals and passed through 3 stage riffle splitter. A 2-3kg fraction was calico bagged for analysis, the residue collected in plastic bags and stored on site. Potentially mineralised zones were sampled at 1m intervals. Samples returning >0.19g/t were re submitted at 1m intervals. Samples underwent mixernili preparation (2-3kg) by Amdel Laboratories. RAB 4m composite samples using PVC spear. Samples returning >0.19g/t were re submitted at 1m intervals. Diamond drill samples were sawn in balf core. One half was jux crushed, then pulverised using a labetchnics mill. A quartz blank was pulverised between each sample to avoid contamination. Field duplicates from residues at 1 in 20 frequency submitted. Croesus C/RAB - 1m samples collected under cyclone. Sm comps, spear sampled with Somm PVC pipe. Wet RC drill samples were thoroughly mixed in the sample retention bag and scoop sampled to form acomposite sample. 3-5kg five metro composite and sample dwes drive groups duplicated in the field and submitted for analysis. Diamond drills were Gut to half core and sample to elutorate claboratories of Perth Delta – RAB: Sm composite dat an signed where

Criteria	JORC Code explanation	Commentary
		 samples were grab sampled. Samples oven dried the pulverised to nominal 75 microns, 400-500g is then split and residue stored. Normandy – RAB, 4m composites, sample method undocumented. Assays analysed for low level gold (ppb) Pancontinental – No methods or measures known Perilya - No methods or measures known Texas Gulf - Whole metres placed in plastic sacks and were then split to approximately 500g samples. Split method undocumented. Samples crushed, disc pulverized then split to 250g. Petrographic study completed by Mintek Services. West coast holdings - 2m intervals collected through a cyclone and passed though riffle splitter for approximately 1kg sample. WMC - RC Sampling on 1m basis, methods undocumented. Assay by aqua regia method, unknown laboratory. OBM – RC samples were submitted either as individual samples taken from the onsite cone splitter or as four metres composite samples taken by metal scoop. Core sample intervals selected by geologist and defined by geological boundaries, cut by saw and submitted as half core. All samples were dispatched to the SGS laboratory at the Davyhurst site for pulverising. Prepared samples were then despatched to SGS laboratories in Kalgoorlie for a 50g charge Fire Assay (Go_FAP50V10). Field duplicates, blanks and standards were submitted for QAQC analysis. From 10 March 2025 samples were analysed by 500g photon analysis by SGS. Field duplicates, blanks and standards were submitted for QAQC analysis.
<i>Quality of assay data and laboratory tests</i>	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Aberfoyle/Bardoc – multiple analysis methods at Sheen, Amdel, Genalysis, Classic, Comlabs and Australian Laboratories. Usually 50g fire assay for RC and aqua regia or 50g fire assay for RAB. Aberfoyle conducted assay QAQC studies periodically, usually on a deposit basis, however these were not well documented. Ashton - Fire assay and AAS at Classic Labs and Genalysis. Genalysis involved single stage mix and grind. Genalysis utilised internal FA stds. Billiton - Laboratory and methods undocumented. Standards for RAB and RC inserted however frequency unknown ConsEx - Genalysis composite 2m samples were hammer milled, mixed and split to 200g then pulverised to 200#. Im samples single stage mix and ground to 200#. Phase 1 standard wet chemical multi acid digestion and AAS. Second phase were also pre-roasted. Results of >1g/t re-assayed by fire assay. Check assays at umpire lab (Classic labs) for Lady Elleen drilling - significant differences in high grade samples, otherwise considered good. Consolidated Gold/ DPL - RC and RAB - Mixermill prep with fire assay Sog charge at AMDEL, Minilab or Analabs Laboratories in Kalgoorlie. Half core was diamond sawn, Jaw crushed, milled using LABTECHNICS mill at AMDEL for 50g charge by fire assay. Gannet standards submitted to monitor lab accuracy for infill resource drilling. Pulp umpire analysis was done but frequency unknown (1995). Screen fire assays of selected high grade samples. Quartz blanks submitted between each diamond core sample. Croesus samples analysed for Au by Fire Assay/ICPOES by Ultratrace in Perth. Gannet standards and blank samples made by Croesus were submitted with split sample submissions. QAQC analysis of repeats was analysed by Croesus Mining NL. for their drilling completed during 2000. Delta - Analysis at Genalysis, Kalgoorlie. Total mixer mill prep, Aqua-regia with 50g charge, 0.01ppm detection limit. 1m re-samples: as above but with 50g charge fire assay. Stand

Criteria	JORC Code explanation	Commentary		
		 Mt Kersey - RAB and RC samples: 30g charge with 0.02 ppm DL by qua regia with a D.I.B.K and Ortho Phosphoric acid extraction. AAS at AAL group. Normandy - Amdel Laboratories, Perth using 50g Aqua-regia followed by graphite furnace AAS. Also by IC2E - digesting 1g subsample of pulp in aqua regia, bulked with water, then passed through an ICP-OES. Duplicate samples were sent to a different, undocumented lab. Pancontinental - Method undocumented. 2 RC holes were re-split and fire assayed and some screen fire assayed Perilya - 10ppb Au detection limit at Analabs Perth by Method P649, 50g Aqua Regia, DIBK, Carbon Rod (10ppb D.L.) Texas Gulf - Samples crushed, disc pulverized then split to 250g. Bromine digest followed by ketone extraction at Pilbara Labs, Kalgoorlie. Noted as not suitable in presence of sulphides. Values greater than 0.8g/t re-assayed by fire assay. West coast holdings Assayed by both AAS (Aqua Regia) and Fire Assay at SGS labs WMC drill samples were assayed by aqua regia method, unknown laboratory. Fire assay is considered a total technique and aqua regia is considered a partial technique. Historic operators assayed by "AAS". This is assumed to be aqua regia. OBM – Up to 2022 Samples sent to Nagrom in Perth. The samples have been analysed by Firing a 50gm portion of the sample. Lower sample weights may be employed for samples have been analysed by Firing a 50gm portion of the samples. Duplicate samples and blanks are inserted in the sample stream at arate of 1:25 for standards and 1:25 for blanks. Sizing results (percentage of pulverised sample passing a 75µm mesh) are undertaken on approximately 1 in 40 samples. Duplicate samples are submitted for RC holes only at a rate of approximately 1:30. The accuracy (standards) and precision (repeats) of assaying are acceptable. For all drilling from 2022, All samples were sent to the accredited onsite SGS laboratory		
<i>Verification of sampling and assaying</i>	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 OBM geologists have viewed selected diamond holes from certain deposits, including Waihi and verified the location of mineralised intervals. Twinned holes were occasionally used by previous operators but this practice was not common. Monarch Gold Mining Company Ltd; Geological and sample data was logged digitally and .csv or .xls files imported into Datashed SQL database with in-built validation. Samples bags were put into numbered plastic bags and then cable tied. Samples collected daily from site by laboratory OBM - Geological and sample data logged directly into field computer (Panasonic Toughbook CF-31) using Geobank Mobile. Data is exported onto company servers and imported into Geobank SQL database by the database administrator (DBA). Assay files are received in .csv format and loaded directly into the database by the DBA. Hardcopy and/or digital copies of data are kept for reference if necessary. Data entry, verification and storage protocols for remaining operators is unknown. No adjustments have been made to assay data 		
<i>Location of data points</i>	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. 	• RAB and AC holes are/were not routinely collar surveyed or downhole surveyed due to their limited use in resource estimation. To this end, discussion of RAB and AC drilling is omitted from this section. RC/GC (grade control) and shallow RC holes are/were not routinely downhole surveyed due to their shallow nature reducing the chance of significant deviation. Barren exploration RC holes not routinely downhole surveyed or collar surveyed. DD holes routinely collar and downhole surveyed by most operators or have been re-surveyed by subsequent operators.		

Criteria JORC Code explanation		Commentary		
Data spacing and distributio	 Quality and adequacy of topographic control. Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of 	 The influence of magnetic rocks on the azimuths of magnetic down hole surveys is minor. Early holes surveyed in AMG zone 51 and converted to MGA using Geobank and or Datashed data management software. Aberfoyle/Bardoc (RC, RC/DD, DD) Various local grids which have undergone 2 point transformations. RC collars and downhole surveys known to be surveyed at times, presumably when anomalous gold intersected. DD holes downhole surveyed by Eastman single shot (25m interval average) or Multishot (5m interval average) Billiton (RC, DD) Local Lights of Israel grid undergone 2 point transformation. Downhole surveys when performed were by undocumented method with a 25m interval average Cons£x (RC). Drilled on local grids (possibly truncated AMG84, zone 51). Holes appear to have been surveyed using AMG, zone 51 grid at a later stage. Numerous vertical holes not down-hole surveyed. Downhole surveys when performed were by undocumented method with a 9m interval average Cons Gold/DPPL (RC, DD) local grids and AMG84 zone 51 used. RC and DD Collars surveyed by licensed surveyors to respective grids. Holes of all types routinely collar surveyed whist RC resource holes routinely downhole surveyed by various methods including gyro and EMS with average intervals ranging between 10-25m. Croesus (RC, DD) Various local grids and AMG zone 51. RC, DD holes routinely collar surveyed and downhole surveyed using Electronic Multishot (EMS), GRYO, Eastman single shot or combination thereof at 10-15m average interval. Hills (RC) Local grid used. Monarch(RC) Various local grids and MGA. Holes routinely collar surveyed and downhole surveyed using EMS, or GYRO at 5m interval average or Eastman single shot (28m interval average). Mt Kersey(RC) Truncated AMG grid used Prospector (DD). Unknown Texasgulf (RC) Local grid: MC30/1317 based on 351.5^o baseline, parallel to tenement boundary. MC30/1327 based on 355		
n	 geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	• Drill intercepts are length weighted, 1g/t lower cut-off, not top-cut, maximum 2m internal dilution		
<i>Orientation of data in relation to</i>	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. 	 For most of the deposits in and around Davyhurst the prevailing geological and structural trend is approx. North-South. Once the orientation of mineralisation was established drilling was mostly oriented at 90° to the strike of mineralisation. Drillhole inclinations range from -50 to -75°. It is unknown whether the orientation of sampling achieves unbiased sampling, though it is considered unlikely 		

Criteria	JORC Code explanation	Commentary
geological structure	• If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 OBM – RC and DD drilling is predominately inclined at between -50 and -60 degrees towards the west. Drilling inclined to the east is only done when lodes are deemed to be vertical or if local landforms prevent access.
<i>Sample security</i>	• The measures taken to ensure sample security.	 Undocumented for most operators. ConsGold – RC residues stored onsite Monarch - Pre-numbered sample bags were put into numbered plastic bags. These numbers were written on the submission forms which were checked by the geologist. Plastic bags were then securely cable tied and placed in a secure location. Samples were then picked up by the Lab in Kalgoorlie or deliver to Perth via courier. A work order conformation was emailed to Monarch personnel for each sample submission once samples were received by the Laboratory. West coast holdings - Residues stored on site but security measures undocumented Texas Holdings - Residues stored on site but security measures undocumented OBM – Samples are bagged into cable-tied polyweave bags and stored in bulka bags in a secure yard. Once submitted to the laboratories they are stored in cages within a secure fenced compound. Samples are tracked through the laboratory via their LIMS.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 OBM has reviewed historic digital data and compared it to hardcopy and digital (Wamex) records. No audits of sampling techniques have been done.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

		201	nmentary			
Mineral definition of the second seco	Type, reference name/number, location and ownership including agreements or	•	All tenure p	ertaining to this report is	listed below	
land tenure	material issues with third parties such		TENEMENT	HOLDER	Expiry Date	AGREEMENTS
status	 as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	-		CARNEGIE GOLD PTY LTD. Id PTY LTD is a wholly own	10/01/2038	Farm-in and JV with Davyston Exploration Pty Ltd for all minerals other than gold and its byproducts (portion of tenement only) Davyston Exploration Pty Ltd holds a consent caveat and a mortgage

Criteria	JORC Code explanation	Commentary
		 There are no known heritage or native title issues. There are no known impediments to obtaining a licence to operate in the area.
<i>Exploration done by other parties</i>	• Acknowledgment and appraisal of exploration by other parties.	 Modern exploration commenced at the Davyhurst sites in the 1980s. Three companies, Jones Mining, Western Mining Corporation (WMC) and Hill Minerals pegged claims surrounding the historic Davyhurst sites. In 1986, WMC established a 300,000 tonne per annum carbon-in-pulp (CIP) treatment plant at Davyhurst and commenced open pit mining at Golden Eagle and Waihi. In 1988 WMC's and Jones Mining's assets were acquired by Consolidated Exploration Ltd. Consolidated Exploration then developed open cut mines at Great Ophir, Lady Eileen, Lady Eileen South and Homeward Bound. At about the same time Aberfoyle Resources / Hill Minerals commenced open-pit mining at the Lights of Israel Deposit and trucked the ore 80 km to the Bardoc processing plant. During 1995/96 Consolidated Exploration Ltd. restructured as Consolidated Gold NL (CGNL) and commenced tenement acquisition and exploration activities in the area. This resulted in the consolidation of holdings in the district. In December 1996 CGNL acquired the assets of Aberfoyle Resources in the area, including the Bardoc Processing plant, in an equity transaction. The Bardoc plant was relocated to the Davyhurst site and upgraded to 1.2 Mt/y. In October 1998 Davyhurst Project Pty Ltd (DPPL), a subsidiary of NM Rothschild and Sons (Australia), acquired the project. In 2000, Croesus Mining NL ("Croesus") acquired the Davyhurst and continued operations until 2005. In January 2006, Monarch Gold Mining Company Limited (Monarch) acquired from Wamex reports and hard copy records are considered acceptable and to industry standards of the time. There is sufficient understanding of drilling, sampling and assay methodologies for the majority of drilling in the Davyhurst area. The company is confident
		that previous operators completed work to standards considered acceptable for the time. As part of each resource upgrade, OBM will commit to additional drilling to confirm the style, widths and tenor of mineralisation at each deposit.
Geology	 Deposit type, geological setting and style of mineralisation. 	 Regional Geology - Rocks of the Coolgardie domain (Kalgoorlie Terrane) are prevalent in the Davyhurst area. Rocks of the Coolgardie Domain are not well exposed at Davyhurst and the distribution of rock types suggests that it is mainly represented by the upper part of the stratigraphic sequence, namely basalts, felsic volcanics and sedimentary rocks. The abundant ultramafic-mafic sills of the Ora Banda Domain do not occur in the Coolgardie Domain. Granitoids in the Davyhurst Project area can be classified by magnetic signature into three types: low, medium and high magnetic response. Binns et al. (1976) distinguished 'static style' and 'dynamic style' regional metamorphism. Static style areas generally occupy the central, low-strain part of the greenstone regions away from the granitoids and typically have lower metamorphic grades (upper greenschist to upper greenschist facies). Strain is concentrated in narrow zones so that textures are well preserved in more massive and competent rocks. Dynamic-style areas of greenstone have higher metamorphic grades (upper greenschist to upper amphibolite facies) and are characterized by more pervasive foliation, particularly along the contacts with large granitoid terrains. There appears to be two major controls on mineralisation in the Davyhurst area. Both mineralisation styles rely on mineralisation taking place during reactivation of earlier ductile shear zones. In the case of the Lights of Israel group of deposits, the early shear is steeply west dipping. In the northern portion of the Davyhurst tenements most gold mineralisation is aligned in planar corridors that have N- to NW-trends. The overall dip of the mineralised corridors is mostly steep (>750 E- or W-dipping with moderate to steep (~60°) and shallow-dipping (~15°) ore zones at the Federal Flag and Lady Gladys deposits, respectively. Within these planar corridors at individual deposits are common and discussed later. Mineralisation at the Lights of Israel and Makai deposits differs from the other ex

Criteria	JORC Code explanation	Commentary
		 Fine Grained Basalt. Massive to weakly foliated, very fine grained rock composed of actinolite and plagioclase (albite) with trace magnetite. Late stage lepidolite bearing pegmatite dykes striking 060° and dipping steeply 75° north cut across the stratigraphy at several places. A quartz felspar porphyry sub parallel to regional foliation has been mapped in the old Homeward Bound pit. Detailed mapping by ConsGold of the Waihi and Homeward Bound pits shows the area is dominated by a strong penetrative foliation striking 347° and dipping 75° to 80° west. A second weaker foliation striking 040° and dipping 75° north was also recognised in both pits. The intersection of these two foliations gives a lineation plunging approximately 70° towards 310°. Several post mineralisation faults striking approximately 070° and dipping north have been mapped or inferred from the drilling. The faults have only minor lateral displacement. Several of the faults are infilled by lepidolite pegmatite. Gold mineralisation at Waihi occurs with both altered tremolite schist and basalts. Generally gold mineralisation associated with the tremolite schist occurs in the vicinity of the old Waihi workings and in the east lode to the east of the old Homeward Bound pit. Mineralisation is characterised by multiple loads and broad alteration haloes. Mineralisation associated with the tremolite schist and papears to have a gentle northerly plunge approximately 40° towards 340°. To the north, in the more competent basalts mineralisation is confined to a single main lode within the shear system. Within the deposit there is a pervasive biotite alteration halo. Associated with gold mineralisation, biotite plus silica and quartz veining which has destroyed the majority of the rock fabric. Diopside as an alteration mineral also occurs throughout the resource. Quartz veining sub parallel to, or cross cutting the regional fabric also occurs within the deposit. These veins are discontinuous and can form boudins with th
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	 See list of drill intercepts. Widths reported in the Significant Intercepts table are all down hole lengths.

Criteria	JORC Code explanation	Commentary
	<i>information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</i>	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Original assays are length weighted. Grades are not top cut. Intercepts are reported at a Lower cut off of nominally 1.0g/t. Due to the narrow nature of mineralisation a minimum sample length of 0.2m was accepted when calculating intercepts. Maximum 2m internal dilution. No metal equivalents reported
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Intercept widths are down hole lengths. True widths are not reported given the varying orientation of drilling and mineralisation at each deposit/prospect mentioned in the report. The geometry of the mineralisation at Waihi is approx. 330° and sub vertical. Drilling is oriented perpendicular the strike of the mineralisation.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	• See plans and sections.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting	 Results reported include both low and high gram metre (g/t x down hole length) values. The significant intercept table provides details of drill hole intercepts shown on diagrams. There is no lower cut-off grade, the holes listed include those with NSI (no significant intercept). Holes in the significant intercept table are shown on diagrams coloured according to gram metre grade bins. This provides spatial context to the number of holes in the project area with significant gold intercepts versus the number of holes with lesser or no significant intercepts

Criteria	JORC Code explanation	Commentary
	of Exploration Results.	
<i>Other substantive exploration data</i>	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Metallurgical and geotechnical work has been completed for numerous previously mined deposits, including Waihi. Waihi deposit was previously mined and processed at Davyhurst plant with no known metallurgical issues. Ongoing geological/ structural evaluation to determine the controls on mineralisation
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Data evaluation and geological assessment of all deposits, including Waihi, followed by additional resource drilling and updated JORC 2012 compliant Mineral Resources. Further resource definition drilling will be conducted Regional exploration targeting for new green-fields deposits.