

CRITICAL MINERALS POTENTIAL IDENTIFIED ARUNTA LITHIUM PROJECTS

Lithium Plus Minerals Limited (ASX: LPM) (**Lithium Plus** or the **Company**) is pleased to provide an update on outcomes from a recent reassessment of drill core from the Spotted Wonder Project, situated in the Northern Arunta Block within the Company's 100%-owned Arunta Lithium Projects in the Northern Territory, Australia.

HIGHLIGHTS

- + Detailed reassessment of drill core from mineralised pegmatites at the Spotted Wonder Project has successfully identified high-grade intersections of beryllium mineralisation.
- + Beryllium is a rare, lightweight, high-strength metal with excellent thermal stability and conductivity, and is designated as a critical mineral by several global jurisdictions.
- + At Spotted Wonder, beryllium mineralisation commences at surface with significant shallow intersections including:
 - **7m @ 0.12% BeO** from 24m (SWRC001);
 - 12m @ 0.10% BeO from surface (SWRC002);
 - 11m @ 0.11% BeO from 43m and 5m @ 0.11% BeO from 75m (SWRC008); and
 - 1m @ 0.28% BeO from 20m and 7m @ 0.09 % BeO from 26m (SWRC011).
- + Beryllium mineralisation is associated with previously identified lithium, with reverse circulation drilling intersecting up to 0.29% Li₂O over 4m.
- + **Multiple new, drill ready pegmatite targets have been identified** at the Polonis, Costean, and Saunders Prospects.
- + On-ground exploration is currently **scheduled to commence in Q3 CY2025.**

Commenting on the Spotted Wonder discovery, Executive Chairman, Dr Bin Guo, said:

"The identification of high-grade beryllium mineralisation within the Delmore pegmatite marks a significant discovery for Lithium Plus.

This not only confirms the polymetallic potential of the Spotted Wonder Project but also enhances the strategic importance of our Northern Arunta tenure in hosting critical minerals beyond lithium.

With beryllium now recognised globally as a high-value critical commodity, these results significantly add to our exploration optionality. The shallow nature of the mineralisation and its strong association with lithium mineralisation present multiple future development pathways We look forward to our planned exploration activities in the upcoming field season to begin to unlock the full potential of this emerging district."

PROJECT OVERVIEW

SPOTTED WONDER PROJECT - NORTHERN ARUNTA REGION

The Spotted Wonder Project is located in the Alcoota region of the Mesoproterozoic Aileron Province within the broader Arunta Block, proximal to the northern structural boundary of the Aileron Province and with the Neoproterozoic Georgina Basin to the north.

The Alcoota pegmatite region incorporates known pegmatites at Utopia, Spotted Wonder and Delmore which are likely to be associated with Jinka Suite granites. Regional assessments across the broader Alcoota pegmatite district highlight the Spotted Wonder and Delmore pegmatites as moderately evolved/fractionated LCT-type pegmatites enriched in beryllium.

Field mapping and sampling activities have identified coarse beryl crystals in several pegmatites across the project area. Notable rock chip assays include:

- + Delmore: up to 4.6% Be
- + Saunders: up to 1.23% Be
- + Poloni: up to 2.00% Be

In 2018 Lithium Plus conducted a limited reverse circulation drilling programme targeting lithium at the Delmore Prospect. A recent re-assessment of this drill core has now confirmed significant beryllium intersections within the Delmore pegmatite.

Significant intersections (above a 300ppm Be cut-off) include:

- + 7m @ 0.12% BeO from 4m (SWRC001);
- + 12m @ 0.10% BeO from surface (SWRC002), including 6m @ 0.15% BeO;
- + 11m @ 0.11% BeO from 43m (SWRC008) including 4m @ 0.18% BeO); and
- + 5m @ 0.11% BeO from 75m (SWRC008), including 1m @ 0.28% BeO;
- + 1m @ 0.28% BeO from 20m (SWRC011); and
- + 7m @ 0.09% BeO from 26m (SWRC011).

Full details of significant intersections are presented in Table 1 and shown in Figure 4.

ABOUT BERYLLIUM

APPLICATIONS

Beryllium is a critical mineral used in high-performing applications on account of its important key properties: high thermal conductivity, strength to weight ratio and resistance to heat. Its primary uses include:

- + Nuclear technologies (neutron reflectors and moderators)
- + High-performance electronics
- + Beryllium-copper alloys
- + Beryllium oxide ceramics for aerospace and defence.

SUPPLY AND DEMAND

Global demand for beryllium is relatively modest at approximately 300 tonnes per annum, but it is forecast to grow steadily. Supply is heavily concentrated, with ~85% of global production sourced from the Spor Mountain deposit in Utah, USA. The majority of the world's beryllium refining is done at one facility in Ohio. This concentration of supply presents a strategic vulnerability and contributes to significant price volatility.

Due to increasing geopolitical sensitivity, the United States has recommended stockpiling beryllium to safeguard national security interests.

PRICING

Beryllium pricing is opaque due to limited production and refining capacity. However:

- + The average price rose from US\$660/kg in 2022 to US\$1,400/kg in 2023¹.
- + Current, indicative open-file sources suggest US\$1,050/kg²
- + At US\$1,050/kg, a 500 ppm (0.05 g/t) beryllium deposit has an equivalent in-situ metal value of US\$525/tonne.

Most of the world's Be production (~85%) is from the Spor Mountain Deposit in Utah. A total of 190t was produced from this mine in 2023.

STRATEGIC POSITION

Beryllium is now listed as a critical mineral by Australia (2024), the United States (2022), the EU (2023), Japan (2020), India (2023), and Indonesia (2023).

In February 2025, the Northern Territory Government included beryllium in its list of 13 emerging critical minerals, recognising its potential for future economic development within the Territory.

NEXT STEPS

Lithium Plus plans to further advance the Spotted Wonder exploration programme, assessing the reasonable prospects for potential future economic extraction of polymetallic mineralisation, particularly by flotation. Future work is set to include:

- + Targeting higher-grade beryllium zones potentially located closer to the granite contact in line with established LCT pegmatite fractionation models (Cerny, 1991).
- + Testing the margins of Jinka Suite granites for additional pegmatite-hosted mineralisation.
- + Advancing exploration across identified prospects to determine the broader critical minerals potential of the Northern Arunta region.

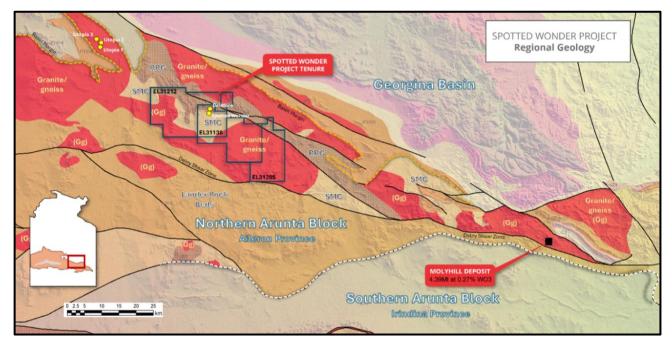


Figure 1: Regional geology, project tenure and significant deposits

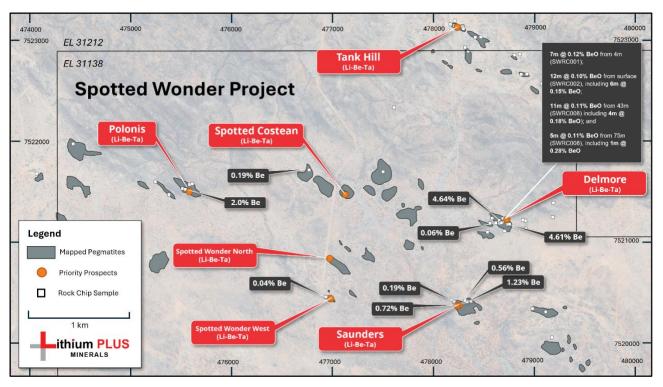


Figure 2: Mapped and sampled (rock chip) pegmatites across the Delmore area.

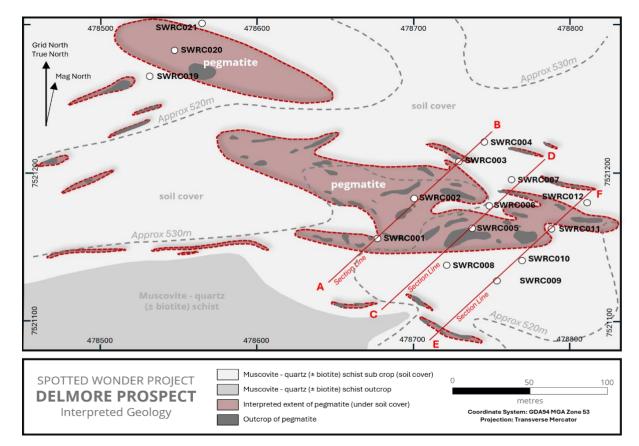
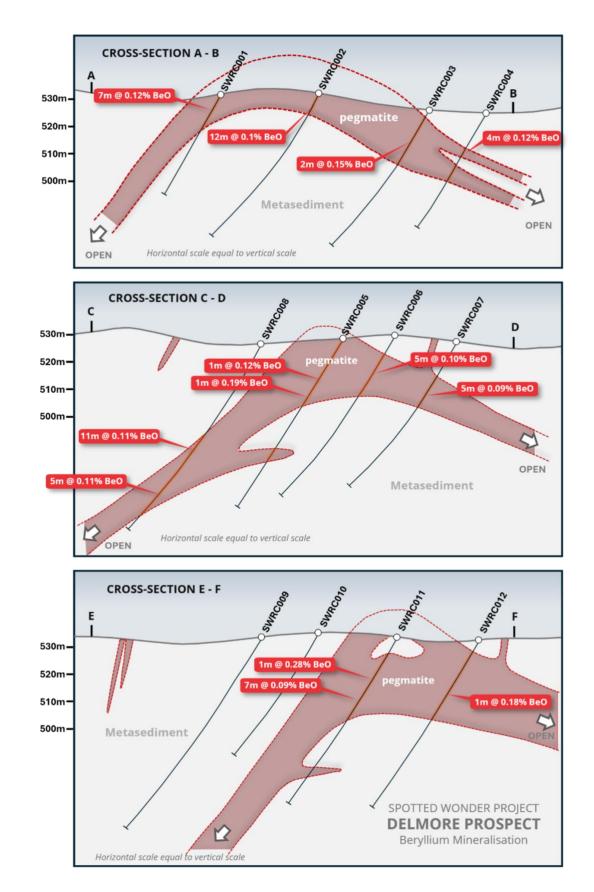


Figure 3: Geology of the Delmore prospect showing 2018 drill collars and section lines.

Table 1: Composite BeO intervals using a 300ppm Be cut off.


Hole_ID	Depth From	Depth To	Interval	Be (ppm)	BeO (%)	Ta (ppm)	Li₂O (%)	Cs (ppm)
SWRC001	4	18	14	313	0.09	48	0.08	146
including	4	11	7	438	0.12	49	0.12	169
SWRC002	0	12	12	366	0.10	45	0.06	144
including	3	9	6	549	0.15	43	0.06	93
SWRC003	14	16	2	553	0.15	95	0.08	267
SWRC004	22	26	4	435	0.12	49	0.05	130
including	23	24	1	1137	0.32	54	0.07	257
SWRC005	18	19	1	440	0.12	158	0.33	280
and	21	22	1	682	0.19	466	0.11	152
SWRC006	20	25	5	360	0.10	15	0.07	118
SWRC007	23	28	5	314	0.09	96	0.12	172
SWRC008	43	54	11	397	0.11	58	0.04	70
including	50	54	4	652	0.18	33	0.05	77
and	75	80	5	403	0.11	93	0.08	317
including	76	77	1	1006	0.28	85	0.05	156
SWRC011	20	21	1	1012	0.28	283	0.25	712
and	26	33	7	308	0.09	79	0.10	182
SWRC012	28	29	1	634	0.18	135	0.15	233
SWRC016	27	28	1	729	0.20	19.5	0.08	192

Deposit	Location	Country	Deposit Type	Resource (metric tons)	Contained BeO (metric tons)	Grade (% BeO)	Grade ¹ (% Be)
Aguachile	Coahuila	Mexico	Carbonate-hosted	17,000, 000	-	0.1	0.036
Apache Warm Springs	New Mexico	United States	Volcanogenic	43,060	-	0.26	0.094
Aqshatau	Aqshatau	Kazakhstan	Greisen	16,000	-	0.03 to 0.07	0.02
Atlantic shield	Brazil	Brazil	Pegmatite/granite	106,000,000	-	0.04	0.015
Black Hills	South Dakota	United States	Pegmatite/granite	-	13,000	0.05	0.02
Boomer, Lake George	Colorado	United States	Greisen	<1,000 to 3,000	-	2.0 to 11.2	2.3
Brockman	Western Australian	Australia	Volcanogenic 4,300,000		-	0.08	0.03
Hellroaring Creek	British Columbia	Canada	Pegmatite -		1,000	0.1	0.036
llimaussaq (general)	Ilimaussaq	Greenland	Peralkaline intrusion -		20,000	_	0.18
Iron Mountain	New Mexico	United States	Carbonate-hosted	1,000	-	0.2 to 0.7	0.18
Kvanefjeld	Ilimaussaq	Greenland	Peralkaline intrusion	180,000	-	-	0.1
Lost River	Alaska	United States	Skarn	3,000,000	10,000	0.3 to 1.75	0.36
Mt. Wheeler	Nevada	United States	Veins	-	1,000	0.75	0.27
Rodenhouse Wash	Utah	United States	Pegmatite/granite	1,000,000	-	0.5	0.18
Seal Lake	Northwest Territories	Canada	Peralkaline intrusion	-	6,800	0.35 to 0.4	0.14
Sheeprock	Utah	United States	Greisen	1,000,000	-	0.01 to 0.1	0.02
Sierra Blanca	Texas	United States	Carbonate-hosted	-	11,300	0.5 to 1.9	0.36
Spor Mountain	Utah	United States	Volcanogenic	6,425,000	-	0.26 to 0.72	0.18 to 0.26
Strange Lake	Quebec, and Newfoundland and Labrador	Canada	Peralkaline intrusion	-	42,000	0.08	0.03
Tanco ²	Manitoba	Canada	Pegmatite/granite	900,000	1,800	0.2	0.07
Thor Lake	Northwest Territories	Canada	Peralkaline intrusion	1,600,000`	13,300	0.76	0.28
Tin-Spodumene belt, North Carolina and South Carolina	North Carolina and South Carolina	United States	Pegmatite/granite	-	111,000	0.02 to 0.1	0.031
Ukrainian Shield	Ukraine	Ukraine	Greisen	20,000	-	0.4	0.11
Victorio Mountains	New Mexico	United States	Carbonate-hosted	11,900,000	-	0.023	0.01
Vozneskoye	Siberia	Russia	Skarn	10,000	-	0.06	0.02

Table 2: Location, grade and tonnage of global beryllium deposits (after Foley et al., 2017).

References

- 1. Van Rythoven, Adrian, 2024, Critical Mineral: Beryllium: Montana Bureau of Mines and Geology Fact Sheet 31, 2 p.
- 2. Shanghai Metal Market: <u>Beryllium price today | Historical Beryllium Price Charts | SMM Metal Market</u>
- Foley, N.K., Jaskula, B.W., Piatak, N.M., and Schulte, R.F., 2017, Beryllium, chap. E of Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., eds., Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply: U.S. Geological Survey Professional Paper 1802, p. E1–E32, https://doi.org/10.3133/pp1802E.

This announcement has been authorised for release by the Board of Lithium Plus.

Contact:

Dr Bin Guo	Mr Simon Kidston
Executive Chairman	Non-Executive Director
+61 02 8029 0666	+61 0414 785 009
bguo@lithiumplus.com.au	skidston@lithiumplus.com.au

Competent Person Statement

The information in this release that relates to Exploration Results for the Spotted Wonder Lithium Project is based on, and fairly represents, information and supporting documentation prepared by Dr Bryce Healy, Exploration Manager of Lithium Plus Minerals Ltd. Dr Healy is a Member of the Australasian Institute of Mining and Metallurgy and he has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity which has been undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Dr Healy consents to the inclusion in this release of the matters based on the information in the form and context in which they appear.

The Company confirms that it is not aware of any new information or data that materially affects the information cross referenced in this announcement. The Company confirms that the form and content in which the Competent Person's findings are presented have not been materially modified grom the original announcements.

About Lithium Plus Minerals

Lithium Plus Minerals Limited (ASX: LPM) is an Australian Lithium exploration company with 23 tenements in the Northern Territory grouped into the following projects:

Bynoe Lithium Project (100% LPM)

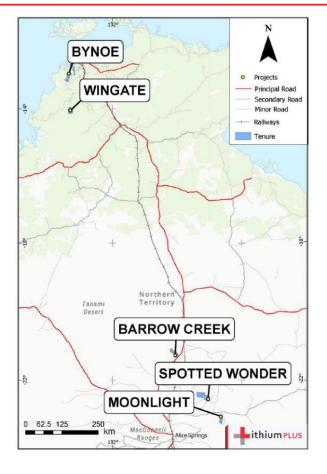
Situated on the Cox Peninsula, 45 km south of Darwin, on the northern end of the Litchfield Pegmatite Belt, with 11 granted tenements covering 297 km2. Geologically centred around the Bynoe Pegmatite Field, the tenements share a border with Core Lithium's Finniss mine development. Significant lithium mineralisation was discovered at Lei in 2017 within the north-northeast trending spodumene bearing pegmatites. Current drill ready targets are Lei, SW Cai, Cai and Perseverance.

Wingate Project (100% LPM)

Located 150 km south of Darwin. LPM hold three granted tenements EL31132, EL34006 and EL34007 covering 485 sq km. The tenements cover the Wingate Mountains Pegmatite District, the southern part of the Litchfield Pegmatite Belt. It contains the known presence of pegmatites with little exploration and minor historical production of tin. Historical gold workings (Fletcher's Gully) are present.

Arunta Projects (100% LPM)

Barrow Creek


Located in the Northern Arunta pegmatite province, 300 km north of Alice Springs. Historic tin and tantalum production and the presence of spodumene in nearby Anningie Pegmatite field suggest lithium potential.

Spotted Wonder

Located approx. 200 km north-north-east of Alice Springs with proven lithium and Beryllium mineralisation, with amblygonite present in the Delmore Pegmatite.

Moonlight Resources Pty Ltd (44.7% LPM)

Australian uranium and REE portfolio including MacDonnell Ranges Uranium Project and the Moonlight Project in the NT, and the Fox Hill RE Project in NSW.

5 JUNE 2025

JORC, 2012 Edition: Table 1 report

Section 1 Sampling Techniques and Data

This Table 1 refers to drilling intersections completed at the Spotted Wonder tenements (Arunta Project). Drilling and exploration was carried out by Lithium Plus Pty Ltd between 2016 and 2018.

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done, this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Drilling The Delmore and Tank Hill prospects have been drilled and sampled by reverse circulation (RC) methods with holes on variable spacings consistent with early-stage reconnaissance exploration. The prospects have been drilled in 2018 by Lithium Plus Pty Ltd and includes 29 holes for a total of 1,888m of drilling. The drilling was completed by Pine Creek-based drilling contractors AMWD Pty Ltd. Sample Representativity Initial shallow drilling was undertaken to identify near surface mineralization. Most holes are oriented appropriately to give optimal sample representivity, drilled mostly perpendicular to the interpreted strike of the pegmatite bodies and oriented towards the dip the target pegmatite dyke. None-the-less, downhole widths will in most instances not represent true widths. RC drilling techniques returned samples through a fully enclosed cyclone setup with sample return routinely collected in 1m intervals approximating 20kg of sample. 1m interval RC samples were homogenized and collected by a static riffle splitter to produce a representative 2-3kg sub-sample (~10% of sample weight);
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc.).	 The prospects have been drilled with Reverse Circulation (RC) drilling technique using a reputable drilling contractor (AMWD Pty Ltd) and appropriate rig capabilities (UDR650) to complete the planned drill holes. RC drilling was sampled using a 4 3/4 -inch face bit. RC holes range in depth from 36 to 108m, averaging 65m.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. 	 Qualitative RC Recoveries Sample weights are rarely recorded/reported for any of the drilling campaigns, with recoveries estimated visually from volume of primary sample recovered. The configuration of the rig set- up provides for an enclosed sample

Criteria	JORC Code explanation	Commentary
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 mechanism and clean-out protocol to prevent sample loss, sample inter-mingling and contamination. Holes are preferably drilled dry to prevent poor recoveries and contamination and wet intervals are routinely logged and compared against assay results.
		RC logs document recoveries within 90% of expected with nothing recorded concerning the amount and consistency of material recovered from drilling.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 Geological logging has been routinely undertaken by suitably qualified geologists on all RC holes along the entire length of the hole recording lithology, mineralogy, veining, alteration, weathering, structure, and other sample features as appropriate to the style of deposit. Observations were recorded appropriate to the drilling and sample return method and is quantitative, based on visual field estimates. During the logging process Lithium Plus Pty Ltd routinely retained representative samples (stored in chip trays) for future reference. The RC chip trays are photographed and electronically stored. Standard logging was routinely undertaken by suitably qualified field staff on all rock chip and soil sample sites. Observations were recorded appropriate to the sample type based on visual field estimates.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 RC were collected at 1m intervals in the field. A representative sample to approximately 3-4 kg sample (approximating 10-20% of the original sample) weight is obtained from the rig mounted static cone splitter in prenumbered calico bags for the purpose of laboratory analysis. The sample size is considered adequate for the style of mineralization and target host rock. The remaining 'reject' drill sample (weighing ~20 - 30kg) is collected into large pre-numbered plastic bags and set aside and retained until assay results have been received. A sample is sieved from the reject material and retained in chip trays for geological logging and future reference and stored at the company's offices in Darwin. It has been reported that all material was sampled as returned - usually dry and wet holes were redrilled to prevent bias from poor recoveries and contamination. A total of 1,888 RC samples were obtained from the field program. A total of 1,073 selected RC chip samples from the target mineralized downhole intervals were dispatched via commercial transport services to Intertek laboratory located in Alice Springs where they were processed

Criteria	JORC Code explanation	Commentary
		 and then sent to Intertek Perth for analysis; both commercial accredited laboratories. The use of commercial laboratory facilities for the preparation of samples is industry standard practice and typically involves preparation by drying, crushing, riffling and pulverizing to a homogeneous sample pulp. Lithium Plus routinely submitted RC field duplicates collected in the field at a rate of 1 in every 40 samples to monitor sampling methodology and homogeneity of RC drilling. Duplicates were typically spear sampled from the primary sample bag. QA/QC samples in the form of Certified lithium (and Tantalum) standards were also inserted into the field sample stream at a rate of 1 in 40 samples. The field duplicate sampling from the RC holes, when conducted, is supportive of the original results. Most duplicates were spear
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 sampled. Selected samples were assayed at Intertek Genalysis Perth, a NATA accredited laboratory. A sub-sample of the pulp is digested via sodium peroxide fusion (nickel crucible) and hydrochloric acid to dissolve the melt and analyzed via Inductively Coupled Plasma Mass Spectrometry (ICP- MS: FP6MS) methods for the following elements: As, Be, Cs, Fe, K, Li, Nb, Rb, Sn, Sr, Ta, Th, U and P (20ppm, 1ppm, 0.1ppm, 0.01%, 1ppm, 2ppm, 0.5ppm, 0.01%, 20ppm, 0.1ppm, 0.1ppm, 0.1ppm, 0.01% respectively). The lower detection for Li by this method is 5 ppm. A barren flush is inserted between samples at the laboratory. Intertek utilise standard internal quality control measures including the use of internal Standards, Control Blanks and duplicates/repeats at a rate of 1 in 16 samples. No geophysical tools were employed for analysis.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Higher grade mineralisation intercepts were observed and verified by Lithium Plus personnel. No specific twinning program has been conducted, given the early stage of the project. The assay data has been validated against the logging for all RC holes and were directly input onto electronic spread sheets and validated by the database manager. Reported assay results are calculated at a 300 ppm Be cut-off with allowances for a maximum 2m internal dilution A complete record of logging, sampling and assays were stored within an Access

Criteria	JORC Code explanation	Commentary
Location of	 Accuracy and quality of surveys used to 	 Database including digital assay sheets obtained from Intertek. Beryllium percent was multiplied by a conversion factor of 2.7758/10000 to report Be ppm as BeO%. No other adjustments to assay data were undertaken. A hand-held GPS has been used to
data points	 Industry and quarty of our operation of the locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The grid system is MGA_GDA94, zone 53 for easting, northing and RL. Down hole surveying is routinely employed through the drilling campaign. All RC holes were downhole surveyed by north seeking gyro tool operated by the drillers. The local topographic surface (SRTM 1m topographic data) is used to generate the RL of most of the collars, given the large errors obtained by GPS (±10m).
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill spacing is determined by the stage of exploration of the prospect. All prospects are newly defined prospects drilled with a wider drill hole spacing required at this stage to determine the merit of the prospect and produce a reliable interval. No sample compositing has been applied to the data
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The drilling is oriented as best as possible to perpendicular to the structure/geology containing or controlling the pegmatite dyke occurrences mineralization based on projections from surface outcrops Generally, the orientation is appropriate. No sampling bias is considered to have been introduced given that the mineralisation is disseminated within the pegmatite body and as well is associated with small scale quartz veins.
Sample security	The measures taken to ensure sample security.	 Sample security adopted by Lithium Plus Pty Ltd was based on responsibility and documentation of site personal with the appropriate experience and knowledge to maintain sample chain of custody protocols from site to lab.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 No review or audit by companies that have conducted the historical drilling is documented or reported.

Section 2 Reporting of Exploration Results

(Criteria listed in section 1 also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Spotted Wonder project is centred around 150 km north-east of Alice Springs. The drilling reported here took place at Delmore and Tank Hill prospects which are located within EL's 31138 and 31212 respectively. Lithium Plus Minerals Ltd are the registered holders of the two EL's (see Table 2.1). The tenements are in good standing with the NT DPIR Title Division.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Limited previous exploration of pegmatite hosted mineralization has occurred in the Spotted Wonder tenure, and no known exploration for lithium has been undertaken. Mineral occurrences are noted through predominantly historical small-scale workings targeting Sn ± Ta. First pass geochemical sampling (rock chip and soils) was conducted by Kingston Resources under the current tenure in between 2016 and 2018. The work resulted in the identification of priority drill targets at Delmore and Tank Hill.
Geology	Deposit type, geological setting and style of mineralisation.	 The Spotted Wonder Project is located within the Mesoproterozoic Aileron Province within the Arunta Region. The project area is located near the northern structural boundary of the Aileron Province with the Neoproterozoic Georgina Basin to the north. The Aileron Province is Proterozoic in age and has been poly deformed by a number of deformation events including the Alice Springs Orogeny. The Tank Hill prospect is located in an area of Proterozoic Ledan Schist. This unit consists of micaceous schist, minor paraamphibolite and metamorphosed conglomerate. The nearby Delmore Prospect is located over an area of Delmore Metamorphics. This prospect is located over a high-grade metamorphic suite comprised of calcsilicate rock, pelitic gneiss, and epidote quartzite. Within this suite are a number of pegmatite dykes which host the tungsten mineralisation. It is within these dykes that there is thought to be the potential to host lithium mineralisation. Pegmatite intersections at Delmore and Tank Hill are up to 35m thick were intersected at the outcropping pegmatite (amblygonite bearing Central portion) of the

Criteria	JORC Code explanation	Commentary
		Delmore Prospect. On the outcropping Delmore Prospect hill the drilled pegmatite is interpreted to be relatively flat lying between 10 and 25m thick from surface The pegmatite appears to be dipping to the north, but it may be pinching out rather than a true dipping body. The pegmatite is non uniform with varying proportions of quartz, mica, feldspar and unknown minerals from metre to metre.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes: easting and northing of the drillhole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drillhole collar dip and azimuth of the hole downhole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 See Table 3 for drill hole information No drilling or material assay information has been excluded.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 All quoted drill intercepts represent downhole widths, not true widths 300ppm Be was used as a lower cut-off grade, with allowances for a maximum 2m internal dilution, for compositing and reporting significant assay intersections. Beryllium ppm was multiplied by a conversion factor of 2.7758/10000 to report Be ppm as BeO%.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results.	• The azimuth and dip data for all holes is presented in Table 4.2. Most holes have been drilled at angles approximating 60° on the interpretation of relatively shallowly dipping pegmatite bodies and

Criteria	JORC Code explanation	Commentary
	 If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. If it is not known and only the downhole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 approximately perpendicular to the strike of the pegmatites as mapped. The nature and dip of the pegmatite occurrences are still being evaluated. True widths are not reported, downhole depths are reported.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include but not be limited to a plan view of drillhole collar locations and appropriate sectional views.	 A collar plan of all collar locations and intercept are provided in the main body of the report.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All exploration results have been reported. Significant assays (> 300 ppm downhole intercept in m cut-off with allowances for a maximum 2m internal dilution) have been reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Refer main body of the report
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large- scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Lithium Plus Minerals plans to focus exploration funds to continue on ground assessment at its Spotted Wonder Project testing multiple additional pegmatite targets that have been identified through mapping and sampling campaigns. Refer main body of the report.

Hole ID	MGA East	MGA North	RL	Dip	Azimuth	Max depth	Prospect
SWRC001	478671	7521161	525	-60	225	42	Delmore
SWRC002	478688	7521177	529	-60	225	66	Delmore
SWRC003	478715	7521205	522	-60	225	60	Delmore
SWRC004	478727	7521214	522	-60	225	48	Delmore
SWRC005	478733	7521155	522	-60	225	72	Delmore
SWRC006	478744	7521166	521	-60	225	72	Delmore
SWRC007	478761	7521192	520	-60	225	66	Delmore
SWRC008	478712	7521130	513	-60	225	84	Delmore
SWRC009	478744	7521122	525	-60	225	84	Delmore
SWRC010	478757	7521135	533	-60	225	54	Delmore
SWRC011	478780	7521149	526	-60	225	72	Delmore
SWRC012	478801	7521171	526	-60	225	72	Delmore
SWRC013	478926	7521080	518	-60	225	60	Delmore
SWRC014	478941	7521097	516	-60	225	60	Delmore
SWRC015	478957	7521114	537	-60	225	60	Delmore
SWRC016	478854	7521112	515	-60	225	78	Delmore
SWRC017	478872	7521127	515	-60	225	72	Delmore
SWRC018	478811	7521076	515	-60	225	60	Delmore
SWRC019	478528	7521268	507	-60	225	84	Delmore
SWRC020	478545	7521286	508	-60	225	72	Delmore
SWRC021	478564	7521300	508	-60	225	108	Delmore
SWRC022	478415	7521307	545	-60	225	72	Delmore
SWRC023	478422	7521335	494	-60	225	66	Delmore
SWRC024	478043	7521289	494	-90		36	Delmore
SWRC025	478264	7523089	532	-60	225	54	Tank Hill
SWRC026	478292	7523112	530	-60	225	54	Tank Hill
SWRC027	478382	7523042	536	-60	225	48	Tank Hill
SWRC028	478404	7523061	534	-60	225	54	Tank Hill
SWRC029	478414	7523077	532	-60	225	54	Tank Hill
SWRC031	478086	7523089	535	-90		6	Tank Hill
SWRC032	478214	7523225	541	-90		6	Tank Hill

Table 3: Drilling details from Spotted Wonder initial drilling program

Table 4: Composite Li₂O % intervals using a 0.12 Li₂O cut off

Hole_ID	Depth From	Depth To	Interval	Li₂O %	Li₂O × Interval	Cs ppm	Be ppm	Ta ppm	Р%
SWRC001	0	9	9	0.15	1.39	230.1	217.0	64.2	0.0
SWRC003	1	2	1	0.13	0.13	446.3	24.0	4.3	0.0
SWRC005	1	2	1	0.30	0.30	116.6	77.0	144.8	1.0
SWRC005	9	10	1	0.13	0.13	400.8	12.0	79.2	0.4
SWRC005	15	16	1	0.14	0.14	204.4	359.0	58.4	0.9
SWRC005	17	19	2	0.26	0.51	241.1	259.0	123.8	0.5
SWRC005	22	23	1	0.24	0.24	338.6	51.0	1011.2	0.4
SWRC005	28	33	5	0.15	0.74	1404.5	16.0	5.5	0.1
SWRC005	45	47	2	0.14	0.27	393.1	10.0	1.9	0.1
SWRC005	49	50	1	0.15	0.15	128.3	51.0	56.8	0.2
SWRC006	4	10	6	0.13	0.75	363.6	52.0	6.9	0.1
SWRC006	11	12	1	0.17	0.17	269.1	34.0	48.4	0.2
SWRC006	26	29	3	0.12	0.36	808.3	35.0	19.0	0.2
SWRC007	13	19	6	0.14	0.81	381.4	60.0	59.0	0.4
SWRC007	22	24	2	0.20	0.39	245.6	110.0	69.2	0.3
SWRC007	28	32	4	0.13	0.51	263.0	26.0	7.7	0.1
SWRC007	35	36	1	0.13	0.13	452.4	10.0	1.6	0.1
SWRC008	3	4	1	0.12	0.12	279.5	5.0	1.8	0.1
SWRC008	5	6	1	0.12	0.12	298.2	4.0	1.5	0.1
SWRC008	73	75	2	0.14	0.27	565.8	41.0	1079.4	0.1
SWRC008	79	80	1	0.19	0.19	865.6	283.0	68.2	0.2
SWRC011	5	6	1	0.12	0.12	687.5	24.0	1.6	0.1
SWRC011	19	23	4	0.29	1.15	522.2	337.0	669.7	0.6
SWRC011	26	27	1	0.13	0.13	211.6	337.0	246.0	0.4
SWRC011	32	34	2	0.13	0.26	401.5	179.0	33.9	0.2
SWRC011	54	57	3	0.17	0.52	484.6	43.0	9.1	0.1
SWRC011	59	63	4	0.13	0.50	484.8	15.0	3.7	0.1
SWRC012	9	10	1	0.16	0.16	331.3	50.0	140.7	0.3
SWRC012	17	20	3	0.15	0.45	182.2	92.0	55.4	0.3
SWRC012	28	29	1	0.15	0.15	233.2	634.0	135.4	0.8
SWRC012	30	31	1	0.14	0.14	251.1	99.0	106.1	0.1
SWRC012	33	34	1	0.14	0.14	2360.8	18.0	31.7	0.1
SWRC012	36	37	1	0.12	0.12	357.6	6.0	1.8	0.1
SWRC016	24	25	1	0.14	0.14	398.4	33.0	1.8	0.1
SWRC016	28	29	1	0.12	0.12	282.2	32.0	2.8	0.1
SWRC017	42	43	1	0.12	0.12	249.2	18.0	2.1	0.1
SWRC017	46	47	1	0.12	0.12	314.4	40.0	6.2	0.3
SWRC017	52	54	2	0.13	0.25	357.0	34.0	6.0	0.1