

W. LITCHFIELOWINERALS COM. AU

## ASX Announcement | 13<sup>th</sup> January, 2025

## Major Mineral System Potential Confirmed, Litchfield Advances Oonagalabi Exploration

### Highlights

- LMS has an exploration plan in place to actively explore Oonagalabi, starting in early 2025.
- 3D inversion modelling of 2008 IP data confirms presence of a large pipe-like structure that warrants priority assessment.
- Detailed drone magnetics completed over central Oonagalabi has significantly improved the quality of existing data.
- Sentinel-2 hyperspectral data processing has identified key vectors to mineralisation and soil sampling confirms extension of mineralised strike to +3km.Reconnaissance mapping confirms accuracy and high quality of historic detailed mapping to assist LMS's exploration plan.
- Ground exploration has confirmed a 3km mineralised strike at Oonagalabi, highlighting the extensive potential of the system

Litchfield Minerals Limited (**"Litchfield"** or the **"Company"**) **(ASX:LMS)**, a company with a strategic emphasis on critical minerals, is pleased to announce the completion of soil and rock chip sampling, airborne drone magnetics and reprocessing of 2008 IP data and Sentinel-2 data at the Oonagalabi project. This has aided the preparation of an exploration plan for Oonagalabi that will be initiated early in 2025.

### Managing Director and CEO, Matthew Pustahya, commented:

We are proud of the significant progress achieved in a short period at Oonagalabi since the acquisition was completed in Q4 2024. By integrating cutting-edge geophysical, geochemical and remote sensing techniques, we have rapidly advanced our understanding of this promising project. Our efforts have already uncovered substantial historical data, which was reassessed in the field in Q4 2024, reaffirming Oonagalabi's potential to host a major mineral discovery.

The results of our initial work are exceptionally encouraging. We have identified a large, steeply plunging pipe-like structure, and new soil sampling has extended the mineralised strike to over 3km, suggesting a system of remarkable scale. Ground traverses and magnetic surveys, while highlighting



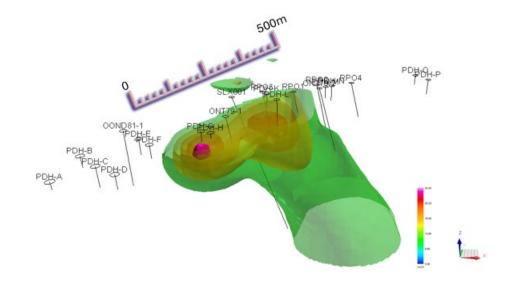
W. LITCHFIELDWINERALS COM. AU

the deposit's geological complexity, also point to a potential large intrusive unit to the northeast, which will require further investigation.

These early findings strongly suggest that Oonagalabi possesses all the essential components typically found in world-class mineral systems. With refined exploration strategies supported by advanced 3D inversion modelling and high-resolution drone magnetics, Litchfield Minerals is positioned to unlock substantial value for shareholders. Our ambitious 2025 program, including ground gravity surveys, Pole-Dipole IP and targeted diamond drilling underscores our commitment to aggressive exploration to identify deposits for resource definition.

We believe Oonagalabi's unique geology and extensive mineralisation position it among the most exciting opportunities left in Australia. As we move into the next phase of exploration, we remain confident in our ability to deliver transformative growth and value for our shareholders. This is a pivotal moment for Litchfield Minerals, and we are excited to build on this momentum.

### **Induced Polarization Data Reprocessing**


The Silex 2008 Pole-Dipole IP chargeability data was remodelled to produce a new 3D inversion model (**Figure 1**). The model shows a +400m long, chargeability zone surrounded by lower chargeability shells) that indicate a steep east-plunging, pipe-like structure to at least 500m below surface. These chargeabilities are significant given the dominance of generally non-chargeable sphalerite within the mineralisation assemblage. The shape of the pipe-like structure appears to cross-cut folded stratigraphy, potentially hinting at the presence of a syn- to post-metamorphic breccia structure similar to those observed within the nearby and comparable Jervois system.

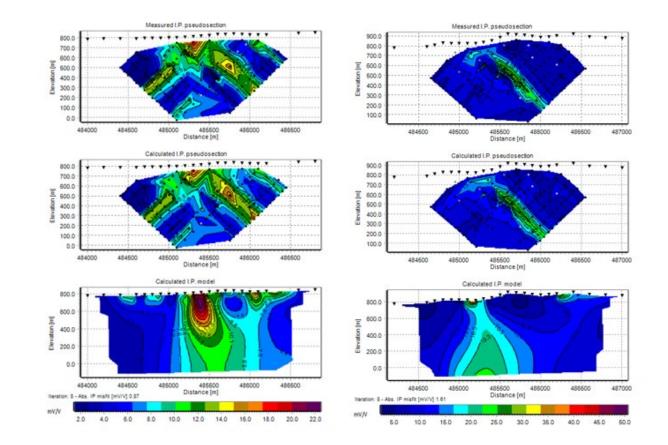
Review of the new model indicates that none of the historical drill holes have successfully tested the highest-chargeability parts of the model. Additionally, historic holes that did intersect the outer chargeability shells of the model generally recorded the best mineralised intersections and many of the holes, which fall outside of the model, continue to be mineralised (**Table 1**). The new model is broadly consistent with Silex's 2008 inversion model and confirms that Silex's SLX001 (500.7m) hole



N.W.W. LITCHFIELDMINERALS COM. AU

was drilled parallel to, however, importantly, appeared to complete miss the extent of the entire chargeability model.




*Figure 1.* 3D inversion model (looking north) of the Silex 2008 Pole-Dipole IP chargeability data showing a large pipe-like structure, plunging steeply to the east.

| Hole_ID | East   | North   | RL  | From m | To m | Interval | Cu%  | Zn % | Pb ppm | Auppm     | Ag ppm    | Cu%m | Zn%m | Pb %m | Au ppm m | Ag ppm m |
|---------|--------|---------|-----|--------|------|----------|------|------|--------|-----------|-----------|------|------|-------|----------|----------|
| PDH-L   | 485384 | 7442435 | 837 | 1.5    | 38   | 36.5     | 1    | 1.7  | 1372   | No Assays | No Assays | 36.5 | 62.1 | 5     |          |          |
| ONT79-1 | 485228 | 7442368 | 802 | 68     | 95   | 27       | 0.76 | 1.95 | 1620   | 0.159     | 5.6       | 20.5 | 52.7 | 4.4   | 4.3      | 151.2    |
| RPO2    | 485514 | 7442697 | 809 | 138    | 162  | 24       | 0.63 | 1.52 | 367    | No Assays | 4.66      | 15.1 | 36.5 | 0.9   |          | 111.8    |
| PDH-K   | 485340 | 7442530 | 825 | 18.3   | 29   | 10.7     | 0.6  | 0.56 | 310    | No Assays | No Assays | 6.4  | 6    | 0.3   |          |          |
| PDH-F   | 485081 | 7442121 | 815 | 36.6   | 47.2 | 10.6     | 0.49 | 0.59 | 1036   | No Assays | No Assays | 5.2  | 6.3  | 1.1   |          |          |
| PDH-P   | 485949 | 7442760 | 820 | 12.2   | 24.4 | 12.2     | 0.42 | 0.41 | 967    | No Assays | No Assays | 5.1  | 5    | 1.2   |          |          |
| ONT79-2 | 485523 | 7442652 | 811 | 200    | 220  | 20       | 0.24 | 1.71 | 1806   | 0.02      | 5.5       | 4.8  | 34.2 | 3.6   | 0.4      | 110      |
| RPO1    | 485428 | 7442617 | 806 | 16     | 32   | 16       | 0.25 | 0.14 | 139    | No Assays | 1.56      | 4    | 2.2  | 0.2   |          | 25       |
| RPO3    | 485319 | 7442577 | 816 | 118    | 130  | 12       | 0.19 | 0.23 | 273    | No Assays | 1.37      | 2.3  | 2.8  | 0.3   |          | 16.4     |
| PDH-A   | 484963 | 7441891 | 835 | 0      | 7.6  | 7.6      | 0.27 | 0.53 | 546    | No Assays | No Assays | 2.1  | 4    | 0.4   |          |          |
| PDH-B   | 484956 | 7442019 | 830 | 4.6    | 16.8 | 12.2     | 0.16 | 2.19 | 527    | No Assays | No Assays | 2    | 26.7 | 0.6   |          |          |
| PDH-G   | 485190 | 7442218 | 814 | 3      | 10.7 | 7.7      | 0.25 | 0.88 | 1772   | No Assays | No Assays | 1.9  | 6.8  | 1.4   |          |          |
| PDH-E   | 485039 | 7442154 | 815 | 9.1    | 10.7 | 1.6      | 0.9  | 0.1  | 490    | No Assays | No Assays | 1.4  | 0.2  | 0.1   |          |          |
| SLX001  | 485214 | 7442540 | 808 | 73     | 75   | 2        | 0.52 | 1.39 | 354    | 0.048     | 3.45      | 1    | 2.8  | 0.1   | 0.1      | 6.9      |
| PDH-C   | 485015 | 7441975 | 828 | 3      | 4.6  | 1.6      | 0.31 | 0.54 | 585    | No Assays | No Assays | 0.5  | 0.9  | 0.1   |          |          |
| PDH-D   | 485066 | 7441958 | 818 | 9.1    | 16.8 | 7.7      | 0.05 | 0.94 | 548    | No Assays | No Assays | 0.4  | 7.2  | 0.4   |          |          |

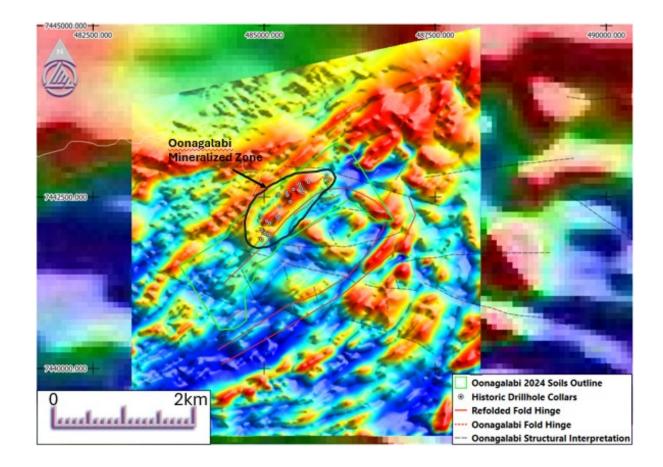
**Table 1**. Historic Oonagalabi drillhole intersections showing original intersections and then ranked by contained Cu percent metre. Intersections calculated using a minimum 1000ppm Cu, 1000ppm Zn cut-off with maximum 2m internal dilution.



WWW .LITCHFIELDMINERALS COM.AU



*Figure 2.* 2D IP chargeability inversion section 7442500 & 7442100N going through the central northern part of the main pipe-like structure. These sections show moderate chargeabilities persisting to at least 400m below surface.

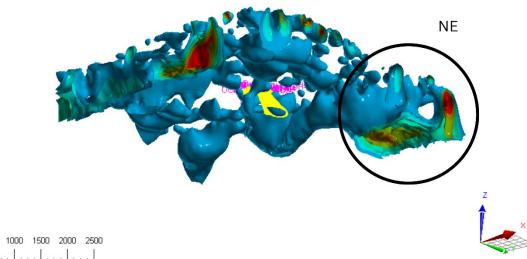

### **Drone Magnetics**

Airborne drone magnetics has been completed (mid-December) over the central part of EL32279 and has significantly improved the quality over the existing 400m data (**Figure 2**). The 613 line-km survey was flown at 50m line-spacing and a mean flight height of 35m and produced a high quality dataset. The new data has identified a magnetic anomaly coincident with the central Oonagalabi mineralisation, confirming the presence of west-northwest structures that appear to control the limits of mineralisation and clearly defines the folded nature of the Oonagalabi Anticline.



WWW . LITCHFIELDMINERALS . COM. AU

The magnetic survey was developed into a 3D model (**Figure 3**), revealing through inversion analysis a potentially large intrusive body situated to the northeast along the structural trend of the known mineralisation. Our team will conduct further investigations into this anomaly, which we believe holds significant potential for mineralisation.




**Figure 3**. TMI RTP magnetic image of the central Oonagalabi prospect overlain by historic 400mspaced data. Combined gas targets identified from spectral analysis of Sentinel-2 data, showing multiple targets to the northeast and southeast of the Oonagalabi

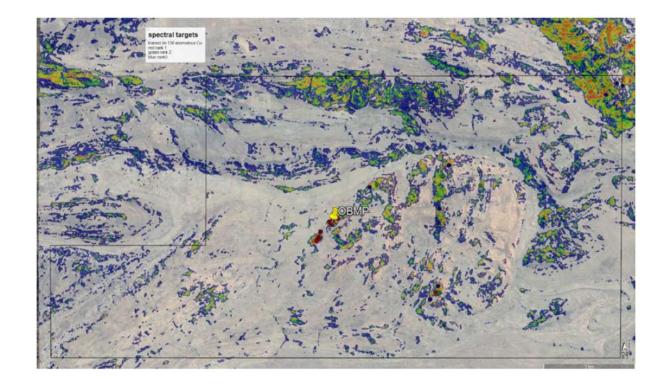


WWW . LITCHFIELDMINERALS . COM. AU





## 


*Figure 4.* TMI RTP 3D magnetic model of the Oonagalabi prospect circle indicates the modelled Intrusive unit NE of the main Oonagalabi outcrop. The image also shows the IP pipe highlighted in Yellow.

## Sentinel-2 Hyperspectral Data Analysis

A Sentinel-2 data was processed by Neil Pendock from Dirt Exploration who applied proprietary algorithms to spectral features within the Very Near Infrared (VNIR) and Shortwave Infrared (SWIR) spectrums to estimate gas concentrations (H<sub>2</sub>, O<sub>2</sub>, CO<sub>2</sub>, CH<sub>4</sub> and Rn). This analysis demonstrated that zones of outcropping mineralised Oonagalabi Formation have coincident oxygen, carbon dioxide and methane gas anomalies. A multivariate statistical classifier, trained on copper anomalous soil geochemistry, was then used to identify potential hyperspectral targets within the broader Oonagalabi Anticline (**Figure 5**). These findings underline the potential for leveraging gas anomalies, in combination with multivariate spectral and geochemical analyses, to identify high-priority exploration targets. This approach enhances the understanding of subsurface mineralisation processes and refines target delineation for follow-up exploration activities.



WW. LITCHFIELDMINERALS COM. AU



*Figure 5*. Combined gas targets identified from spectral analysis of Sentinel-2 data, showing multiple targets to the northeast and southeast of the Oonagalabi Prospect (OBMP = Oonagalabi).

## Soil and Rock Chip Sampling

Surface geochemical sampling (161 soils, 13 rocks) and reconnaissance mapping was completed over the central mineralised Oonagalabi system in early December (**Figure 6**, **Appendices 1**, **2**). Soil sampling was completed at 200m x 100m, covering the original 1970's grid (1500m strike) and then extending a further 1500m to cover the limits of exposed alteration and mineralisation (3km strike). Samples have been submitted to Bureau Veritas in Adelaide for full multi-element analysis with assays expected in early January 2025. The new multi-element data will be a dramatic improvement on the 1970's data (Cu, Pb, Zn, Ag only) and will be used to develop metal zonation models, vectors to mineralisation and potentially define new anomalies beyond the original soil grid.



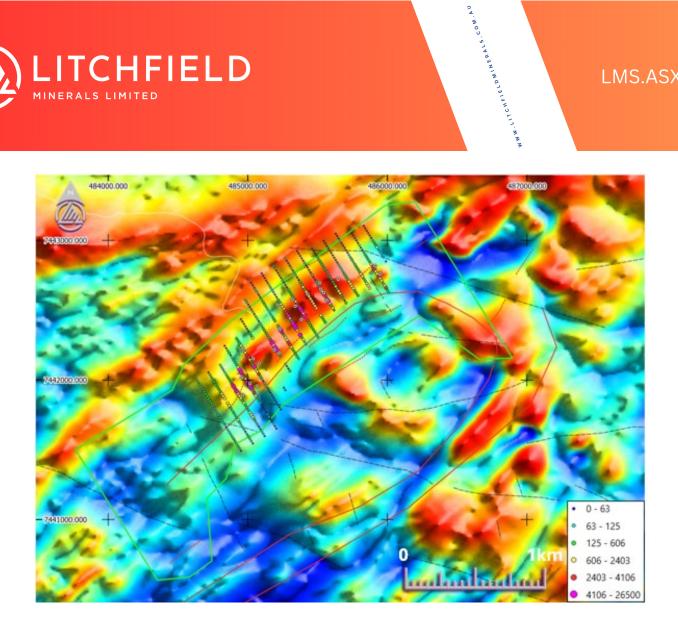



Figure 6. TMI RTP drone magnetic image showing historic Oonagalabi copper soil geochemistry (100m x 20m), the outline of the new 2024 soil grid (200m x 100m) and a preliminary structural interpretation.

Reconnaissance mapping was completed in conjunction with soil sampling to confirm the accuracy and quality of previous detailed mapping. The Kinex 1979, 1:2,500 scale fact map was used as a base for reconnaissance mapping and was proven to be remarkably detailed and accurate. Mapping confirmed an extensive thickness of granulite-facies schists and gneisses, intruded by numerous mafic granulites (amphibolites) to form the broader Oonagalabi Anticline. Original mapping by Russgar (1970) interpreted the Oonagalabi Anitcline to form a dome-like structure (two separate folding events) and can be seen in the new magnetic dataset (Figure 3). Reconnaissance mapping confirmed the 2008 Kinex interpretation of an Upper and Lower Unit within the Oonagalabi Anticline with the Lower Unit containing more biotite-rich schists and a distinctive coarse-grained feldspar porphyroblasts texture that is absent from the Upper Unit. The mineralised Oonagalabi Formation sits stratigraphically at the boundary between the Upper and Lower Units. The Oonagalabi formation



W.LITCHFIELDWINERALS.COM.AU

comprises a coarse-grained amphibole unit (dominantly anthophyllite), marble with variable olivine content and garnet-rich quartzite. Mineralisation was observed dominantly in the more extensive amphibole unit and within marble.

### 2025 Exploration Plan

Litchfield Minerals intends to aggressively explore the Oonagalabi prospect during the 2025 field season, starting with grading and improving the access track from Mt Riddoch Station to the prospect (thereby reducing the current 2 hours' journey to site). Planetary Geophysics has been contracted to complete (late January / early February) a 3.5 x 2km ground gravity survey (100m x 50m grid) over the broader Oonagalabi mineralised trend and up to five line kilometres of Pole-Dipole IP over the central IP chargeability anomaly to confirm the interpreted pipe structure and improve drillhole targeting. Litchfield Minerals will then complete a focused diamond drilling campaign to test any significant IP chargeability, density, magnetic and resistivity anomalies. Additional drilling may be completed depending on the success of the Phase 1 drilling.

### **Cautionary Statement**

The exploration results and interpretations presented in this announcement, including the identification of chargeability anomalies, magnetic structures, and mineralised zones, are based on preliminary data and geological models. While these results suggest potential for significant mineralisation at the Oonagalabi project, they remain subject to further validation through detailed ground-based geophysical surveys and targeted drilling programs.

There is no guarantee that future exploration will confirm the presence of economic mineralisation or lead to the definition of a mineral resource. Factors such as geological complexity, data accuracy, and exploration limitations may impact these findings. Investors should be aware of these uncertainties and should not rely solely on the forward-looking interpretations provided in this announcement.

#### Forward looking statement

This announcement may include forward-looking statements, which are subject to risks and uncertainties. Actual results could differ significantly due to factors beyond our control, including market conditions and industry-specific risks. These forward-looking statements are based on the



WWW.LITCHFIELDMINERALS.COM.AU

Company's expectations and beliefs concerning future events. No warranty is given regarding the completeness of the information provided. Please avoid placing undue reliance on forward-looking statements, as they reflect views only as of the announcement date.

### **About Litchfield Minerals**

Litchfield Minerals is a critical mineral explorer, primarily searching for base metals and uranium out of the Northern Territory of Australia. Our mission is to be a pioneering copper exploration company committed to delivering cost-effective, innovative and sustainable exploration solutions. We aim to unlock the full potential of copper and other mineral resources while minimising environmental impact, ensuring the longevity and affordability of this essential metal for future generations. We are dedicated to involving cutting-edge technology, responsible practices and stakeholder collaboration drives us to continuously redefine the industry standards and deliver value to our investors, communities and the world.

The announcement has been approved by the Board of Directors.

For further information please contact:

Matthew Pustahya Matthew@litchfieldminerals.com.au

#### Follow us on:



www.litchfieldminerals.com.au



https://twitter.com/Litchfield\_LMS

in <a href="https://www.linkedin.com/company/litchfield-minerals-limited/">https://www.linkedin.com/company/litchfield-minerals-limited/</a>



N.W.W. LITCHFIELDMINERALS COM. AU

#### **Competent Person's Statement**

The information in this Presentation that relates to Exploration Results is based on, and fairly represents, information and supporting documentation compiled by Mr Russell Dow (MSc, BScHons Geology), a Competent Person who is a Member of the Australian Institute of Mining and Metallurgy (AUSIMM) and is a full-time employee of Litchfield Minerals Limited. Mr Dow has sufficient experience that is relevant to the style of mineralisation and types of deposits under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code). Mr Dow consents to the inclusion in the report of the matters based on his information in the form and context in which it appears. With regard to the Company's ASX Announcements referenced in the above Announcement, the Company is not aware of any new information or data that materially affects the information included in the Announcements.



WWW. LITCHFIELDMINERALS.COM. AU

## Appendix 1. Location of new soil samples

| Sample_# | East   | North   | RL  |
|----------|--------|---------|-----|----------|--------|---------|-----|----------|--------|---------|-----|----------|--------|---------|-----|
| SS00140  | 485981 | 7443254 | 813 | SS00180  | 484594 | 7441307 | 830 | SS00220  | 483984 | 7441155 | 776 | SS00261  | 485289 | 7442454 | 829 |
| SS00141  | 486028 | 7443158 | 809 | SS00181  | 484539 | 7441404 | 823 | SS00221  | 483930 | 7441239 | 781 | SS00262  | 485340 | 7442368 | 833 |
| SS00142  | 486080 | 7443072 | 818 | SS00182  | 484500 | 7441474 | 806 | SS00222  | 483871 | 7441330 | 765 | SS00263  | 485392 | 7442293 | 823 |
| SS00143  | 486125 | 7442991 | 828 | SS00183  | 484440 | 7441565 | 802 | SS00223  | 483820 | 7441406 | 761 | SS00264  | 485249 | 7442186 | 830 |
| SS00144  | 486184 | 7442908 | 825 | SS00184  | 484385 | 7441646 | 798 | SS00224  | 483766 | 7441495 | 762 | SS00265  | 485187 | 7442258 | 81  |
| SS00145  | 486229 | 7442831 | 811 | SS00185  | 484342 | 7441727 | 793 | SS00226  | 485453 | 7442572 | 835 | SS00266  | 485130 | 7442347 | 81  |
| SS00146  | 486293 | 7442745 | 824 | SS00186  | 484283 | 7441804 | 777 | SS00227  | 485505 | 7442482 | 852 | SS00267  | 485438 | 7442204 | 83  |
| SS00147  | 486339 | 7442669 | 857 | SS00187  | 484101 | 7441703 | 776 | SS00228  | 485570 | 7442413 | 834 | SS00268  | 485497 | 7442113 | 88  |
| SS00148  | 486391 | 7442580 | 881 | SS00188  | 484154 | 7441625 | 789 | SS00229  | 485617 | 7442324 | 840 | SS00269  | 485546 | 7442042 | 90  |
| SS00149  | 486444 | 7442496 | 860 | SS00189  | 484213 | 7441532 | 787 | SS00230  | 485678 | 7442232 | 866 | SS00270  | 485386 | 7441927 | 84  |
| SS00151  | 486510 | 7442414 | 881 | SS00190  | 484268 | 7441460 | 777 | SS00231  | 485727 | 7442153 | 877 | SS00271  | 485341 | 7442012 | 84  |
| SS00152  | 486540 | 7442331 | 901 | SS00191  | 484314 | 7441368 | 784 | SS00232  | 485891 | 7442250 | 847 | SS00272  | 485274 | 7442094 | 83  |
| SS00153  | 486607 | 7442244 | 920 | SS00192  | 484363 | 7441292 | 808 | SS00233  | 485846 | 7442326 | 854 | SS00273  | 485249 | 7441814 | 82  |
| SS00154  | 486662 | 7442151 | 915 | SS00193  | 484425 | 7441219 | 828 | SS00234  | 485786 | 7442423 | 846 | SS00274  | 485157 | 7441909 | 82  |
| SS00155  | 486891 | 7442162 | 886 | SS00194  | 484505 | 7441098 | 848 | SS00235  | 485734 | 7442503 | 840 | SS00276  | 485115 | 7441992 | 82  |
| SS00156  | 486845 | 7442252 | 899 | SS00195  | 484538 | 7441048 | 857 | SS00236  | 485681 | 7442589 | 837 | SS00277  | 485060 | 7442073 | 82  |
| SS00157  | 486789 | 7442329 | 916 | SS00196  | 484590 | 7440949 | 840 | SS00237  | 485626 | 7442671 | 818 | SS00278  | 485008 | 7442154 | 83  |
| SS00158  | 486730 | 7442423 | 909 | SS00197  | 484641 | 7440870 | 840 | SS00238  | 485580 | 7442762 | 811 | SS00279  | 484952 | 7442239 | 80  |
| SS00159  | 486695 | 7442514 | 864 | SS00198  | 484691 | 7440782 | 849 | SS00239  | 485515 | 7442828 | 808 | SS00280  | 484908 | 7442315 | 80  |
| SS00160  | 486629 | 7442599 | 843 | SS00199  | 484739 | 7440701 | 860 | SS00240  | 485398 | 7442651 | 810 | SS00281  | 484860 | 7442406 | 79  |
| SS00161  | 486590 | 7442681 | 828 | SS00201  | 484574 | 7440597 | 857 | SS00241  | 485349 | 7442740 | 807 | SS00282  | 485011 | 7442512 | 80  |
| SS00162  | 486517 | 7442757 | 821 | SS00202  | 484525 | 7440673 | 839 | SS00242  | 485187 | 7442608 | 803 | SS00283  | 485072 | 7442439 | 80  |
| SS00163  | 486454 | 7442842 | 831 | SS00203  | 484464 | 7440735 | 806 | SS00243  | 485229 | 7442549 | 811 | SS00284  | 484729 | 7442223 | 80  |
| SS00164  | 486391 | 7442912 | 840 | SS00204  | 484417 | 7440844 | 817 | SS00244  | 485686 | 7442960 | 817 | SS00285  | 484550 | 7442113 | 79  |
| SS00165  | 486353 | 7443017 | 823 | SS00205  | 484365 | 7440926 | 793 | SS00245  | 485738 | 7442869 | 812 | SS00286  | 484778 | 7442125 | 80  |
| SS00166  | 486294 | 7443119 | 828 | SS00206  | 483939 | 7441590 | 767 | SS00246  | 485791 | 7442783 | 823 | SS00287  | 484828 | 7442059 | 82  |
| SS00167  | 486244 | 7443187 | 825 | SS00207  | 483988 | 7441520 | 783 | SS00247  | 485840 | 7442703 | 826 | SS00288  | 484893 | 7441958 | 85  |
| SS00168  | 486192 | 7443274 | 810 | SS00208  | 484037 | 7441434 | 778 | SS00248  | 485893 | 7442617 | 830 | SS00289  | 484937 | 7441906 | 84  |
| SS00169  | 484445 | 7441924 | 777 | SS00209  | 484097 | 7441348 | 779 | SS00249  | 485954 | 7442534 | 829 | SS00290  | 484988 | 7441813 | 82  |
| SS00170  | 484512 | 7441825 | 779 | SS00210  | 484151 | 7441266 | 780 | SS00251  | 485997 | 7442438 | 839 | SS00291  | 485035 | 7441707 | 82  |
| SS00171  | 484546 | 7441755 | 791 | SS00211  | 484201 | 7441184 | 797 | SS00252  | 486061 | 7442362 | 845 | SS00292  | 485098 | 7441638 | 82  |
| SS00172  | 484602 | 7441668 | 798 | SS00212  | 484253 | 7441098 | 798 | SS00253  | 486231 | 7442455 | 848 | SS00293  | 484915 | 7441544 | 84  |
| SS00173  | 484651 | 7441590 | 797 | SS00213  | 484350 | 7440574 | 810 | SS00254  | 486184 | 7442545 | 830 | SS00294  | 484883 | 7441593 | 83  |
| SS00174  | 484713 | 7441499 | 809 | SS00214  | 484298 | 7440648 | 797 | SS00255  | 486111 | 7442634 | 827 | SS00295  | 484823 | 7441692 | 82  |
| SS00175  | 484755 | 7441420 | 837 | SS00215  | 484249 | 7440733 | 776 | SS00256  | 486072 | 7442717 | 827 | SS00296  | 484782 | 7441780 | 86  |
| SS00176  | 484815 | 7441335 | 857 | SS00216  | 484201 | 7440813 | 773 | SS00257  | 486012 | 7442802 | 819 | SS00297  | 484725 | 7441855 | 83  |
| SS00177  | 484839 | 7441297 | 869 | SS00217  | 484145 | 7440904 | 778 | SS00258  | 485964 | 7442889 | 820 | SS00298  | 484670 | 7441928 | 80  |
| SS00178  | 484706 | 7441147 | 833 | SS00218  | 484095 | 7440984 | 774 | SS00259  | 485907 | 7442962 | 823 | SS00299  | 484617 | 7442008 | 79  |
| SS00179  | 484644 | 7441221 |     | SS00219  | 484036 | 7441073 |     | SS00260  | 485852 | 7443062 | 828 |          |        |         |     |



WWW. LITCHFIELDMINERALS.COM.AU

## Appendix 2. Location of new rock chip samples

| Sample_# | East   | North   | RL  |
|----------|--------|---------|-----|
| RK0052   | 484736 | 7441442 | 824 |
| RK0053   | 484535 | 7441396 | 826 |
| RK0054   | 484411 | 7441239 | 825 |
| RK0055   | 484534 | 7441051 | 858 |
| RK0056   | 484530 | 7441047 | 857 |
| RK0057   | 484572 | 7440600 | 857 |
| RK0058   | 483763 | 7441439 | 756 |
| RK0059   | 485734 | 7442180 | 875 |
| RK0060   | 485747 | 7442135 | 874 |
| RK0061   | 485747 | 7442135 | 874 |
| RK0062   | 485505 | 7442100 | 896 |
| RK0063   | 485318 | 7442017 | 845 |
| RK0064   | 485023 | 7441703 | 825 |



## JORC Code, 2012 Edition – Table 1 report

## Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

| Criteria               | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques | <ul> <li>Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report.</li> <li>In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.</li> </ul> | <ul> <li>The instruments and parameters used for the VTEM survey are as follow</li> <li>Drone Magnetics <ul> <li>Data was collected by Pegasus Airborne Systems between 10 and 13<sup>th</sup> December, 2024.</li> </ul> </li> <li> <ul> <li><u>Orid Name</u></li> <li>Line</li> <li>Direction</li> <li>Spacing</li> <li>Direction</li> <li>Beight</li> <li>Line km</li> <li>Oongalabi</li> <li>SOM</li> <li>000-180</li> <li>SOOM</li> <li>090-270</li> <li>Gilkm</li> </ul> </li> <li> Data collected with an unmanned rotary wing helicopter (PA H100) w/ autonomous flight control and terrain following system. </li> <li> Drone speed (15m/s), maximum vertical and horizontal deviation (5m), drone height (55m AGL), survey sensor height (35m AGL). </li> <li> Magnetic sensor (Scintrex CS-VL Cesium Vapour magnetometers sensitivity (0.0006nT sq rt RMS), noise envelope (0.0002nT per to peak), heading error (±0.25Nt). </li> </ul> |

WWW - FLITCHFELDMINERALS.COM.AU

• Magnetometer counter sample frequency (260MHz), counter resolution (0.1pT).



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LITCI    | HFIELD                | ov. WOJ. S. TARABARANTA LMS.ASX                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Criteria | JORC Code explanation | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                    |
| hered the second s |          |                       | <ul> <li>GNSS Receiver (uBlox GNSS receiver w/ multiple constellation tracking, 10Hz output (20Hz capable), operating in autonomous mode at sub-metre accuracy.</li> <li>Laser Altimeter (100m range, 1cm resolution, 10cm accuracy, 360 readings per second).</li> <li>Diurnal Magnetometer (GEM Systems GSM19-F Overhauser Magnetometer), GNSS time-stamped, 0.01nT resolution, 0.1nT accuracy, 1Hz sample rate.</li> </ul> |
| R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                       | Sentinel-2 data                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                       | • Sentinel-2 scene captured on 21 <sup>st</sup> October 2024.                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                       | <ul> <li>Spectral features in the VNIR and SWIR and proprietary algorithms were used to estimate gasses (H2, O2, CO2, CH4 and Rn).</li> </ul>                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                       | Gas estimates may be related to surface reflections by correlating     them to a spectral unmixing of the image data cube. 16 unknown                                                                                                                                                                                                                                                                                         |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                       | endmembers were assumed which were interpreted by correlation with a USGS spectral library of minerals measured in a laboratory.                                                                                                                                                                                                                                                                                              |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                       | A multivariate statistical classifier was trained on the anomalous     Cu locations. Classification weights are:                                                                                                                                                                                                                                                                                                              |



|                       | LITCHFIELD | N. W. O.J ST V. J. J. H. J. L. M. M. LMS.ASX                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| For personal use only |            | 60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60                                                                                                                                                                                                                                                                                                                                             |
| For perso             |            | <ul> <li>Copiapite/chalcopyrite is the largest weight followed by arsenopyrite, galena, calcite, chert, rhodochrosite and muscovite.</li> <li>Soil Sampling         <ul> <li>Samples were collected on a 200m x 100m grid over the existing soil grid and the extended northeast and southwest of the original grid to cover known outcropping alteration and mineralization.</li> </ul> </li> </ul> |



| LITCH                    | FIELD<br>TED                                                                                                                                                                                                                                                                                                                                                                                               | LMS.ASX                                                                                                                                                                                                                                                              |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Criteria                 | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                      | Commentary                                                                                                                                                                                                                                                           |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>Soil samples were collected from the B-Horizon using a -80 Mesh sieve. Approximately 500g of material was collected in the field per sample.</li> <li>QAQC samples were inserted every 25 samples as per standard Litchfield sampling protocols.</li> </ul> |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                            | Silex 2008 Pole-Dipole IP Survey                                                                                                                                                                                                                                     |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>Refer to Litchfield ASX Announcement dated 10<sup>th</sup> October, 2024<br/>'Litchfield secures strategic copper gold base metals portfolio in<br/>NT Update'.</li> </ul>                                                                                  |
| Drilling<br>techniques   | • Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).                                                                                                                  | <ul> <li>Not applicable as no drilling is reported.</li> </ul>                                                                                                                                                                                                       |
| Drill sample<br>recovery | <ul> <li>Method of recording and assessing core and chip sample recoveries<br/>and results assessed.</li> <li>Measures taken to maximise sample recovery and ensure<br/>representative nature of the samples.</li> <li>Whether a relationship exists between sample recovery and grade and<br/>whether sample bias may have occurred due to preferential loss/gain<br/>of fine/coarse material.</li> </ul> | <ul> <li>Not applicable as no drilling is reported.</li> </ul>                                                                                                                                                                                                       |
| Logging                  | <ul> <li>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</li> <li>Whether logging is qualitative or quantitative in nature. Core (or</li> </ul>                                                                                                          | <ul> <li>Not applicable as no drilling is reported.</li> </ul>                                                                                                                                                                                                       |



| LITCH                                                   | FIELD<br>TED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LMS.ASX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Criteria                                                | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                         | <ul><li>costean, channel, etc) photography.</li><li>The total length and percentage of the relevant intersections logged.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sub-sampling<br>techniques<br>and sample<br>preparation | <ul> <li>If core, whether cut or sawn and whether quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material being sampled.</li> </ul> | <ul> <li>Not applicable as no drilling is reported.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Quality of<br>assay data<br>and<br>laboratory<br>tests  | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>Drone magnetics data processing</li> <li>Raw data was downloaded from the acquisition system to the data processor at the end of each flight</li> <li>Initial data quality control procedures were implemented ensure navigation specifications were met.</li> <li>The diurnal base station data was checked to ensure survey flig coverage and for magnetic storm activity and cultural noise.</li> <li>Any out of specification sections of data were flagged at marked for re-flight.</li> <li>Data was then exported to a cumulative master processin database for further processing.</li> </ul> |



|                  | LITCI    | <b>HFIELD</b>         | W W W . FITCHELELD MINERALS . COM. AU | LMS.ASX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------|----------|-----------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | Criteria | JORC Code explanation |                                       | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| al use only      |          |                       |                                       | <ul> <li>No editing or filtering of the recorded raw TMI data was carried out due to the inherent clean data.</li> <li>Base station diurnal data were suitably filtered to remove any high frequency content and then subtracted from survey data using common GNSS derived UTC time.</li> <li>After diurnal subtraction, the regional magnetic gradient was removed using the IGRF.</li> <li>A digital terrain model (DTM) was calculated by subtracting the laser altimeter height from the GNSS recorded height.</li> </ul>                                                                 |
| ror personal use |          |                       |                                       | <ul> <li>The data was imported into a database, gridded and unconstrained 3D inversion modelling was completed on chargeability and resistivity data.</li> <li>The 3D inversion process is unconstrained, so there are no controls on the chargeability / resistivity that can be allocated by the inversion to each cell.</li> <li>The results of the IP inversion have been compiled in a Geoscience Analyst 3D project. This includes the 3D model in UBC voxel format and also iso-shells. Separately, depth slice images through the model are provided for display in 2D GIS.</li> </ul> |



| LITCH                                                               | FIELD<br>TED                                                                                                                                                                                                                                                                                                                                                                                       | LMS.ASX                                                                                                                                           |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Criteria                                                            | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                        |
| Verification<br>of sampling<br>and assaying                         | <ul> <li>The verification of significant intersections by either independent or alternative company personnel.</li> <li>The use of twinned holes.</li> <li>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</li> <li>Discuss any adjustment to assay data.</li> </ul>                                                    | <ul> <li>Magnetic data detailed in this report has been reviewed by<br/>Russell Mortimer at Southern Geoscience Consultants.</li> </ul>           |
| Location of<br>data points                                          | <ul> <li>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</li> <li>Specification of the grid system used.</li> <li>Quality and adequacy of topographic control.</li> </ul>                                                                                              | <ul> <li>See above for drone magnetics system precision and accuracy.</li> <li>Magnetic data were recorded using GDA94/UTM, Zone 53.</li> </ul>   |
| Data spacing<br>and<br>distribution                                 | <ul> <li>Data spacing for reporting of Exploration Results.</li> <li>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</li> <li>Whether sample compositing has been applied.</li> </ul>                                 | <ul> <li>Survey was flown at 50m line-spacing with 500m tie lines.</li> <li>Survey lines flown north-south, lie lines flown east-west.</li> </ul> |
| Orientation<br>of data in<br>relation to<br>geological<br>structure | <ul> <li>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</li> <li>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</li> </ul> | <ul> <li>Magnetic survey lines were oriented roughly perpendicular to<br/>known structure and stratigraphic controls.</li> </ul>                  |
| Sample<br>security                                                  | • The measures taken to ensure sample security.                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>All magnetic data was collected under strict data security<br/>measures by Pegasus Airborne Systems.</li> </ul>                          |



| LITC<br>MINERALS  |    |           | LD                           |                   | WWW. LITCHFIELDMINERALS COM. AU |         | LMS   | S.ASX                                                                                                                                                                                                                                                                     |
|-------------------|----|-----------|------------------------------|-------------------|---------------------------------|---------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Criteria          |    | JORC Cod  | e explanation                |                   |                                 |         | Comme | entary                                                                                                                                                                                                                                                                    |
| Audits<br>reviews | or | • The res | sults of any audits or revie | ws of sampling te | echniques and                   | d data. | •     | Magnetic data checks and processing reviews were undertaken<br>daily and at the completion of the program by the contractor.<br>Review of the magnetic and IP data was undertaken by an<br>independent consultant Russell Mortimer at Southern<br>Geoscience Consultants. |

## Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

| Criteria                                         | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral<br>tenement<br>and land<br>tenure status | <ul> <li>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</li> <li>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</li> </ul> | <ul> <li>Tenement includes Oonagalabi (EL32279) and Silver Valley (EL32241). for a total of 145.3km<sup>2</sup> and 46 sub-blocks.</li> <li>EL32279 is owned by Kalk Exploration Pty. Ltd., a 100% owned entity of Litchfield Minerals Limited. Oonagalabi is located 125km northeast of Alice Springs on pastoral lease.</li> <li>The tenements are in good standing and there are no known impediments.</li> </ul> |
| Exploration<br>done by other<br>parties          | • Acknowledgment and appraisal of exploration by other parties.                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Refer to Section 6 and 7 in Independent Geologists Report (IGR) by Ross et al., 2023 for further detail. A summary of previous exploration and mining is presented below:</li> <li>Oonagalabi was discovered in the 1930's.</li> <li>In 1970, Russgar Minerals completed regional mag-rad survey, VLF_EM survey, ground magnetic survey, single line resistivity traverse and 14 drillholes.</li> </ul>     |



| LITCH                     | FIELD<br>TED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LMS.ASX                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Criteria                  | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>In 1971, Geopeko completed limited IP.</li> <li>1979, Amoco completed photo-interpretation, rock chip sampling and drilling (8 holes).</li> <li>1981 D'Dor Mining NL completed limited dipole-dipole IP.</li> <li>Silex 2009 completed pole-dipole IP 1 x diamond hole.</li> </ul>                                                                                                                                                                 |
| Geology                   | • Deposit type, geological setting and style of mineralisation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>The Oonagalabi-type mineralisation is considered to be either sediment-hosted or carbonate replacement with potential for high-grade remobilised breccia zones similar to the Jervois deposit. EL32279 falls within one of Geoscience Australia's IOCG high potential zones.</li> <li>The project lies within the Harts Range that represents a package of multiply deformed and metamorphosed sedimentary and igneous intrusive rocks.</li> </ul> |
| Drill hole<br>Information | <ul> <li>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: <ul> <li>easting and northing of the drill hole collar</li> <li>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</li> <li>dip and azimuth of the hole</li> <li>down hole length and interception depth</li> <li>hole length.</li> </ul> </li> <li>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly</li> </ul> | <ul> <li>No drilling or assaying is reported in this report.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                     |



| <b>LITCHFIELD</b><br>MINERALS LIMITED                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                  |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Criteria                                                                         | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Commentary                                                                                                                                                       |
|                                                                                  | explain why this is the case.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                  |
| Data<br>aggregation<br>methods                                                   | <ul> <li>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.</li> <li>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</li> <li>The assumptions used for any reporting of metal equivalent values should be clearly stated.</li> </ul> | <ul> <li>No drilling or assaying is reported in this report.</li> </ul>                                                                                          |
| Relationship<br>between<br>mineralisatio<br>n widths and<br>intercept<br>lengths | <ul> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</li> <li>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').</li> </ul>                                                                                                                                                                             | <ul> <li>No drilling or assaying is reported in this report.</li> </ul>                                                                                          |
| Diagrams                                                                         | • Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.                                                                                                                                                                                                                                                                                                                             | <ul> <li>See figures 1 – 4 above.</li> <li>Refer to Section 6 and 7 of the Independent Geologists Repo (IGR) by Ross <i>et al.</i>, 2023.</li> </ul>             |
| Balanced<br>reporting                                                            | • Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>Individual magnetic readings have not been reported, plan<br/>within this report provide an adequate overview of the dron<br/>magnetic data.</li> </ul> |



| LITCH                                       | FIED<br>TED                                                                                                                                                                                                                                                                                                                                                                             | LMS.ASX                                                                                                                                                                                                                                                               |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Criteria                                    | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                   | Commentary                                                                                                                                                                                                                                                            |
| Other<br>substantive<br>exploration<br>data | • Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | <ul> <li>See the main body of this report for all pertinent observations<br/>and interpretations.</li> </ul>                                                                                                                                                          |
| Further work                                | <ul> <li>The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).</li> <li>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</li> </ul>                   | <ul> <li>Future planned exploration includes:</li> <li>Detailed ground gravity (100m x 50m)</li> <li>Pole-Dipole IP over chargeability pipe</li> <li>Diamond drill testing of key magnetic, gravity, chargeability, resistivity and geochemical anomalies.</li> </ul> |