

7 January 2025

Exploration Advancements at Independence Gold Project

Six drill holes completed, and further strong rock chip results returned at the Independence Gold Project, Nevada

Highlights:

- Five Reverse Circulation (RC) drill holes and the first diamond drill hole (JBDD001) completed, testing for additional zones of mineralisation below the current oxide Mineral Resource.
- High-grade gold (Au) rock chip results received from the second batch of samples, with an additional 20 samples returning grades >1g/t Au.
- In total, 77 rock chip samples have returned grades greater than 1g/t Au, with a peak assay result of 31.7g/t Au, spanning over 1.2 kilometres of strike length.
- Rock chip results provide further evidence of from-surface oxide gold mineralisation at the untested areas '*North Hilf*' and '*Sunshine South*'.
- The Independence Project Phase 1 drilling campaign is now complete, with all samples now at the laboratory assay results expected during Q1 2025.

James Bay Minerals (ASX: **JBY**) ("**James Bay Minerals**" or "**the Company**") is pleased to provide a progress update on drilling and exploration activities at the Independence Gold Project ("**Project**"), located in Lander County, Nevada, USA.

The first diamond drill hole (JBDD001) and five Reverse Circulation (RC) drill holes are now complete, with assay results expected during Q1 2025. This phase of drilling targeted extensions of mineralisation outside of the existing Mineral Resource Estimate.

James Bay Executive Director, Andrew Dornan, commented:

"Since acquiring the Independence Gold Project on 29 November 2024, we have made excellent progress and plan to maintain this momentum into Q1 2025 with the launch of a larger Phase 2 drill program. Q1 drilling will target extensions of the oxide mineralisation in the northern half of the Project and at the untested Rebel Peak prospect, where rock chip samples have returned exceptional high-grade gold results. We also look forward to receiving assay results from the Phase 1 drilling soon."

> James Bay Minerals Limited 1/1 Tully Road, East Perth Western Australia 6004

For personal use only

Gold assays have also been received for the second batch of rock chip samples. In total, 77 rock chip samples have returned gold assays above 1.0g/t Au¹, generating multiple targets for drill testing throughout 2025.

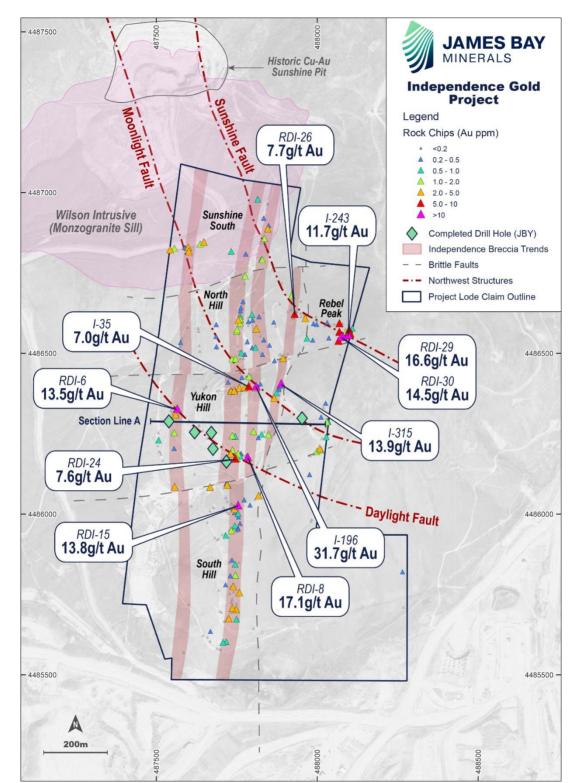


Figure 1: Rock chip results coded by Au ppm underlain by mapped mineralised trends. Recently completed drill hole collars displayed (assays pending).

¹ Refer to Appendix 3 and ASX announcement dated 27 November 2024.

James Bay Minerals Limited

Rock Chip Sampling

Systematic rock chip sampling is complete, with all gold assays having now been received. Exceptional gold grades, with a total of 77 samples returning assays above 1.0g/t Au and a peak result of 31.7g/t Au, indicate that from-surface ore-grade gold mineralisation spans the Project. Refer to Appendix 3 and ASX announcement dated 27 November 2024 for further details.

This program has defined additional oxide mineralised trends outside of the existing Mineral Resource Estimate that are yet to be tested by drilling (Figure 1).

The second batch of rock chip samples focused on the northern half of the Project and have returned highgrade gold results within the southern extent of the Wilson Intrusive Sill, an area yet to be adequately drilled tested (Figure 1).

Mineralisation within the Wilson Intrusive Sill is found in two styles - stockwork guartz-iron oxide (after sulphide) veining throughout the intrusion (Figure 2), and the continuation of the south-striking Independence Breccia trends that host high-grade gold-silver mineralisation within the from-surface oxide Mineral Resource.

Multi-element assay results are still outstanding, with results expected in Q1 2025. Multi-element data will nable the Company to assess the potential for polymetallic mineralisation across the Project and plan

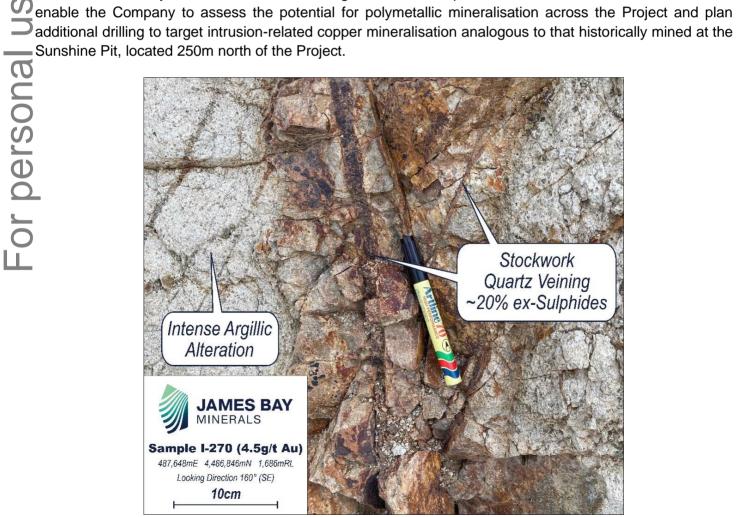


Figure 2: Close-up of the sample location of rock chip I-270 (4.5g/t Au) showing the intensely argillic-altered Wilson Intrusive Sill cut by a stockwork of quartz-iron oxide (after sulphide) veins.

Drilling Progress

Six drill holes have been completed for a total of 1,297.6m, targeting extensions to mineralisation outside of the extents of the current Mineral Resource (Figure 1; Table 1). All samples are now at the laboratory pending gold and multi-element analysis, with results expected in Q1 2025.

Hole ID	Hole	Total Depth		Collar Detai	ls (NAD83 U	TM Zone 11)	
Hole ID	Туре	(m)	Easting	Northing	RL	Azimuth	Dip
JBDD001	DDH	333.6	487539	4486289	1670	90	-55
AGEI-61	RC	243.2	487618	4486253	1678	90	-55
AGEI-62	RC	181.4	487716	4486161	1675	90	-55
AGEI-63	RC	237.7	487676	4486203	1685	90	-55
AGEI-64	RC	205.7	487671	4486253	1693	90	-45
AGEI-65	RC	96.0	487951	4486298	1751	90	-45

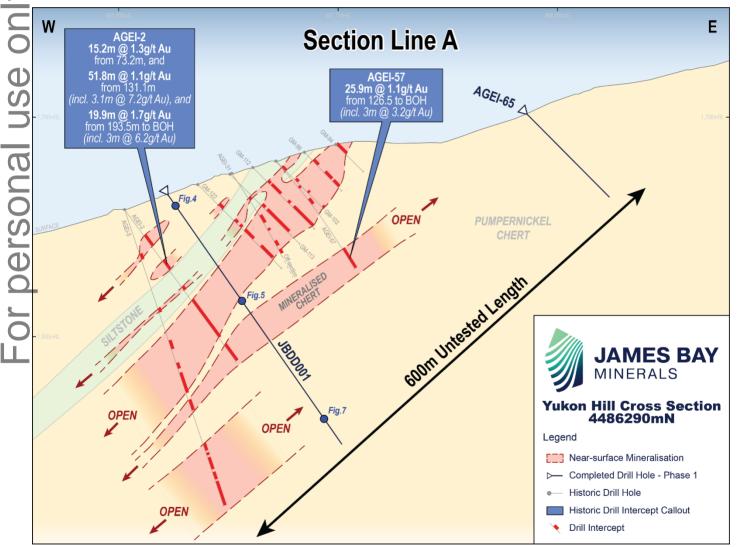


Figure 3: Cross section through Yukon Hill, showing the location of drill holes JBDD001 and AGEI-65 in relation to gold mineralisation trends. Note that historic drill holes AGEI-2, AGEI-5 and AGEI-57 ended in mineralisation (see Appendix 1 and JORC Code, 2012 - Table 1 for further details). Locations of Figures 4-7 shown along the drill hole trace of JBDD001.

The Project area primarily comprises a package of interbedded cherts and siltstones that trend north and dip approximately 45 degrees to the west.

James Bay Minerals Limited

Shearing and brittle faulting of the sedimentary package has resulted in the formation of a sequence chert breccia zones that, as well as the surrounding chert beds, are host to high-level epithermal mineralisation and form the entirety of the near-surface oxide resource.

Additionally, a suite of intensely argillic-altered porphyritic felsic dykes are present in the southern half of the tenure, cross-cutting the Pumpernickel Formation and are related to polymetallic (copper-gold-silver) mineralisation within the alteration halo surrounding the dykes. Please refer to ASX Announcement dated 10 December 2024 for further details on polymetallic mineralisation.

JBDD001 Observations

The first diamond hole, JBDD001, was planned to test the grade continuity of oxide mineralisation within the cherts and siltstones of the Pumpernickel Formation, as well as test below the current Mineral Resource for up-dip extensions of mineralisation intercepted in historic hole AGEI-5 (Figure 3).

Throughout the drill hole, background-level disseminated sulphides are present at an estimated 1-2% of composition within cream-grey coloured, silica-flooded vuggy cherts. Within interbedded siltstone units, sulphides are present along laminations (~1% composition) and are considered typical background content. At depths shallower than 118.3m (down-hole), sulphides have been weathered to goethite, haematite and limonite, in order of abundance.

In areas of brecciation and increased fracturing, sulphide content increases above background levels and are typically associated with increased silica-alteration intensity. Rare quartz-sulphide veins are present, most notably at 52.4-58.9m (5%).

Partial brecciation of the chert unit is observed at 13.7-14.8m, with a significant increase in vug-fill and breccia matrix iron oxide content, visually estimated at a combined 30% of composition (Figure 4).

Figure 4: JBDD001 drill core at 12.8 - 14.6m (42 - 48ft) showing silica-flooded and partially brecciated vuggy chert. Highlighted are examples of iron oxide (after sulphide) vug-fill and matrix fill.

The highest elevations of sulphide contents occur within brecciated chert directly surrounding intrusive dykes. Sulphides, as breccia matrix, are predominantly pyrite (99%) with trace amounts of galena and pyrrhotite.

A notable example of sulphide-bearing breccia within JBDD001 is found up-dip of the intercept in historic hole AGEI-2: 51.8m @ 1.1g/t Au from 131.1m, including 3.1m @ 7.2g/t Au (Figure 5; Figure 6).

Below the extents of the current Mineral Resource Estimate, vuggy chert is present between 289.6 - 313.6m and has been intruded by 0.3 - 2.8m wide dykes. A 1.2m wide sulphide-bearing breccia is present in at the contact with the deepest intrusive dyke from 310.3m (Figure 7).

Observations in drill core and chips are intended only as an indication of hydrothermal activity post deposition of sediments. Visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analyses where concentrations or grades are the factor of principal economic interest. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties

relevant to valuations. Only laboratory analysis or mineralogical test work can confirm the presence of mineralisation in drill core. For full disclosure, drill hole logs are included in Appendix 2, inclusive of approximated visual estimates of sulphide content (percentage). Included in the body of text is information related to the inherent background level of sulphides throughout drill core.

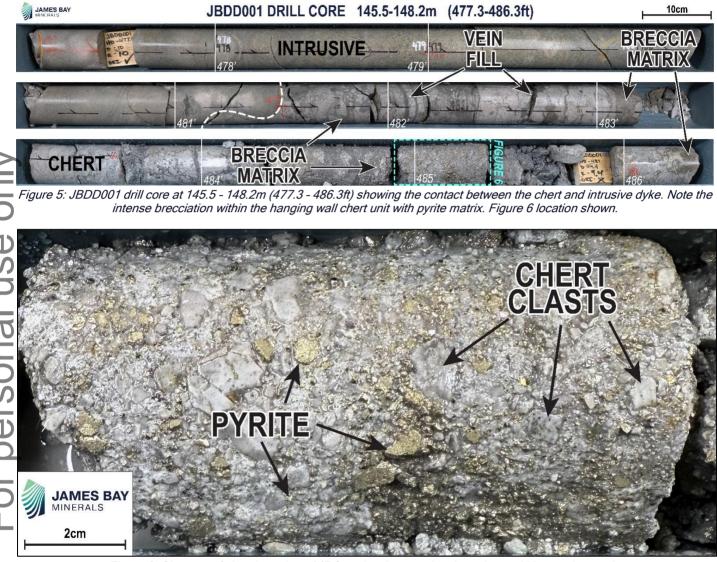


Figure 6: Close-up of chert breccia at 147.8m, showing angular chert clasts within a pyrite matrix.

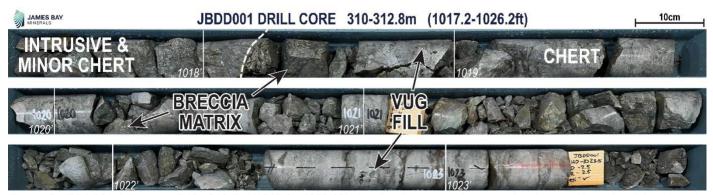


Figure 7: JBDD001 drill core at 310 - 312.8m (1017.2 - 1026.2ft) showing the contact between the chert and intrusive dyke. Note the brecciation within the hanging wall chert unit with pyrite matrix.

AGEI-61 Observations

The first RC drill hole, AGEI-61, was planned to test for mineralisation related to felsic intrusive dykes that dissect the Pumpernickel Formation.

Visual observations from RC chips show that argillic-altered intrusive rocks were intercepted between 99.1 -103.6m (comprising 10% of the overall interval).

The felsic dyke has intruded along the contact between a thickly bedded chert member and an interbedded siltstone-chert member of the Pumpernickel Formation. Immediately surrounding the dyke, strong silicaflooding of the chert and strong sericite alteration of the siltstone is observed. Disseminated and vug-filling iron oxide (oxidised sulphide) content between 91.4m and 99.1m has doubled to approximately 4% of rock composition from the typical background of 2%.

The siltstone displays a smaller alteration halo of approximately 1.5m surrounding the intrusive than the overlying cherts (up to 7.7m).

Visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analyses where concentrations or grades are the factor of principal economic interest. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to Valuations. Only laboratory analysis or mineralogical test work can confirm the presence of mineralisation in Odrill core. For full disclosure, drill hole logs are included in Appendix 2, inclusive of approximated visual estimates of sulphide content (percentage). Included in the body of text is information related to the inherent background level of sulphides throughout drill core.

Figure 8: AGEI-61 drill chips (per sample interval) between 91.4 - 121.9m. Lithologies highlighted and approximate proportion of the dominant lithology displayed.

The initial phase of rock chip sampling focused on the northern-half of the Project, aiming to delineate further epithermal gold-silver and intrusion-related mineralisation. All gold assays have now been received, with multi-element results expected before the end of January 2025.

Logging and sampling of available historic diamond drill core is underway (prefix IND), with IND-03 at the laboratory for gold and multi-element analysis. Once complete, this work will enable the Company to plan future diamond drill campaigns targeting polymetallic mineralisation within the Pumpernickel Formation as well as deeper gold-silver skarn mineralisation within the Battle Formation.

Assay results are expected in Q1 2025. Please refer to ASX Announcement dated 17 December 2024 for further details of this ongoing work.

Drilling to date by James Bay Minerals has focused on expanding near-surface oxide mineralisation across the Yukon Hill. Planning for Phase 2 of the diamond and RC drilling program is currently underway, with drilling set to continue in Q1 2025.

Drilling in 2025 will target oxide mineralisation extensions in the northern half of the Project and at the untested Rebel Peak prospect, where multiple rock chip samples have returned exceptional high-grade gold.

Background on James Bay Minerals

Independence Gold Project - Nevada.

The Independence Project is owned by Independence Mining LLC ("**IML**"), an incorporated joint venture between Battle Mountain Resources Pty Ltd ("**BMR**") (51.54%, the "**BMR Interest**") and Americas Gold Exploration Inc ("**AGEI**") (48.46%, the "**AGEI Interest**"). The Company has executed a definitive term sheet to acquire 100% of the issued capital of BMR and, in turn, has acquired the BMR Interest and the right to earn the AGEI Interest over a period of two years. If the Company completes the earn-in, it will hold a 100% interest in IML and the Independence Project.

The transformational acquisition ensures that the Company is now underpinned by an advanced exploration asset, with significant resource growth potential and future low-cost development opportunities in a Tier-1 global mining jurisdiction.

Project Overview

The Independence Project consists of 14 unpatented mining claims and 84 unpatented mill sites, situated in Lander County, Nevada, and spans approximately 627 acres of Bureau of Land Management (BLM) administered lands. It is adjacent to the Nevada Gold Mine's Phoenix Project and about 16km south of Battle Mountain. In addition, the Project encompasses Section 17, 470 acres of private fee surface land in the Battle Mountain Mining District where the company holds the exclusive water rights and where it will locate any future production water wells.

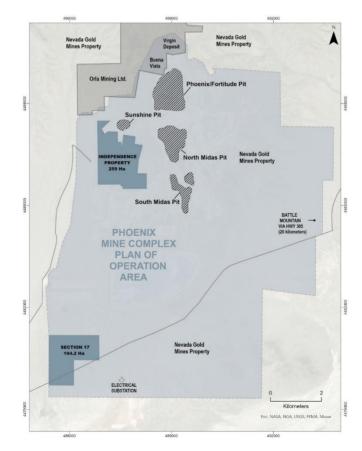


Figure 9: Independence Property overlayed with active Nevada Gold Mines (Newmont Barrick JV) Phoenix Mine Complex, Plan of Operations.

Nevada – Tier 1 Jurisdiction

Nevada is widely regarded as one of the premier mining jurisdictions in the world, known for its rich mineral resources and supportive regulatory environment. Nevada consistently ranks within the top countries of the Fraser Institutes best mining jurisdictions. Key features include:

- 1. Rich Mineral Deposits: Nevada is a leading producer of gold and silver, with numerous active mines and significant exploration potential.
- 2. Stable Regulatory Framework: The state offers a predictable and transparent regulatory process, which fosters investor confidence and encourages mining activities.
- 3. Infrastructure: Well-developed infrastructure, including roads, power, and water supply, supports
- 4. Skilled Workforce: A robust labour market with experienced professionals in the mining sector
- 5. Proximity to Markets: Its location in the western United States provides easy access to major
- 6. Pro-mining Policies: State policies generally favour mining development, with efforts to streamline

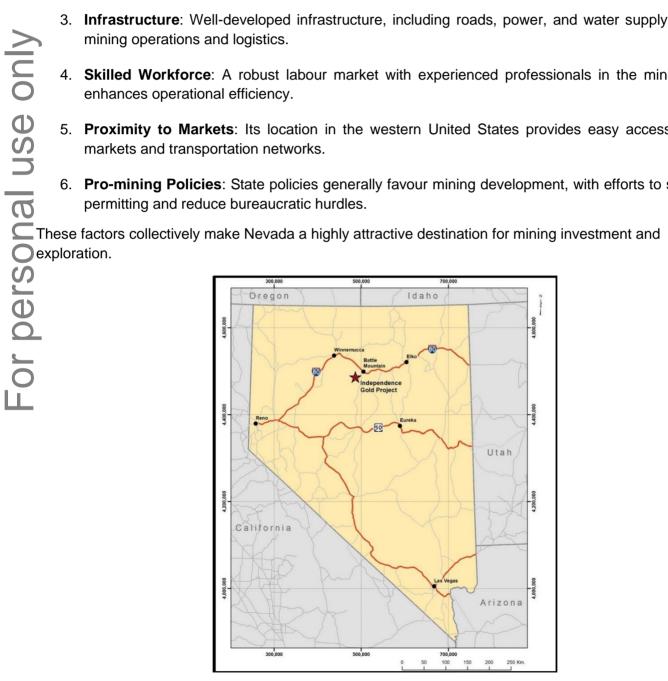


Figure 10: Independence Gold Project, located in Nevada, United States of America.

Geology & Mineralisation

The Independence Project lies in the Battle Mountain Mining District, located on the west side of Pumpernickel Ridge in north-central Nevada. The regional geology of north-central Nevada is defined by episodic tensional deformation, rifting, sedimentation and erosion, followed by widespread thrusting resulting from compressional deformation. Episodic tensional events followed by compressional events include the Robert Mountains Allochthon emplaced during the Antler orogeny. The Antler sequence hosts the Golconda Allochthon which was emplaced during the Sonoma orogeny and contains the Havallah Sequence of Mississippian to Permian age rocks, including the Pumpernickel Formation, host for near-surface mineralisation at the Independence property. Rocks of the Roberts Mountain Allochthon hosted the adjacent Fortitude deposit and are the principal host for the Phoenix deposit and the Independence Skarn Target. These rocks are structurally overlain by the Mississippian, Pennsylvanian, and Permian Havallah sequence of the Golconda allochthon.

The near-surface mineralisation at Independence is best characterised as a high-level epithermal system formed as a leakage halo above the Independence gold skarn, both related to emplacement of Eocene age granodiorite porphyries. The Independence gold skarn target is a high-grade, gold-rich skarn system Odeveloped in the carbonate rich portions of the Battle Mountain, Antler Peak and Edna Mountain formations of Roberts Antler Sequence in the lower portion of the Roberts Mountain Allochthon.

The Project contains an NI 43-101 Mineral Resource as outlined below:

Th	e Project contair	ns an NI 43-101 I	Mineral Resourc	e as outlined bel	ow:	
Tab	ble 2: NI 43-101 Miner	al Resource Estimat	е			
5	Description	Tonnes	Gold (Au) g/t	Gold (Au) g/t Equivalent	Gold (Au) Oz	Gold (Au) Equivalent Oz ²
の		•	Skarn – Mine	ral Resource		
	Inferred	3,794,000	6.53	6.53	796,200	796,200
D		·	Near-Surface – N	lineral Resource	•	
\mathbf{D}	Measured	8,713,000	0.39	0.45	109,800	125,900
	Indicated	19,284,000	0.36	0.40	224,500	249,600
	Inferred	5,218,000	0.30	0.33	50,800	55,100

LL The Mineral Resource Estimate at the Independence Gold Project is a foreign estimate prepared in accordance with Canadian National Instrument 43-101 and have not been reported in accordance with the JORC Code 2012. A competent person has not done sufficient work to classify the foreign estimate as a Mineral Resource in accordance with the JORC Code 2012, and it is uncertain whether further evaluation and exploration will result in an estimate reportable under the JORC Code 2012. Refer to the Company's ASX announcement dated 14 October 2024 for details.

² Gold Equivalent of the near-surface estimate has been calculated per block in resource estimation and is a function of metal prices, based on a Gold Price of US\$1,800/oz and Silver Price of US\$24/oz, and metal recoveries for both gold and silver. The recovery of gold is stated as 79% in the oxide, 50% in transitional and 22% in fresh (AU Recovery). Silver averages 27% across all material. Resultantly, the AuEq calculation is = g Au/t + (g Ag/t / ((1,800 x Au Recovery) / (24 x 0.27). The Company believes that all metals included in the metal equivalent calculation have a reasonable potential to be recovered and sold.

Quebec Lithium Assets

James Bay has 100% interest in one of the largest lithium exploration portfolios in the James Bay region, covering an area of 41,572Ha or 416km². The Joule, Aero, Aqua and La Grande East Properties are located in the La Grande sub-province along-trend from the Shaakichiuwaanaan deposit, where Patriot Battery Metals (ASX: PMT) recently reported an updated Indicated and Inferred Mineral Resource Estimate³ and completed a Preliminary Economic Assessment outlining the potential for a competitive and globally significant high-grade lithium project targeting production of up to ~800ktpa spodumene concentrate⁴.

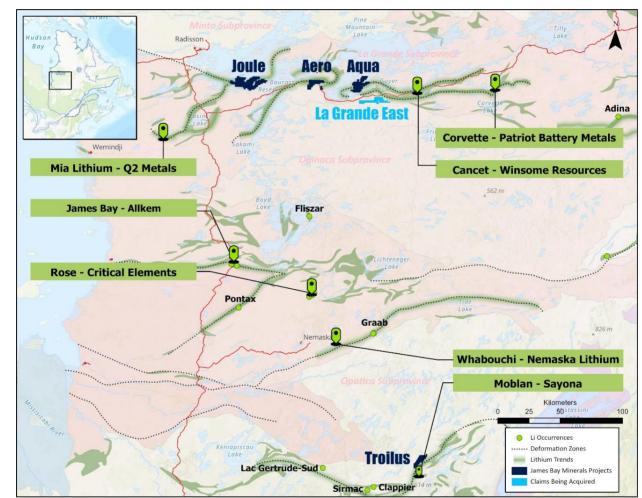


Figure 11: James Bay Minerals' key lithium project locations in Quebec, Canada.

This announcement is authorised for release by the Board of Directors of James Bay Minerals Ltd.

ENDS

For more information:

Investors: Andrew Dornan Executive Director James Bay Minerals info@jamesbayminerals.com.au

3 See PMT ASX Announcement dated 8 August 2024 4 See PMT ASX Announcement dated 22 August 2024 Media: Nicholas Read Read Corporate Phone: (08) 9388 1474 E: nicholas@readcorporate.com.au

Forward-looking statements

This announcement may contain certain forward-looking statements, guidance, forecasts, estimates or projections in relation to future matters (Forward Statements) that involve risks and uncertainties, and which are provided as a general guide only. Forward Statements can generally be identified by the use of forward-looking words such as "anticipate", "estimate", "will", "should", "could", "may", "expects", "plans", "forecast", "target" or similar expressions and include, but are not limited to, indications of, or guidance or outlook on, future earnings or financial position or performance of the Company. The Company can give no assurance that these expectations will prove to be correct. You are cautioned not to place undue reliance on any forward-looking statements. None of the Company, its directors, employees, agents or advisers represent or warrant that such Forward Statements will be achieved or prove to be correct or gives any warranty, express or implied, as to the accuracy, completeness, likelihood of achievement or reasonableness of any Forward Statements due to many important factors, risks and uncertainties. The Company does not undertake any obligation to release publicly any revisions to any "forward-looking statement" to reflect events or circumstances after the date of this announcement, except as may be required under applicable laws.

Competent Person Statement

The Exploration Results reported in this announcement are based on, and fairly represent, information and supporting documentation reviewed, and approved by Mr Brodie Box, MAIG. Mr Box is a consultant geologist at Cadre Geology and Mining and has adequate professional experience with the exploration and geology of the style of mineralisation and types of deposits under consideration to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Box consents to the form and context in which the Exploration Results are presented in this announcement.

The information in this announcement that relates to previously reported Exploration Results is extracted from the Company's ASX announcements dated 28 November 2024 and 10 December 2024 (Original Announcements), as referenced. The Company confirms that it is not aware of any new information or data that materially affects the information contained in the Original Announcements.

The Company first announced the foreign estimate of mineralisation for the Independence Gold Project on 14 October 2024. The Company confirms that the supporting information included in the announcement of 14 October 2024 continues to apply and has not materially changed. The Company confirms that it is not aware of any new information or data that materially impacts the reliability of the estimates or the Company's ability to verify the foreign estimates as mineral resources under the JORC Code. Further, the form and context in which the Competent Persons' findings are presented have not been materially modified from the original market announcement.

Gold equivalent values are a function of metal price and metal recoveries. Gold Equivalent of the near-surface estimate has been calculated per block in resource estimation and is a function of metal prices, based on a Gold Price of US\$1,800/oz and Silver Price of US\$24/oz, and metal recoveries for both gold and silver. The recovery of gold is stated as 79% in the oxide, 50% in transitional and 22% in fresh (AU Recovery). Silver averages 27% across all material. Resultantly, the AuEq calculation is = g Au/t + (g Ag/t / ((1,800 x Au Recovery) / (24 x 0.27). The Company believes that all metals included in the metal equivalent calculation have a reasonable potential to be recovered and sold.

Appendix 1 Significant Historic Drill Hole Intercepts (>0.3g/t Au)

			Col	lar Details (NAD	83 UTM Zone 11)					Intercep	t Details	
•	Hole ID	Hole Type	Total Depth (m)	Easting	Northing	RL	Azimuth	Dip	Depth From (m)	Depth To (m)	Interval Width (m)	Au (ppm)
	AGEI-2								36.6	51.8	15.2	0.8
	and								73.2	88.4	15.2	1.3
	and								109.7	125.0	15.2	0.4
	including								109.7	112.8	3.1	1.0
\mathbf{O}	and	RC	213.4	487507	4486289	1645	90	-54	131.1	182.9	51.8	1.1
<u> </u>	including								134.1	137.2	3.1	7.2
1	and								187.5	189.0	1.5	0.4
U	and								193.5	213.4	19.9	1.7
S	including								196.6	199.6	3.0	6.2
	AGEI-5								118.9	120.4	1.5	0.5
	and								125.0	126.5	1.5	0.5
	and								158.5	160.0	1.5	0.5
	and								164.6	166.1	1.5	0.4
σ	and								185.9	187.5	1.5	0.3
	and	RC	353.6	487507	4486287	1645	88	-72	198.1	221.0	22.9	0.5
	and		000.0	401001	4400201	1040	00	12	236.2	237.7	1.5	0.3
	and								281.9	283.5	1.5	0.3
	and								298.7	300.2	1.5	0.4
S	and								303.3	306.3	3.0	0.3
Ľ	and								321.6	353.6	32.0	0.7
	including								347.5	353.6	6.1	1.6
U	AGEI-31								35.1	36.6	1.5	0.3
	and								59.4	67.1	7.6	0.6
	and								74.7	79.3	4.6	0.3
	and	RC	275.9	487628	4486298	1687	86	-56	93.0	97.5	4.6	0.6
	and		210.0	101 020	1100200	1001	00		105.2	111.3	6.1	0.3
	and								132.6	134.1	1.5	0.3
	and								211.8	214.9	3.0	0.4
	and								266.7	275.8	9.1	0.5
	AGEI-57								16.8	21.3	4.6	0.3
	and								36.6	39.6	3.0	0.3
	and								42.7	48.8	6.1	0.3
	and	RC	152.4	487678	4486292	1700	89	-45	56.4	65.5	9.1	0.8
	and								71.6	73.2	1.5	0.3
	and								126.5	152.4	25.9	1.1
	including							ļ	126.5	129.5	3.0	3.2
	GM-94	RC	45.7	487746	4486295	1720	90	-45	0.0	22.9	22.9	0.3
	GM-98	RC	61.0	487710	4486293	1710	90	-45	13.7	19.8	6.1	0.3
	and		01.0	407710	4400233	1710	30	-40	33.5	42.7	9.1	1.0

			Col	llar Details (NAD	83 UTM Zone 11)					Intercep	t Details	
	Hole ID	Hole Type	Total Depth (m)	Easting	Northing	RL	Azimuth	Dip	Depth From (m)	Depth To (m)	Interval Width (m)	Au (ppm)
	and								47.2	54.9	7.6	1.0
	and								59.4	61.0	1.5	0.3
	GM-102								9.1	10.7	1.5	0.3
	and								24.4	35.1	10.7	0.3
	and	RC	76.2	487679	4486291	1701	90	-45	44.2	51.8	7.6	0.3
	and								56.4	59.4	3.1	0.3
	and								71.6	74.7	3.1	0.4
\mathbf{O}	GM-112								22.9	44.2	21.3	0.4
	and	RC	99.1	487652	4486289	1693	90	-45	54.9	57.9	3.1	0.4
	and	NO.	99.1	407032	4400209	1095	90	-43	64.0	93.0	29.0	0.8
Y	including								74.7	79.3	4.6	2.2
S	GM-113								48.8	53.3	4.6	0.3
	and	RC	114.3	487625	4486292	1687	90	-45	59.4	94.5	35.1	0.7
	including								80.8	89.9	9.1	1.5
	GM-122								35.1	39.6	4.6	0.3
	and	PC	135.6	487589	4486288	1674	90	-45	61.0	62.5	1.5	0.4
\square	and	- RC	133.0	40/009	4400200	1074	90	-40	67.1	88.4	21.3	0.5
	and								102.1	118.9	16.8	0.5

Appendix 2 JBDD001 and AGEI-61 Drill Hole Logs

Note that percentages are visual estimates and are not based on quantitative assessments.

	Hole ID	Depth From (m)	Depth To (m)	Interval (m)	Lithology 1	Lithology 1 %	Lithology 2	Colour	Texture	Alteration	Alteration intensity	Sulphide %	Sulphide / FeOx Mineral	Sulphide Style	Comments
	JBDD001	0.0	4.9	4.9	Chert	100		Pale Grey	Fractured	Silica	Moderate				
	JBDD001	4.9	13.7	8.8	Chert	100		Pale Pink	Vuggy						
	JBDD001	13.7	14.8	1.1	Chert	100		Pale Pink	Vuggy			30	Fe Oxides	Vug Fill	Brecciated (FeOx matrix)
	JBDD001	14.8	19.9	5.1	Chert	100		Pale Grey	Vuggy			1	Fe Oxides	Vug Fill	FeOx in fracture planes
	JBDD001	19.9	24.1	4.2	Chert	100		Pale Pink	Vuggy						
	JBDD001	24.1	52.4	28.3	Chert	100		Pale Brown							
D	JBDD001	52.4	58.9	6.6	Chert	100		Pale Grey	Fractured			2	Fe Oxides	Vein Fill	Quartz-sulphide veins 5%
$\tilde{\mathbf{\Omega}}$	JBDD001	58.9	67.9	9.0	Chert	100		Pale Brown		Silica	Weak				
U)	JBDD001	67.9	77.0	9.1	Chert	100		Pale Grey	Fractured						
	JBDD001	77.0	88.6	11.6	Chert	100.0		Cream	Vuggy	Silica	Moderate	5	Fe Oxides	Disseminated	
	JBDD001	88.6	111.4	22.8	Siltstone	50.0	Chert	Cream	Bedded	Sericite	Weak	1	Fe Oxides	Disseminated	
	JBDD001	111.4	118.3	6.9	Chert	100.0		Cream	Vuggy	Silica	Moderate	5	Fe Oxides	Vug Fill	
	JBDD001	118.3	122.4	4.2	Chert	100.0		Pale Grey	Fractured	Sericite	Moderate	5	Pyrite	Fracture Fill	
	JBDD001	122.4	141.5	19.0	Chert	100.0		White	Fractured	Silica	Moderate	5	Pyrite	Fracture Fill	
	JBDD001	141.5	141.9	0.5	Intrusive	100.0		Yellow	Porphyritic	Sericite	Moderate	1	Pyrite	Disseminated	
	JBDD001	141.9	145.3	3.4	Chert	100.0		White	Vuggy	Silica	Moderate	5	Pyrite	Vug Fill	
	JBDD001	145.3	145.4	0.1	Chert	100.0		White	Brecciated	Silica	Strong	30	Pyrite	Matrix Fill	
	JBDD001	145.4	146.7	1.3	Intrusive	100.0		Green	Porphyritic	Propylitic	Moderate	1	Pyrite	Disseminated	
U)	JBDD001	146.7	146.9	0.2	Chert	100.0		White	Brecciated	Silica	Strong	10	Pyrite	Matrix Fill	
	JBDD001	146.9	147.4	0.5	Chert	100.0		White	Brecciated	Silica	Strong	15	Pyrite	Matrix Fill	
(1)	JBDD001	147.4	148.2	0.8	Chert	100.0		Grey	Brecciated	Silica	Strong	30	Pyrite	Matrix Fill	
Y	JBDD001	148.2	150.7	2.5	Chert	100.0		Grey	Brecciated	Silica	Strong	15	Pyrite	Matrix Fill	Quartz tension veins 5%
\Box	JBDD001	150.7	151.4	0.7	Fault	100.0		Cream	Brecciated	Silica	Moderate	2	Pyrite	Disseminated	
	JBDD001	151.4	155.5	4.1	Chert	100.0		White	Vuggy	Silica	Moderate	10	Pyrite	Vug Fill	
	JBDD001	155.5	160.0	4.5	Chert	90.0	Siltstone	Grey	Fractured	Silica	Moderate	5	Pyrite	Disseminated	
	JBDD001	160.0	166.4	6.4	Chert	100.0		Pale Grey	Vuggy	Silica	Moderate	10	Pyrite	Fracture Fill	
U	JBDD001	166.4	170.3	3.9	Chert	90.0	Siltstone	Grey	Fractured	Silica	Moderate	2	Pyrite	Disseminated	
t i t	JBDD001	170.3	171.0	0.7	Chert	100		Grey	Vuggy	Silica	Strong	10	Pyrite	Vug Fill	Extremely vuggy
	JBDD001	171.0	173.4	2.4	Chert	100.0		Pale Grey	Vuggy	Silica	Moderate	2	Pyrite	Vug Fill	
	JBDD001	173.4	178.6	5.2	Chert	75.0	Siltstone	Grey	Bedded	Sericite	Moderate	5	Pyrite	Disseminated	Trace Galena
	JBDD001	178.6	178.8	0.2	Chert	100.0		Dark Grey	Brecciated	Silica	Moderate	10	Pyrite	Matrix Fill	
	JBDD001	178.8	192.0	13.2	Chert	75.0	Siltstone	Grey/Brown	Bedded	Sericite	Moderate	2	Pyrite	Fracture Fill	
	JBDD001	192.0	194.3	2.3	Chert	100.0	-	Pale Grey	Vuggy	Silica	Strong	10	Pyrite	Disseminated	
	JBDD001	194.3	199.9	5.6	Chert	50.0	Siltstone	Grey/Brown	Bedded	Sericite	Moderate	3	Pyrite	Fracture Fill	
	JBDD001	199.9	200.4	0.5	Chert	100.0	-	Grey	Brecciated	Silica	Strong	25	Pyrite	Matrix Fill	
	JBDD001	200.4	211.2	10.8	Chert	50.0	Siltstone	Grey/Brown	Bedded	Sericite	Moderate	3	Pyrite	Fracture Fill	Trace Galena
	JBDD001	211.2	213.2	2.1	Sandstone	100.0		Pale Red	Bedded	Silica	Weak	Trace	Pyrite	Disseminated	
	JBDD001	213.2	214.7	1.4	Chert	50.0	Siltstone	Grey/Brown	Bedded	Sericite	Moderate	3	Pyrite	Fracture Fill	

	Hole ID	Depth From (m)	Depth To (m)	Interval (m)	Lithology 1	Lithology 1 %	Lithology 2	Colour	Texture	Alteration	Alteration intensity	Sulphide %	Sulphide / FeOx Mineral	Sulphide Style	Comments
	JBDD001	214.7	214.9	0.2	Conglomerate	100.0		Grey	Bedded	Silica	Weak	2	Pyrite	Replacement	
	JBDD001	214.9	221.3	6.4	Chert	95.0	Siltstone	White	Vuggy	Silica	Strong	5	Pyrite	Vug Fill	
	JBDD001	221.3	231.6	10.3	Siltstone	50.0	Chert	Grey/Green	Bedded	Silica	Moderate	1	Pyrite	Fracture Fill	
	JBDD001	231.6	232.0	0.4	Conglomerate	100.0		Grey	Bedded	Silica	Weak	2	Pyrite	Replacement	
-	JBDD001	232.0	236.1	4.1	Chert	50.0	Chert	Grey/Green	Bedded	Silica	Moderate	1	Pyrite	Fracture Fill	
	JBDD001	236.1	236.1	0.1	Conglomerate	100.0		Grey	Bedded	Silica	Weak	2	Pyrite	Replacement	
	JBDD001	236.1	238.0	1.9	Chert	50.0	Chert	Grey/Green	Bedded	Silica	Moderate	1	Pyrite	Fracture Fill	
\mathbf{O}	JBDD001	238.0	239.4	1.4	Chert	100.0		Grey	Vuggy	Silica	Intense	8	Pyrite	Disseminated	
•	JBDD001	239.4	244.5	5.1	Chert	60.0	Siltstone	Dark Grey	Fractured	Silica	Moderate	1	Pyrite	Disseminated	
	JBDD001	244.5	289.6	45.1	Chert	80.0	Siltstone	Grey/Brown	Bedded	Sericite	Moderate	1	Pyrite	Disseminated	
U	JBDD001	289.6	299.8	10.1	Chert	100.0		Grey	Vuggy	Silica	Strong	3	Pyrite	Vug Fill	
()	JBDD001	299.8	300.1	0.3	Conglomerate	100.0		Grey	Bedded	Silica	Weak	Trace	Pyrite	Disseminated	
	JBDD001	300.1	304.3	4.2	Chert	100.0		Grey	Vuggy	Silica	Strong	3	Pyrite	Vug Fill	
	JBDD001	304.3	304.6	0.3	Intrusive	100.0		Grey/Brown	Porphyritic	Silica	Weak	Trace	Pyrite	Disseminated	
	JBDD001	304.6	307.5	3.0	Chert	100.0		Grey	Vuggy	Silica	Strong	3	Pyrite	Vug Fill	
	JBDD001	307.5	310.3	2.8	Intrusive	100.0		Dark Grey	Porphyritic	Silica	Moderate	Trace	Pyrite	Disseminated	
Π	JBDD001	310.3	311.5	1.2	Chert	100.0		Grey	Brecciated	Silica	Strong	30	Pyrite	Matrix Fill	Trace Galena and pyrrhotite
	JBDD001	311.5	313.6	2.1	Chert	100.0		Pale Grey	Vuggy	Silica	Strong	25	Pyrite	Vug Fill	Trace Galena
	JBDD001	313.6	333.0	19.4	Chert	100.0		Grey/Brown	Bedded	Silica	Weak	1	Pyrite	Vein Fill	Quartz-sulphide veins 3%
	AGEI-61	0.0	4.6	4.6	Gravel Cover	100.0		Brown				0			
	AGEI-61	4.6	21.3	16.8	Chert	95.0	Siltstone	Grey		Silica	Weak	1	Fe Oxides	Disseminated	
()	AGEI-61	21.3	22.9	1.5	Chert	100.0		Grey		Sericite	Weak	2	Fe Oxides	Disseminated	
	AGEI-61	22.9	32.0	9.1	Chert	95.0	Siltstone	Cream		Silica	Moderate	1	Fe Oxides	Disseminated	
	AGEI-61	32.0	33.5	1.5	Chert	100.0		Grey		Silica	Strong	3	Fe Oxides	Disseminated	
Û	AGEI-61	33.5	35.1	1.5	Chert	95.0	Siltstone	Cream		Silica	Strong	5	Fe Oxides	Disseminated	
ŏ	AGEI-61	35.1	38.1	3.1	Siltstone	75.0	Chert	Grey		Silica	Strong	3	Fe Oxides	Disseminated	
\Box	AGEI-61	38.1	44.2	6.1	Chert	95.0	Siltstone	Cream		Silica	Moderate	1	Fe Oxides	Disseminated	
	AGEI-61	44.2	47.2	3.0	Siltstone	75.0	Chert	Grey		Silica	Strong	3	Fe Oxides	Disseminated	
	AGEI-61	47.2	50.3	3.1	Chert	95.0	Siltstone	Cream	Vuggy	Silica	Strong	1	Fe Oxides	Vug Fill	
	AGEI-61	50.3	51.8	1.5	Chert	100.0		Grey		Silica	Strong	3	Fe Oxides	Disseminated	
	AGEI-61	51.8	54.9	3.0	Chert	95.0	Siltstone	Cream	Vuggy	Silica	Moderate	1	Fe Oxides	Vug Fill	
	AGEI-61	54.9	57.9	3.1	Chert	95.0	Siltstone	Grey	Vuggy	Silica	Strong	5	Fe Oxides	Vug Fill	Trace malachite
	AGEI-61	57.9	71.6	13.7	Chert	100.0		White	Vuggy	Silica	Strong	2	Fe Oxides	Vug Fill	
	AGEI-61	71.6	79.3	7.6	Chert	95.0	Siltstone	Cream		Silica	Moderate	1	Fe Oxides	Fracture Fill	
	AGEI-61	79.3	88.4	9.1	Chert	100.0		White	Vuggy	Silica	Strong	2	Fe Oxides	Vug Fill	
	AGEI-61	88.4	91.4	3.0	Chert	100.0		Cream	Vuggy	Silica	Strong	2	Fe Oxides	Vug Fill	
	AGEI-61	91.4	99.1	7.7	Chert	100.0		Cream	Vuggy	Silica	Strong	4	Fe Oxides	Vug Fill	
	AGEI-61	99.1	103.6	4.5	Chert	90.0	Intrusive	Grey	Vuggy	Argillic	Strong	2	Fe Oxides	Disseminated	
	AGEI-61	103.6	114.3	10.7	Siltstone	75.0	Chert	Dark Grey	007	Sericite	Strong	2	Fe Oxides	Disseminated	
	AGEI-61	114.3	118.9	4.6	Chert	90.0	Siltstone	Grey	Vuggy	Silica	Strong	5	Fe Oxides	Vug Fill	
	AGEI-61	118.9	243.2	124.3	Chert	80.0	Siltstone	Grey	- 337	Silica	Strong	2	Fe Oxides	Disseminated	
I					0	00.0	5	0.0,		0	e	_			

Appendix 3 Rock Chip Results (Batches 1 and 2)

Sample ID	Easting	Northing	RL	Au (ppm)
I-116	487600	4485719	1604	0.0
I-117	487713	4485668	1631	0.0
I-118	487710	4485666	1630	0.0
I-119	487721	4485677	1633	0.1
I-120	487725	4485677	1632	0.1
I-121	487725	4485675	1633	2.7
I-122	487754	4485671	1632	0.0
I-123	487733	4485725	1643	0.0
I-124	487733	4485729	1644	0.0
I-125	487735	4485725	1644	0.2
I-126	487736	4485735	1642	0.1
I-120	487735	4485734	1642	0.0
I-128	487737	4485734	1642	0.0
I-128	487897	4485711	1605	0.0
I-130	487894	4485709	1605	0.0
I-131	487893	4485710	1605	0.0
I-132	487894	4485715	1612	0.0
I-133	487896	4485717	1610	0.0
I-134	487894	4485719	1610	0.0
I-135	487896	4485723	1612	0.0
I-136	487896	4485723	1613	0.0
I-137	487883	4485735	1624	0.0
I-138	488002	4485891	1653	0.0
I-139	487983	4485983	1666	0.0
I-140	487981	4485982	1666	0.0
I-141	487979	4485978	1665	0.0
I-142	487873	4485799	1633	0.0
I-142 I-143	487702	4485695	1640	0.0
				-
I-144	487697	4485698	1640	0.0
I-145	487694	4485763	1648	0.0
I-146	487682	4485927	1659	0.0
I-147	487678	4486020	1662	0.0
I-148	487677	4486021	1662	0.1
I-149	487709	4486020	1674	0.1
I-150	487709	4486020	1674	0.1
I-151	487719	4486008	1677	0.0
I-152	487725	4486002	1678	0.0
I-153	487746	4486004	1684	0.3
I-154	487743	4486016	1682	3.5
I-155	487747	4486016	1683	0.2
I-156	487748	4485995	1683	0.2
I-157	487689	4485920	1645	0.0
I-158	487693	4485923	1648	0.0
		4485936		0.0
I-159	487705		1656	
I-160	487714	4485939	1661	0.0
I-161	487726	4485949	1666	0.0
I-162	487739	4485955	1668	0.1
I-163	487751	4485954	1671	0.0
I-164	487754	4485955	1672	0.3
I-165	487754	4485953	1672	0.3
I-166	487747	4485950	1671	0.0
I-167	487749	4485948	1671	0.1
I-168	487753	4485946	1671	0.0
I-169	487745	4485844	1659	0.6
I-170	487524	4486150	1644	0.0
I-171	487520	4486167	1641	0.0
I-172	487514	4486187	1639	0.0
I-172	487510	4486194	1639	0.0
I-174	487510	4486194	1638	0.1
I-175	487509	4486195	1638	0.0
I-176	487505	4486213	1637	0.0
I-177	487507	4486230	1636	0.0
I-178	487507	4486230	1636	0.7

	Sample ID	Easting	Northing	RL	Au (ppm)
	I-179	487506	4486231	1636	0.0
	I-180	487506	4486254	1638	0.2
	I-181	487569	4486514	1657	0.0
	I-182	487577	4486542	1658	0.1
	I-183	487597	4486581	1665	0.0
	I-184	487607	4486718	1684	0.0
	I-185	487612	4486769	1691	0.0
	I-191	487545	4486322	1660	0.0
	I-192	487560	4486309	1663	3.1
	I-193	487567	4486302	1665	0.1
	I-194	487568	4486306	1664	0.1
	I-195	487810	4486395	1704	0.1
	I-196	487810	4486398	1724	31.7
	I-197	487809	4486393	1729	1.1
	I-198	487820	4486401	1719	0.2
	I-199	487823	4486405	1718	0.3
	I-200	488016	4486235	1744	0.2
	I-201	488013	4486234	1744	0.1
	1-202	487988	4486265	1771	0.2
	I-203	487949	4486310	1726	0.4
	I-204	487688	4486383	1702	0.1
	I-205	487695	4486386	1697	0.0
	I-206	487729	4486383	1710	0.3
	1-207	487732	4486383	1713	3.7
	I-208	487735	4486384	1709	0.4
	I-209	487742	4486384	1709	2.4
	I-210	487728	4486189	1678	0.1
	I-211	487658	4486236	1695	0.0
	I-212	487643	4486259	1691	0.0
	I-213	487633	4486276	1690	0.0
	I-214	487633	4486274	1687	0.0
	I-215	487623	4486333	1687	0.0
	I-216	487622	4486358	1679	0.0
	I-217	487656	4486397	1682	0.0
	I-218	487622	4486382	1678	0.1
	I-219	487653	4486395	1681	0.1
	I-220	487647	4486390	1678	0.0
	I-221	487809	4486393	1729	0.2
	I-222	487730	4486188	1679	3.2
	I-223	487731	4486188	1680	3.7
	I-224	487737	4486186	1680	0.1
	I-225	487751	4486182	1678	0.3
_	I-226	487763	4486187	1679	0.1
	1-227	487763	4486189	1679	0.4
	I-228	487817	4486238	1694	0.5
	I-229	487836	4486257	1697	0.1
	I-230	488028	4486246	1765	0.1
	I-231	488030	4486270	1771	0.2
	I-232	488031	4486275	1772	0.0
	I-233	488036	4486288	1778	1.0
	I-234	488035	4486289	1779	0.7
	I-235	488052	4486316	1791	0.2
	I-236	488019	4486332	1789	0.1
	I-237	488060	4486394	1816	0.2
	I-238	488071	4486423	1830	0.1
_	I-239	488070	4486496	1841	0.1
_	I-240	488101	4486562	1861	1.8
	I-241	488098	4486560	1858	0.3
	I-242	488096	4486557	1858	3.1
	I-243	488097	4486558	1861	11.7
	I-244	488082	4486553	1854	0.2
	I-245	488069	4486567	1846	5.9
	I-246	488068	4486568	1849	1.3
	I-247	487808.21	4486517.7	1734.773	0.6
	I-248	487782.25	4486542.4	1734.022	0.1

	Sample ID	Easting	Northing	RL	Au (ppm)
	I-249	487758.85	4486582.8	1730.968	0.2
	I-250	487760.09	4486615.4	1732.735	0.7
	I-251	487758.14	4486615.5	1731.688	0.1
	I-252	487758.56	4486614.9	1732.706	0.1
	I-253	487769.14	4486661.2	1732.605	0.2
	I-254	487861.37	4486763.4	1734.614	0.0
	I-255	487886.52	4486497	1749.721	0.1
	I-256	487851.58	4486525.1	1750.223	0.2
	I-257	487823.51	4486553.6	1750.203	0.0
	I-258	487810.51	4486576.6	1751.147	4.4
	I-259	487802.25	4486602.4	1748.433	0.1
	I-260	487629.77	4486578.7	1692.5	0.1
	I-261	487632.12	4486567.8	1692.591	0.1
	I-262	487633.32	4486523.8	1692.059	0.0
	I-263	487687.94	4486518.7	1704.948	0.0
	I-264	487684.8	4486517.9	1704.799	0.0
	I-265	487689.29	4486515	1704.546	0.1
	I-266	487686.76	4486521	1704.577	0.3
_	I-267	487685	4486552	1709	0.3
_	I-268	487686.28	4486589.6	1707.781	0.3
	I-269	487725	4486699.6	1709.773	0.1
	I-270	487598.93	4486830.5	1677.496	4.5
	I-271	487594.95	4486830.4	1677.798	0.0
	I-272	487589.36	4486828.6	1677.361	0.4
	I-273	487588	4486829.2	1677.941	0.3
	I-274	487538.79	4486822.8	1682.408	3.3
D	I-275	487555.9	4486827	1680.547	1.7
	I-276	487636.55	4486839.9	1684.647	1.2
	I-277	487635.03	4486838.8	1684.623	0.1
	I-278	487647.66	4486846.5	1685.975	3.3
	I-279	487646.13	4486845.3	1684.901	0.1
_	I-280	487815.14	4486979.3	1717.474	0.7
	I-281	487845.27	4486966.5	1728.981	0.2
	I-282	487845.27	4486964.7	1728.966	0.2
0	I-283	487833.77	4486920.7	1726.459	0.3
_	I-284	487849	4486898	1730	0.3
1	I-285	487846.5	4486887.9	1723.986	3.0
	I-286	487847.43	4486888.6	1723.195	0.3
	I-287	487835.78	4486857.9	1721.778	1.7
	I-288	487824	4486843	1718	0.1
_	I-289	487825.68	4486791.7	1721.436	0.2
	I-290	487828.98	4486791.9	1721.244	1.4
	I-291	487732.73	4486817.4	1699.945	0.6
	I-292	487801.61	4485644.3	1623.685	0.1
_	I-293	487658	4485974	1659	0.1
	I-294	487667.11	4486009.7	1659.144	0.0
	I-295	487688.26	4485581.6	1611.728	0.0
	I-296	487700.87	4485577	1609.176	0.0
	I-297	487645	4485622	1609	0.1
	I-298	487608.61	4486025	1638.512	0.0
	I-299	487666.81	4486084.2	1643.736	2.4
	I-300	487666.81	4486082.4	1644.036	0.7
	I-301	487716.46	4486093.9	1657.878	0.5
	I-302	487719	4486091	1657.404	0.2
	I-303	487720.01	4486090.8	1658.356	2.5
	I-304	487618.94	4486124.9	1650.054	0.0
	I-305	487572.47	4486146.1	1650.493	0.0
	I-306	487559.94	4486201.3	1655.464	0.1
	I-307	487723	4486410.6	1700.05	0.4
	I-308	487745.99	4486384.1	1714.644	0.3
	I-309	487765.82	4486186.2	1679.05	0.1
	I-310	487736.45	4486199.4	1674.745	1.8
	I-311	487898.4	4486356.2	1757.269	0.1
	I-312	487877.54	4486392.6	1756.594	0.0

Sample ID	Easting	Northing	RL	Au (ppm)
I-314	487885.78	4486404	1757.701	0.7
I-315	487887.98	4486406.4	1757.235	13.9
I-316	487889.34	4486407.7	1757.233	0.9
I-317	487870.65	4486584.2	1774.405	0.1
I-318	487926.85	4486609.9	1802.784	0.1
I-319	487924.64	4486608.7	1799.9	0.1
I-320	487968	4486547	1803	0.8
I-321	487988.31	4486592.4	1822.943	0.3
I-322	487996.29	4486604	1828.184	0.1
I-323	487998.47	4486590.2	1828.006	0.4
I-324	488023	4486587	1830	0.0
I-325	488041	4486587	1837	0.0
I-326	488052.76	4486591.3	1843.148	0.2
I-327	488077.66	4486592.8	1854.161	0.2
I-328	488108.89	4486578	1868.466	0.6
I-329	488099.23	4486574.7	1865.139	6.9
I-330	488087.7	4486566.6	1862.862	1.3
I-331	488088.21	4486565.4	1862.877	0.2
I-332	488068.86	4486593.8	1852.094	7.5
I-333	487996.39	4486614	1820.621	0.2

Appendix 4 Historic Rock Chip Results

Sample ID	Easting	Northing	RL	Au (ppm)
I-1	487749	4485673	1635	1.0
I-3	487731	4485694	1639	0.0
<u> </u>	487748	4485704	1642	3.4
I-5	487736	4485708	1642	2.4
1-7	487749	4485722	1645	0.1
I-9	487740	4485758	1652	0.0
I-10	487758	4485756	1652	3.1
l-11	487728	4485753	1650	0.1
l-12	487715	4485780	1651	0.4
I-13	487739	4485775	1654	2.7
l-14	487731	4485774	1653	0.1
l-15	487730	4485808	1656	0.5
l-16	487746	4485810	1659	1.1
l-17	487756	4485850	1664	0.1
I-18	487735	4485857	1661	0.3
I-19	487727	4485850	1658	0.2
I-20	487716	4485933	1667	0.8
I-21	487733	4485949	1674	1.1
I-22	487744	4485964	1679	0.8
I-23	487760	4485971	1684	0.3
I-24	487791	4486028	1688	0.3
1-25	487754	4486016	1686	0.2
1-26	487754	4486002	1686	0.7
1-27	487755	4485991	1686	0.4
I -28	487743	4486004	1683	0.5
I-29	487742	4486020	1682	0.9
I-30	487773	4486044	1684	0.3
I -31	487734	4486032	1678	0.0
J I-32	487731	4486014	1679	0.0
I-33	487758	4486393	1719	2.7
1-34	487773	4486394	1722	3.7
1-35	487787	4486398	1724	7.0
I-36	487766	4486425	1708	0.4
1-37	487777	4486427	1708	0.2
I-38	487788	4486428	1710	1.1
1-39	487760	4486441	1702	0.2
1-40	487735	4486482	1707	1.6
I-41	487746	4486483	1711	1.9
1-42	487760	4486484	1715	0.1
I-43	487771	4486484	1718	0.1
1-44	487775	4486497	1724	0.3
1-45	487764	4486502	1722	0.9
I-46	487757	4486509	1721	0.3
	487754	4486522	1723	0.1
1-47	487749	4486569	1729	1.3
1-40	487756	4486621	1731	0.1
I-49	487755	4486604	1731	2.5
I-50	487783	4486536	1732	0.5
1-51	487798	4486518	1730	0.5
I-52	487867	4486477	1743	0.5
I-53	487830	4486497	1743	0.5
I-54	487823	4486503	1741	0.5
			1740	0.2
l-56 I-57	487761 487763	4486633 4486642	1733	0.3
I-58	487769	4486655	1732	0.1
1-59	487785	4486611	1745	0.2
I-60	487786	4486599	1745	0.4
I-61	487786	4486587	1745 1749	0.1
1-62	487797	4486621		0.9
1-63	487799	4486603	1751	0.4
I-64	487834	4486542	1755	0.3
1-65	487883	4486497	1755	0.2
I-66	487894	4486485	1754	3.3
1-67	487913	4486484	1764	0.2
I-68	487909	4486499	1765	0.1
I-69	487865	4486597	1775	0.5

	Sample ID	Easting	Northing	RL	Au (ppm)
	I-71	487717	4485603	1618	0.7
	I-72	487707	4485601	1619	0.6
	I-73	487707	4485603	1619	0.2
	1-74	487697	4485580	1615	0.0
	l-75 l-76	487667	4485604 4485617	<u>1618</u> 1618	0.0
	I-76 I-77	487659 487668	4485635	1618	0.0
	I-78	487720	4486039	1675	0.4
	I-79	487716	4486059	1673	0.1
	I-80	487722	4486090	1658	1.6
	I-81	487721	4486094	1658	0.3
	I-82	487849	4486151	1688	0.1
	I-83	487818	4486058	1684	2.5
	I-84	487814	4486054	1684	0.2
	I-85	487806	4486046	1684	0.1
	I-91	487976	4486123	1711	0.3
	I-92	487975	4486182	1732	0.1
	I-93	487999	4486195	1744	1.9
_	I-94	488008	4486204	1749	4.6
-	1-95	487989	4486186	1739	0.1
	I-95B	487907	4486630	1796	0.1
)—	I-96	487979	4486182	1735 1798	0.0
-	I-96B I-97	487918 487929	4486636 4486648	1798	0.1
	1-97	487949	4486662	1798	0.1
	I-98	487926	4486684	1786	0.1
)—	I-100	487921	4486680	1787	2.0
5	I-101	487890	4486492	1761	0.1
	I-102	487819	4486614	1761	0.3
	I-103	487834	4486627	1765	0.1
<	I-104	487761	4486595	1729	1.4
	I-105	487761	4486606	1729	1.4
-	I-106	487751	4486574	1724	1.1
	I-107	487566	4486509	1650	0.3
	I-108	487566	4486509	1650	0.1
	I-109	487572	4486521	1652	0.2
	I-110	487573	4486524	1652	0.2
	I-111	487575	4486534	1654	0.4
) —	I-112	487577	4486542	1657	0.1
	l-113 l-114	487579 487631	4486547 4486570	1658 1679	0.1
4	I-114	487635	4486506	1682	0.1
	IDD-1	488058	4485845	1648	0.0
	IDD-2	488054	4485860	1648	0.0
)	IDD-15	488026	4486284	1776	0.2
	IDD-17	488031	4486240	1762	0.7
-	IDD-18	488011	4486200	1745	1.4
	IDD-19	488032	4486287	1779	1.1
	IDD-20	488012	4486302	1777	0.5
	IDD-21	487986	4486541	1810	0.5
	IDD-22	487938	4486629	1797	0.1
	IDD-23	487948	4486625	1801	0.2
	IDD-24	487959	4486619	1805	0.2
	IDD-25	487883	4486654	1775	0.0
	IDD-26	487873	4486377	1750	0.9
	IDD-27 IDD-28	487858 488268	4486366 4485710	1746 1600	0.2
	IDD-28 IDD-29	488265	4485710	1600	0.0
	IDD-29 IDD-30	488265	4485820	1754	0.3
	IDD-30	487585	4485570	1734	0.0
	IDD-31	487383	4486556	1864	7.0
-	IDD-33	488103	4486562	1869	5.9
	IDD-34	487802	4486257	1709	1.4
-	IDD-35	487890	4486400	1756	0.8
	IDD-36	487881	4486388	1753	0.3
	IDD-37	487866	4486361	1747	4.4
	IDD-38	488026	4486345	1796	0.3
	RDI-1	487601	4486817	1685	4.9
	RDI-2	487555	4486204	1654	0.3

Sample ID	Easting	Northing	RL	Au (ppm)
RDI-3	487557	4486085	1633	2.4
RDI-4	487556	4486253	1660	1.4
RDI-5	487555	4486247	1659	0.2
RDI-6	487565	4486328	1668	13.5
RDI-7	487559	4486319	1666	1.3
RDI-8	487784	4486178	1684	17.1
RDI-9	487754	4486188	1687	1.2
RDI-10	487736	4486244	1706	2.0
RDI-11	487745	4486242	1706	0.9
RDI-12	487780	4486308	1728	0.1
RDI-13	487827	4486248	1705	0.9
RDI-14	487848	4486247	1702	2.0
RDI-15	487754	4486028	1684	13.8
RDI-16	487848	4486294	1723	0.2
RDI-17	488000	4486602	1822	0.2
RDI-18	487963	4486609	1808	2.6
RDI-19	487950	4486614	1803	0.1
RDI-20	487770	4486182	1685	0.2
RDI-21	487775	4486182	1684	0.2
RDI-22	487751	4486173	1683	1.3
RDI-23	487782	4486181	1684	0.5
RDI-24	487746	4486173	1682	7.6
RDI-25	487761	4486180	1684	1.0
RDI-26	487930	4486623	1796	7.7
RDI-27	488036	4486548	1836	0.3
RDI-28	488066	4486539	1851	6.0
RDI-29	488080	4486553	1858	16.6
RDI-30	488075	4486552	1855	14.5
RDI-31	488031	4486596	1833	0.4
RWDI-5	487774	4486718	1715	0.2
RWDI-6	487776	4486741	1711	1.1
RWDI-7	487778	4486809	1714	0.4
RWDI-8	487909	4486873	1743	0.2

JORC Code, 2012 – Table 1

Section 1 Sampling Techniques and Data – Independence Gold Project

(Criteria in this section apply to all succeeding sections.)

Cri	riteria	JORC Code explanation	Commentary
Samplin techniqu		 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 James Bay Minerals Handheld portable XRF instruments (SciAps) were utilised on site for mineral identification at the geologist's discretion, as well as systematically for all samples collected. Prior to use, and at regular intervals throughout each day, the handheld pXRF instrument was calibrated. Certified Reference Material (MEG Au.19.10) were analysed at a 1:20 ratio with samples to ensure the instrument window was not contaminated with dust and the instrument was analysing correctly. Handheld XRF data was used as an aid only, gold, light elements, and most rare-earth elements cannot be analysed with the instrument in use. RC Drilling 2-3 kg samples were dry rotary split from dry 5' bulk samples. Once the full metre was drilled to completion, the drill bit was lifted off the bottom of the hole, creating a gap between samples; ensuring the entirety of the 5' sample was collected, and over-drilling did not occur. Two even 2 – 3 kg duplicate sample splits, from the A- and B-chutes of the splitter, were collected at the same time for each sample interval, with the remaining reject bulk sample being collected in labelled calico bags directly below the cyclone, minimising external contamination. Original sample bags were consistently collected from the A-chute, whilst duplicate sample splits were collected from the B-chute. During the sample collection process, the original and duplicate calico sample splits, and calico bag of bulk reject sample were weighed to test for sample splitting bias and sample recovery.

	Criteria	JORC Code explanation	Commentary
rsonal use only			 Bulk reject bags were then placed in neat lines on the ground, with tops tied to avoid contamination. Duplicate B-chute sample bags are retained and stored on site for follow up analysis and test work. Original split samples from the A-chute were submitted to the laboratory for gold and multi element analysis. QA samples were inserted at a combined ratio of 1:20 throughout. Field duplicates were collected at a 1:40 ratio from the B-chute of the splitter at the same time as the original sample was collected from the A-chute. OREAS certified reference material (CRM) was inserted at a ratio of 1:40. The grade ranges of the CRMs were selected based on grade populations and economic grade ranges. The reference material type was selected based on the geology, weathering, and analysis method of the sample. The cyclone and splitter was cleaned after each rod, at the base of oxidation, and when deemed necessary by the geologist to minimise contamination of samples. Sample condition was recorded for bias analysis. The cyclone was balanced at the start of each rod and checked after each sample to avoid split bias. Airvibrators on the cyclone were utilised, when necessary, to aid sample throughput. Vibrators were placed perpendicular to chutes to avoid introducing vibration-induced splitting bias.
For pe			 DD Drilling All Diamond coring was HQ size. Triple-tubing was utilised throughout to maximise recovery. Diamond core samples were collected at geologically-defined intervals, with a minimum sample length of 0.5m and a maximum of 1.2m. Core samples were cut using an automated variable-speed diamond saw with half core, weighing approximately 3kg, submitted for analysis. OREAS certified reference material (CRM) was inserted at a ratio of 1:20 throughout sampling. The grade ranges of the CRMs were selected based on grade populations and economic grade ranges. The reference material type was selected based on the geology, weathering, and analysis method of the sample.

	Criteria	JORC Code explanation	Commentary
or personal use only			 Historic Drilling Reverse Circulation and Core drilling has been carried out since the 1980's and are stated to have followed industry standards and be of sufficient quality for mineral resource estimation. RC is sampled to 5ft (1.52m) intervals. Recent drilling records (prefix AGEI, BH) state samples passed through a cyclone and riffle split, while historic records are not supplied. Core has been drilled at HQ diameter, often from RC pre-collars. Pre-2021 Core was sawn or cut in half and sampled at geological boundaries. 2021 HQ core was quarter split leaving ¾ of the core. Core sample lengths are between 0.12m to 1.64m, with an average of 5ft (1.52m) Majority of drill samples sent for assay at either AAL or ALS independent laboratories in Nevada. Records are not available for all historic assays, but recent work (prefix AGEI, BH) underwent standard drying, crushing, pulverising for 30g fusion and fire assay with AA finish. Mutli-element (including silver and copper) were analysed by Aqua Regia with an ICP finish. No samples from underground workings have been used in the resource estimate but historic underground data has been utilised.
For pe			 Rock chipping was not undertaken on a grid, instead being completed at the geologist's discretion and whether outcrop was present. For all rock types, whole rock samples were collected. Samples were placed in pre-numbered calico bags. All JBY rock chips were submitted to AAL, Reno for IO-FAAu50 Fire Assay (gold) and IM-4AB52 (multi-element) analysis. Historic Rock chips were submitted to ALS Chemex Elko (sample preparation) before being sent to either ALS Reno or ALS Vancouver for Au-AA23 or Au-AA30 Fire Assay (gold). 35AR-OES or ME-ICP41 (multi-element) analysis methods were conducted at ALS Vancouver. Handheld portable XRF instruments (SciAps) were utilised on site for mineral identification at the geologist's discretion, as well as systematically for all samples collected.

	Criteria	JORC Code explanation	Commentary
only			 Prior to use, and at regular intervals throughout each day, the handheld pXRF instrument was calibrated, and a Certified Reference Material (MEG Au.19.10) analysed to ensure the instrument window was not contaminated with dust and the instrument was analysing correctly. Handheld XRF data was used as an aid only. Gold, light elements, and most rare-earth elements cannot be analysed with the instrument in use.
For personal use (Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 James Bay Minerals Drilling RC Drilling RC Drilling was undertaken by Alford Drilling using a 2022 track-mounted Foremost Apex 65 rig, drilling 5" holes. Drilling was completed dry and using a face sampling bit. REFLEX OMNI-Tool North-Seeking Gyroscopes were used for downhole dip and azimuth calculation, with multishot measurements taken every 100' during drilling, and a continuous IN and OUT readings taken at end-of-hole (EOH). RELFEX TN-14 Rig Aligner was used to align the rig to within 0.01 degrees of the planned azimuth, dip and roll at the start of each hole. DD Drilling Diamond Drilling was undertaken by Alford Drilling using a 2021 track-mounted EF-75M drill rig. Diamond coring was undertaken at HQ size, with triple-tubing utilised to maximise recovery. REFLEX OMNI-Tool North-Seeking Gyroscopes were used for downhole dip and azimuth calculation, with multishot measurements taken every 100' during drilling, and a continuous IN and OUT readings taken at end-of-hole (EOH). RELFEX TN-14 Rig Aligner was used to align the rig to within 0.01 degrees of the planned azimuth calculation, with multishot measurements taken every 100' during drilling, and a continuous IN and OUT readings taken at end-of-hole (EOH). RELFEX TN-14 Rig Aligner was used to align the rig to within 0.01 degrees of the planned azimuth, dip and roll at the start of each hole.

	Criteria	JORC Code explanation	Commentary
			logging session and every 20 measurements throughout the drill hole to ensure instrument calibration and data quality
nal use only			 Historic Drilling All holes were qualitatively logged in their entirety, selectively sampled based on observations and assayed in accordance with industry standards and pre-2007 historic drilling is of sufficient quality. Mapping and Rock Chip Sampling Outcrop descriptions were noted in hardcopy format during field work and digitised daily. All descriptions of lithology, sulphides, alteration and mineralogy are qualitative. Structural measurements from outcrop were collected using a handheld clinometer and used to assist with geological interpretation. Scaled, georeferenced and orientated photographs of outcrops, sample locations and whole-rock samples were taken for each
For perso	Subsampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 sample submitted to the laboratory using the mobile Solocator App. James Bay Minerals Drilling RC Drilling RC samples were split from dry, 5' bulk sample via a rotary splitter directly from the cyclone. Weighing of calico and reject bulk samples to determine sample recovery compared to theoretical sample recovery, and check sample bias through the splitter. Field duplicates collected from the B-chute of the splitter through the entire hole at the same time as the original sample collection from the A-chute. DD Drilling

	Criteria	JORC Code explanation	Commentary
l use only			 Diamond core samples were collected at geologically defined intervals, with a minimum sample length of 0.5m and maximum of 1.2m. Samples were cut using an automated variable-speed diamond saw. Core was cut in half, with the same half of the core submitted to the laboratory for analysis. Diamond core samples are considered dry. Triple-tubing and HQ drill tube diameter was selected to maximise sample recovery. Sample recovery is recorded every run (average run length of 3m) and is generally above 98%, except for in very broken ground.
For personal			 Samples of approximately 2-3kg in weight were sent to AAL, Reno for IO-FAAu50 50g Fire Assay (gold) and IM-4AB52 multi-element analysis by ICP with an OES and MS finish. AAL is a certified accredited laboratory and undertake preparation and analysis under industry standards. Sample duplicates (DUP) were inserted at a ratio of 1:20 throughout sampling of suspected ore zones, and 1:40 throughout sampling of suspected waste material. OREAS certified reference material (CRM) was inserted at a ratio of 1:20 throughout sampling of suspected waste material. OREAS certified reference material (CRM) was inserted at a ratio of 1:20 throughout sampling of suspected ore zones, and 1:40 throughout sampling of suspected waste material. The grade ranges of the CRMs were selected based on grade populations and economic grade ranges. The reference material type was selected based on the geology, weathering, and analysis method of the sample. The total combined QAQC (DUPs and CRMs) to sample ratio through suspected ore zone material was 1:10. For waste zones the combined QAQC to sample ratio was 1:20. Field Duplicates and CRMs were submitted to the lab using unique Sample IDs. For every 60 samples submitted to the laboratory, AAL inserted 12 QC samples (CRMs, DUPs, Blanks) and further conduct laboratory check analysis of samples.

[Criteria	JORC Code explanation	Commentary
For personal use only			 Samples were dried at 90°C, crushed to 2mm, pulverised and riffle split to obtain a 50g pulp for fire assay and 5g pulp for multi- element analysis. Sample size and preparation is deemed appropriate for the grain size of the material. <u>Historic Drilling</u> Majority of core was sawn or cut in half, with only 2021 drilling recorded as submitting ¼ core for analysis. RC (Post 2007) is recorded as riffle split through a cyclone. Post 2007 drilling utilised CRMs, blanks and field duplicates for quality control. Pre 2007 data lacks details on QAQC but assays have been compared to surrounding holes and show good agreement. Sample size is considered appropriate. Mapping and Rock Chip Sampling James Bay Minerals – Americas Gold Exploration OREAS Certified Reference Material (CRM) was inserted into the sample sequence at a 1:50 ratio with rock chip samples. Rock chip samples are deemed representative of in-situ material. Previous Exploration Historic rock chip sample locations are marked by metal tags at sample locations. Historic rock chip sample locations were visited to verify that collection of each rock sample was from in-situ outcrop. Discussions were held with Americas Gold regarding sample collection in the field. Samples that could not be verified or were deemed not representative of in-situ material are not included in this release.

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established. 	 James Bay Minerals Drilling No new assay results reported in this announcement. Handheld portable XRF instruments (SciAps) were utilised on site for mineral identification at the geologist's discretion, as well as systematically for all samples collected. Prior to use, and at regular intervals throughout each day, the handheld pXRF instrument was calibrated. Certified Reference Material (MEG Au.19.10) were analysed at a 1:20 ratio with samples to ensure the instrument window was not contaminated with dust and the instrument was analysing correctly. Handheld XRF data was used as an aid only, gold, light elements, and most rare-earth elements cannot be analysed with the instrument in use. Samples were sent to AAL, Reno for IO-FAAu50 50g Fire Assay (gold) and IM-4AB52 multi-element analysis by ICP with an OES and MS finish. AAL is a certified accredited laboratory and undertake preparation and analysis under industry standards. For every 60 samples submitted to the laboratory, AAL inserted 12 QC samples (CRMs, DUPs, Blanks) and further conduct laboratory check analysis of samples. Samples were dried at 90°C, crushed to 2mm, pulverised and riffle split to obtain a 50g pulp for fire assay and 5g pulp for multi-element analysis MARUS submitted to the laboratory induced uncertified accredited appropriate. QAQC analysis shows some CRMs failed during drill campaigns. CRMs submitted to the laboratory included uncertified and certified reference material. 2021 standards showed a bias to the low side. Blanks and duplicates generally performed well from provided records. There is no significant evidence of sample bias or "nugget effect", with assays displaying reasonable accuracy and are deemed appropriate for use in resource estimation.

Cri	ia JORC Code explanation	Commentary
For personal use only	ia JORC Code explanation	 Commentary James Bay Minerals – Americas Gold Exploration OREAS CRM material was inserted into the sample sequence at a 1:50 ratio with rock chip samples. Handheld portable XRF instruments (SciAps) were utilised on site for mineral identification at the geologist's discretion, as well as systematically for all samples collected. Prior to use, and at regular intervals throughout each day, the handheld pXRF instrument was calibrated, and a Certified Reference Material (MEG Au.19.10) analysed to ensure the instrument window was not contaminated with dust and the instrument was analysing correctly. Handheld XRF data was used as an aid only, gold, light elements, and most rare-earth elements cannot be analysed with the instrument in use. JBY Rock Chip Samples were sent to AAL, Reno for IO-FAAu50 50g Fire Assay (gold) and IM-4AB52 multi-element analysis by ICP with an OES and MS finish. AAL is a certified accredited laboratory and undertake preparation and analysis under industry standards. For every 60 samples submitted to the laboratory, AAL inserted 12 QC samples (CRMs, DUPs, Blanks) and further conduct laboratory check analysis of samples. Rock chip samples were dried at 90°C, crushed to 2mm, pulverised and riffle split to obtain a 50g pulp for fire assay and 5g pulp for multi-element analysis. Previous Exploration Historic Rock chips were submitted to ALS Chemex Elko (sample preparation) before being sent to either ALS Reno or ALS Vancouver for Au-AA23 or Au-AA30 Fire Assay (gold). 35AR-OES or ME-ICP41 (multi-element) analysis methods were conducted at ALS Vancouver. ALS is a certified accredited laboratory and undertake preparation and analysis under industry standards. Rock chips samples were dried, crushed, pulverised and split to

	Criteria	JORC Code explanation	Commentary
>			 No CRMs were inserted into the sample sequence in the field, instead relying on the laboratory-inserted CRMs, blanks and Duplicates for QAQC
For personal use on	Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 James Bay Minerals Drilling No new assay results reported in this announcement. Logging and sampling were recorded directly into Excel and LogChief, utilising lookup tables and in-file validations by a geologist at the rig. Logs and sampling were imported daily into Micromine for further validation and geological confirmation. All data is verified by senior Company geologists. All drill hole data is collected in Imperial System units and are converted to Metric units. Historic Drilling Various personnel including independent consultants have reviewed the drilling and assay data. 240 pulps from the deep skarn deposit were re-submitted for laboratory analysis in 2009 and showed good correlation with original drill data. Drilling data includes 7 sets of twin holes from the 2007-2008 and 2011 drilling campaigns, including RC-RC and RC-core comparisons. The results show some variation in grade although general distribution is similar. No adjustments to assay data are known beyond converting between parts per million to ounce per tonne and between feet to metres. Mapping and Rock Chip Sampling All sample and mapping location data was collected using GARMIN GPSMAP 64sx and recorded in digital and hardcopy format. Digital data was downloaded daily and validated.

	Criteria	JORC Code explanation	Commentary
only (Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 	Data is exported to daily and validated by a senior Company geologist. James Bay Minerals Drilling
ersonal use		 Specification of the grid system used. Quality and adequacy of topographic control. 	 All collar point location data was collected using GARMIN GPSMAP 64sx and recorded in digital and hardcopy format with an expected accuracy of +/- 3m. Coordinate grid system is NAD 83 UTM Zone 11. REFLEX OMNI-Tool North-Seeking Gyroscopes were used for downhole dip and azimuth calculation, with multishot measurements taken every 100' during drilling, and a continuous IN and OUT readings taken at end-of-hole (EOH). RELFEX TN-14 Rig Aligner was used to align the rig to within 0.01 degrees of the planned azimuth, dip and roll at the start of each hole. REFLEX ACT Orientation tools were used for core orientation for the entirety of drilled core
For p	8		 <u>Historic Drilling</u> Down hole surveys and collar pickups are irregular in data records. All of GMC's 131 drill hole collars plus 35 historic collars were surveyed by DGPS. The remaining drill hole collar locations were obtained from drill logs or drill maps and have been validated in the field. Collar pickups are in or have been transformed to NAD 83 Zone 11 Approximately ~70-80 holes have downhole surveys. <u>Mapping and Rock Chip Sampling</u> All sample and mapping location data was collected using GARMIN GPSMAP 64sx and recorded in digital and hardcopy format with an expected accuracy of +/- 3m.

	Criteria	JORC Code explanation	Commentary
NIV			Coordinate grid system is NAD 83 UTM Zone 11.
For personal use or	Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drilling Data spacing is often on 25x50m grid or 50x100m with local variations. Data spacing is sufficient to establish continuity for mineral resources. Samples are produced generally at 5' intervals from drilling. No compositing is known to have occurred for historic data besides in resource estimation. Reported intercepts include consecutive internal waste up to 2m. Intercepts are reported as composites of individual 5' assay results from a cut-off of 0.3g/t Au Mapping and Rock Chip Sampling Rock chip samples were collected at each outcrop as deemed necessary by the geologist. No nominal sample spacing was used for rock chipping. No compositing has been conducted.
	Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralized structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 James Bay Minerals Drilling Based on the drilling completed to date, the orientation (both dip and plunge) of mineralisation is based on numerical Au assay values and aims to be validated by recently obtained structural data collected from James Bay Minerals diamond drilling. The orientation of epithermal mineralisation is west dipping at approximately 45 degrees. As such, drilling has been conducted angled east to intercept perpendicular to mineralisation to avoid the introduction of bias to results. <u>Historic Drilling</u>

(Criteria	JORC Code explanation	Commentary
s only			 Holes appear to have generally been drilled across structures as to limit bias of sampling. Angled holes have been drilled to intersect perpendicular to near-surface epithermal mineralisation but local variations have affected this and therefore drill intercepts do not always represent true width. Deep diamond core drilling was drilled vertically in order to intercept perpendicular to the near-horizontal skarn mineralisation. It is not yet known if any bias exists. Drilling intercepts are reported as down-hole width
For personal USe	ole security	The measures taken to ensure sample security.	 James Bay Minerals Drilling Chain of Custody of data was managed by James Bay Minerals Ltd. All samples were bagged in tied numbered calico bags, grouped into larger polyweave bags and cabled-tied. Sample material was stored on site and, when necessary, collected by assay laboratory personnel. Thereafter, laboratory samples were controlled by the nominated laboratory. Sample collection was controlled by digital sample control files and hardcopy ticket books. Historic Drilling AGEI and BH holes were hand-delivered by field personnel to the laboratory. Rock chip samples were collected in pre-numbered calico bags and stored in polywoven bags labelled with Sample IDs, Company name and Sample Submission ID. Samples were taken directly to the laboratory by JBY staff. Hardcopy submission forms were sent to the laboratory with the samples.

Criteria	JORC Code explanation	Commentary
		 Historic samples were hand-delivered by field personnel to the laboratory.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 Historic rock chip sample locations were visited and verified that collection of each rock sample was from in-situ outcrop. Discussions were held with Americas Gold regarding sample collection in the field. Locations of all drill holes have been visited and coordinates confirmed. Diamond drill core is being re-sampled where core is available to check results at an independent laboratory (ongoing work).

Section 2 Reporting of Exploration Results – Independence Gold Project

(Criteria listed in the preceding section also apply to this section.)

	Criteria	JORC Code explanation	Commentary
For personal use only		 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Independence Gold Project is located wholly within third party mining claims held by Independence Mining LLC, a Delaware limited liability company that owns 100% of all claims, rights, title and interest in the Independence Gold Project. James Bay Minerals has entered into an agreement to acquire and earn-in 100% of Independence Gold Project via the acquisition of Battle Mountain Resources Pty Ltd. (See acquisition terms pages 9 & 10 of the ASX announcement dated 14 October 2024 for details on the earn in agreement and associated entities.) The Independence Gold Project has a total of 14 unpatented lode mining claims and 84 Unpatented Mill Sites, situated in sections 28, 29, 32 and 33, T.31 N., R. 43 E., MDM, in Lander County, Nevada. Independence project spans approximately 627 acres of Bureau of Land Management (BLM) administered lands. All lode claim and mineral claim locations are detailed in the NI 43-101 report. The Unpatented load claims and Mill site claims are in good standing and the pertinent annual Federal BLM fees are paid until September 01, 2025. James Bay Minerals through its acquisition of Battle Mountain Resources has an agreement to own and earn in 100% of all Independence Gold Projects Water rights. Permit #90547 & #90548, currently held 100% by the Golden Independence Nevada Corp, an entity being acquired by James Bay Minerals via its third party fully owned entities. The water rights were fully permitted by the State of Nevada on the 29th March 2024 and valid until the 29th of March 2027. If BMR acquires the Stage 1 Interest and the Stage 2 Interest (such that it holds 100% of the Interest in the Company), BMR agrees to grant AGEI a 2.0% net smelter return royalty (Royalty), with the right to buy-back 50% of the Royalty (i.e., 1% of the 2% Royalty) at any

	Criteria	JORC Code explanation	Commentary
l use only			 time by paying US\$4,000,000 to AGEI, which may be satisfied in cash and JBY Shares based on the 30-day VWAP. All the land the claims are contained within the Federal Bureau of Land Management Land (BLM). Independence Gold mine directly neighbours the NGM operating Phoenix Open Pit Gold Mine, and is contained within the boundary of the NGM Phoenix Gold Mine Plan Of Operations (PoO). As such, The Independence Gold Project is subject to all rights and permits associated with the PoO. As such the site is fully permitted to commence exploration drilling and geophysical surveys. The project contains liabilities associated with the historic Independence Underground Mine including a mill, tailings, waste rock dump, and some buildings.
For persona	Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Activity in the area dates back to mining and silver discoveries in the late 1800's and early 1900s. The Independence Underground Mine on the property was mined intermittently between 1938 and 1987 with several miles of underground workings developed. Mine production totals ~750,000oz silver and 11,000oz gold by operators including Wilson & Broyles, Bonner Cole, Agricola, APCO, Silver King, United Mining and Harrison Mining. Post-mining, various companies held the ground for exploration, defining the deep skarn gold mineralisation and later the shallow oxide potential. Various owners during this period include Union Pacific Minerals, APCO Oil Corp, United Mining, Noranda, Battle Mountain Gold, Landsdowne Minerals, Teck Corporation, Great Basin Gold, and General Metals Corp (GMC). GMC carried out the most significant drilling to define mineralisation and conduct resource estimations (outdated and or non-compliant). To date, over 240 holes have been drilled for over 28,000m.
	Geology	Deposit type, geological setting and style of mineralisation.	• The Independence project lies in the Battle Mountain Mining District located on the west side of Pumpernickel Ridge in north central Nevada. The regional geology of north central Nevada is defined by episodic tensional deformation, rifting, sedimentation and erosion,

	Criteria	JORC Code explanation	Commentary
For personal use only			 followed by widespread thrusting resulting from compressional deformation. Episodic tensional events followed by compressional events include the Robert Mountains Allochthon emplaced during the Antler orogeny. The Antler sequence hosts the Golconda Allochthon that was emplaced during the Sonoma orogeny and contains the Havallah Sequence of Mississippian to Permian age rocks, including the Pumpernickel Formation, host to near surface mineralisation at the Independence Project. Rocks of the Roberts Mountain Allochthon hosted the adjacent Fortitude deposit and are the principal host for the Phoenix deposit and the Independence Project Skarn Target. These rocks are structurally overlain by the Mississippian, Pennsylvanian, and Permian Havallah sequence of the Golconda allochthon. The near surface mineralisation at Independence is best characterised as a high-level epithermal system formed as a leakage halo above the Independence gold skarn, both related to emplacement of Eocene age granodiorite porphyry's and related faults. The shallow oxide chert-hosted gold-silver mineralisation consists of iron oxides and clays derived from primary sulphide stockworks and replacements, deeply weathered and oxidised. The Independence gold skarn target is a high-grade, gold-rich skarn system developed in the carbonate rich portions of the Battle Mountain, Antler Peak and Edna Mountain Formations in the lower portion of the Roberts Mountain Allochthon.
	Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	• Data utilised in the foreign estimate is stated in the NI 43-101 report.

	Criteria	JORC Code explanation	Commentary
		 If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case 	
or personal use only	Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated 	 All previously reported drill intercept results are downhole interval length-weighted with a lower cut-off of 0.2g/t Au. Gold Equivalent of the near surface estimate has been calculated per block in resource estimation and is a function of metal prices, based on a Gold Price of USD\$1800/oz and Silver Price of USD\$24/oz, and metal recoveries for both gold and silver. The recovery of gold is stated as 79% in the oxide, 50% in transitional and 22% in Fresh. Silver averages 27% across all material. Resultantly, the AuEq calculation is = g Au/t + (g Ag/t / ((1,800 x Au Recovery) / (24 x 0.27))).
	Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known'). 	 Vertical and angled holes transect mineralisation at different angles. Mineralisation in near-surface oxide dips west approximately 45-55 degrees. The majority of drill holes have been drilled perpendicular (azimuth to the East) in order to maximise the representivity of reported downhole intercept lengths. The Ni 43-101 Mineral Report states angled holes are ~95% true thickness while vertical holes are 65-85% true thickness. Deep skarn is ~95%-100% true thickness.
	Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Adequate maps, tables and diagrams are provided in the announcement above.
	Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results	Data is provided in the NI 43-101 report. The document can be found at: https://nexusuranium.com/independence-project-nevada/
	Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances	• Metallurgical tests undertaken by GMC in 2012 included bottle roll and column leach testing on bulk sample, and 2021 tests by GIMC involved bottle roll tests on drill core.

	Criteria	JORC Code explanation	Commentary
e onlv			 The recovery of gold is stated as 79% in the oxide, 50% in transitional and 22% in Fresh. Silver averages 27% across all material. Geotechnical logging has historically been undertaken. Hydrological drilling has historically been conducted. No deleterious or contaminating substances are known. Copper-gold mineralisation exists immediately northwest of the property in the neighbouring Sunshine Pit.
rsonal use	Further work	 The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Multi-element analysis of rock chips and historic drill core for base metal and silver potential. RC drilling following up on rock chip results for assessing the potential for additional near-surface gold-silver mineralisation discoveries. Diamond coring to collect structural data, test below the current near-surface oxide mineralisation, and explore along strike of the skarn mineralisation. Analysis of previously unsampled drill core to assess the potential for additional mineralised zones.
For pe	-	·	