

ASX: ANX

VERY HIGH COPPER GRADES AND NEW SOIL ANOMALIES **CONFIRM EVELYN'S POLYMETALLIC POTENTIAL**

- Results from rock chip samples collected during field reconnaissance at Evelyn South include:
 - 14.6% Cu, 0.42% Zn, 0.12% Co, 0.47 g/t Au and 79.9 g/t Ag in sample 24WDR0048 0

 14.6% Cu, 0.42% Zn, 0.12% Co, 0.47 g/t Au and 79.9 g/t Ag in sample 24WDR0049
 12.2% Cu, 0.85% Zn, 0.25% Co, 0.59 g/t Au and 37.2 g/t Ag in sample 24WDR0049
 Strong copper in soil geochemical anomaly surrounding high-grade rock chips.
 Three new coincident Cu-Zn-Co anomalies identified by UltraFine[™] soil analyses.
 Samples from a gossan on the Evelyn West-trend provide first evidence of base-metal mineralisation along >2km buried corridor characterised by multiple VTEM anomalies.
 Historical Fixed Loop Electromagnetic (FLEM) data at Evelyn North has been located and currently being modelled
 RC drilling to test targets is planned for early 2025. Odelivering exciting **new targets** for future drilling campaigns scheduled for the first Quarter next year. The high-grade mineralisation at the Evelyn deposit, which remains open down plunge, and very encouraging ${\cal O}$ Geochem and rock chip results make this area a priority for identifying new resources to grow our project and processing hub. The team continues to advance important and exciting exploration work in parallel with the Roc Global process to secure a strategic partner. Anax plans to produce near term copper while offering significant upside potential through advanced exploration and aggregation of Pilbara assets."

Anax Metals Limited (ASX: ANX, Anax, the Company) is pleased to announce results from on-going exploration work at the Evelyn Project (Evelyn), part of the larger Whim Creek Project (Project), located 115km southwest of Port Hedland (Figure 1).

Classification	kTonnes	Cu %	Zn %	Au ppm	Ag ppm
Indicated	470	2.47	3.97	1.00	42
Inferred	120	2.84	3.62	0.92	37
TOTAL Resources	590	2.54	3.90	0.98	41
Contained I	·/ 0-	Cu T	Zn T	Au oz	Ag oz
Contained I	/02	14,900	22,800	18,500	778,600

Table 1: Evelvn	Deposit	Mineral	Resource	bv C	lassification	(no	cut-off
				~		(

Note: Appropriate rounding applied.

Regional exploration has intensified at Evelyn to assess several priority targets identified in a recent review of historical data.² Field reconnaissance has been undertaken over each of these targets resulting in the discovery of some encouraging exposures (Figure 2).

Figure 2: Location of rock chip samples in relation to EM anomalies generated from 200m-line spaced VTEM survey over TMI-RTP ground magnetic image and satellite imagery. MGA Zone 50

A. Evelyn South

A shallow historical prospector's shaft was located at the southern extents of the Evelyn South Target within the interpreted prospective VMS horizon (Figure 2). Considerable copper staining (malachite and azurite) was observed and sampled from spoil located around the shaft.^{3&4} Assay results have now been received and tabulated below (Table 2). The high-grade Cu-Zn-Ag-Au assays (up to 14.6% Cu, 0.85% Zn, 0.80 g/t Au and 80 g/t Ag) indicate the potential for economic mineralisation like that defined at Evelyn (Table 1).

Table 2: Rock chip assay results from Evelyn South

and as a result the UltraFine[™] soil analysis method developed by LabWest and the CSIRO was selected to identify possible subtle geochemical signatures.

The soil geochemical results were divided into two separate populations based on the regolith conditions mapped during sample collection.

<u>Skeletal Soils</u>

While the majority of the survey was undertaken over an area blanketed by recent transported cover, samples collected in the vicinity of the Evelyn South rock chips presented in Table 1, consisted of skeletal soils. These soil samples identified a coherent 400m long and up to 100m wide copper in soil anomaly with a peak value of 837 ppm Cu (Figure 3).

Shallow historical RC drilling from the vicinity of the prospector's shaft has been evaluated and is considered to not have adequately tested the surface anomalism discussed above. The Evelyn host unit sits near the hinge of a regional scale anticline. High-grade mineralisation at the Evelyn deposit (located approximately 1km to the northeast) exhibits a moderate northerly plunge (approximately 40 degrees towards 30 degrees east of north). This is supported by structural observations from field mapping by Aquitaine Ltd (1977) who reported "strong rodding and mineral lineation", trending in direction 20 - 60 degrees east of north, plunging northerly at 35 to 45°.⁵

mineralisation (Figure 4).^{6&7}

Drilling completed at Evelyn South to date has not considered possible structural controls to mineralisation with JER086 drilling directly underneath the prospector's shaft and intersecting 2m @ 0.62% Cu and 0.77% Zn (from 38m)⁸ approximately 35m vertically below the rock chip locations (Figure 4). The mineralised zone in JER086 is however reminiscent of intersections at Evelyn immediately below the high-grade core.

Other drilling at the Evelyn South Prospect also appears to not be orientated optimally, and the Company believes the Evelyn South Prospect has not been adequately tested by drilling. Rock and soil geochemical results from the vicinity of the prospector's shaft confirm the fertility of the prospective VMS horizon located south along strike of Evelyn and the Anax intends to evaluate the Prospect with drilling early next year.

Figure 4: Schematic long section (looking NW) showing approximate intersection points of early drilling at the Evelyn and Evely South prospects in relation to observed (Evelyn) and potential (Evelyn South) plunge of mineralisation. Note the diagram makes no inference on size or tenure of mineralisation at Evelyn South.

Transported cover

O The remainder of the soil samples south of Evelyn were collected over the shallow transported cover sequences. UltraFine[™] fraction geochemistry was used to evaluate anomalism below the shallow alluvium covering the event horizon stratigraphy.

UltraFine[™] geochemistry has demarcated three areas of coincident **copper, zinc and cobalt** anomalism (Figure 5). The **ES1** anomaly on the northernmost lines is located approximately 100m south of the Evelyn deposit and may be related to wash from spoils from historical mining activities. It is however possible that further mineralisation related to the Evelyn event may exist under cover.

The **ES2** anomaly is located to the south of a magnetic high that has been the subject of limited historical drill testing. The best results were from JER093⁹ which was collared approximately 50m north of the centre of the soil anomaly and returned 1m @ 0.11% Cu from 80m and 0.10% Cu from 82m. JER093 would not have tested the **ES2**. Enrichment in pathfinder elements is either absent or inconclusive (Figure 6).

Anomaly **ES3** is located to the west of the prospector's shaft area discussed earlier and separated from the prospector's shaft area by a creek. ES3 is characterized by a broad coincident Cu, Zn and Co anomaly and relative enrichment in pathfinder elements, including As, Bi, Ga, Hg, Sb, Sn, Tl and U. No previous exploration has been carried out over this area, but two late-time constant VTEM anomalies occur immediately to the west (Figure 2).

Figure 5: Cu, Zn and Co UltraFine[™] soil sampling results coloured by percentile. Interpreted Cu (yellow line), Zn (white line) and Co (pink line) coincident anomalism indicates three areas of interest (ES1 – ES3). MGA Zone 50.

Figure 6: Pathfinder elements UltraFine[™] soil sampling results coloured by percentile. Interpreted Cu (yellow line), Zn (white line) and Co (pink line) coincident anomalism demarcated at areas ES1 – ES3. MGA Zone 50.

The Company intends to extend the soil lines to the west of ES3 and to conduct ground-based electromagnetic investigations in the new year prior to potential drill testing.

B. Evelyn West

The Evelyn West trend is defined by >2km of VTEM anomalies parallel to, and approximately 300 – 500m west of the main Evelyn horizon. **The Evelyn West trend is entirely under cover** and, with the exception of two previous RC holes that were terminated short of their prospective targets, **has not been drill tested.**

Field reconnaissance undertaken recently located a small **gossan exposed within the Evelyn West trend.** Assay results from this gossan sample returned anomalous results including **671ppm Cu**, **0.12% Zn and 101ppm Co** (Figure 2). This gossan sample represents the only in-situ geochemical result from the Evelyn West trend and is the **first evidence of base metal prospectivity along this completely untested VTEM corridor.**

The Company is very encouraged by the location of the gossan and intends to conduct follow-up reconnaissance work ahead of drill testing of the highest priority targets, which includes an untested Fixed Loop EM target located approximately 100m below surface and 500m west of Evelyn (Figure 2).²

လC. Evelyn North

Gossanous outcrop was located and sampled within the Evelyn North Target (Figure 2 and Figure 7). This cherty exposure returned highly anomalous assay results of **0.11% Cu, 633ppm Zn, 3.4g/t Ag and 28ppb Au 112ppm As**. The outcrop is narrow (1-2m) and can be traced at surface for approximately 50m. The exposure is associated with considerable quartz veining and alludes to the fertility of the Evelyn North VMS event horizon. Two historical shallow RC holes were drilled to the north of the gossan and disseminated sulphides were reportedly intersected but not assayed.

An historical FLEM survey was completed over this target in 2008, but the data and results of the survey have never previously been located by Anax. A review of geophysical work done at Evelyn by GroundProbe geophysics in 2011, noted that only preliminary models had been produced from FLEM data with detailed modelling recommended prior to follow-up of the anomalies.

The original data was recently located after an exhaustive search, and detailed modelling is currently underway. Results will be reported once available.

already identified for drilling. Further ground-based EM geophysical surveys are likely over prospective tratigraphy ahead of RC drilling currently scheduled to commence early next year.

LL_The Company is also reviewing base metal targets at the Whim Creek and Mons Cupri prospects and looks forward to providing details of exploration programmes in due course.

This ASX announcement has been approved for release by the Board of Directors of Anax Metals Limited.

For Enquiries	
Mr Geoff Laing	Mr Lu
Managing Director	Mana
Anax Metals Limited	Corpo
<u>info@anaxmetals.com.au</u>	lucas
+61 8 6143 1840	+ 61 4

ENDS

icas Robinson ging Director orate Storytime <u>@corporatestorytime.com</u> 108 228 889

References

The information provided in the announcement refers to the following announcements to the ASX:

- Evelyn extended with Excellent Cu, Zn and Au Intersection, 4 October 2022 (ASX: ANX) 1.
- Multiple high-potential VMS targets identified at Evelyn, 23 September 2024 (ASX:ANX) 2.
- Assay results confirm high-grade polymetallic intersections at Evelyn, 27 November 2024 (ASX:ANX) 3.
- 4. Assay results confirm high-grade intersections Amended, 2 December 2024 (ASX:ANX)
- Aquitaine Australia Minerals Pty Ltd, 1977. Report on 1977 Exploration, Evelyn Prospect. WAMEX Open file report Nr A7445. 5.
- 6. Copper/Zinc/Lead with Gold/Silver mineralisation extended in drill results at Liberty Indee Project Evelyn Prospect and Copper/Zinc/Gold/Silver drill results at Quamby Prospect, 8 January 2008 (ASX:DVP)
- 7. Ourwest Corporation Pty Ltd, 2008. Liberty – Indee Project Combined Reporting Number C130/2007 Annual Report EL47/1209 and EL47/760. WAMEX Open File Report nr A080108.
- Wood, S.J., 2011. Annual Report to Department of Mines and Petroleum, Liberty Indee Project Combined Reporting Number 8. C130/2007. WAMEX Open File Report nr A09244.
- 9. Quarterly Activities Report for Period Ended 30 June 2013, 29 July 2013 (ASX:DVP).

COMPETENT PERSONS STATEMENT

The information in this report that relates to Exploration Results is based on and fairly represents information compiled by Mr Andrew McDonald. Mr McDonald is an employee and shareholder of Anax Metals Ltd and is a member of the Australian Institute of Geoscientists. Mr McDonald has sufficient experience of relevance to the style of mineralisation and types of deposits under consideration, and to the activities undertaken to qualify as a Competent Persons as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr McDonald consents to the inclusion in this report of the matters based on

Openation in the form and context in which they appear. Openation Table 3: Details of historical drill hopenation Hole_ID Type Year Depth MGA East

Table 3: Details of historical drill hole referred to in this announcement

D	Hole_ID	Туре	Year	Depth	MGA East	MGA North	RL	Dip	Nat Azi	
L	JER001	RC	2007	105	587905	7666812	71	-60	285	
	JER086	RC	2011	70	587304	7665797	73	-60	90	
	JER093	RC	2013	100	587527	7666323	67	-60	120	

Appendix 1: Soil Sampling and Rock Chip sampling information

	SampleID	Sample_Type	Sampled_Date	NAT_Grid_ID	NAT_East	NAT_North	Comments
Ĩ	24WDR0040	ROCK	10-Nov-24	MGA94_50	588039	7668246	Gossan
	24WDR0041	ROCK	10-Nov-24	MGA94 50	588045	7668257	Cherty gossan with some gtz veining
	24WDR0042	ROCK	10-Nov-24	MGA94 50	587998	7668270	Cherty gossan with some gtz veining
	24WDR0043	ROCK	10-Nov-24	MGA94 50	588042	7668219	Cherty gossan with some gtz veining
	24WDR0044	ROCK	10-Nov-24	MGA94 50	587816	7668281	Grev Otz
	24WDR0045	ROCK	11-Nov-24	MGA94 50	587743	7667196	Gossan
	24WDR0046	ROCK	11-Nov-24	MGA94_50	587738	7667187	Cherty gossan
	24WDR0040	ROCK	11-Nov-24	MGA94_50	E97224	7665705	Malachite Azurite stained, heavily altered felsic velcanic
	24WDR0047	ROCK	11-Nov-24	MGA94_50	507554	7005795	Malachite Azurite stained, heavily altered falsic volcanic
	24WDR0048	RUCK	11-Nov-24	MGA94_50	587338	7665791	Malachite Azurite stained heavily altered felsic volcanic
	24WDR0049	RUCK	11-Nov-24	MGA94_50	587348	7665794	Malachite Azurite stained heavily altered felsic volcanic
	24WDR0050	RUCK	11-INOV-24	MGA94_50	587344	7665800	Malachite-Azurite stained neavily altered feisic volcanic
	AEVSS0001	SOIL	21-Oct-24	MGA94_50	587705	/666//5	Cloddy
	AEVSS0002	SOIL	21-Oct-24	MGA94_50	587730	/666//5	Cloddy
	AEVSS0003	SOIL	21-Oct-24	MGA94_50	587754	7666775	Cloddy
	AEVSS0004	SOIL	28-Oct-24	MGA94_50	587780	7666775	Clay
	AEVSS0005	SOIL	28-Oct-24	MGA94_50	587805	7666775	Cloddy
	AEVSS0006	SOIL	28-Oct-24	MGA94_50	587830	7666775	Clay
-	AEVSS0007	SOIL	28-Oct-24	MGA94_50	587855	7666775	Mulock heap/ Fresh Rock
-	AEVSS0008	SOIL	28-Oct-24	MGA94_50	587880	7666775	Clay
-	AEVSS0009	SOIL	28-Oct-24	MGA94_50	587905	7666775	(Dark Brown) soil
	AEVSS0010	SOIL	28-Oct-24	MGA94_50	587670	7666725	(Dark Brown) soil
	AEVSS0011	SOIL	28-Oct-24	MGA94_50	587695	7666725	(Dark Brown) soil
	AEVSS0012	SOIL	28-Oct-24	MGA94_50	587720	7666725	(Dark Brown) soil
)	AEVSS0013	SOIL	28-Oct-24	MGA94_50	587745	7666725	Cloddy
	AEVSS0014	SOIL	28-Oct-24	MGA94_50	587770	7666725	Clay
)	AEVSS0015	SOIL	28-Oct-24	MGA94_50	587795	7666725	Clay
	AEVSS0016	SOIL	28-Oct-24	MGA94_50	587820	7666725	Red Gray. Bottom of rocky out crop.
D	AEVSS0017	SOIL	28-Oct-24	MGA94_50	587845	7666725	Rocky out crop
	AEVSS0018	SOIL	28-Oct-24	MGA94_50	587870	7666725	clay
-[AEVSS0019	SOIL	28-Oct-24	MGA94_50	587645	7666675	Fine/Cloddy soil
۲	AEVSS0020	SOIL	28-Oct-24	MGA94_50	587670	7666675	Cloddy (near dirt road)
וו	AEVSS0021	SOIL	28-Oct-24	MGA94_50	587695	7666675	Fine/Cloddy soil
=[AEVSS0022	SOIL	28-Oct-24	MGA94_50	587720	7666675	Cloddy
=[AEVSS0023	SOIL	28-Oct-24	MGA94_50	587745	7666675	Cloddy
N	AEVSS0024	SOIL	28-Oct-24	MGA94_50	587770	7666675	Cloddy
/	AEVSS0025	SOIL	28-Oct-24	MGA94_50	587795	7666675	Cloddy
2	AEVSS0026	SOIL	28-Oct-24	MGA94_50	587820	7666675	Cloddy
	AEVSS0027	SOIL	28-Oct-24	MGA94_50	587845	7666675	Cloddy
-	AEVSS0028	SOIL	28-Oct-24	MGA94_50	587610	7666625	Cloddy
	AEVSS0029	SOIL	28-Oct-24	MGA94_50	587635	7666625	Cloddy
	AEVSS0030	SOIL	28-Oct-24	MGA94_50	587660	7666625	Cloddy (near dirt road)
	AEVSS0031	SOIL	28-Oct-24	MGA94_50	587685	7666625	Cloddy
	AEVSS0032	SOIL	28-Oct-24	MGA94_50	587710	7666625	Cloddy
	AEVSS0033	SOIL	28-Oct-24	MGA94_50	587735	7666625	Cloddy
	AEVSS0034	SOIL	28-Oct-24	MGA94_50	587760	7666625	Cloddy
	AEVSS0035	SOIL	28-Oct-24	MGA94_50	587785	7666625	Cloddy
	AEVSS0036	SOIL	28-Oct-24	MGA94_50	587810	7666625	Cloddy
	AEVSS0037	SOIL	02-Nov-24	MGA94_50	587570	7666575	Cloddy
1	AEVSS0038	SOIL	02-Nov-24	MGA94_50	587595	7666575	Cloddy
	AEVSS0039	SOIL	02-Nov-24	MGA94_50	587620	7666575	Cloddy
	AEVSS0040	SOIL	02-Nov-24	MGA94_50	587645	7666575	(Dark Brown) soil
	AEVSS0041	SOIL	02-Nov-24	MGA94_50	587670	7666575	Cloddy
ļ	AEVSS0042	SOIL	02-Nov-24	MGA94_50	587695	7666575	Fine soil
	AEVSS0043	SOIL	02-Nov-24	MGA94_50	587720	7666575	Cloddy
	AEVSS0044	SOIL	02-Nov-24	MGA94_50	587745	7666575	Cloddy
	AEVSS0045	SOIL	02-Nov-24	MGA94_50	587770	7666575	Cloddy
	AEVSS0046	SOIL	03-Nov-24	MGA94_50	587550	7666525	Cloddy
	AEVSS0047	SOIL	03-Nov-24	MGA94_50	587575	7666525	Cloddy
	AEVSS0048	SOIL	03-Nov-24	MGA94_50	587600	7666525	Cloddy
	AEVSS0049	SOIL	03-Nov-24	MGA94_50	587625	7666525	Cloddy
	AEVSS0050	SOIL	03-Nov-24	MGA94_50	587650	7666525	Cloddy
	AEVSS0051	SOIL	03-Nov-24	MGA94_50	587675	7666525	Cloddy
	AEVSS0052	SOIL	03-Nov-24	MGA94_50	587700	7666525	Clay
	AEVSS0053	SOIL	03-Nov-24	MGA94_50	587725	7666525	Clay
	AEVSS0054	SOIL	03-Nov-24	MGA94_50	587750	7666525	Clay
	AEVSS0055	SOIL	05-Nov-24	MGA94_50	587520	7666475	Cloddy
	AEVSS0056	SOIL	05-Nov-24	MGA94_50	587545	7666475	Cloddy
	AEVSS0057	SOIL	05-Nov-24	MGA94_50	587570	7666475	Cloddy
	AEVSS0058	SOIL	05-Nov-24	MGA94_50	587595	7666475	Cloddy
	AEVSS0059	SOIL	05-Nov-24	MGA94_50	587620	7666475	Cloddy
	AEVSS0060	SOIL	05-Nov-24	MGA94_50	587645	7666475	
	AEVSS0061	SOIL	05-Nov-24	MGA94_50	587670	7666475	
	AEVSS0062	SOIL	05-Nov-24	MGA94_50	587695	/666475	
	AEVSS0063	SOIL	05-Nov-24	MGA94_50	587720	7666475	Cloady
	AEVSS0064	SOIL	06-Nov-24	MGA94_50	587485	7666425	Cloddy

	SamploID	Sample Type	Sampled Date	NAT Grid ID	NAT East	NAT North	Commonte
		soll	06 Nov 24		587510	7666425	Cloddy
ŀ	AEV550065	SOIL	00-Nov-24	MCA04_50	507510	7666425	Cloddy
ŀ	AEV330000	SOIL	00-IN0V-24	MGA94_50	507555	7000423	Cloddy
ŀ	AEVSS0067	SOIL	06-N0V-24	MGA94_50	587560	7666425	Cloudy
ŀ	AEVSSUU68	SOIL	06-1007-24	WGA94_50	587585	7666425	
-	AEVSS0069	SOIL	06-Nov-24	MGA94_50	587610	7666425	Fine soll
	AEVSS0070	SOIL	06-Nov-24	MGA94_50	587635	7666425	Cloddy
-	AEVSS0071	SOIL	06-Nov-24	MGA94_50	587660	7666425	Cloddy
	AEVSS0072	SOIL	06-Nov-24	MGA94_50	587685	7666425	Fine soil
	AEVSS0073	SOIL	06-Nov-24	MGA94_50	587710	7666425	Fine soil
	AEVSS0074	SOIL	06-Nov-24	MGA94_50	587460	7666375	Cloddy
	AEVSS0075	SOIL	06-Nov-24	MGA94_50	587485	7666375	Cloddy
	AEVSS0076	SOIL	06-Nov-24	MGA94_50	587510	7666375	Cloddy
	AEVSS0077	SOIL	06-Nov-24	MGA94_50	587535	7666375	Fine soil
	AEVSS0078	SOIL	06-Nov-24	MGA94_50	587560	7666375	Cloddy
	AEVSS0079	SOIL	06-Nov-24	MGA94_50	587585	7666375	Cloddy
	AEVSS0080	SOIL	06-Nov-24	MGA94_50	587610	7666375	Cloddy
ľ	AEVSS0081	SOIL	06-Nov-24	MGA94_50	587635	7666375	Fine soil
Ī	AEVSS0082	SOIL	06-Nov-24	MGA94_50	587660	7666375	Fine soil
ľ	AEVSS0083	SOIL	06-Nov-24	MGA94_50	587685	7666375	Fine soil
	AEVSS0084	SOIL	06-Nov-24	MGA94 50	587440	7666325	Fine soil
_ [AEVSS0085	SOIL	06-Nov-24	MGA94 50	587465	7666325	Cloddy
	AEVSS0086	SOIL	06-Nov-24	MGA94_50	587490	7666325	Cloddy
_ i	AEVSS0087	SOIL	06-Nov-24	MGA94 50	587515	7666325	Cloddy
Ţŀ	AEVSS0088	SOIL	06-Nov-24	MGA94 50	587540	7666325	Cloddy
)	AEV550089	SOIL	06-Nov-24	MGA94 50	587565	7666325	Cloddy
ŀ	AEVSS0009	SOIL	06-Nov-24	MGA94 50	587590	7666325	Cloddy
ŀ	ΔEVSS0090	SOIL	06 Nov 24	MGA94_50	587615	7666225	Cloddy
)	AEV(\$50091	SOIL	06 Nov 24	MGA04 E0	E07C40	7666225	Cloddy
ŀ	AEV550092	SOIL	06 Nov-24		587640	7666000	Cloddy
)	AEVSS0093	SOIL	06-INOV-24	MGA94_50	587665	7666325	Cloddy
	AEVSS0094	SOIL	07-Nov-24	MGA94_50	587420	7666275	
)	AEVSS0095	SOIL	07-Nov-24	MGA94_50	587445	/6662/5	Cloddy
	AEVSS0096	SOIL	07-Nov-24	MGA94_50	587470	7666275	Cloddy
•	AEVSS0097	SOIL	07-Nov-24	MGA94_50	587495	7666275	Cloddy
٢.	AEVSS0098	SOIL	07-Nov-24	MGA94_50	587520	7666275	Cloddy
)	AEVSS0099	SOIL	07-Nov-24	MGA94_50	587545	7666275	Clay
• ,	AEVSS0100	SOIL	07-Nov-24	MGA94_50	587570	7666275	Fine/Cloddy soil
-	AEVSS0101	SOIL	07-Nov-24	MGA94_50	587595	7666275	Cloddy
N	AEVSS0102	SOIL	07-Nov-24	MGA94_50	587620	7666275	Fine soil
4	AEVSS0103	SOIL	07-Nov-24	MGA94_50	587645	7666275	Fine soil
N	AEVSS0104	SOIL	07-Nov-24	MGA94_50	587395	7666225	Cloddy
1	AEVSS0105	SOIL	07-Nov-24	MGA94_50	587420	7666225	Cloddy
- [AEVSS0106	SOIL	07-Nov-24	MGA94_50	587445	7666225	Cloddy
١	AEVSS0107	SOIL	07-Nov-24	MGA94_50	587470	7666225	Cloddy
1	AEVSS0108	SOIL	07-Nov-24	MGA94 50	587495	7666225	Cloddy
١	AEVSS0109	SOIL	07-Nov-24	MGA94 50	587520	7666225	Cloddy
4	AEVSS0110	SOIL	07-Nov-24	MGA94 50	587545	7666225	Cloddy
ľ	AEVSS0111	SOIL	07-Nov-24	MGA94 50	587570	7666225	Cloddy
= Ì	AEVSS0112	SOIL	07-Nov-24	MGA94_50	587595	7666225	Fine soil
۱,	AEVSS0113	SOIL	07-Nov-24	MGA94 50	587620	7666225	Fine soil
ノ	AEV550114	SOIL	07-Nov-24	MGA94 50	587370	7666175	Cloddy
ŀ	AFVSS0115	SOIL	07-Nov-24	MGA94 50	587295	7666175	Cloddy
ŀ	AEVSS0115	SOIL	07-Nov-24	MGA94 50	587/20	7666175	Cloddy
1	ΔEVSS0117	SOIL	07-NOV-24	MGA94_50	5874420	7666175	Cloddy
ŀ	ΔΕ//\$50110	SOIL	07-N0V-24	MGA04_50	507445	7666175	Cloddy
ŀ	AEV/SS0110	SOIL	07-1009-24	MGA04_00	597400	7666175	
+	AEV(\$60120	SOIL	07-N0V-24	MGA04 E0	50/495	7000175	Cloddy
+	AEV550120	SOIL	07-N0V-24	MGA94_50	58/520	70001/5	
-	AEV550121	SOIL	07-NOV-24	WIGA94_50	587545	/6661/5	
-	AEVSSU122	SUIL	U7-Nov-24	WIGA94_50	58/5/0	/6661/5	Cloudy
-	AEVSSU123	SUIL	U/-Nov-24	MGA94_50	587595	/6661/5	
-	AEVSS0124	SUIL	08-Nov-24	MGA94_50	58/345	/666125	
-	AEVSS0125	SOIL	08-Nov-24	MGA94_50	587370	/666125	
-	AEVSS0126	SOIL	08-Nov-24	MGA94_50	587395	7666125	Fine Soli
	AEVSS0127	SOIL	08-Nov-24	MGA94_50	587420	7666125	Fine sol
	AEVSS0128	SOIL	08-Nov-24	MGA94_50	587445	7666125	Cloddy
	AEVSS0129	SOIL	08-Nov-24	MGA94_50	587470	7666125	Cloddy
	AEVSS0130	SOIL	08-Nov-24	MGA94_50	587495	7666125	Cloddy
	AEVSS0131	SOIL	08-Nov-24	MGA94_50	587520	7666125	Clay
	AEVSS0132	SOIL	08-Nov-24	MGA94_50	587545	7666125	Clay
	AEVSS0133	SOIL	08-Nov-24	MGA94_50	587570	7666125	Clay
ſ	AEVSS0134	SOIL	08-Nov-24	MGA94_50	587320	7666075	Creek Bank
ľ	AEVSS0135	SOIL	08-Nov-24	MGA94_50	587345	7666075	Fine
ľ	AEVSS0136	SOIL	08-Nov-24	MGA94_50	587370	7666075	Cloddy
ľ	AEVSS0137	SOIL	08-Nov-24	MGA94_50	587395	7666075	Cloddy
ľ	AEVSS0138	SOIL	08-Nov-24	MGA94_50	587420	7666075	Cloddy
ŀ	AEVSS0139	SOIL	08-Nov-24	MGA94 50	587445	7666075	Cloddy
ŀ	AEVSS0140	SOIL	08-Nov-24	MGA94 50	587470	7666075	Cloddy
ŀ	AEVSS0141	SOIL	08-Nov-24	MGA94 50	587495	7666075	Fine soil
ŀ	AEVSS0142	SOIL	08-Nov-24	MGA94 50	587520	7666075	Fine soil
- L		55.2	001404-24		307320	,000075	

	SampleID	Sample_Type	Sampled_Date	NAT_Grid_ID	NAT_East	NAT_North	Comments
	AEVSS0143	SOIL	08-Nov-24	MGA94_50	587545	7666075	Shallow red stony clay
	AEVSS0144	SOIL	08-Nov-24	MGA94_50	587290	7666025	Fine soil
	AEVSS0145	SOIL	08-Nov-24	MGA94_50	58/315	7666025	Fine soil (near creek bank)
	AEVSS0146	SOIL	08-INOV-24	MGA94_50	587340	7666025	Fine Soli
ł	AEV330147 AEVSS0148	SOIL	08-Nov-24	MGA94_50	587390	7666025	Rocky
ŀ	AEVSS0140	SOIL	08-Nov-24	MGA94_50	587415	7666025	Stonie outcrop
ľ	AEVSS0150	SOIL	08-Nov-24	MGA94_50	587440	7666025	Surface Stone
ĺ	AEVSS0151	SOIL	08-Nov-24	MGA94_50	587465	7666025	Clay
	AEVSS0152	SOIL	08-Nov-24	MGA94_50	587490	7666025	Rocky
	AEVSS0153	SOIL	08-Nov-24	MGA94_50	587515	7666025	Clay
	AEVSS0154	SOIL	08-Nov-24	MGA94_50	587260	7665975	Fine soil
ŀ	AEVSS0155	SOIL	08 Nov 24	MGA94_50	587285	7665975	Fine soil (near creek bank)
ł	AEV550150	SOIL	08-Nov-24	MGA94_50	587335	7665975	
ŀ	AEVSS0158	SOIL	08-Nov-24	MGA94_50	587360	7665975	Fine soil
ľ	AEVSS0159	SOIL	08-Nov-24	 MGA94_50	587385	7665975	Rocky Ridge
	AEVSS0160	SOIL	08-Nov-24	MGA94_50	587410	7665975	Rocky
	AEVSS0161	SOIL	08-Nov-24	MGA94_50	587435	7665975	Shallow clay
	AEVSS0162	SOIL	08-Nov-24	MGA94_50	587460	7665975	Fine soil
-	AEVSS0163	SOIL	08-Nov-24	MGA94_50	587485	7665975	Fine soil
- I	AEV550164	SOIL	09-Nov-24	MGA94_50	587260	7665925	
l	AEV550165	SOIL	09-Nov-24	MGA94_50	587285	7665925	Fine soil
)	AEVSS0167	SOIL	09-Nov-24	MGA94_50	587310	7665925	Fine soil (near creek bank)
ľ	AEVSS0168	SOIL	09-Nov-24	MGA94_50	587335	7665925	(white/Red) Cloddy
N	AEVSS0169	SOIL	09-Nov-24	MGA94_50	587360	7665925	Rocky out crop
	AEVSS0170	SOIL	09-Nov-24	MGA94_50	587385	7665925	Rocky Surface
)	AEVSS0171	SOIL	09-Nov-24	MGA94_50	587410	7665925	Rocky Surface
	AEVSS0172	SOIL	09-Nov-24	MGA94_50	587435	7665925	Gravely Soil
)	AEVSS0173	SOIL	09-Nov-24	MGA94_50	587460	7665875	Gravely soll stoney
ŀ	AEV330174	SOIL	09-Nov-24	MGA94_50	587235	7665875	Fine
ł	AEVSS0176	SOIL	09-Nov-24	MGA94_50	587260	7665875	Fine
)	AEVSS0177	SOIL	09-Nov-24	 MGA94_50	587285	7665875	Fine soil (near creek bank)
	AEVSS0178	SOIL	09-Nov-24	MGA94_50	587310	7665875	Fine soil (near creek bank)
=	AEVSS0179	SOIL	09-Nov-24	MGA94_50	587335	7665875	Rocky
	AEVSS0180	SOIL	09-Nov-24	MGA94_50	587360	7665875	Rocky Surface
	AEVSS0181	SOIL	09-Nov-24	MGA94_50	587385	7665875	Stoney soil
)	AEV350182	SOIL	09-Nov-24	MGA94_50	587435	7665875	Cloddy
-Ì	AEVSS0184	SOIL	09-Nov-24	MGA94 50	587120	7665825	Rocky
Ń	AEVSS0185	SOIL	09-Nov-24	MGA94_50	587145	7665825	Stoney soil
1	AEVSS0186	SOIL	09-Nov-24	MGA94_50	587170	7665825	Stoney soil low out crop
	AEVSS0187	SOIL	09-Nov-24	MGA94_50	587195	7665825	Stoney
	AEVSS0188	SOIL	09-Nov-24	MGA94_50	587220	7665825	(red) soil
_	AEVSS0189	SOIL	09-Nov-24	MGA94_50	587245	7665825	Fine soil (near creek bank)
	AEV550190	SOIL	09-Nov-24	MGA94_50	587295	7665825	Near creek
1	AEVSS0192	SOIL	09-Nov-24	MGA94 50	587320	7665825	Ridge side
ľ	AEVSS0193	SOIL	09-Nov-24	 MGA94_50	587345	7665825	Copper floater-Ridge side
•	AEVSS0194	SOIL	09-Nov-24	MGA94_50	587370	7665825	Rocky
	AEVSS0195	SOIL	09-Nov-24	MGA94_50	587395	7665825	Stony gravel.
	AEVSS0196	SOIL	09-Nov-24	MGA94_50	587420	7665825	Rocky
ŀ	AEV55019/	SOIL	09-Nov-24	MG494_50	58/110	7665775	Rocky
ŀ	AEV550198	SOIL	09-Nov-24	MGA94_50	587160	7665775	Rocky
ŀ	AEVSS0200	SOIL	09-Nov-24	MGA94 50	587185	7665775	Rocky Surface
ľ	AEVSS0201	SOIL	09-Nov-24	MGA94_50	587210	7665775	Rocky Surface
ĺ	AEVSS0202	SOIL	09-Nov-24	MGA94_50	587235	7665775	Fine soil
	AEVSS0203	SOIL	09-Nov-24	MGA94_50	587260	7665775	Fine soil (near creek bank)
	AEVSS0204	SOIL	09-Nov-24	MGA94_50	587285	7665775	Fine soil
-	AEVSS0205	SOIL	09-Nov-24	MGA94_50	587310	7665775	KOCKY-Blue stone on surface
ŀ	AEV350200	SOIL	09-1107-24	MGA94_50	587260	7665775	Stoney ridge side
ŀ	AEVSS0208	SOIL	09-Nov-24	MGA94 50	587385	7665775	Stoney ridge side-Visible copper
ŀ	AEVSS0209	SOIL	10-Nov-24	MGA94_50	587160	7665725	Fine soil
ĺ	AEVSS0210	SOIL	10-Nov-24	MGA94_50	587185	7665725	Fine soil
	AEVSS0211	SOIL	10-Nov-24	MGA94_50	587210	7665725	Fine soil
	AEVSS0212	SOIL	10-Nov-24	MGA94_50	587235	7665725	Fine soil
-	AEVSS0213	SOIL	10-Nov-24	MGA94_50	587260	7665725	Fine soil (near creek bank)
-	AEV350214	SOIL	10-NOV-24	MG404_50	587285	7665725	Rocky
ŀ	AEV550215	SOIL	10-Nov-24	MGA94_50	587335	7665725	Rocky
ŀ	AEVSS0217	SOIL	10-Nov-24	MGA94 50	587360	7665725	(White&Red) Rocky
ľ	AEVSS0218	SOIL	10-Nov-24	MGA94_50	587130	7665675	Fine soil
	AEVSS0219	SOIL	10-Nov-24	MGA94_50	587155	7665675	Fine soil
	AEVSS0220	SOIL	10-Nov-24	MGA94_50	587180	7665675	Fine soil

SampleID	Sample_Type	Sampled_Date	NAT_Grid_ID	NAT_East	NAT_North	Comments
AEVSS0221	SOIL	10-Nov-24	MGA94_50	587205	7665675	Fine soil
AEVSS0222	SOIL	10-Nov-24	MGA94_50	587230	7665675	Fine soil
AEVSS0223	SOIL	10-Nov-24	MGA94_50	587255	7665675	Fine soil (near creek bank)
AEVSS0224	SOIL	10-Nov-24	MGA94_50	587280	7665675	Fine soil
AEVSS0225	SOIL	10-Nov-24	MGA94_50	587305	7665675	Fine soil
AEVSS0226	SOIL	10-Nov-24	MGA94_50	587330	7665675	Fine soil
AEVSS0227	SOIL	10-Nov-24	MGA94_50	587100	7665625	Fine soil
AEVSS0228	SOIL	10-Nov-24	MGA94_50	587125	7665625	Fine soil
AEVSS0229	SOIL	10-Nov-24	MGA94_50	587150	7665625	Fine soil
AEVSS0230	SOIL	10-Nov-24	MGA94_50	587175	7665625	Fine soil
AEVSS0231	SOIL	10-Nov-24	MGA94_50	587200	7665625	Fine soil
AEVSS0232	SOIL	10-Nov-24	MGA94_50	587225	7665625	Fine soil
AEVSS0233	SOIL	10-Nov-24	MGA94_50	587250	7665625	Fine soil (near creek bank)
AEVSS0234	SOIL	10-Nov-24	MGA94_50	587275	7665625	Fine soil
AEVSS0235	SOIL	10-Nov-24	MGA94_50	587300	7665625	Fine soil
AEVSS0236	SOIL	10-Nov-24	MGA94_50	587080	7665575	Fine soil
AEVSS0237	SOIL	11-Nov-24	MGA94_50	587105	7665575	Fine soil
AEVSS0238	SOIL	11-Nov-24	MGA94_50	587130	7665575	Fine soil
AEVSS0239	SOIL	11-Nov-24	MGA94_50	587155	7665575	Fine soil
AEVSS0240	SOIL	11-Nov-24	MGA94_50	587180	7665575	Fine soil
AEVSS0241	SOIL	11-Nov-24	MGA94_50	587205	7665575	Fine soil
AEVSS0242	SOIL	11-Nov-24	MGA94_50	587230	7665575	Fine soil
AEVSS0243	SOIL	11-Nov-24	MGA94_50	587255	7665575	Fine soil (near creek bank)
AEVSS0244	SOIL	11-Nov-24	MGA94_50	587280	7665575	Rocky

Appendix 2: Soil Sampling and Rock Chips Results

	SampleID	Method	Au_ppb	Ag_ppm	As_ppm	Ba_ppm	Bi_ppm	Cd_ppm	Co_ppm	Cr_ppm	Cu_ppm	Ga_ppm	Ge_ppm	Hg_ppm	S_pct	Sb_ppm	Se_ppm	Sn_ppm	Te_ppm	Tl_ppm	U_ppm	Zn_ppm
	24WDR0040	WAR_ICPMS	28.5	3.4	112	146	3.47	0.73	363	21	1090	1.97	-0.05	0.02	0.175	0.23	27.2	0.9	9.32	0.06	2.44	633
	24WDR0041	WAR_ICPMS	16.5	2.29	37.9	149	3.76	1.09	207	32	746	2.37	0.33	0.06	0.104	0.22	35.4	1.3	11.6	0.03	6.34	881
	24WDR0042	WAR_ICPMS	1.7	0.07	60.8	370	0.08	0.81	98.2	27	407	0.99	0.22	0.04	0.027	1.76	3.38	0.2	1.76	0.78	11.4	496
	24WDR0043	WAR_ICPMS	2.6	0.14	18.6	166	1.57	1.96	230	37	639	2.09	0.19	0.02	0.053	0.1	10.2	1.7	4.97	0.05	2.62	954
	24WDR0044	WAR_ICPMS	-0.5	0.01	0.7	3.1	0.01	0.06	0.73	6	4.6	0.09	-0.05	-0.01	0.005	0.3	0.06	-0.1	0.01	-0.02	0.09	18
\mathbf{O}	24WDR0045	WAR_ICPMS	3.9	0.05	10.3	181	1.71	1.06	101	51	482	2.69	0.22	0.03	0.048	0.18	21.1	0.7	5.17	0.13	4.57	1200
	24WDR0046	WAR_ICPMS	1.7	0.08	8.7	320	1.61	0.89	90	69	671	2.8	0.24	0.02	0.044	0.2	16.8	0.7	3.17	0.1	4.46	1050
1	24WDR0047	WAR_ICPMS	797	1.34	26.3	168	0.39	2.36	164	266	27600	8.64	0.3	0.45	0.062	0.36	3.62	10.2	0.38	1.91	42.7	1430
U	24WDR0048	WAR_ICPMS	470	79.9	36.5	136	42.6	8.81	1210	92	146000	8.49	0.37	17.3	0.184	0.25	136	128	3.47	0.83	35.9	4170
()	24WDR0049		589	37.2	63.3	214	/8.1	14.2	2520	147	122000	9.78	0.21	11./	0.15	0.42	63.9	102	4.57	1.57	85.8	8460
	24WDR0050		175	37.6	24	266	0.472	0.414	1740	52	108000	1.87	0.38	16.1	0.14	0.31	139	141	5.1	1.23	40	7050
	AEV550001		16.2	0.333	12.2	06.9	0.473	0.414	34.3	642	144	12.1	0.12	0.026	0.012	0.547	0.83	1.//	0.073	0.263	0.009	193
	AEV550002	ARUF_ICPIVIS	7.9	0.308	12.5	90.0 60.0	0.370	0.229	29.4	706	08.2	13.2	0.00	0.019	0.008	0.300	1.04	1.0	0.06	0.192	0.906	130
	AEV550003	ARUF_ICPMS	63	0.144	12.5	109	0.204	0.120	23	700	102	1/1 3	0.09	0.003	0.007	0.422	0.96	1.37	0.00	0.137	0.852	154
	AEV550004		3.2	0.268	13.7	154	0.373	0.323	35 3	872	102	16.3	0.00	0.052	0.007	0.475	0.50	1.7	0.000	0.217	1 12	214
U	AEV550006		5.2	0.159	14.4	162	0.394	0.445	24.4	903	78.3	14.4	0.09	0.08	0.008	0.502	0.75	1.65	0.177	0.247	1.12	479
	AEVSS0007	ARUE ICPMS	7.1	0.369	38.3	117	0.574	0.771	106	1970	271	7.07	0.14	4.58	0.027	1.45	0.44	1.34	0.65	0.285	0.918	2190
	AEVSS0008	ARUF ICPMS	8	0.112	13.7	158	0.381	0.152	34.9	906	80.8	14.4	0.09	0.052	0.011	0.499	1	1.72	0.105	0.219	1.32	114
	AEVSS0009	ARUF ICPMS	5.1	0.14	12.2	158	0.392	0.188	36.1	824	112	15.2	0.08	0.092	0.011	0.514	0.71	1.89	0.063	0.229	1.29	123
	AEVSS0010	ARUF_ICPMS	2.5	0.186	13.8	99.3	0.338	0.216	26	673	86.3	15.4	0.14	0.042	0.006	0.502	0.68	1.8	0.075	0.26	0.994	129
()	AEVSS0011	ARUF_ICPMS	6.1	0.258	11.8	125	0.353	0.187	27.4	688	74.1	15.6	0.12	0.024	0.009	0.501	0.83	1.77	0.075	0.252	1.08	128
<u> </u>	AEVSS0012	ARUF_ICPMS	5.2	0.198	12.3	142	0.344	0.173	29.7	745	67.7	16.2	0.14	0.029	0.01	0.5	0.83	1.76	0.081	0.255	0.95	132
	AEVSS0013	ARUF_ICPMS	5	0.198	12.9	123	0.362	0.218	35.9	787	83.6	17.5	0.16	0.028	0.011	0.45	0.85	1.9	0.057	0.342	1.17	149
Û	AEVSS0014	ARUF_ICPMS	5.2	0.15	11.2	120	0.293	0.107	29.7	761	58.1	14.2	0.12	0.033	0.009	0.456	0.77	1.5	0.08	0.219	0.889	118
Õ	AEVSS0015	ARUF_ICPMS	3.1	0.227	12.3	226	0.435	0.61	50	938	108	15.4	0.11	0.124	0.011	0.54	0.68	2.02	0.108	0.289	1.25	310
\Box	AEVSS0016	ARUF_ICPMS	5.6	0.17	13.3	161	0.406	0.302	31.7	953	71.3	13	0.14	0.06	0.014	0.582	0.57	1.71	0.074	0.234	1.09	287
	AEVSS0017	ARUF_ICPMS	5.1	0.247	18.9	235	0.635	0.458	53	1460	111	18	0.15	0.134	0.047	0.734	0.94	2.54	0.151	0.306	1.83	180
	AEVSS0018	ARUF_ICPMS	5.4	0.089	16.8	224	0.551	0.155	28.2	881	67.9	18.7	0.16	0.064	0.013	0.551	0.72	2.2	0.246	0.266	1.64	103
	AEVSS0019	ARUF_ICPMS	5.4	0.256	12.9	124	0.304	0.207	23.7	557	58.5	15.4	0.1	0.022	0.007	0.467	0.86	1.7	0.059	0.22	0.887	108
	AEVSS0020	ARUF_ICPMS	3.8	0.114	11.8	118	0.291	0.142	25	613	51.7	15.6	0.12	0.021	0.006	0.417	0.7	1.65	0.058	0.244	1.01	98.2
11	AEVSS0021	ARUF_ICPMS	14.2	0.269	15.6	98.7	0.298	0.1	25.6	631	53.9	1/	0.19	0.021	0.013	0.481	1	1./8	0.055	0.297	1.23	86.4
	AEVSS0022	ARUF_ICPMS	5.2	0.116	12.8	131	0.302	0.089	24.6	664	49.9	16	0.14	0.037	0.007	0.479	0.81	1.69	0.064	0.244	0.964	/3.6
	AEVSS0023	ARUF_ICPMS	7.0	0.338	14.1	76.4	0.279	0.075	27.4	666	50.8	15.4	0.15	0.019	0.012	0.449	1.14	1.63	0.062	0.244	0.799	65.3
	AEV550024		7.8	0.00	14.0	2/8	0.275	0.064	30.1	727	52.5	10.0	0.14	0.029	0.013	0.442	0.09	1.52	0.056	0.231	1.29	08.3
	AEV550025	ARUF_ICPIVIS	5.7	0.087	14.9	200	0.35	0.080	20.0	905	50.5	19.9	0.20	0.052	0.013	0.50	0.96	2.05	0.000	0.325	1.55	0.00
	AEV550020	ARUF_ICPINS	4.0	0.088	15.5	279	0.364	0.127	30.0	503	54.5	10.5	0.14	0.037	0.019	0.309	0.01	2.05	0.08	0.241	1.29	78.2
	AEV550027		3.7	0.070	12.6	169	0.301	0.005	25.4	580	46.8	17.0	0.00	0.00	0.025	0.419	0.51	1.55	0.052	0.152	0.883	88.9
	AEVSS0029	ARUE ICPMS	7.7	0.227	17	135	0.253	0.142	27.4	545	54.2	14.4	0.14	0.08	0.012	0.397	0.73	1.48	0.049	0.226	1.04	82.3
	AEVSS0030	ARUE ICPMS	5.4	0.114	13.1	142	0.285	0.108	22.2	590	46.8	14.2	0.14	0.015	0.011	0.46	0.71	1.52	0.062	0.198	1.02	70.3
	AEVSS0031	ARUF ICPMS	6.1	0.107	15.1	150	0.29	0.11	29.4	542	50.3	16.2	0.16	0.02	0.012	0.462	0.75	1.63	0.058	0.241	1.09	74.9
	AEVSS0032	ARUF ICPMS	5.1	0.073	12.6	175	0.287	0.09	26.4	543	51.9	15.8	0.12	0.032	0.012	0.429	1.01	1.58	0.059	0.23	1.15	83.4
	AEVSS0033	ARUF ICPMS	5.4	0.062	13.7	176	0.307	0.079	34.1	467	52.3	17.1	0.16	0.028	0.011	0.477	1.05	1.71	0.064	0.264	1.04	69.5
						-											0.04					
	AEVSS0034	ARUF_ICPMS	6.7	0.052	14.2	115	0.266	0.066	30.2	415	48.8	14.3	0.12	0.031	0.007	0.426	0.84	1.46	0.062	0.183	0.856	/2.6

	SampleID	Method	Au_ppb	Ag_ppm	As_ppm	Ba_ppm	Bi_ppm	Cd_ppm	Co_ppm	Cr_ppm	Cu_ppm	Ga_ppm	Ge_ppm	Hg_ppm	S_pct	Sb_ppm	Se_ppm	Sn_ppm	Te_ppm	Tl_ppm	U_ppm	Zn_ppm
	AEVSS0036	ARUF_ICPMS	3	0.067	13.5	111	0.276	0.075	28.1	334	48.4	17	0.13	0.038	0.009	0.406	0.96	1.43	0.047	0.214	0.883	68.8
	AEVSS0037	ARUF_ICPMS	24.4	0.093	14.5	101	0.306	0.144	29.1	432	52.2	16.2	0.14	0.022	0.009	0.463	0.68	1.69	0.06	0.267	0.91	74.6
	AEVSS0038	ARUF ICPMS	4.2	0.149	16.2	125	0.303	0.138	25.9	422	47.2	17.5	0.19	0.021	0.016	0.457	0.79	1.64	0.053	0.276	1.07	76.1
	AEVSS0039	ARUF ICPMS	4.2	0.14	16.9	97.4	0.315	0.08	29.3	404	47.4	16.4	0.14	0.03	0.008	0.475	0.7	1.6	0.06	0.221	0.927	67.2
	AEVSS0040	ARUF ICPMS	7.7	0.085	15.4	133	0.301	0.074	36	425	52.4	16.4	0.17	0.02	0.014	0.431	1	1.51	0.058	0.265	1.6	67.3
	AEVSS0041	ARUE ICPMS	4.2	0.039	13.5	210	0.319	0.069	35.2	442	50.3	16.8	0.17	0.011	0.011	0.448	0.98	1.57	0.057	0.272	1.37	77.8
	AEVSS0042	ARUE ICPMS	7.9	0.052	20.4	113	0.318	0.053	30	391	50.1	16.3	0.19	0.003	0.025	0.472	1.12	1.6	0.058	0.285	1.71	66.4
	AEVSS0043	ARUE ICPMS	3	0.072	12.3	205	0.367	0.187	35.7	363	52.9	18.6	0.19	0.036	0.017	0.451	0.9	1.74	0.063	0.313	1.31	96.4
	AEVSS0044	ARUE ICPMS	23	0.025	16.9	101	0.284	0.06	33.2	324	50	15.5	0.15	0.007	0.012	0.429	1.01	1 43	0.053	0.218	0.977	70.9
	AEVS50045		3.7	0.053	11.9	126	0.278	0.063	28.8	284	42.3	17.8	0.18	0.007	0.009	0.411	0.92	1.55	0.055	0.252	1.07	66.3
	AEVSS0046		5.7	0.033	16.2	119	0.275	0.005	37	371	54.6	17.0	0.10	0.013	0.009	0.481	0.52	1.55	0.055	0.232	1.07	82
	AEVSS0047		5.5	0.137	16.2	81.6	0.289	0.088	29.5	343	47.3	17	0.17	0.075	0.005	0.401	0.00	1.54	0.05	0.267	1.06	66.5
Y	AEVSS0048		6	0.209	17.5	113	0.200	0.069	36.6	350	52.5	15.9	0.15	0.02	0.07	0.451	1 38	1.54	0.055	0.207	2.06	67.9
()	AEV550040		4.1	0.205	17.5	195	0.200	0.005	3/1	455	53.2	15.5	0.13	0.01	0.022	0.437	0.95	1.9	0.055	0.245	1.15	76.8
	AEVSS0050		4.1	0.05	14.6	97.2	0.316	0.058	30.8	362	46.8	16.6	0.15	0.025	0.012	0.456	0.95	1.45	0.057	0.233	1.13	72.0
	AEVSS0050		5.6	0.03	14.0	93.4	0.319	0.050	26.6	331	46.9	17.5	0.16	0.013	0.011	0.450	1 19	1.54	0.000	0.242	1.45	69.6
	AEVSS0052		4.5	0.043	13.5	186	0.31	0.068	42	334	45.3	17.5	0.10	0.022	0.014	0.401	1.15	1 59	0.056	0.275	1.43	69.9
	AEVSS0052		4.5	0.045	12.3	160	0.289	0.064	38.0	329	45.8	16.8	0.19	0.022	0.014	0.445	1.21	1.35	0.050	0.263	1.72	67.4
	AEV550055		3.7	0.00	12.5	113	0.205	0.004	28	276	30	16.6	0.15	0.02	0.010	0.418	0.99	1.40	0.052	0.205	1.70	59.8
	AEV550054		1.1	0.07	14.3	136	0.317	0.035	20	362	46.8	17.5	0.17	0.021	0.013	0.532	0.99	1.02	0.05	0.235	1.33	68.3
	AEV550055		4.4	0.124	14.5	111	0.286	0.12	32.6	302	46.8	17.5	0.15	0.032	0.013	0.332	0.65	1.77	0.05	0.33	1.45	61.6
	AEV550050		4.1	0.087	1/1 3	166	0.200	0.084	30.4	330	40.0	15.9	0.10	0.020	0.011	0.435	0.05	1.50	0.055	0.242	1.05	68.8
	AEV550057			0.007	12.9	169	0.303	0.004	31.5	360	43.0	17.1	0.15	0.020	0.013	0.452	0.88	1.5	0.052	0.245	1.25	87.3
\mathbf{O}	AEV550050		4.5	0.055	12.5	151	0.324	0.076	33.1	/38	42.4	16.2	0.17	0.019	0.010	0.432	1 1 2	1.55	0.050	0.201	1.42	62.4
()	AEV550050		7.5	0.00	11.4	170	0.338	0.062	26.2	328	/3 /	18.6	0.17	0.015	0.012	0.453	1.12	1.3	0.00	0.201	1.0	72.4
	AEV550060		2.5	0.055	11.5	170	0.330	0.002	20.2	201	20.0	10.0	0.10	0.010	0.011	0.435	0.08	1.75	0.004	0.525	1.70	72.4
	AEV550067		2.2	0.07	12.2	162	0.303	0.007	23.7	286	/1 5	20	0.19	0.013	0.011	0.430	1 1 /	1.38	0.00	0.20	1.23	80.9
	AEV550062		1.6	0.059	12.2	221	0.290	0.079	/2.5	200	41.5	18.6	0.15	0.057	0.019	0.430	1.14	1.40	0.056	0.235	1.07	79.5
U	AEV550064		17.4	0.036	79.5	196	0.324	0.088	43.5	20/	51.6	18.0	0.15	0.038	0.02	0.434	1.00	1.5	0.050	0.244	2.02	79.5
	AEV550065		2.6	0.030	20.5	164	0.335	0.081	20.8	210	/5.2	17.4	0.19	0.01	0.012	0.313	0.88	1.78	0.004	0.31	1.25	80.3
	AEV550066		11.2	0.120	16.5	119	0.320	0.133	23.0	255	45.5	17.9	0.2	0.039	0.013	0.439	1 22	1.74	0.038	0.295	1.25	56.5
	AEV550000		4.7	0.005	12.9	2/1	0.230	0.073	/1 2	200	40.5	16.2	0.10	0.023	0.020	0.35	0.80	1.27	0.040	0.252	1.50	71.1
	AEV550068		3.5	0.058	12.0	188	0.325	0.073	29.1	377	47.0	17.3	0.14	0.02	0.017	0.443	1.08	1.45	0.054	0.255	1.35	75.5
	AEV550060		8.5	0.030	14.0	04.2	0.525	0.074	20.1	/90	51.1	17.5	0.10	0.024	0.013	0.499	1.00	1.0	0.005	0.202	1.55	62.7
	AEV550009		6.8	0.061	14.9	151	0.4	0.058	23.0	272	/0.0	14.7	0.21	0.016	0.008	0.498	1.03	1.52	0.005	0.351	1.15	70.8
11	AEV550070		0.0	0.001	17.0	112	0.303	0.051	28.0	272	40.0	14.7	0.10	0.010	0.012	0.441	1.01	1.21	0.007	0.251	1.01	67.1
	AEV550077		54	0.007	15.1	1/2	0.3	0.051	20.0	210	47.0	14.5	0.17	0.023	0.017	0.41	0.96	1.21	0.039	0.233	1.5	64.7
	AEV550072		3.4	0.00	15 1	140	0.31	0.00	24.4	1/18	43.7	15.5	0.19	0.054	0.013	0.434	0.90	1.20	0.040	0.222	1.1	55.9
	AEV550073		5.0	0.049	15.1	125	0.204	0.050	24.4	210	42	14.9	0.19	0.000	0.014	0.501	0.01	1.07	0.035	0.100	1.2	64.9
	AEV550074		7	0.075	14.0	140	0.322	0.001	20.0	279	45.7	14.0	0.2	0.010	0.011	0.558	1 20	1.40	0.049	0.322	2.17	64.3
	AEV550075		28	0.033	14.9	140	0.31	0.091	29.9	270	20.0	15.5	0.19	0.012	0.023	0.431	0.8	1.3	0.048	0.204	1 05	60.5
	AEV550070		2.0	0.077	11.5	100	0.310	0.091	23.7	293	42.2	10.1	0.10	0.02	0.011	0.444	0.0	1.41	0.051	0.307	1.55	65.7
	AEV550077		3.2	0.045	11.5	190	0.34	0.063	27	204	42.2	15.2	0.19	0.017	0.008	0.431	0.0	1.41	0.035	0.309	1.57	74 5
	AEV550070		3.4	0.040	11.5	100	0.33	0.062	20.1	322	45	15.5	0.14	0.013	0.011	0.420	0.91	1.55	0.046	0.200	1.2	74.3
	AEV550079		5.8	0.052	12.4	161	0.342	0.009	20.2	219	44.9	15.5	0.18	0.021	0.008	0.479	0.93	1.42	0.034	0.291	1.20	70.7
	AEV330080		0.1 E 0	0.00	13.4	101	0.32	0.00	30.0	210	40.1	10.2	0.19	0.037	0.015	0.405	1.92	1.3/	0.049	0.200	1.45	/ 3.Z
	AEV550081		5.8	0.007	10.3	00.1	0.31	0.051	20./	199	48./	15./	0.21	0.008	0.019	0.48	1.2/	1.20	0.05	0.274	0.072	E 0 0
	AEV550082		6.4	0.122	19.3	90.1	0.31/	0.05	28.5	190	51	16.5	0.19	0.025	0.014	0.475	0.74	1.20	0.048	0.202	0.972	58.9
	AEV550083	ARUF_ICPIVIS	b./	0.071	15./	120	0.254	0.053	23.9	1/5	44	15./	0.18	0.025	0.015	0.402	0.74	1.1	0.036	0.202	1.02	57.5
	AEVSS0084	ARUF_ICPIMS	8.3	0.13	19.4	118	0.331	0.111	29.2	293	48.1	14.5	0.18	0.025	0.026	0.485	0.72	1.39	0.052	0.282	1.25	58.4

ANAX METALS LIMITED

	SampleID	Method	Au_ppb	Ag_ppm	As_ppm	Ba_ppm	Bi_ppm	Cd_ppm	Co_ppm	Cr_ppm	Cu_ppm	Ga_ppm	Ge_ppm	Hg_ppm	S_pct	Sb_ppm	Se_ppm	Sn_ppm	Te_ppm	Tl_ppm	U_ppm	Zn_ppm
	AEVSS0085	ARUF_ICPMS	4	0.104	11.5	123	0.358	0.101	23.5	301	42.1	16.6	0.22	0.025	0.009	0.531	0.75	1.64	0.056	0.36	1.3	61.4
	AEVSS0086	ARUF_ICPMS	11.5	0.036	15.4	107	0.322	0.06	25.2	301	43.9	14.7	0.19	0.004	0.02	0.467	1.1	1.39	0.049	0.324	2.89	59
	AEVSS0087	ARUF_ICPMS	6.6	0.085	12.6	142	0.333	0.074	28.2	310	44.3	15	0.19	0.02	0.015	0.464	0.97	1.36	0.056	0.3	1.9	62.4
	AEVSS0088	ARUF_ICPMS	3.4	0.049	11	151	0.321	0.063	24.4	302	42.3	15.4	0.21	0.018	0.011	0.439	0.78	1.39	0.05	0.294	1.44	70.4
	AEVSS0089	ARUF_ICPMS	5.1	0.039	13.7	167	0.325	0.057	32.9	262	44.9	16.2	0.21	0.026	0.015	0.462	0.96	1.41	0.05	0.29	1.6	70.3
	AEVSS0090	ARUF_ICPMS	4.8	0.054	14.7	173	0.313	0.062	32.2	219	44.6	17.5	0.23	0.04	0.013	0.467	0.96	1.4	0.047	0.318	1.22	73.3
	AEVSS0091	ARUF_ICPMS	7.5	0.06	15.5	154	0.297	0.064	31	226	46.5	15.5	0.2	0.015	0.013	0.453	1.16	1.24	0.044	0.272	1.71	71.9
	AEVSS0092	ARUF_ICPMS	7.7	0.052	17.5	146	0.281	0.06	34.7	244	44.7	15.3	0.19	0.018	0.018	0.461	1.5	1.21	0.045	0.276	1.62	62.3
	AEVSS0093	ARUF_ICPMS	9.1	0.071	13.6	132	0.238	0.05	21.5	197	39.7	15.9	0.17	0.087	0.01	0.407	0.77	1.18	0.04	0.234	0.935	53.4
	AEVSS0094	ARUF ICPMS	6.1	0.136	13	130	0.38	0.149	24.6	332	56	16	0.19	0.025	0.014	0.536	0.74	1.6	0.059	0.351	1.5	82.1
	AEVSS0095	ARUF ICPMS	6.3	0.072	15.4	104	0.322	0.07	37	319	54.3	15.5	0.13	0.024	0.017	0.486	0.75	1.47	0.048	0.228	1.54	70.1
	AEVSS0096	ARUF ICPMS	3.4	0.057	13	144	0.308	0.093	27.6	305	45.9	15.2	0.2	0.014	0.01	0.489	0.85	1.43	0.05	0.214	1.66	68.4
	AEVSS0097	ARUF ICPMS	4.1	0.078	13.4	163	0.31	0.119	30.9	331	50.4	16.2	0.19	0.021	0.013	0.502	0.77	1.42	0.052	0.221	1.41	77
C	AEVSS0098	ARUF ICPMS	3.4	0.078	14.1	163	0.297	0.082	31	366	51.2	15.6	0.19	0.021	0.012	0.505	0.93	1.43	0.058	0.213	1.47	73.9
	AEVSS0099	ARUF ICPMS	8.7	0.055	15.9	144	0.294	0.051	40.5	419	57.2	15.6	0.19	0.011	0.016	0.49	1.53	1.29	0.052	0.217	1.99	72.7
	AEVSS0100	ARUF ICPMS	9.1	0.07	18.7	109	0.298	0.071	31.2	259	55	17.1	0.21	0.015	0.02	0.544	1.42	1.42	0.059	0.23	2.26	73
	AEVSS0101	ARUF ICPMS	4	0.039	16.4	163	0.307	0.064	30.4	251	54.5	17.9	0.21	0.019	0.017	0.553	1.06	1.44	0.063	0.228	1.46	85.6
	AEVSS0102	ARUF ICPMS	6.6	0.062	17.7	92.1	0.313	0.052	33.4	241	63.5	17.5	0.19	0.004	0.019	0.52	1.39	1.24	0.07	0.214	1.28	72.7
	AEVSS0103	ARUF ICPMS	8	0.057	15.4	125	0.3	0.051	30.9	234	66.3	20.5	0.21	0.064	0.008	0.512	0.95	1.42	0.062	0.223	0.979	73.2
	AEVSS0104	ARUF ICPMS	6.4	0.11	16.7	163	0.414	0.262	31	449	92.7	16.8	0.19	0.018	0.015	0.622	0.96	1.7	0.066	0.266	1.77	115
	AEVSS0105	ARUF ICPMS	2.7	0.065	15	197	0.364	0.119	38.7	389	67.5	17	0.17	0.01	0.014	0.535	0.81	1.55	0.06	0.231	1.91	91.9
	AEVSS0106	ARUF ICPMS	2.3	0.044	13.3	147	0.3	0.074	31.2	327	52.2	14.4	0.16	0.011	0.018	0.463	0.77	1.27	0.053	0.195	1.62	70.5
	AEVSS0107	ARUF ICPMS	3.5	0.06	15.3	191	0.348	0.109	40.4	418	61.8	19	0.23	0.011	0.027	0.522	0.93	1.59	0.061	0.261	1.62	92.7
	AEVSS0108	ARUF_ICPMS	5.1	0.075	16.2	158	0.304	0.094	38.4	413	63.5	18.3	0.18	0.011	0.023	0.468	0.97	1.3	0.05	0.202	1.44	94.1
(\mathbf{n})	AEVSS0109	ARUF_ICPMS	6.6	0.068	14.6	162	0.313	0.074	38.3	368	59.8	16.9	0.15	0.026	0.023	0.484	0.96	1.36	0.053	0.216	1.42	86.9
	AEVSS0110	ARUF ICPMS	2.3	0.066	14.4	175	0.344	0.059	40	318	71.8	21.8	0.24	0.017	0.029	0.551	1.19	1.63	0.059	0.285	1.86	93.6
	AEVSS0111	ARUF ICPMS	10.6	0.03	16.6	165	0.292	0.06	41.1	262	67.2	17.4	0.24	0.006	0.03	0.449	1.42	1.36	0.051	0.28	3.39	85.1
	AEVSS0112	ARUF_ICPMS	5.6	0.04	12.1	133	0.273	0.06	29.8	261	66.9	16.4	0.19	0.003	0.022	0.431	1.46	1.15	0.052	0.24	1.52	95.3
	AEVSS0113	ARUF_ICPMS	3.3	0.046	9.9	165	0.319	0.063	37.5	264	55.8	15.1	0.07	0.063	0.01	0.545	1.01	1.33	0.058	0.17	1	75.8
\mathbf{O}	AEVSS0114	ARUF_ICPMS	5	0.165	14	192	0.416	0.279	27.6	482	81.8	17.3	0.18	0.022	0.012	0.688	1.12	1.93	0.055	0.29	1.53	109
	AEVSS0115	ARUF_ICPMS	4.9	0.084	14.4	171	0.408	0.202	27	446	69.7	15.6	0.1	0.016	0.008	0.74	0.99	1.78	0.069	0.231	1.69	84.8
	AEVSS0116	ARUF_ICPMS	3.4	0.076	12.2	174	0.342	0.158	26.6	421	51.8	14.9	0.17	0.018	0.01	0.581	0.88	1.69	0.059	0.234	1.57	81.8
	AEVSS0117	ARUF_ICPMS	3.4	0.057	12.9	178	0.316	0.089	21.7	424	48.4	15.7	0.16	0.019	0.009	0.55	0.87	1.67	0.054	0.217	1.35	73.2
\mathbf{O}	AEVSS0118	ARUF_ICPMS	3.3	0.052	13.5	184	0.348	0.095	25.6	365	42	16	0.16	0.015	0.011	0.586	0.96	1.67	0.054	0.234	1.47	69
	AEVSS0119	ARUF_ICPMS	6.4	0.05	14	192	0.332	0.083	29.6	339	46.1	15.9	0.11	0.019	0.009	0.509	0.95	1.54	0.049	0.206	1.41	74.7
	AEVSS0120	ARUF_ICPMS	4.8	0.044	14.1	192	0.33	0.07	26.2	294	46.7	16	0.11	0.015	0.013	0.518	1.02	1.6	0.049	0.203	1.71	77.9
	AEVSS0121	ARUF_ICPMS	5.3	0.034	11.6	109	0.301	0.059	28.9	304	49.3	16	0.2	0.003	0.016	0.478	1.17	1.48	0.052	0.26	2.09	64.3
	AEVSS0122	ARUF_ICPMS	1.2	0.042	9.2	171	0.32	0.077	27.4	288	40.9	15.4	0.13	0.02	0.013	0.488	0.89	1.54	0.044	0.21	1.22	72.1
	AEVSS0123	ARUF_ICPMS	4.2	0.096	12.8	183	0.378	0.131	29.5	416	56.6	15.7	0.1	0.03	0.011	0.604	0.89	1.85	0.059	0.241	1.55	84.8
	AEVSS0124	ARUF_ICPMS	5.4	0.096	12.4	181	0.346	0.131	28.5	450	51.7	16.1	0.15	0.02	0.011	0.554	0.92	1.67	0.052	0.23	1.53	75.6
	AEVSS0125	ARUF_ICPMS	4.7	0.071	11.4	183	0.308	0.09	26	402	44.5	15.7	0.16	0.017	0.01	0.519	0.85	1.63	0.046	0.214	1.47	66.4
	AEVSS0126	ARUF_ICPMS	5	0.078	11.4	174	0.311	0.093	29.2	390	48.8	15.9	0.11	0.02	0.008	0.503	0.85	1.62	0.053	0.204	1.47	76.4
	AEVSS0127	ARUF_ICPMS	2.8	0.093	11.2	163	0.329	0.156	29.4	396	49	17.1	0.15	0.025	0.012	0.491	0.85	1.71	0.048	0.237	1.47	89.2
	AEVSS0128	ARUF_ICPMS	2.5	0.057	11.2	174	0.327	0.105	26.8	388	43.1	16.7	0.17	0.018	0.009	0.505	0.94	1.71	0.05	0.245	1.43	71.4
	AEVSS0129	ARUF_ICPMS	4.5	0.06	11.6	201	0.323	0.109	28.5	368	49.3	15.6	0.11	0.02	0.009	0.492	0.96	1.6	0.049	0.196	1.29	75.8
	AEVSS0130	ARUF_ICPMS	3.7	0.054	9.9	164	0.286	0.084	28.4	297	41.9	15	0.08	0.026	0.01	0.442	0.94	1.41	0.045	0.173	1.28	75.9
	AEVSS0131	ARUF_ICPMS	4.1	0.066	11.6	153	0.341	0.078	34.7	317	55.3	16.4	0.16	0.02	0.015	0.6	1.25	1.64	0.052	0.211	1.9	93.3
	AEVSS0132	ARUF_ICPMS	2.9	0.043	10.2	178	0.316	0.056	25.8	409	41.3	17.4	0.18	0.019	0.013	0.545	1.02	1.81	0.049	0.256	1.32	61.2
	AEVSS0133	ARUF ICPMS	1.7	0.061	8.9	172	0.351	0.091	30.4	482	41	19.3	0.18	0.05	0.013	0.555	0.96	1.84	0.055	0.284	1.32	69.8

Method

AEVSS0134 ARUF_ICPMS 4.2 0.071 11.7 348 0.349 0.075

Au_ppb Ag_ppm As_ppm Ba_ppm Bi_ppm Cd_ppm Co_ppm Cr_ppm Cu_ppm

SampleID

Ga_ppm	Ge_ppm	Hg_ppm	S_pct	Sb_ppm	Se_ppm	Sn_ppm	Te_ppm	Tl_ppm	U_ppm	Zn_ppm
Ga_ppm 17.2	Ge_ppm 0.18	Hg_ppm 0.023	S_pct 0.016	Sb_ppm 0.567	Se_ppm 0.81	Sn_ppm 1.9	Te_ppm 0.05	Tl_ppm 0.281	U_ppm 1.69	Zn_ppm 54.8
Ga_ppm 17.2 17.9	Ge_ppm 0.18 0.13	Hg_ppm 0.023 0.027	S_pct 0.016 0.011	Sb_ppm 0.567 0.726	Se_ppm 0.81 1.01	Sn_ppm 1.9 2.23	Te_ppm 0.05 0.053	Tl_ppm 0.281 0.276	U_ppm 1.69 2.37	Zn_ppm 54.8 65.9
Ga_ppm 17.2 17.9 15.3	Ge_ppm 0.18 0.13 0.19	Hg_ppm 0.023 0.027 0.023	S_pct 0.016 0.011 0.012	Sb_ppm 0.567 0.726 0.457	Se_ppm 0.81 1.01 0.93	Sn_ppm 1.9 2.23 1.41	Te_ppm 0.05 0.053 0.053	Tl_ppm 0.281 0.276 0.217	U_ppm 1.69 2.37 1.34	Zn_ppm 54.8 65.9 77.7
Ga_ppm 17.2 17.9 15.3 16.4	Ge_ppm 0.18 0.13 0.19 0.19	Hg_ppm 0.023 0.027 0.023 0.015	S_pct 0.016 0.011 0.012 0.009	Sb_ppm 0.567 0.726 0.457 0.433	Se_ppm 0.81 1.01 0.93 0.98	Sn_ppm 1.9 2.23 1.41 1.48	Te_ppm 0.05 0.053 0.053 0.048	Tl_ppm 0.281 0.276 0.217 0.233	U_ppm 1.69 2.37 1.34 1.56	Zn_ppm 54.8 65.9 77.7 75.2

	AEVSS0135	ARUF_ICPMS	6.3	0.084	13.7	176	0.37	0.096	24.5	400	51.4	17.9	0.13	0.027	0.011	0.726	1.01	2.23	0.053	0.276	2.37	65.9
	AEVSS0136	ARUF_ICPMS	4.9	0.096	11.6	129	0.361	0.123	30.4	302	54.7	15.3	0.19	0.023	0.012	0.457	0.93	1.41	0.053	0.217	1.34	77.7
	AEVSS0137	ARUF_ICPMS	3.4	0.059	12.3	134	0.356	0.107	26.2	296	51	16.4	0.19	0.015	0.009	0.433	0.98	1.48	0.048	0.233	1.56	75.2
	AEVSS0138	ARUF ICPMS	4.8	0.067	11.9	139	0.347	0.095	27.8	281	48.4	15.6	0.18	0.012	0.012	0.459	0.91	1.43	0.054	0.228	1.5	69.2
	AEVSS0139	ARUF ICPMS	4.5	0.086	11.4	130	0.336	0.113	31.5	268	50.2	14.9	0.18	0.025	0.012	0.453	0.9	1.35	0.051	0.215	1.42	72.4
	AEVSS0140	ARUF ICPMS	2.3	0.055	11.4	143	0.337	0.086	34.2	278	49	15.2	0.19	0.019	0.013	0.454	0.85	1.45	0.058	0.224	1.34	75.8
	AEVSS0141	ARUF ICPMS	3.4	0.05	10.8	148	0.335	0.073	30	367	46.5	14.7	0.16	0.028	0.014	0.466	0.88	1.47	0.049	0.218	1.73	67.9
	AEVSS0142	ARUE ICPMS	5.9	0.051	13	59	0.284	0.04	32.8	400	45.9	14.3	0.15	0.006	0.034	0.461	1.06	1.37	0.041	0.182	1.19	49
	AEVSS0143	ARUE ICPMS	29	0.049	12.2	97	0 302	0.046	16.6	429	41.4	15.2	0.16	0.053	0.013	0.476	0.74	1 36	0.041	0 1 9 2	1 41	45.6
	AEVSS0144		47	0.08	15.8	180	0.46	0.068	30.2	295	47.3	21.2	0.25	0.035	0.011	0.726	0.87	2 34	0.066	0 333	2 41	58.6
	AEVSS0145		4.7	0.078	14.8	201	0.478	0.000	30.6	294	45.3	21.2	0.23	0.035	0.011	0.720	0.88	2.34	0.071	0.358	2.41	59.5
	AEVSS0145		-1.2	0.070	12.1	169	0.470	0.099	29.2	322	49.5	17.9	0.23	0.033	0.012	0.577	0.83	1.86	0.054	0.330	1.7	72.3
(\mathbf{n})	AEVSS0140		16	0.083	11.7	142	0.358	0.035	27.8	295	50.5	15.9	0.22	0.023	0.012	0.504	0.84	1.60	0.054	0.235	1.62	75
	AEV550147		3.6	0.005	11.7	131	0.334	0.087	27.0	255	47.1	15.0	0.2	0.023	0.008	0.304	0.86	1.02	0.054	0.235	1.02	68.6
	AEVSS0140		5.0	0.052	12	08	0.334	0.007	20.5	714	47.1	16.2	0.10	0.062	0.000	0.499	0.00	1.45	0.054	0.210	1.50	57.4
	AEV550149		5.2	0.125	12	128	0.301	0.107	25.8	714	54.4	16.6	0.22	0.002	0.016	0.498	0.08	1.04	0.004	0.199	1.05	65.8
	AEV550150		7.3	0.148	12	120	0.423	0.117	27.0	125	54.4	14.1	0.21	0.000	0.010	0.313	1.17	1.95	0.072	0.232	1.95	05.8
	AEVSSUIST	ARUF_ICPIVIS	7.3	0.024	13	60.4	0.351	0.047	20.8	467	52.7	14.1	0.15	0.011	0.046	0.491	1.17	1.79	0.046	0.212	1.34	50
(U)	AEVSS0152	ARUF_ICPMS	3.5	0.082	10.2	107	0.352	0.117	27.2	342	56.6	13	0.16	0.044	0.016	0.472	0.68	1./3	0.054	0.216	1.53	60.5
	AEVSS0153	ARUF_ICPMS	1.9	0.036	10.3	105	0.309	0.061	20.3	302	46.3	13.3	0.1	0.059	0.011	0.426	0.66	1.49	0.039	0.185	1.42	58.6
	AEVSS0154	ARUF_ICPMS	4.9	0.088	15.3	201	0.505	0.086	36.1	314	50.9	20	0.25	0.048	0.012	0.751	0.9	2.37	0.07	0.35	3.26	61.9
	AEVSS0155	ARUF_ICPMIS	4.2	0.085	15.1	210	0.484	0.087	36.2	298	48.9	20.3	0.23	0.064	0.014	0.694	0.85	2.29	0.063	0.352	2.62	//
\mathbf{O}	AEVSS0156	ARUF_ICPMS	4.4	0.089	14.1	205	0.439	0.083	34.4	306	49.5	19.2	0.23	0.036	0.014	0.659	0.99	2.16	0.058	0.325	2.87	65.2
10	AEVSS0157	ARUF_ICPMS	4.1	0.095	12.9	204	0.446	0.108	32.1	323	50	18.9	0.25	0.044	0.014	0.623	0.82	2.09	0.06	0.328	2.14	71.3
U)	AEVSS0158	ARUF_ICPMS	3.7	0.069	11.5	139	0.35	0.13	32.1	319	54.5	15.5	0.2	0.026	0.011	0.48	0.82	1.57	0.055	0.232	1.41	77.3
	AEVSS0159	ARUF_ICPMS	3.2	0.108	12.4	169	0.584	0.137	68.7	1350	57.2	17.8	0.25	0.129	0.027	0.618	0.92	2.15	0.07	0.305	2.61	83.1
	AEVSS0160	ARUF_ICPMS	7.2	0.119	14.2	163	0.746	0.279	33.4	430	81.4	18	0.23	0.083	0.021	0.529	0.78	2.37	0.113	0.34	2.22	99.4
U	AEVSS0161	ARUF_ICPMS	4.6	0.044	11.6	133	0.498	0.087	24.4	472	54.1	16.2	0.19	0.043	0.017	0.52	0.69	2.25	0.072	0.274	1.73	62.5
Õ	AEVSS0162	ARUF_ICPMS	4.1	0.026	12.2	83.5	0.365	0.044	25.9	530	44.5	14.9	0.19	0.006	0.025	0.51	1.44	1.92	0.06	0.233	1.75	56
\bigcirc	AEVSS0163	ARUF_ICPMS	3.6	0.06	11.3	153	0.349	0.104	29.6	439	54.1	15.8	0.19	0.077	0.03	0.5	0.8	3.67	0.043	0.219	1.66	87.1
	AEVSS0164	ARUF_ICPMS	4.4	0.099	15.7	241	0.514	0.096	39.2	331	50.8	20.2	0.25	0.064	0.015	0.759	1.01	2.41	0.072	0.386	2.98	71.6
<u> </u>	AEVSS0165	ARUF_ICPMS	4.1	0.09	15.4	198	0.471	0.086	33.2	325	52.3	19.1	0.23	0.053	0.012	0.759	0.85	2.3	0.074	0.333	2.75	68.3
	AEVSS0166	ARUF_ICPMS	4.5	0.086	16.5	219	0.508	0.092	36.6	316	51.5	21.4	0.24	0.059	0.014	0.749	0.92	2.34	0.06	0.348	2.85	73.5
\mathbf{O}	AEVSS0167	ARUF_ICPMS	5.4	0.078	14.8	194	0.465	0.076	31.2	321	51.2	19.4	0.24	0.049	0.013	0.751	0.86	2.25	0.07	0.318	2.4	67.1
	AEVSS0168	ARUF_ICPMS	7.6	0.078	11.2	135	0.349	0.134	29.7	334	56.1	14.7	0.18	0.027	0.012	0.473	0.86	1.48	0.065	0.222	1.54	79
	AEVSS0169	ARUF_ICPMS	2.8	0.08	10.5	118	0.388	0.108	53.2	1220	58.5	15.1	0.2	0.104	0.026	0.509	0.82	1.76	0.052	0.232	1.96	76
	AEVSS0170	ARUF_ICPMS	11.7	0.165	10.7	151	0.352	0.201	25.6	961	88.8	16	0.11	0.091	0.018	0.405	0.7	2.61	0.113	0.254	1.74	87.8
	AEVSS0171	ARUF_ICPMS	5.5	0.132	15.8	227	0.516	0.223	26.6	590	63	19.4	0.16	0.076	0.022	0.53	0.92	2.9	0.094	0.369	2.24	96.1
	AEVSS0172	ARUF_ICPMS	1.4	0.072	10.2	287	0.408	0.117	38.5	519	42	18.1	0.14	0.099	0.024	0.528	0.76	2.44	0.063	0.272	1.82	87.2
	AEVSS0173	ARUF_ICPMS	4.1	0.066	12.2	169	0.197	0.048	21.8	512	32.8	15.2	0.11	0.056	0.025	0.339	0.7	1.36	0.036	0.156	1.23	41.4
	AEVSS0174	ARUF_ICPMS	4.1	0.079	17.4	299	0.435	0.082	51.9	433	52.4	19.8	0.23	0.058	0.015	0.797	0.92	2.67	0.074	0.399	2.79	94
	AEVSS0175	ARUF_ICPMS	4.6	0.098	18.3	266	0.457	0.085	36.5	464	49.4	20.3	0.18	0.052	0.012	0.819	1.05	2.8	0.074	0.403	3.36	75.4
	AEVSS0176	ARUF ICPMS	3.4	0.098	17.4	265	0.426	0.089	42.1	419	47.9	18.6	0.17	0.06	0.01	0.8	0.89	2.7	0.08	0.364	2.34	84.3
	AEVSS0177	ARUF_ICPMS	5.6	0.091	15.9	240	0.422	0.11	34.9	427	50.8	17.1	0.09	0.048	0.009	0.715	0.88	2.52	0.072	0.334	2.1	74
	AEVSS0178	ARUF ICPMS	4.2	0.054	14.3	151	0.398	0.081	22.5	612	58.6	15.1	0.14	0.014	0.011	0.515	0.88	2.02	0.087	0.197	2.1	63.4
	AEVSS0179	ARUF ICPMS	2.3	0.116	13.9	222	0.472	0.161	71.7	1540	74.2	16.1	0.1	0.098	0.017	0.587	1.06	2.44	0.102	0.297	2.55	114
	AEVSS0180	ARUF ICPMS	14	0.201	17.8	178	0.41	0.215	22.3	373	107	12.7	0.1	0.06	0.02	0.29	0.71	2.6	0.173	0.289	2.65	119
	AEVSS0181	ARUF ICPMS	3.1	0.059	17.2	148	0.564	0.092	29.9	669	60	17.7	0.13	0.081	0.011	0.668	1.2	3.5	0.112	0.306	2.96	63.3
	AEVSS0187		53	0.045	16.3	158	0.272	0.066	20	389	42	15.1	0.13	0.05	0.027	0 385	0.81	1.89	0.057	0.226	2.50	47.9
			5.5	0.045	10.5	130	0.272	0.000	20	505	74	13.1	0.15	0.05	5.027	0.505	0.01	1.00	0.057	0.220	2.17	77.5

21.7 348

38

Method

ARUF_ICPMS

ARUF_ICPMS

Au_ppb

1.3

2.7

Ag_ppm

0.046

0.114

As_ppm

8.6

16.8

Ba_ppm

165

222

Bi_ppm

0.244

0.47

Cd_ppm

0.08

0.105

Co_ppm

17.6

39

SampleID

AEVSS0183

AEVSS0184

lr_ppm	Cu_ppm	Ga_ppm	Ge_ppm	Hg_ppm	S_pct	Sb_ppm	Se_ppm	Sn_ppm	Te_ppm	Tl_ppm	U_ppm	Zn_ppm
392	36.7	14.8	0.1	0.054	0.013	0.387	0.59	1.62	0.04	0.187	1.13	50.9
817	44.4	18.9	0.2	0.082	0.024	0.68	0.86	2.44	0.069	0.334	2.71	77.3
1070	39.8	18.9	0.22	0.066	0.035	0.61	0.87	2.31	0.053	0.302	2.03	71.2
961	44.4	16.9	0.19	0.047	0.013	0.748	0.81	2.12	0.062	0.312	2	75.8
666	47.5	23.4	0.25	0.059	0.011	1.21	1.06	3.06	0.077	0.382	4.23	66.4
377	47.4	22.4	0.25	0.037	0.013	0.684	0.87	2.55	0.065	0.395	2.87	81.2
421	49.7	21.8	0.23	0.054	0.009	0.728	0.92	2.78	0.074	0.416	2.82	85.8
417	49.4	22.6	0.22	0.037	0.011	0.751	0.98	2.71	0.078	0.378	2.82	73.5
530	58.1	20.6	0.26	0.022	0.012	0.6	1.04	2.46	0.09	0.335	2.69	91.7
1350	70.3	16.5	0.27	0.059	0.016	0.538	0.82	2.25	0.093	0.3	1.67	116

ANAX METALS LIMITED ACN 106 304 787

	AEVSS0185	ARUF_ICPMS	3	0.099	19.1	179	0.395	0.089	40.1	1070	39.8	18.9	0.22	0.066	0.035	0.61	0.87	2.31	0.053	0.302	2.03	71.2
	AEVSS0186	ARUF_ICPMS	4.8	0.117	23.9	165	0.474	0.084	39	961	44.4	16.9	0.19	0.047	0.013	0.748	0.81	2.12	0.062	0.312	2	75.8
	AEVSS0187	ARUF_ICPMS	6.5	0.114	38.1	157	0.537	0.082	23.8	666	47.5	23.4	0.25	0.059	0.011	1.21	1.06	3.06	0.077	0.382	4.23	66.4
	AEVSS0188	ARUF ICPMS	3.5	0.116	16	235	0.416	0.092	29	377	47.4	22.4	0.25	0.037	0.013	0.684	0.87	2.55	0.065	0.395	2.87	81.2
	AEVSS0189	ARUF ICPMS	3.8	0.091	15.9	304	0.43	0.103	38.8	421	49.7	21.8	0.23	0.054	0.009	0.728	0.92	2.78	0.074	0.416	2.82	85.8
	AEVSS0190	ARUE ICPMS	5.7	0.104	17.8	287	0.44	0.086	34.9	417	49.4	22.6	0.22	0.037	0.011	0.751	0.98	2.71	0.078	0.378	2.82	73.5
	AEVSS0191	ARUE ICPMS	4.9	0.102	14	223	0.444	0.151	28.7	530	58.1	20.6	0.26	0.022	0.012	0.6	1.04	2.46	0.09	0.335	2.69	91.7
	AEVSS0192	ARLIE ICPMS	5.4	0.213	11.5	145	0.458	0.178	32.5	1350	70.3	16.5	0.27	0.059	0.016	0.538	0.82	2 25	0.093	03	1.67	116
	AEVSS0192		10.1	0.215	16.9	224	1.05	0.386	13.4	1050	208	22.1	0.27	0.000	0.072	0.530	1 16	3 79	0.325	0.0	3.19	344
	AEV550193		9.4	0.451	14.9	224	2.16	0.300	46.2	462	200	22.1	0.24	0.052	0.022	0.332	1.10	4.02	0.525	0.400	28	127
Y	AEV550194		4.2	0.222	14.9	200	0.000	0.299	24.1	403	119	22.5	0.13	0.120	0.018	0.703	1.00	4.02	0.039	0.422	2.74	62.5
()	AEV550195		2.5	0.039	8.8	136	0.505	0.15	17.4	290	30.1	11	0.15	0.030	0.027	0.305	0.6	0.99	0.026	0.303	1 /1	32.0
	AEV550190	ARUE ICPMS	12.5	0.035	67.9	177	0.145	0.000	25	537	55.2	19.8	0.11	0.08	0.020	1 1 2	0.0	3.15	0.020	0.130	2.81	81.5
	AEV550198	ARUE ICPMS	4.8	0.115	24.9	183	0.38	0.074	34.9	891	36.7	16.2	0.24	0.074	0.033	0.633	0.89	2 04	0.049	0 304	2.96	74.5
	AEV550199	ARLIE ICPMS	1.0	0.078	17.9	168	0.466	0.097	34.5	1750	46.3	18.9	0.24	0.074	0.035	0.033	0.05	2.54	0.045	0.304	2.50	75.9
	AEV550199		1.5	0.078	17.3	178	0.400	0.057	27.1	261	33.2	18.8	0.18	0.054	0.015	0.633	0.75	2.55	0.056	0.309	1.98	65.5
	AEV550200		2.6	0.000	16.8	96.6	0.310	0.044	24.7	304	38	18	0.15	0.003	0.01	0.59	0.75	2.07	0.056	0.293	3 15	70.6
	AEV550201	ARUE ICPMS	3.5	0.091	17.7	282	0.457	0.086	35.1	405	46.9	20.9	0.2	0.047	0.011	0 754	0.9	2.8	0.066	0.377	3.05	78.3
	AEVSS0203	ARUE ICPMS	4.4	0.094	15	270	0.393	0.092	28.8	468	44.4	21.4	0.25	0.046	0.027	0.696	0.96	2.67	0.07	0.382	2.07	80.6
	AEVSS0204	ARUF ICPMS	3	0.092	13.1	207	0.401	0.149	32	434	55.2	18.9	0.2	0.041	0.024	0.601	0.88	2.07	0.067	0.302	1.86	84.5
	AEVSS0205	ARUF ICPMS	8.2	0.315	9.8	194	2.59	1.317	77.4	839	346	16.7	0.14	0.074	0.053	0.466	3.18	5.28	0.88	0.356	9.76	681
	AEVSS0206	ARUF ICPMS	23	1.06	14.3	265	3.93	1.344	106	347	837	20.7	0.16	0.119	0.105	0.53	3.17	13.7	1.23	0.904	5.27	348
(\mathbf{n})	AEVSS0207	ARUF ICPMS	5.6	0.096	14.2	180	1.85	0.232	29.9	540	120	23.3	0.15	0.06	0.013	0.64	1.14	2.95	0.798	0.344	3.87	71.1
	AEVSS0208	ARUE ICPMS	4.9	0.092	11.1	173	0.757	0.171	34.7	287	112	15.4	0.08	0.103	0.026	0.387	1.03	1.96	0.181	0.204	2.69	64
	AEVSS0209	ARUE ICPMS	3	0.039	19.5	118	0.406	0.068	24.8	265	44.8	17.2	0.16	0.007	0.025	0.598	0.99	1 92	0.056	0.25	3.91	56.1
(D)	AEVS50205	ARLIE ICPMS	19	0.077	12.8	204	0.448	0 111	37.2	284	46.2	16.7	0.17	0.05	0.027	0.648	0.87	2.01	0.061	0.269	3 34	72.5
	AEVS50210	ARLIE ICPMS	3.7	0.08	16.2	224	0 504	0.117	54	337	62.2	17.6	0.11	0.043	0.01	0.628	0.97	2.01	0.061	0.308	2 91	93.4
	AEVSS0211		3.7	0.00	15.6	215	0.364	0.093	33.1	346	54	17.0	0.11	0.045	0.008	0.727	0.97	2.15	0.069	0.286	3.12	70.2
	AEV/\$\$0212		5.5	0.007	14.8	215	0.451	0.000	22.7	261	51.0	20.0	0.14	0.045	0.000	0.727	0.92	2.15	0.005	0.200	2.74	66.6
	AEV660214		3.2	0.05	14.0	142	0.431	0.099	21.2	667	51.9	12.5	0.22	0.027	0.011	0.747	0.50	1.72	0.072	0.339	2.74	220
	AEV550214		9.2	0.105	12.9	142	0.343	0.231	2/ 9	007	169	16.6	0.15	0.004	0.015	0.432	1.02	5.57	0.003	0.220	2.34	220
	AEV550215		11.4	0.555	14.1	224	0.010 E C 0	0.434	22.0	200	100	10.0	0.17	0.082	0.021	0.428	1.03	1.05	0.241	0.301	2.40	02 5
	AEV550210		11.4 E E	0.167	14.1	142	0.207	0.521	20.2	200	120	19.4	0.16	0.060	0.041	0.472	0.71	1.95	0.027	0.239	2.42	26
	AEV330217		3.5	0.004	22.7	145	0.397	0.078	20.2	217	75.5	12.0	0.1	0.009	0.024	0.264	0.71	1.04	0.094	0.10	2.01	70.6
	AEV550218		4.8	0.097	22.7	100	0.769	0.078	29.4	317	54.0	17.3	0.1	0.008	0.015	0.758	0.91	2.38	0.067	0.259	 	/9.0
	AEVSS0219	ARUF_ICPIVIS	4.1	0.078	22.7	161	0.706	0.082	39.2	358	55.1	18.3	0.17	0.029	0.017	0.764	0.98	2.42	0.067	0.32	5.34	
	AEVSS0220	ARUF_ICPMS	4.1	0.072	17.8	148	0.626	0.074	26.9	266	52.6	17.8	0.12	0.045	0.01	0.431	0.79	2.34	0.054	0.279	5.15	/5./
	AEVSS0221	ARUF_ICPMS	4.7	0.105	14.5	274	0.509	0.13	40.5	380	55.2	19.8	0.2	0.056	0.012	0.695	0.82	2.53	0.068	0.343	3.32	84.4
	AEVSS0222	ARUF_ICPMS	3.4	0.096	15.1	252	0.5	0.123	34.2	3/4	56.7	21.2	0.21	0.036	0.01	0.72	0.86	2.46	0.071	0.35	2.88	/5.5
	AEVSS0223	ARUF_ICPMS	4.7	0.098	14.9	286	0.504	0.107	37.3	349	55.1	21.3	0.23	0.032	0.019	0.711	0.96	2.45	0.066	0.379	2.87	/3.6
	AEVSS0224	ARUF_ICPMS	5.4	0.128	12.6	188	0.539	0.202	34.6	343	81	17.6	0.11	0.045	0.02	0.496	1.06	2.08	0.105	0.252	2.35	107
	AEVSS0225	ARUF_ICPMS	5.8	0.127	12.3	1/5	0.683	0.191	22.6	287	/5.6	17.3	0.16	0.083	0.023	0.432	0.92	2.22	0.146	0.328	3	/4.2
	AEVSS0226	ARUF_ICPMS	8.7	0.048	8.2	149	1.17	0.092	21.7	132	68.3	9.28	0.08	0.035	0.031	0.209	0.71	0.92	0.344	0.129	2	31.9
	AEVSS0227	ARUF_ICPMS	2.5	0.083	20.6	240	0.77	0.091	46.7	310	48.2	18.8	0.17	0.049	0.018	0.74	0.81	2.5	0.065	0.309	5.5	97.3
	AEVSS0228	ARUF_ICPMS	2.6	0.091	18.7	283	0.779	0.108	40.6	298	49	22.8	0.24	0.065	0.021	0.648	0.96	2.95	0.056	0.415	5.84	96.2
	AEVSS0229	ARUF_ICPMS	2.4	0.088	18.8	216	0.632	0.08	30.9	280	50.7	20.4	0.2	0.042	0.017	0.64	0.94	2.41	0.063	0.312	4.68	77.5
	AEVSS0230	ARUF_ICPMS	2.2	0.07	19.5	223	0.678	0.085	34.6	260	53.5	18.4	0.11	0.05	0.013	0.597	0.82	2.28	0.054	0.273	6.48	88
	AEVSS0231	ARUF_ICPMS	2	0.069	18.7	208	0.664	0.087	30.5	289	49.9	19.2	0.18	0.043	0.015	0.636	0.88	2.42	0.064	0.296	5.03	76.6

	SampleID	Method	Au_ppb	Ag_ppm	As_ppm	Ba_ppm	Bi_ppm	Cd_ppm	Co_ppm	Cr_ppm	Cu_ppm	Ga_ppm	Ge_ppm	Hg_ppm	S_pct	Sb_ppm	Se_ppm	Sn_ppm	Te_ppm	Tl_ppm	U_ppm	Zn_ppm
Α	EVSS0232	ARUF_ICPMS	4.3	0.1	15.1	280	0.532	0.122	39.6	342	55.4	19.3	0.2	0.041	0.013	0.688	0.87	2.41	0.067	0.324	3.6	81.4
A	EVSS0233	ARUF_ICPMS	5	0.101	13.5	241	0.511	0.134	40.8	358	65	16.9	0.09	0.059	0.017	0.603	1.01	2.14	0.057	0.301	3.16	81
A	EVSS0234	ARUF_ICPMS	5.9	0.08	13.6	194	0.631	0.158	35.9	377	98.7	18.7	0.14	0.035	0.027	0.51	1.16	2.95	0.118	0.383	9.26	114
A	EVSS0235	ARUF_ICPMS	3	0.087	9	240	0.33	0.108	19.4	205	47.2	17.3	0.2	0.087	0.026	0.286	0.87	1.61	0.055	0.22	2.49	56.3
A	EVSS0236	ARUF_ICPMS	2.6	0.08	21.3	193	0.809	0.083	42.5	266	52.3	18.9	0.1	0.046	0.012	0.653	0.88	2.52	0.063	0.291	6.02	92.8
A	EVSS0237	ARUF_ICPMS	2.5	0.089	21.3	225	0.841	0.085	39.3	290	49.4	21	0.19	0.05	0.014	0.719	1.03	2.74	0.06	0.341	6.76	92.8
Α	EVSS0238	ARUF_ICPMS	1.6	0.073	25.2	157	0.717	0.079	38.9	210	47.3	18.7	0.11	0.036	0.016	0.731	0.85	1.96	0.064	0.234	5.42	93.3
A	EVSS0239	ARUF_ICPMS	2.9	0.071	21.5	162	0.635	0.077	31.8	189	48.9	16.7	0.09	0.031	0.017	0.632	0.81	1.71	0.065	0.207	5.96	77.5
A	EVSS0240	ARUF_ICPMS	2.4	0.073	23.6	159	0.589	0.089	40.2	193	51.3	16.9	0.11	0.055	0.02	0.672	0.81	1.67	0.059	0.194	4.14	81.9
A	EVSS0241	ARUF_ICPMS	0.8	0.109	19.2	189	0.578	0.139	40.9	229	52.5	15.1	0.11	0.055	0.038	0.676	0.83	1.73	0.071	0.21	3.2	138
A	EVSS0242	ARUF_ICPMS	3.5	0.08	17	184	0.431	0.08	39.9	239	51.1	16	0.11	0.022	0.015	0.674	0.74	1.68	0.071	0.222	2.77	65.8
A	EVSS0243	ARUF_ICPMS	3.6	0.084	14.6	186	0.379	0.085	35.2	233	64.1	16.2	0.1	0.037	0.014	0.549	0.82	1.53	0.074	0.203	3.3	74
A	EVSS0244	ARUF_ICPMS	2.7	0.097	9.3	200	0.226	0.137	23.4	183	56.4	14.3	0.1	0.047	0.043	0.248	0.75	1.25	0.065	0.138	2.31	59.3

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Sampling

techniques

•	Nature and quality of sampling (e.g., cut channels, random chips, or specific	
	specialised industry standard measurement tools appropriate to the minerals	
	under investigation, such as down hole gamma sondes, or handheld XRF	
	instruments, etc.). These examples should not be taken as limiting the broad	
	meaning of sampling.	
-	Include reference to measures taken to ensure comple representivity and the	

- Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.
- Aspects of the determination of mineralisation that are Material to the Public Report.
- In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.

- The prospect has been evaluated by a combination of Diamond Drilling (DD) and Reverse Circulation (RC) drill holes.
- A total of 105 out of 114 holes were drilled between 2007 and 2013.
- DD drill cores were typically halved or quartered for sampling. The sample lengths ranged from 0.25 m to 1.5m in ore zones. Intervals outside ore zones were at times analysed as 4m composites.
- RC samples typically consisted of 2 to 5m composites outside ore zones and 1m samples inside mineralised zones. For samples greater than 1m in length, composites were typically collected using spears, while 1m samples in ore zones were typically run through a riffle or cone splitter, producing samples of approximately 3 kg that were submitted for industry standard analysis at commercial geochemical laboratories.
- Rock chip samples referred to in this report are obtained from in-situ rock collected by Anax Metals during field reconnaissance. Samples were primarily collected from quartz, iron oxide or exposures exhibiting alteration or potential mineralization.
- Samples were collected from in-situ subcrop, outcrop, float or spoil around historical workings.
- Rock chips are for indicative purposes only, random, subject to bias and often unrepresentative for the typical widths required for economic consideration. They are by nature difficult to duplicate with any acceptable form of precision or accuracy.
- Approximately 1 to 2kg of representative material were collected from each rock chip sample location point.
- The rock chip samples are irregularly spaced, which is considered appropriate for reconnaissance exploration.
- Samples were dispatched to Labwest in Perth for analysis.
- Analysis included:
 - WAR-25 Low-level Au 25g Aqua-regia ICP-MS finish
 - MAR-04 Low-level 50 elements, microwave aqua-regia, ICP-MS ICP-OES finish
- Soil samples were collected on a 50x25m E-W oriented grid.
- Soil samples were collected from approximately 20cm below surface and sieved to minus 2mm before being bagged in 250g samples.
- VTEM survey flown by Geotech Airborne using helicopter borne equipment in August 2007. A 200m line spacing was used with flight lines oriented E-W. The entire tenement was covered at a nominal sensor height of 30m. The system utilized a 25-30hz base frequency and a 28m diameter transmitter loop. Helicopter speed was 80km/hour with a data recording of 0.1 point/second. GSWA Magix reference is R61006.

e only			 Aeromagnetic survey was flown by Fugro Airborne Surveys in 2006 using a 100m line spacing orientated E-W and a nominal sensor height of 60m. GSWA Magix reference is R60904. Ground magnetic survey completed in 2012 by Venturex. A total of 215 line-kms were surveyed using a 20m line spacing and continuous reading proton precession instrumentation. FLEM surveys conducted by Geoforce Pty Ltd in 2008. Transmitter loop sizes were 700mx400m and 460mx300m. Line spacing was 75m with 25m receiver station spacing. A Zonge ZT-30 transmitter was used at a frequency of 4Hz and a current of 17A. A SmartEM V Geophysical receiver was used for the surveys.
al us	Drilling techniques	• Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	 The prospect has been evaluated by a combination of 19 DD and 90 RC drill holes and 2 RC holes with diamond tails. The diameter of DD drill holes was mostly NQ and some HQ. RC drill sizes were reported to have been conducted using either 5" or 6.0" face sampling hammers. Anax RC drilling was conducted using a 143mm face sampling hammer. Anax DD was drilled triple tube HQ diameter.
Ir persor	Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Historical DD core recoveries were described as "high", but no core recovery data appears to have been recorded. Visual assessment from core photos where available and indicate very high core recoveries for mineralised zones. Where Rock Quality Designation (RQD) data have been captured, the percentage of core greater than 10cm in length is generally above 80%. All Anax DD holes are geotechnically logged. Recoveries recorded in the ore zones have been >99% and RQDs >95%. In 2010, the condition of RC drill holes was described as "dry', but detailed information is not available. The Anax RC drillhole produced dry samples. No sample recovery or grade analysis was undertaken.
Fo	Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 DD core was qualitatively logged and photos for approximately half the historical DD holes are available. RC drill chips were qualitatively logged and sampled. All holes have been logged in full. For rock chips geological data was recorded in the field using analog methods. Data recorded included GPS location, Prospect location, exposure type, lithology, alteration and potential mineralization. Alteration and mineralization is preliminary and determined by field observation. A geological description of each rock chip sample has been recorded. For soils samples, soil type and color were recorded at time of collection.
	Sub- sampling techniques	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. 	 DD core was halved by a diamond saw, except those cores which were sent for metallurgical test work (which were quartered). 1 m RC drill chips were collected and split using a riffle or cone splitter.

al use only	and sample preparation	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Sample preparation involved weighing, oven drying and pulverisation to pass a grind size of 85% at 75 μm. Jutt Holdings Limited (renamed Venturex Resources Ltd, recently renamed Develop Global Limited) primarily used duplicates for Quality Control with a frequency of approximately 1 in 25. The procedure for creating duplicate samples have not been detailed. Duplicates show good repeatability with individual outliers noted. 2024 core consisted of 0.6 to 1.2m samples that were halved at Bureau Veritas with a diamond saw. Samples were crushed to 95% passing 3.35mm. A 500g split was collected using a Riffle splitter and pulverised by Bureau Veritas to 80% passing 75μm. A subsample was taken from the pulp for the mixed acid digest/ICP analyses. No sub sampling of rock chip samples has been undertaken as part of this program. The rock chip samples were analysed at Labwest in Perth. Samples were dried and pulverized to pass a grind size of 85% at 75 μm. Soil samples were prepared by Labwest using their UFF-PE process. The ultrafine (sub 2 micron) particles were separated utilising proprietary techniques. The sample sizes are considered appropriate.
For person	Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometres, handheld XRF instruments, etc., the parametres used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 Historical samples were analysed at a commercial laboratory, Ultratrace. Analytical techniques used to determine grade were primarily FS-ICPES and 4A-ICPES. No geophysical tools were used. Historical company QAQC data consists of 86 field duplicates. Laboratory QAQC data includes use of numerous standards, repeats and blanks. Anax samples submitted for assay includes Certified Reference Materials, blanks and duplicates. The drilling dataset is assessed as having acceptable levels of accuracy and precision. Laboratory analyses of 2024 core included company supplied CRMs and coarse crush duplicates. The rock chip samples were analysed at Labwest using their MMR-04 technique. This involves microwave assisted, aqua regia based digestion with determination of elements using ICP-MS/ICP-OES methods. Gold was determined via their WAR-25 technique. This involves microwave assisted, aqua-regia based digestion on 25g of pulverised material with determination using ICP-MS methods to 0.5ppb detection limits. Labwest use standards and blanks as part of the analyses for QA/QC. No standards, blanks or duplicates were submitted by the company. Soil samples analyses used MMR-04 with 0.2g of soil subjected to an aqua regia digest, heated in a closed teflon tube in a microwave and analysed via low detection ICP-MS.
	Verification of sampling	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. 	No verification procedures were documented for the historical exploration campaigns.

Locatio data por Locatio	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 22AED003 and 22AED004A are twins of RC Holes JER046 and JER060 respectively. A comparison of the intersections showed that diamond drilling replicated RC results to an acceptable level. Anax drilling information is stored in a Datashed-SQL database which is maintained by independent database management providers, Mitchell River Group (MRG). Rock chip sample and geological information was recorded in the field using analog methods. These data are transferred to excel at the basecamp before being sent to Anax's contract database providers. Quality control verification protocols are in place as the data is entered into the companies database. Any irregularities are rectified at this point. All rock chip samples were inspected and described by Anax geologists in the field. All data is being maintained, validated and managed by contract specialist database managers. Analytical results received from the laboratory are loaded directly into the database with no manual transcription of these results undertaken. Original laboratory certificates have been stored electronically. All historical drill hole collars were surveyed by Develop using DGPS. The grid system was MGA_GDA94, Zone 50. A conversion to local grid was used as follows for the Evelyn Deposit: 2 common points, -40 degrees rotation from MGA north: Pt1: 7667000N, 588200E ->5000N, 10000E Pt2: 7667500N, 588200E ->50511.58N, 9831.852E Downhole survey by single-shot Eastman camera every 30 m or using Gyro survey. Topographic control was undertaken by a combination of external survey control points, photogrammetry analysis and DGPS readings. 2024 drill hole collars were located with a DGPS by a licensed surveyor and north-seeking gyro was used for down-hole surveys. The rock chip and soil samples were located using standard handheld GPS instrumentation which is considered appropriate for
Data spacing distribu	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The nominal drill spacing was 20 m by 30 m, increasing to 50m at depth. 2024 Infill drilling aimed to increase spacing to 25m at depth. The drill spacing is considered adequate for geological and grade continuity interpretation to support the declaration of a Mineral Resource. No sample compositing was applied. No systematic sampling was implemented for rock chip sampling due to the reconnaissance nature of the sampling.

			 No attempt has been made to demonstrate geological or grade continuity between rock chip sample points. The soil sample spacing (25 x 50m) is considered appropriate for this stage of exploration and the type of mineralisation sought. No sample compositing was applied to the rock chip or soil samples.
	Orientation of data in relation to	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key 	 The orientation of most drill holes was directed to 130 degrees, which is approximately perpendicular to the orientation of the stratabound mineralisation. No higs sampling is identified
1)	geological structure	mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 Samples were collected from predominantly outcropping in-situ and lessor subcrop as well as float and spoil derived from historical workings.
S			 Soil samples were collected on E-W trending lines which is predominantly orthogonal to stratigraphy.
Jersonal u	Sample security	• The measures taken to ensure sample security.	 There is no documentation of the sample security of the historical samples. Procedures previously employed by Develop include storage in a secure facility on site, before being collected by Toll IPEC. The samples were reportedly delivered directly to a laboratory in Perth. An online tracking system was reportedly used. Anax DD was supervised by an independent geological consultant. Diamond core was logged and photographed, before being sent to commercial laboratories in Perth using commercial freight operators. Drill holes were cut and sampled at Bureau Veritas in Perth. Anax RC samples were collected at the rig, transported to the Whim Creek site and shipped to LabWest using commercial freight operators. The rock chip and soil samples were transported to Labwest in Perth using commercial freight operators.
	Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 The drilling database inherited from Develop was imported into a relational SQL Server database using DataShed™ (industry standard drill hole database management software) by external consultancy, Mitchell River Group. All original assay files were obtained and reimported as part of the database migration. No review of the sampling techniques has been undertaken. However, the rock chip samples were collected by experienced field exploration geologists.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Evelyn deposit and other prospects discussed in this announcement are located within granted Mining Lease M47/1455 which is currently in good standing. The tenement occurs within the granted Ngarluma Native Title Claim. The tenement is subject to a 2.4% NSR royalty payable to a third party, a 0.8% Royalty payable to Anglo American, as well as WA State royalties. Anax has an 80% interest in the tenements and Develop (ASX:DVP) holds the remaining 20% interest. Develop is free carried through to a decision to mine.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 The Evelyn deposit has been evaluated by several exploration companies including Aquitaine, Homestake Australia and Ourwest Corporation since 1972. Much of the historical drilling was undertaken by Develop and this historical work appears to be of a consistently high standard. Minimal previous rock chip sampling and soil sampling have been undertaken on the tenement away from the Evelyn deposit.
Geology	• Deposit type, geological setting and style of mineralisation.	 The Evelyn copper-zinc-lead-silver-gold deposit comprises two high-grade shoots which are hosted within an altered volcaniclastic turbiditic sediment. Evelyn occurs within the Archaean-aged Pilbara Craton, a granite-greenstone terrane formed between 3,600 Ma and 2,800 Ma. Mineralisation is interpreted to be of the Volcanic Hosted Massive Sulphide (VHMS) style. These deposits are interpreted to form in close association with submarine volcanism through the circulation of hydrothermal fluids and subsequent exhalation of sulphide mineralisation on the ancient seafloor similar to present-day black smokers. VHMS mineralisation typically forms concordant or strata-bound lenses of polymetallic semi-massive to massive sulphides, which are underlain by discordant feeder-type vein-systems and associated alteration.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	 Detailed drill hole data have been previously periodically publicly released by Develop. All drill hole information relevant to this announcement have been presented. All relevant soil and rock chip information have been released. Assays for elements deemed immaterial have been omitted from Appendix 2 in the interest of succinctness.

Criteria	JORC Code Explanation	Commentary
	• If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 All previously reported assays were length weighted. No top-cuts have been applied. For reporting previous exploration results, a nominal 0.3% Cu and 1.0% Zn lower cut- off is typically applied with a minimum interval of 3m and a maximum internal waste interval of 2m. High-grade massive sulphide intervals internal to broader zones of sulphide mineralisation are reported as included intervals. No data aggregation was applied for drilling, rock chip or soil samples.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 The inclined drill holes intercepted the mineralisation at an oblique angle. Downhole widths at Evleyn are quoted for all drill holes and are approximately 80% of true widths. True widths of other drill results quoted in this announcement are not known due to the sporadic nature and early stage of drilling away from the Evelyn deposit. Not applicable for rock chip and soil samples.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Appropriate plans, schematic diagrams and tabulations of results have been included in this report. A location plan of the rock chip and soil samples is provided within the report (Figure 2.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All relevant results have been reported. This report discusses the findings of recent reconnaissance sampling and field mapping observations.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 All substantive exploration data have been reported. Validation and compilation of historic data is ongoing.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive 	 The potential for further down-plunge extensions at the Evelyn deposit exists and is anticipated to be evaluated with RC drilling. Auger drilling, soil sampling and geophysics is being planned to evaluate the potential for additional VMS deposits.