

CHALLENGER GOLD FINALISES TOLL MILLING AGREEMENT AND ADVANCES \$6.6M STRATEGIC INVESTMENT

- Binding Agreement establishes key terms for Toll Milling Agreement.
- Guaranteed annual processing capacity of 150,000 tonnes for three years.
- Working capital support for mining, ore transport, and processing¹ of Hualilan ore.
- Final long-form agreement expected within 15-20 days.
- \$6.6M strategic Investment nearing completion.

Challenger Gold (ASX: CEL) ("**CEL**" or the "**Company**") is pleased to announce the execution of a binding Agreement with Casposo Argentina Mining Limited the operator of the Casposo treatment plant located in San Juan Argentina (the "Toll Mill Operator"), finalising the commercial and operational terms for toll processing ore from the Hualilan Gold Project.

The agreement guarantees processing capacity of 150,000 tonnes per annum over three years, with a total secured capacity of 450,000 tonnes. It also provides working capital support¹ to cover mining, trucking and processing costs until CEL begins receiving cash flow from the toll milling operations.

In parallel, the Company's previously announced, on October 2, \$6.6M strategic investment continues to progress, with subscription agreement terms finalised.

FINALISED TOLL MILLING TERMS

The binding Agreement establishes favorable toll processing terms designed to align with the Hualilan Project's economics, including processing at cost, a base toll processing fee, and an incentive structure tied to gold recovery. Highlights include:

- Base Toll Processing Fee: US\$8.80/t, with a monthly minimum payment of US\$110,000.
- **Upfront Payment:** US\$2M, with US\$1M deferred until the second year, equivalent to US\$6.67/t.
- **Performance Fee:** Incentive-based fee of 20-30% of milling costs depending on recovery rates, expected to range between US\$12-18/t.

¹defined in the Binding Agreement as "the Mill Operator has undertaken to use best commercial efforts to finance working capital - directly or through third parties"

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,526.2m shares 126.7m options (\$0.14) 68.1m perf rights Australian Registered Office Level 1 100 Havelock Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Chairman Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

Table 1 - Recovery Based Performance Fee

Gold Recovery (%)	70%-80%	+ 80%-85%	+85%
Margin over Processing Costs	20%	25%	30%

The agreement includes a safeguard: the upfront payment is refundable² if the plant is not operating by 31st July, 2025.

Additionally, the Mill Operator will provide working capital funding¹ - directly or through third parties - to cover CEL's costs of mining, ore transport, and processing under an approved budget.

Operational Details

Initial processing will operate in 90-day campaign cycles over a 12-month period, unless the Technical Committee decides to extend such a term. The Technical Committee, with equal representation from both parties, will evaluate transitioning to continuous processing after the first year based on operational performance.

CEL retains full ownership of ore and all resulting products throughout the process, with established protocols for gold-in-circuit measurement.

CEL representatives at the plant may request adjustments to treatment rate and metallurgical parameters as needed. Additional terms remain unchanged from the October 2 ASX Release.

PATH TO PRODUCTION

CEL remains focused on advancing critical workstreams to commence toll milling operations. Key developments include:

- Finalising operational procedures with the Mill Operator to support the execution of the definitive toll milling agreement, expected within 15-20 days, and subsequent closure of the strategic placement.
- Completion of open-pit mining designs, with mining schedules expected in 10 days.
- Ongoing evaluation of contract mining and owner-operated options, leveraging long-term rental equipment availability in San Juan.

This structured approach ensures a clear pathway to production while maintaining operational flexibility and financial discipline.

² so long as the delay is not caused by matters related to mining from the Hualilan Project or matters otherwise beyond Casposo 's control

Challenger Gold Limited ACN 123 591 382 ASX: CEL Issued Capital 1,526.2m shares 126.7m options (\$0.14) 68.1m perf rights Australian Registered Office Level 1 100 Havelock Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Chairman Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

This ASX release was approved by the Board of Directors.

For further information contact:								
Kris Knauer	Sergio Rotondo	Media Enquiries						
Managing Director	Chairman	Jane Morgan						
+61 411 885 979	+1 646 462 9273	+ 61 405 555 618						
kris.knauer@challengerex.com	sergio.rotondo@challengerex.com	jm@janemorganmanagement.com.au						

Previous announcements referred to in this release include:

The Mineral Resource Estimate for the Hualilan Gold Project was first announced to the ASX on 1 June 2022 and updated 29 March 2023. The Mineral Resource Estimate for the El Guayabo Project was first announced to the ASX on 14 June 2023. The Company confirms it is not aware of any information or assumptions that materially impacts the information included in that announcement and that the material assumptions and technical parameters underpinning the Mineral Resource Estimate continue to apply and have not materially changed.

ADDITIONAL INFORMATION

COMPETENT PERSON STATEMENT – EXPLORATION RESULTS AND MINERAL RESOURCES

The information that relates to sampling techniques and data, exploration results, geological interpretation and Mineral Resource Estimate has been compiled Dr Stuart Munroe, BSc (Hons), PhD (Structural Geology), GDip (AppFin&Inv) who is a full-time employee of the Company. Dr Munroe is a Member of the AusIMM. Dr Munroe has over 20 years experience in the mining and metals industry and qualifies as a Competent Person as defined in the JORC Code (2012).

Dr Munroe has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results and Mineral Resources. Dr Munroe consents to the inclusion in this report of the matters based on information in the form and context in which it appears. The Australian Securities Exchange has not reviewed and does not accept responsibility for the accuracy or adequacy of this release.

FORWARD LOOKING STATEMENTS

The announcement may contain certain forward-looking statements. Words 'anticipate', 'believe', 'expect', 'forecast', 'estimate', 'likely', 'intend', 'should', 'could', 'may', 'target', 'plan', 'potential' and other similar expressions are intended to identify forward-looking statements. Indication of, and guidance on, future costings, earnings and financial position and performance are also forward-looking statements.

Such forward looking statements are not guarantees of future performance, and involve known and unknown risks, uncertainties and other factors, many of which are beyond the control of Challenger Gold Ltd, its officers, employees, agents and associates, which may cause actual results to differ materially from those expressed of implied in such forward-looking statements. Actual results, performance, or outcomes may differ materially from any projections or forward-looking statements or the assumptions on which those statements are based.

You should not place any undue reliance on forward-looking statements and neither. Challenger nor its directors, officers, employees, servants or agents assume any responsibility to update such information. The stated Production Targets are based on the Company's current expectations of future results or events and should not

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,526.2m shares 126.7m options (\$0.14) 68.1m perf rights Australian Registered Office Level 1 100 Havelock Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Chairman Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

be relied upon by investors when making investment decisions. Further evaluation work and appropriate studies are required to establish sufficient confidence that this target will be met.

Financial numbers, unless stated as final, are provisional and subject to change when final grades, weight and pricing are agreed under the terms of the offtake agreement. Figures in this announcement may not sum due to rounding.

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the estimates in the relevant original market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

HUALILAN GOLD PROJECT MRE AND SCOPING STUDY

All references to the Scoping Study and its outcomes in this announcement relate to the ASX Announcement of 8 November 2023 'Hualilan Gold Project Scoping Study'. Please refer to that announcement for full details and supporting documentation.

Domain	Category	Mt	Au (g/t)	Ag (g/t)	Zn (%)	Pb (%)	AuEq (g/t)	AuEq (Mozs)
US\$1800 optimised shell > 0.30 ppm AuEq	Indicated	45.5	1.0	5.1	0.38	0.06	1.3	1.9
	Inferred	9.6	1.1	7.3	0.43	0.06	1.4	0.44
Below US\$1800 shell >1.0ppm AuEq	Indicated	2.7	2.0	9.0	0.89	0.05	2.5	0.22
	Inferred	2.8	2.1	12.4	1.1	0.07	2.8	0.24
Total		60.6	1.1	6.0	0.4	0.06	1.4	2.8

Table 2: Hualilan Hold Project Mineral Resource Estimate (March 2023)

Note: Some rounding errors may be present

¹ Gold Equivalent (AuEq) values - Requirements under the JORC Code

• Assumed commodity prices for the calculation of AuEq is Au US\$1900 Oz, Ag US\$24 Oz, Zn US\$4,000/t, Pb US\$2000/t

Metallurgical recoveries are estimated to be Au (95%), Ag (91%), Zn (67%) Pb (58%) across all ore types (see JORC Table 1 Section 3 Metallurgical assumptions) based on metallurgical test work.

The formula used: AuEq (g/t) = Au (g/t) + [Ag (g/t) x 0.012106] + [Zn (%) x 0.46204] + [Pb (%) x 0.19961]

• CEL confirms that it is the Company's opinion that all the elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold.

Challenger Gold Limited ACN 123 591 382 ASX: CEL Issued Capital 1,526.2m shares 126.7m options (\$0.14) 68.1m perf rights Australian Registered Office Level 1 100 Havelock Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Chairman Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data -Hualilan Project

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary			
•	 JORC Code explanation Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of 	 Commentary Diamond core (HQ3 and NQ3) was cut longitudinally on site using a diamond saw or split using a hand opera hydraulic core sampling splitter. Samples lengths are generally from 0.5m to 2.0m in length (average 1.74m) Sample lengths are selected according to lithology, alteration, and mineralization contacts. For reverse circulation (RC) drilling, 2-4 kg sub-samples from each 1m drilled were collected from a face sam recovery cyclone mounted on the drill machine. Channel samples are cut into underground or surface outcrop using a hand-held diamond edged cutting tool. Parallel saw cuts 3-5cm apart are cut 2-4cm deep into the rock which allows for the extraction of a representa sample using a hammer and chisel. The sample is collected onto a plastic mat and collected into a sample b Core, RC and channel samples were crushed to approximately 85% passing 2mm. A 500g or a 1 kg sub-sam was taken and pulverized to 85% passing 75µm. A 50g charge was analysed for Au by fire assay with AA determination. Where the fire assay grade is > 10 g/t gold, a 50g charge was analysed for Au by Fire assay or gravimetric determination. A 10g charge was analysed for at least 48 elements by 4-acid digest and ICP-MS determination. Elements determined include Ag, As, Ba, Be, Bi, Ca, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Rb, Re, S, Sb Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Ti, U, V, W, Y, Zn and Zr. 			
	sampling. - Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	 determination. Where the fire assay grade is > 10 g/t gold, a 50g charge was analysed for Au by Fire assay gravimetric determination. A 10g charge was analysed for at least 48 elements by 4-acid digest and ICP-MS determination. Elements determined include Ag, As, Ba, Be, Bi, Ca, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na, 			
	 In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	Unused pulps are returned from the laboratory to the Project and stored in a secure location, so they are available for any further analyses. Remaining drill core is stored undercover for future use if required. Visible gold observed has been observed in only 1 drill core sample only. Coarse gold is not likely to result in sample bias. Historic Data: There is little information provided by previous explorers to detail sampling techniques. Selected drill core was cut with a diamond saw longitudinally and one half submitted for assay. Assay was generally done for Au. In some drill campaigns, Ag and Zn were also analysed. There is limited multielement data available. No information is available for RC drill techniques and sampling.			

68.1m perf rights

126.7m options (\$0.14) 100 Havelock Street West Perth WA 6005

Mr Sergio Rotondo, Chairman E: admin@challengergold.com Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

Criteria	JORC Code explanation	Commentary
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, 	CEL drilling of HQ3 core (triple tube) was done using various truck and track mounted drill machines that are operated by various drilling contractors based in Mendoza and San Juan. The core has not been oriented as the rock is commonly too broken to allow accurate core orientation.
	sonic, etc) and details (eg core diameter, triple or standard tube,	CEL drilling of reverse circulation (RC) drill holes was done using a track-mounted LM650 universal drill rig set up for reverse circulation drilling. Drilling was done using a 5.25 inch hammer bit.
depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	sampling bit or other type, whether core is oriented and if	Collar details for historic drill holes, DD drill holes, RC drill holes completed by CEL that are used in the resource estimate are detailed in CEL ASX releases: 1 June 2022 (Maiden MRE): <u>https://announcements.asx.com.au/asxpdf/20220601/pdf/459jfk8g7x2mty.pdf</u> and 29 March 2023 (MRE update): <u>https://announcements.asx.com.au/asxpdf/20230329/pdf/45n49jlm02grm1.pdf</u>
		Collar locations for drill holes are surveyed using DGPS. Three DD holes and 3 RC holes have hand-held GPS collar surveys.
	Historic Data: Historic drill hole data is archival, data cross checked with drill logs and available plans and sections where available. Collar locations have been checked by CEL using differential GPS (DGPS) to verify if the site coincides with a marked collar, tagged drill site or likely drill pad location. In most cases the drill collars coincid with historic drill site, some of which (but not all) are tagged. The collar check surveys were reported in POSGAR (2007) projection and converted to WGS84.	
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Drill core is placed into wooden boxes by the drillers and depth marks are indicated on wooden blocks at the end of each run. These depths are reconciled by CEL geologists when measuring core recovery and assessing colloss. Triple tube drilling has been being done by CEL to maximise core recovery. 761 CEL diamond drill holes completed have been used for the CEL resource estimate. Some of the holes are located outside the resource area. Total drilled is 224,180.60 metres, including cover drilled of 22,041.30 metres (9.8 %). Of the remaining 202,139.30 metres of bedrock drilled, core recovery is 96.8%. RC sub-samples are collected from a rotary splitter mounted to the face sample recovery cyclone. A 2-4 kg su samples is collected for each metre of RC drilling. Duplicate samples are taken at the rate of I every 25-30 samples using a riffle splitter to split out a 2-4 kg sub-sample. The whole sample recovered is weighed to measure sample recovery and consistency in sampling. 37 CEL RC drill holes have been used in the CEL resource estimate. Total metres drilled is 2,923m. Cover drilled is 511 m (17.5%) Channel samples have been weighed to ensure a consistency between sample lengths and weights. The channel samples are collected from saw-cut channels and the whole sample is collected for analysis. There is no correlation between sample length and assay values.
		- 193 surface and underground channels have been used in the CEL resource estimate.

Issued Capital 1,526.2m shares 126.7m options (\$0.14) 68.1m perf rights Australian Registered Office Level 1 100 Havelock Street

West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Chairman Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

Criteria	JORC Code explanation	Commentary
		 Channels total 2597.70 metres in length. The average weight per metre sampled is 3.7 kg/m which adequate for the rock being sampled and compares well with the expected weight for ½ cut HQ3 dr core of 4.1 kg/m. A possible relationship has been observed in historic drilling between sample recovery and Au Ag or Zn valu whereby low recoveries have resulted lower reported values. Historic core recovery data is incomplete. Co recovery is influenced by the intensity of natural fracturing in the rock. A positive correlation between recover and RQD has been observed. The fracturing is generally post mineral and not directly associated with the mineralisation.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean channel etc) photography. The total length and percentage of the relevant intersections logged. 	For CEL drilling, all the core (100%) is photographed and logged for recovery, RQD, weathering, lithology, alteration, mineralization, and structure to a level that is suitable for geological modelling, Mineral Resource Estimation and metallurgical test work. RC drill chips are logged for geology, alteration and mineralisation t level that is suitable for geological modelling resource estimation and metallurgical test work. Where possibl logging is quantitative. Geological logging is done into MS Excel in a format that can readily be cross-check and is back-up transferred to a secure, offsite, cloud-based database which holds all drill hole logging samp and assay data. No specialist geotechnical logging has been undertaken. Detailed logs are available for most of the historical drilling. Some logs have not been recovered. No core photographs from the historic drilling have been found. No drill core has survived due to poor storage and neglect. No historic RC sample chips have been found.
Sub-sampling	- If core whether cut or sawn and	CEL samples have been submitted to the MSA laboratory in San Juan, the ALS laboratory in Mendoza and
techniques and	whether quarter half or all core taken.	former SGS laboratory in San Juan for sample preparation. The sample preparation technique is considere appropriate for the style of mineralization present in the Project.
sample preparation	 If non-core whether riffled tube sampled rotary split etc and 	Sample sizes are appropriate for the mineralisation style and grain size of the deposit.
	whether sampled wet or dry.	Sample intervals are selected based on lithology, alteration, and mineralization boundaries. Representative
	 For all sample types the nature quality and appropriateness of the sample preparation 	samples of all of the core are selected. Sample length averages 1.74m. Second-half core or ¼ core sample have been submitted for a mineralised interval in 1 drill hole only and for some metallurgical samples. The second half of the core samples has been retained in the core trays for future reference.
	technique.	Competent drill core is cut longitudinally using a diamond saw for sampling of 1/2 the core. Softer core is spl
	 Quality control procedures adopted for all sub-sampling 	using a wide blade chisel or a manual core split press. The geologist logging the core, marks where the say
	stages to maximise representivity	or split is to be made to ensure half-core sample representivity.
	of samples.	From GNDD073 and later holes, duplicate core samples consisting of two ¼ core samples over the same ir have been collected approximately every 30-50m drilled.
	 Measures taken to ensure that the sampling is representative of 	have been concoled approximatory every of com unlied.

68.1m perf rights

126.7m options (\$0.14)

100 Havelock Street West Perth WA 6005

Mr Sergio Rotondo, Chairman Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

E: admin@challengergold.com

Criteria JORC Code explanation

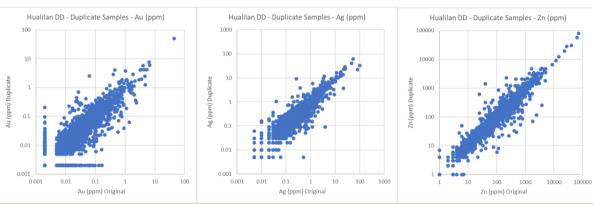
Commentary

Duplicate core sample results and correlation plots (log scale for Au, Ag, Zn, Pb, Fe and S) are shown below:

i.

1

1


the in-situ material collected including for instance results for field duplicate/second-half sampling. - Whether sample sizes are

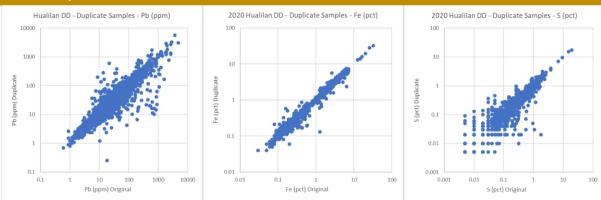
appropriate to the grain size of the material being sampled.

	count	RSQ	mean		me	dian	variance	
			original	duplicate	original	duplicate	original	duplicate
Au (ppm)	3,523	0.960	0.076	0.077	0.007	0.006	0.640	0.816
Ag (ppm)	3,523	0.696	0.53	0.48	0.17	0.16	7.99	3.55
Cd (ppm)	3,523	0.979	1.34	1.26	0.08	0.08	160.63	144.11
Cu (ppm)	3,523	0.451	14.84	13.85	3.40	3.30	4.3E+03	2.5E+03
Fe (%)	3,523	0.990	1.997	1.996	1.700	1.710	3.74	3.75
Pb (ppm)	3,523	0.940	64.7	62.4	13.7	13.4	1.9E+05	2.7E+05
S (%)	3,523	0.973	0.333	0.330	0.140	0.140	0.346	0.332
Zn (ppm)	3,523	0.976	254	243	73	72	3.8.E+06	3.5.E+06

Т

RSQ = R squared

⁻or personal use only

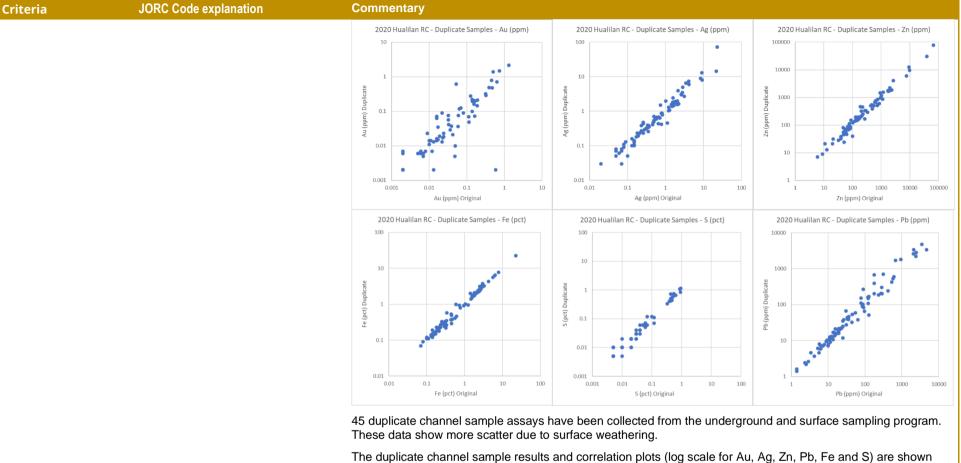

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,526.2m shares 126.7m options (\$0.14) 68.1m perf rights Australian Registered Office Level 1 100 Havelock Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Chairman Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett Non Exec Director Contact T: +61 8 6385 2743 E: admin@challengergold.com

Criteria JORC Code explanation

RC sub-samples over 1m intervals are collected at the drill site from a cyclone mounted on the drill rig. A duplicate RC sample is collected for every 25-30m drilled.


The duplicate RC sample results and correlation plots (log scale for Au, Ag, Zn, Pb, Fe and S) are shown below:

	count	RSQ	m	ean	median		vari	ance
			original	duplicate	original	duplicate	original	duplicate
Au (ppm)	85	0.799	0.101	0.140	0.017	0.016	0.041	0.115
Ag (ppm)	85	0.691	1.74	2.43	0.59	0.58	13.59	64.29
Cd (ppm)	85	0.989	15.51	16.34	0.41	0.44	4189	4737
Cu (ppm)	85	0.975	47.74	53.86	5.80	5.70	2.4E+04	3.1E+04
Fe (%)	85	0.997	1.470	1.503	0.450	0.410	7.6	7.6
Pb (ppm)	85	0.887	296.0	350.6	26.3	32.4	6.0E+05	7.4E+05
S (%)	85	0.972	0.113	0.126	0.020	0.020	0.046	0.062
Zn (ppm)	85	0.977	3399	3234	158	177	2.5.E+08	2.1.E+08
RSQ = R squ	uared							

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,526.2m shares 126.7m options (\$0.14) 68.1m perf rights Australian Registered Office Level 1 100 Havelock Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Chairman Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett Non Exec Director Contact T: +61 8 6385 2743 E: admin@challengergold.com

below:

	count	RSQ	mean		mean median		variance		
			original	duplicate	original	duplicate	original	duplicate	
Au (ppm)	45	0.296	1.211	2.025	0.042	0.039	8.988	23.498	
Ag (ppm)	45	0.037	8.42	23.25	1.09	1.22	177.31	3990.47	
Cd (ppm)	45	0.373	124.23	77.85	7.54	7.80	61687.10	26171.51	
Cu (ppm)	45	0.476	713.23	802.79	46.20	37.40	2.8E+06	3.0E+06	

Contact

T: +61 8 6385 2743

E: admin@challengergold.com

Challenger Gold Limited ACN 123 591 382 ASX: CEL

Issued Capital 1,526.2m shares 126.7m options (\$0.14) 68.1m perf rights

Australian Registered Office Level 1

100 Havelock Street

West Perth WA 6005

Directors

Commentary

Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Chairman Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director

Mr Brett Hackett Non Exec Director

For personal use only

Criteria	JORC Code explanation	Commenta	iry								
		Fe (%)	45	0.428	4.266	5.745	1.390	1.560	44.4	107.0	
		Pb (ppm)	45	0.007	955.4	3776.0	75.3	60.7	3.5E+06	3.0E+08	
		S (%)	45	0.908	1.307	1.432	0.040	0.030	14.294	16.234	
		Zn (ppm)	45	0.509	15117	12684	1300	763	8.8.E+08	5.2.E+08	
		RSQ = R squ	uared	I		I		I		I	
		Hualilan Ch	annel - Duplicate	Samples - Au (p	pm)	Hualilan Channel	- Duplicate Sample	s - Ag (ppm)	Hualilan C	Channel - Duplicate Sample	es - Zn (ppm
		10	•			100		•	10000	•	: - : A :
		111		•	m) Dunlicate	10	•••	•	0001 Duplicate		•
		dd 0.1 NV 0.01	e	•	Aø (norm) Dur	0.1			ling (wdd) 100 10 10		•
		0.001	0.01 0.1 Au (ppm) O	1 10	100	0.01	1 Ag (ppm) Original	10 100	1 1	10 100 1000 Zn (ppm) Original	10000
		Hualilan Cl	nannel - Duplicate		oct)	Hualilan Channel	- Duplicate Sample:	s - Pb (ppm)	Hualilan	Channel - Duplicate Samp	lles - S (pct)
		10	•	، جزر		1000	•	:	10		•••
		Fe (pct) Duplicate		••*• •	Ph farm) Dualic			•	s (pct) Duplicat		
		0.1	•			10			0.01	•	
		0.01	0.1 1 Fe (pct) Ori		100	1 10) 100 Pb (ppm) Original	1000 10000	0.001	0.01 0.1 1 S (pct) Original	10
Quality of assay dat and laboratory test		<i>ying</i> Manager) a	nd Sergio	Rotondo	(CEL Dire	ector) prior to	o any sampl	es being s	ubmitted. T	Munroe (Explo he laboratory h The laboratory	as beei
	and whether the technique is	s procedures	are consis	stent with	internatio	nal best pra	ctice and ar	e suitable i	for samples	from the Projected by CEL	
	Issued Capital Australian I 1,526.2m shares Level 1	0	Directors Mr Kris Knauer	MD and CEC		ontact : +61 8 6385 2743					

Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

68.1m perf rights

West Perth WA 6005

Criteria

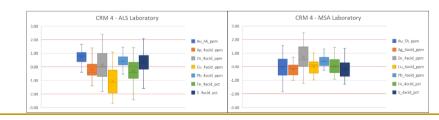
JORC Code explanation

Commentary

considered partial or total.

- For geophysical tools spectrometers handheld XRF instruments etc the parameters used in determining the analysis including instrument make and model reading times calibrations factors applied and their derivation etc.
- Nature of quality control procedures adopted (eg standards blanks duplicates external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.

representatives due to COVID-19 restrictions. Each laboratory presents internal laboratory standards for each job to gauge precision and accuracy of assays reported.


CEL have used two different blank samples, submitted with drill core and subjected to the same preparation and assay as the core samples, RC sub-samples and channel samples. The blank samples are sourced from surface gravels in the Las Flores area of San Juan and from a commercial dolomite quarry near San Juan. In both cases the blank material is commonly for construction. Commonly, the blank samples are strategically placed in the sample sequence immediately after samples that were suspected of containing higher grade Au, Ag, S or base metals to test the lab preparation and contamination procedures. The values received from the blank samples suggest only rare cross contamination of samples during sample preparation.

For GNDD001 – GNDD010 samples analysed by MSA in 2019, three different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Pb Cu and Zn were submitted with samples of drill core to test the precision and accuracy of the analytic procedures MSA laboratory in Canada. 26 reference analyses were analysed in the samples submitted in 2019. The standards demonstrate suitable precision and accuracy of the

Challenger Gold Limited	Issued Capital	Australian Registered Office	Directors	Contact	
ACN 123 591 382	1,526.2m shares	Level 1	Mr Kris Knauer, MD and CEO	T: +61 8 6385 2743	
ASX: CEL	126.7m options (\$0.14)	100 Havelock Street	Mr Sergio Rotondo, Chairman	E: admin@challengergold.com	
	68.1m perf rights	West Perth WA 6005	Dr Sonia Delgado, Exec. Director		
			Mr Fletcher Quinn, Non-Exec. Director		
			Mr Pini Althaus , Non Exec Director		
			Mr Brett Hackett Non Exec Director		

Criteria

Challenger Gold Limited ACN 123 591 382 ASX: CEL

Issued Capital 1.526.2m shares 126.7m options (\$0.14) 68.1m perf rights

JORC Code explanation

Australian Registered Office

Level 1 100 Havelock Street West Perth WA 6005

Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Chairman Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director

Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

Directors

Commentary

4

1.200 1.150 1.100 1.050

1.000 0.950 0.000 0.850 0.800

13.00 12.50 12.00 11.50 11.00 10.50 10.00 9.50 9.00

0.86 0.84 0.82 0.80 0.78 0.74

precision.

analytic process. No systematic bias is observed.

CRM3 - Au (ppm) - mean +/- 2SD

CRM3 - Ag (ppm) - mean +/- 2SD

CRM3 - Zn (ppm) - mean +/- 2SD

10

12

14

8

.

12

16

16

16

18

18

18 For drill holes from GNDD011 plus unsampled intervals from the 2019 drilling, 17 different multi-element Certified Standard Reference pulp samples (CRM) with known values for Au Ag Fe S Pb Cu and Zn. 7 different CRM's with known values for Au only have been submitted with samples of drill core. RC chips and channel samples to test the precision and accuracy of the analytic procedures of the MSA,ALS and SGS laboratories used. In the results received to date there has been no systematic bias is observed. The standards demonstrate suitable precision and accuracy of the analytic process. A summary of the standard deviations from the expected values for CRM's used is summarised below. Generally, an average of standard deviations close to zero indicates a high degree of accuracy and a low range of standard deviations with a low fail count indicates a high degree of

> Contact T: +61 8 6385 2743 E: admin@challengergold.com

Criteria	JORC Code explanation	Commentary	
		CRM 5 - ALS Laboratory CRM 5 - MSA Laboratory	
		2.00 1.00	
		2.00	
		LCRW 6 - ALS Laboratory 1.00	
		2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	
		2.00 1.	
		1.00 Image: second part 2.00 Image: second part 3.00 CRM 8 - ALS Laboratory CRM 8 - ALS Laboratory	
		3.00	
		2.00 3.00 CRM 9 - ALS Laboratory CRM 9 - ALS Laboratory CRM 9 - MSA Laboratory	9 - SGS Laboratory
		3.00 3.00 3.00 3.00 3.00 2.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Au; JA; pon Ag; Aaid, pon D, Aaid, pon Q, Caid, pon
		1.00 PR_4.akid.gen 1.00 PR_4.akid.gen 1.00 2.00 S_4trid.ptt 3.00 S_4trid.ptt 3.00	E by Lasid pon Re-Savid pet

Issued Capital 1,526.2m shares 126.7m options (\$0.14) 68.1m perf rights Australian Registered Office Level 1 100 Havelock Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Chairman Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett Non Exec Director

Contact T: +61 8 6385 2743 E: admin@challengergold.com

Criteria	JORC Code explanation	Commentary		
		CRM 10 - ALS Laboratory	CRM 10 - MSA Laboratory	
		CRM 11 - ALS Laboratory	0.00 Zn_4cid_ppm Cu_4cid_ppm Cu_4cid_ppm	
		CRM 12 - ALS Laboratory	I DU Zn_4acid_ppm	
		CRM 13 - ALS Laboratory	CRM 13 - MSA Laboratory	CRM 13 - SGS Laboratory
		CRM 14 - ALS Laboratory	1.00 0.00	CRM 14 - SGS Laboratory 200 100 100 100 100 100 100 100

Issued Capital 1,526.2m shares 126.7m options (\$0.14) 68.1m perf rights Australian Registered Office Level 1 100 Havelock Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Chairman Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett Non Exec Director

Contact T: +61 8 6385 2743 E: admin@challengergold.com

Criteria	JORC Code explanation	Commentary
Criteria	JORC Code explanation	CRM 15 + MSA Laboratory
		CRM 24 - ALS Laboratory 3.00 2.00 1.00
		CRM 25 - ALS Laboratory CRM 25 - ALS Laboratory CRM 25 - MSA Laboratory Au, JA, pen Au, JA, pen Au, JA, pen Au, SA,

Issued Capital 1,526.2m shares 126.7m options (\$0.14) 68.1m perf rights Australian Registered Office Level 1 100 Havelock Street

West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Chairman Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett Non Exec Director

Contact T: +61 8 6385 2743 E: admin@challengergold.com

 Verification of significant intersections by either integrations of primary data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 		JORC Code explanation	Commentary							
Mean Median Std Deviation Correlation	pling and	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. 	CRM 27 - ALS Laboratory	Arc.4edd.ppm 2 Zu,4edd.ppm 2 Cu,4edd.ppm 9 Cu,4edd.ppm 9 Po.4edd.ppm 9 Fe_4edd.pet 9 S_4edd.ppt 9 S_4edd.ppt	ved by coriginal project.	CRM 27	MSA Laborator	 Ам. JA. Ам. JA. Ал. JA. Ал. JA. В. Даба В. Даба	id. ppm id. ppm id. ppm id.	pied into a cloud-based
		 entry procedures data verification data storage (physical and electronic) protocols. Discuss any adjustment to assay 	No assay data have been othe has been done to verify assay analysed by MSA (San Juan p ALS (Mendoza preparation and The repeat analyses correlate results between MSA and ALS	erwise ac precisio preparation d Vanco very clo	djusted. on. Origi on and \ ouver ana sely with	Replicate nal core s /ancouve alysis). T n the origi	assay o amples r analys he repea nal anal	of 186 coa were from is). Coars at analysis yses provi	rse reject n the 201 se reject s s techniqu iding high	t samples from 2019 dril 9 DD drilling which were samples were analysed ue was identical to the o n confidence in precisior
		 entry procedures data verification data storage (physical and electronic) protocols. Discuss any adjustment to assay 	No assay data have been othe has been done to verify assay analysed by MSA (San Juan p ALS (Mendoza preparation and The repeat analyses correlate results between MSA and ALS below:	erwise ac precisio preparatio d Vanco very clo S. A sum	djusted. on. Origi on and \ ouver ana sely with	Replicate nal core s /ancouve alysis). T the origi the resul	assay o amples r analys he repea nal anal	of 186 coa were from is). Coars at analysis yses provi e 186 sam	rse reject n the 201 se reject s s techniqu iding high nple pairs	t samples from 2019 dril 9 DD drilling which were samples were analysed ue was identical to the o n confidence in precisior
		 entry procedures data verification data storage (physical and electronic) protocols. Discuss any adjustment to assay 	No assay data have been othe has been done to verify assay analysed by MSA (San Juan p ALS (Mendoza preparation and The repeat analyses correlate results between MSA and ALS below:	erwise ad precisio preparatio d Vanco very clo S. A sum Mean	djusted. n. Origi on and \ ouver and sely with nmary of	Replicate nal core s /ancouve alysis). T the origi the resul Median	assay c amples r analys he repea nal anal ts for the	of 186 coa were from is). Coars at analysis yses provi e 186 sam Std Devia	rse reject n the 201 se reject s s techniqu iding high nple pairs ation	t samples from 2019 dril 9 DD drilling which were samples were analysed ue was identical to the of confidence in precision for key elements is pro-
		 entry procedures data verification data storage (physical and electronic) protocols. Discuss any adjustment to assay 	No assay data have been othe has been done to verify assay analysed by MSA (San Juan p ALS (Mendoza preparation and The repeat analyses correlate results between MSA and ALS below:	erwise ad precisio preparatio d Vanco very clo S. A sum Mean MSA	djusted. n. Origi on and \ ouver and sely with mary of ALS	Replicate nal core s /ancouve alysis). T the origi the resul Median MSA	assay of amples r analys he repea nal anal ts for the ALS	of 186 coa were from is). Coars at analysis yses provi e 186 sam Std Devia MSA	rse reject n the 201 se reject s s techniqu iding high nple pairs ation ALS	t samples from 2019 dril 9 DD drilling which were samples were analysed ue was identical to the o n confidence in precision for key elements is prov
0(entry procedures data verification data storage (physical and electronic) protocols. Discuss any adjustment to assay 	No assay data have been othe has been done to verify assay analysed by MSA (San Juan p ALS (Mendoza preparation and The repeat analyses correlate results between MSA and ALS below: <u>Element</u> Au (FA and GFA ppm)	erwise ac precisio preparatio d Vanco very clo S. A sum Mean <u>Msa</u> 4.24	djusted. n. Origi on and \ buver ana sely with mary of <u>ALS</u> 4.27	Replicate nal core s /ancouve alysis). T the origi the resul Median MSA 0.50	assay of amples r analys he reper nal anal ts for the ALS 0.49	of 186 coa were from is). Coars at analysis yses provi e 186 sam Std Devia MSA 11.15	rse reject n the 201 se reject s s techniqu iding high nple pairs ation <u>ALS</u> 11.00	t samples from 2019 dril 9 DD drilling which were samples were analysed ue was identical to the o n confidence in precision for key elements is prov Correlation <u>coefficient</u> 0.9972
		 entry procedures data verification data storage (physical and electronic) protocols. Discuss any adjustment to assay 	No assay data have been othe has been done to verify assay analysed by MSA (San Juan p ALS (Mendoza preparation and The repeat analyses correlate results between MSA and ALS below: <u>Element</u> Au (FA and GFA ppm) Ag (ICP and ICF ppm)	erwise ac precisio preparation d Vanco very clo S. A sum Mean MSA 4.24 30.1	djusted. n. Origi on and \ buver ana sely with mary of <u>ALS</u> 4.27 31.1	Replicate nal core s /ancouve alysis). T the origi the resul Median MSA 0.50 5.8	assay of amples r analys he reper- nal anal ts for the ALS 0.49 6.2	of 186 coa were from is). Coars at analysis yses provi e 186 sam Std Devia MSA 11.15 72.4	rse reject in the 201 se reject s is techniqu iding high inple pairs ation <u>ALS</u> 11.00 73.9	t samples from 2019 dril 9 DD drilling which were samples were analysed ue was identical to the o confidence in precision for key elements is prov Correlation <u>coefficient</u> 0.9972 0.9903
		 entry procedures data verification data storage (physical and electronic) protocols. Discuss any adjustment to assay 	No assay data have been othe has been done to verify assay analysed by MSA (San Juan p ALS (Mendoza preparation and The repeat analyses correlate results between MSA and ALS below:	erwise ad precisio preparation d Vanco very clo S. A sum Mean 4.24 30.1 12312	djusted. n. Origi on and \ ouver and sely with nmary of <u>ALS</u> 4.27 31.1 12636	Replicate nal core s /ancouve alysis). T the origi the resul Median MSA 0.50 5.8 2574	assay of amples r analys he reperation nal anal ts for the ALS 0.49 6.2 2715	of 186 coa were from is). Coars at analysis yses provi e 186 sam Std Devia MSA 11.15 72.4 32648	rse reject in the 201 se reject s is techniquiding high iple pairs ation ALS 11.00 73.9 33744	t samples from 2019 dril 9 DD drilling which were samples were analysed ue was identical to the o confidence in precision for key elements is prov Correlation coefficient 0.9972 0.9903 0.9997
		 entry procedures data verification data storage (physical and electronic) protocols. Discuss any adjustment to assay 	No assay data have been othe has been done to verify assay analysed by MSA (San Juan p ALS (Mendoza preparation and The repeat analyses correlate results between MSA and ALS below:	erwise ad precisio preparation d Vanco very clo S. A sum Mean 4.24 30.1 12312 464	djusted. n. Origi on and \ ouver and sely with mary of <u>ALS</u> 4.27 31.1 12636 474	Replicate nal core s /ancouve alysis). T the origi the resul Median MSA 0.50 5.8 2574 74	assay of amples r analys he reper- nal anal ts for the 0.49 6.2 2715 80	of 186 coa were from is). Coars at analysis yses provi e 186 sam Std Devia MSA 11.15 72.4 32648 1028	rse reject in the 201 se reject s is techniquiding high iple pairs ation ALS 11.00 73.9 33744 1050	t samples from 2019 dril 9 DD drilling which were samples were analysed ue was identical to the on confidence in precision for key elements is prov Correlation coefficient 0.9972 0.9993 0.9994
S (ICP and ICF %)2.051.950.050.065.535.100.9987Cd (ICP ppm)68.568.812.412.8162.4159.30.9988		 entry procedures data verification data storage (physical and electronic) protocols. Discuss any adjustment to assay 	No assay data have been othe has been done to verify assay analysed by MSA (San Juan p ALS (Mendoza preparation and The repeat analyses correlate results between MSA and ALS below:	erwise ad precisio preparation d Vanco very clo S. A sum Mean 4.24 30.1 12312 464 1944	djusted. n. Origi on and \ ouver ana sely with nmary of <u>ALS</u> 4.27 31.1 12636 474 1983	Replicate nal core s /ancouve alysis). T the origi the resul Median MSA 0.50 5.8 2574 74 403	Assay of amples r analys he reper- nal anal ts for the 0.49 6.2 2715 80 427	of 186 coa were from is). Coars at analysis yses provi e 186 sam Std Devia MSA 11.15 72.4 32648 1028 6626	Ation ALS 11.00 73.9 33744 1050 6704	t samples from 2019 dril 9 DD drilling which were samples were analysed ue was identical to the on confidence in precision for key elements is prov Correlation <u>coefficient</u> 0.9972 0.9993 0.9997 0.9994 0.9997

For personal use only

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,526.2m shares 126.7m options (\$0.14) 68.1m perf rights Australian Registered Office Level 1 100 Havelock Street West Perth WA 6005 DirectorsContactMr Kris Knauer, MD and CEOT: +61 8 6385 2743Mr Sergio Rotondo, ChairmanE: admin@challengergold.comDr Sonia Delgado, Exec. DirectorKr Fletcher Quinn, Non-Exec. DirectorMr Fletchar Quinn, Non Exec DirectorKr Breit Hackett Non Exec Director

Criteria	JORC Code explanation	Commentary							
		As (ICP ppm))	76.0	79.5	45.8	47.6	88.1	90.6	0.9983
		Fe (ICP %)	4.96	4.91	2.12	2.19	6.87	6.72	0.9994
		REE (ICP ppm)	55.1	56.2	28.7	31.6	98.2	97.6	0.9954
		Cd values >1000 are s	at at 1000						

Cd values >1000 are set at 1000.

REE is the sum off Ce, La, Sc, Y. CE > 500 is set at 500. Below detection is set at zero

Replicate assay of 192 coarse reject samples from 2021 drilling has been done to verify assay precision. Original core samples were from the 2021 DD drilling which were analysed by SGS Laboratories (San Juan preparation and Lima analysis). Coarse reject samples were prepared and analysed by ALS (Mendoza preparation and Lima analysis). The repeat analysis technique was identical to the original. Except for Mo (molybdenum), the repeat analyses correlate closely with the original analyses providing confidence in precision of results between SGS and ALS. A summary of the results for the 192 sample pairs for key elements is provided below:

		Mean		Median		Std Devia	ation	
								Correlation
Element	count	SGS	ALS	SGS	ALS	SGS	ALS	coefficient
Au (FA and GFA ppm)	192	1.754	1.680	0.432	0.441	20.8	21.5	0.9837
Ag (ICP and ICF ppm)	192	12.14	11.57	0.93	1.03	7085	5925	0.9995
Zn (ICP and ICF ppm)	192	6829	7052	709	685	4.54E+08	5.34E+08	0.9942
Cu (ICP and ICF ppm)	192	203.4	202.9	25.7	24.5	3.30E+05	3.35E+05	0.9967
Pb (ICP and ICF ppm)	192	1768	1719	94.7	91.6	5.04E+07	4.39E+07	0.9959
S (ICP and ICF %)	192	2.23	2.10	0.94	0.87	16.51	15.56	0.9953
Cd (ICP ppm)	192	43.9	42.4	4.1	4.0	19594	18511	0.9956
As (ICP ppm))	192	45.4	45.2	16.0	16.9	10823	9893	0.9947
Fe (ICP %)	189	3.07	3.30	2.38	2.31	4.80	9.28	0.9781
REE (ICP ppm)	192	63.5	72.8	39.4	44.3	3414	4647	0.9096
Mo (ICP and ICF ppm)	192	7.69	1.68	6.74	0.97	85.83	10.33	0.3026

Values below detection were set to half the detection limit

Limit of detection for Fe was exceeded for 3 samples submitted to SGS with no overlimit analysis REE is the sum off Ce, La, Sc, Y. Vaues below detection were set at zero.

Replicate assay of 140 pulp reject samples from the 2022 drill (parts of drill holes GNDD654 and GNDD666) was done to check assay precision. The original pulps were analysed by MSA laboratories (San Juan preparation and Vancouver, Canada analysis). Replicate pulps were analysed by ALS (Lima, Peru). The analytic techniques were identical at both laboratories.

			Mea	n IV	ledian	Std Deviation
Challenger Gold Limited ACN 123 591 382	Issued Capital 1,526.2m shares	Australian Registered Office	Directors Mr Kris Knauer, MD and CEO	Contact T: +61 8 6385 2743		
ASX: CEL	126.7m options (\$0.14) 68.1m perf rights	100 Havelock Street West Perth WA 6005	Mr Sergio Rotondo, Chairman Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director	E: admin@challengergo	old.com	

Criteria	JORC Code explanation	Commentary								
										Correlation
		Element	count	SGS	ALS	SGS	ALS	SGS	ALS	coefficient
		Au (FA ppm)	140	0.27	0.30	0.01	0.02	0.98	1.05	0.9829
		Ag (ICP ppm)	140	1.16	1.14	0.16	0.16	6.15	6.31	0.9965
		Zn (ICP ppm)	140	555	565	50	56	2471	2469	0.9996
		Pb (ICP ppm)	140	92.3	95.4	13.6	13.5	338	351	0.9977
		S (ICP %)	140	0.64	0.61	0.17	0.17	1.22	1.12	0.9982
		Fe (ICP %)	140	1.62	1.59	0.64	0.66	1.91	1.88	0.9991
		exploration. A preli assayed. The twin H GNDD003 – DDH3- GNRC110 – DDH5- GNDD144 – GNDD GNRC107 – GNDD GNDD206 – DDH5- GNDD206 – DDH5-	noles are: 4 and 04HD08 3 021 – 05HD3 008/008A 4	3						
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys) trenche 	Following completion of drilling, collars are marked and surveyed using a differential GPS (DGPS) relative to nearby Argentinian SGM survey point. The collars have been surveyed in POSGAR 2007 zone 2 and converse to WGS84 UTM zone 19s.								
	mine workings and other locations used in Mineral Resource estimation.	Following completion of the channel sampling, the location of the channel samples is surveyed from a surve mark at the entrance to the underground workings, located using differential GPS. The locations have been surveyed in POSGAR 2007 zone 2 and converted to WGS84 UTM zone 19s.								
	 Specification of the grid system used. Quality and adequacy of 	The drill machine is set-up on the drill pad using hand-held survey equipment according to the proposed ho design.								
	topographic control.	Diamond core drill holes up to GNDD390 are surveyed down-hole at 30-40m intervals down hole using a do hole compass and inclinometer tool. RC drill holes and diamond core holes from GNDD391 were continuous surveyed down hole using a gyroscope to avoid magnetic influence from the drill string and rocks. The gyroscope down-hole survey data is recorded in the drill hole database at 10m intervals.								
		Ten diamond drill h loss of drilling equip holes, a survey of th	ment. These	are GND	D036, 1	97, 212, 2	283, 376,	423, 425, 439), 445 an	d 465. For thes
		All current and previous drill collar sites, Minas corner pegs and strategic surface points have been survey using DGPS to provide topographic control for the Project. In addition, AWD3D DTM model with a nomina metre precision has been acquired for the project and greater surrounding areas. Drone-based topographic								

For personal use only

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,526.2m shares 126.7m options (\$0.14) 68.1m perf rights Australian Registered Office Level 1 100 Havelock Street

West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Chairman Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett Non Exec Director

Criteria	JORC Code explanation	Commentary
		survey data with 0.1 meter precision is being acquired over the project to provide more detail where required.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	Nominal 80m x 80m, 40m x 80m and 40m x 40m drill spacing is being applied to the drilling to define mineralised areas to Indicated Resource level of confidence, where appropriate. Drilling has been completed to check previous exploration, extend mineralisation along strike, and provide some information to establish controls on mineralization and exploration potential. Samples have not been composited.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias this should be assessed and reported if material. 	As far as is currently understood and where practicable, the orientation of sampling achieves unbiased sampling of structures and geology controlling the mineralisation. Some exploration holes have drilled at a low angle to mineralisation and have been followed up with drill holes in the opposite direction to define mineralised domains. For underground channel sampling, the orientation of the sample is determined by the orientation of the workings. Where the sampling is parallel with the strike of the mineralisation, plans showing the location of the sampling relative to the orientation of the mineralisation, weighted average grades and estimates of true thickness are provided to provide a balanced report of the mineralisation that has been sampled. Drilling has been designed to provide an unbiased sample of the geology and mineralisation targeted. In exceptional circumstances, where drill access is restricted, drilling may be non-optimally angled across the mineralised zone.
Sample security	 The measures taken to ensure sample security. 	Samples were under constant supervision by site security, senior technical personnel and courier contractors prior to delivery to the preparation laboratories in San Juan and Mendoza.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	There has not yet been any independent reviews of the sampling techniques and data.

Issued Capital 1,526.2m shares 126.7m options (\$0.14) 68.1m perf rights Australian Registered Office Level 1 100 Havelock Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Chairman Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director Contact

T: +61 8 6385 2743

E: admin@challengergold.com

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary						
Mineral tenement and land tenure status	 Type reference name/number location and ownership including agreements or material issues with third parties such as joint ventures partnerships overriding royalties native title interests historical sites wilderness or national park and environmental settings. 	lease extensions) h SRL (Cerro Norte). Fourteen additiona a separate farmin a covers all of the cu There are no royal	neld under an fa l Minas and eig agreement. Six rrently defined ities held over th	teen Minas (equivalent armin agreement with (ht exploration licences Cateos and eight requ mineralization and surn he tenements. orgadas) at the Hualila	Golden Minii (Cateos) ha uested minir rounding pro	ng SRL (Cerro ave been trans ng leases are c	Sur) and C sferred to CE lirectly held.	ÌA G EL u
	 The security of the tenure held at the time of reporting along with any 	Name	Number	Current Owner	Status	Grant Date	Area (ha)	1
	known impediments to obtaining a	Cerro Sur					. ,	1
	licence to operate in the area.	Divisadero	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6	1
		Flor de Hualilan	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6	1
		Pereyra y Aciar	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6]
		Bicolor	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6	
	Sentazon	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6		
	Muchilera	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6		
	Magnata	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6		
		Pizarro	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6	
		Cerro Norte						
		La Toro	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6	
		La Puntilla	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6	
		Pique de Ortega	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6	
		Descrubidora	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6	
		Pardo	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6	
		Sanchez	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6	
		Andacollo	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6	
		Mining Lease exter	nsions (Demasi	as) at the Hualilan Pro	ject			
		Name	Number	Current Owner	Status	Grant d	late Area	(ha)
		Cerro Sur						
		North of "Pizarro" Mine	195-152-C-19	81 Golden Mining S.R.L.	Granted	l 29/12/1	.981 2.4	12
		wine		J.R.L.				

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,526.2m shares 126.7m options (\$0.14) 68.1m perf rights

Level 1 100 Havelock Street

Australian Registered Office

West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Chairman Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett Non Exec Director

	South of	545.208-B-94	CIA GPL S.R.L.	
	"Andacollo" Mine			Rec
	South of	545.209-B-94	CIA GPL S.R.L.	F
	"Sanchez" Mine			
	South of "La	195-152-C-1981	CIA GPL S.R.L.	
	Toro" Mine	199-192-0-1981	CIA OF E S.N.E.	
	South of "Pizarro"	545.207-B-94	Golden Mining	F
\geq	Mine		S.R.L.	
only	Requested Mining	Leases (Minas Sol	licitados)	
	Name		Number	
0	Elena		1124.328-G	-2021
	Juan Cruz		1124.329-G	-2021
Φ	Paula (over "Lo Que	e Vendra")	1124.454-G	-2021
()	Argelia		1124.486-G	-2021
Ť	Ana Maria (over Ak	2)	1124.287-G	-2021
	Erica (Over "El Peño	ón")	1124.541-G	-2021
	Silvia Beatriz (over	"AK3")	1124.572-G	-2021
m	Soldado Poltronieri	(over 1124188-20,	1124.108-20	022
	545867-R-94 and 5	45880-0-94)		
or personal use	Mining Lease Farn	nin Agreements		
	Name	Number	Transfrred to C	EL
()	Marta Alicia	2260-S-58	In Process	
	Marta	339.154-R-92	In Process	
Ð	Solitario 1-5	545.604-C-94	In Process	
Õ	Solitario 1-4	545.605-C-94	In Process	
	Solitario 1-1	545.608-C-94	In Process	
<u> </u>	Solitario 6-1	545.788-C-94	In Process	
0	AGU 3	11240114-2014	No	
	AGU 5	1124.0343-2014	No	
	AGU 6	1124.0623-2017	No	
	AGU 7	1124.0622-S-17	No	
			1	

JORC Code explanation

Challenger Gold Limited ACN 123 591 382 ASX: CEL

Criteria

Issued Capital 1,526.2m shares 126.7m options (\$0.14) 68.1m perf rights

Australian Registered Office Level 1

Directors

Guillermina

Ayen/Josefina

El Petiso

Commentary

14/02/1994

14/02/1994

29/12/1981

14/02/1994

Area (ha)

2,799.24

1,460.06

3,660.50

5,572.80

2,290.75

777.56

Area (ha)

23.54

478.50 685.00

310.83

тва

ТВА

1,500.00 1,443.58

1,500.00

1,500.00

2,921.05

18.00

2059.6

6.00

933.69

1.83

3.50

2.42

2.09

Pending

Reconsideration

Registered

Granted

Registered

Status

Registered

Application

Registered

Registered

Application

Application

Application

Status

Granted

Granted

Application

Registered

Application Application

Granted

Granted

Granted

Granted

Granted

Granted

Granted

Granted

100 Havelock Street West Perth WA 6005

Contact Mr Kris Knauer, MD and CEO T: +61 8 6385 2743 Mr Sergio Rotondo, Chairman E: admin@challengergold.com Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

1124.045-S-2019

1124.2478-71

1124.495-I-20

No

No

No

Criteria	JORC Code explanatio	n	Commentary							
			Exploration Lic	ence (Cateo) Farmin	Agreements					
			Name	Number	Transfrred	to CEL	Status	Area (h	a)	
			-	295.122-R-1989	In process	Re	gistered	1,882.5	56	
			-	338.441-R-1993	In process	G	Granted 2,8		00	
			-	545.880-0-1994	In process	Re	gistered	149.9	9	
			- 414.998-2005 Yes Granted				Granted	721.90	D	
			-	1124.011-I-07 No G			Granted	2552		
			-	1124.012-I-07	No	Re	gistered	6677		
			-	1124.013-I-07	No	G	Granted	5818		
			-	1124.074-I-07	No	G	Granted	4484.	5	
			Exploration Lic	ence (Cateo) Held (L	Direct Award)					
			Name	Number	Tr	ansfrred to CEL	Status	Area (ha)		
			-	1124-248G-20	Ye	S	Current	933.20		
			-	1124-188-G-20 (2 z	ones) Ye	S	Current	327.16		
			-	1124.313-2021	Ye	-	Current	986.41		
			-	1124.564-G-2021	Ye		Current	1,521.12		
			-	1124.632-G-2022	Ye	-	Current	4,287.38		
Exploration done	- Acknowledgment	and appraisal of		nown impediments to	•	-		•	•	
by other parties	 Acknowledgment and appraisal of exploration by other parties. 		geological map	s, reports, trenching	data, underg	round surveys, o	drill hole re	sults, geophy	sical sur	
by other partices				ource estimates plus tion by CEL, no work					ole geolo	
				2						
				t 6 km of undergrour						
				workings are likely to						
				mpling have been co drill hole results. His						
			surveys comple		tono goophy		orburnave	been oupon	Joada by	
			Historic drilling	on or near the Hualil	lan Project (C	erro Sur and Ce	erro Norte o	combined) ex	tends to	
				The key historical ex						
			- 1984 – Lixivia SA channel sampling & 16 RC holes (AG1-AG16) totalling 2,040m							
				Plata Mining Limited	• • •	•			•	
				Chilean consulting f		on behalf of Pla	ta Mining)	systematic u	ndergrou	
			mappir	ig and channel samp	oling					
enger Gold Limited	Issued Capital	Australian Registered			Contact					
23 591 382	1,526.2m shares Level 1			s Knauer, MD and CEO	T: +61 8 638					
CEL	126.7m options (\$0.14)	TOU Havelock Street	IVIT Sei	gio Rotondo, Chairman	E: admin@ch	allengergold.com				
EL	126.7m options (\$0.14) 68.1m perf rights	West Perth WA 6005	Dr Sor	gio Rotondo, Chairman nia Delgado, Exec. Director		allengergold.com				
EL			Dr Sor Mr Fle	gio Rotondo, Chairman	tor	allengergold.com				

Criteria	JORC Code explanation	Commentary
Geology	 Deposit type geological settin style of mineralisation. 	 1999 – Compania Mineral El Colorado SA ("CMEC") 59 diamond core holes (DDH-20 to 79) plus 1,700m RC program 2003 – 2005 – La Mancha (TSE Listed) undertook 7,447m of DDH core drilling (HD-01 to HD-48) Detailed resource estimation studies were undertaken by EPROM Ltd. (EPROM) in 1996 and CMEC (1999 revised 2000) both of which are well documented and La Mancha 2003 and 2006. The collection of all exploration data by the various operators was of a high standard and appropriate sampling techniques intervals and custody procedures were used. Not all the historic data has been archived and so there are gaps in the availability of the historic data. Mineralisation occurs in all rock types where it preferentially replaces limestone, shale and sandstone and occurs in fault zones and in fracture networks within dacitic intrusions.
		The mineralisation is Zn-(Pb-Cu-Ag) distal skarn (or manto-style skarn) overprinted with vein-hosted mesothermal to epithermal Au-Ag mineralisation. It has been divided into three phases – prograde skarn, retrograde skarn and a later quartz-rich mineralisation consistent with the evolution of a large hydrothermal system. Precise mineral paragenesis and hydrothermal evolution is the subject of on-going work which is being used for exploration and detailed geometallurgical test work.
		Gold occurs in native form as inclusions with sulphide (predominantly pyrite) and in pyroxene. The mineralisation commonly contains pyrite, chalcopyrite sphalerite and galena with rare arsenopyrite, pyrrhotite and magnetite.
		Mineralisation is either parallel to bedding in bedding-parallel faults, in veins or breccia matrix within fractured dacitic intrusions, at lithology contacts or in east-west striking steeply dipping siliceous faults that cross the bedding at a high angle. The faults have thicknesses of 1–4 metres and contain abundant sulphides. The intersection between the bedding-parallel mineralisation and east-striking cross veins seems to be important in localising the mineralisation.
		Complete oxidation of the surface rock due to weathering is thin. A partial oxidation / fracture oxidation layer near surface is 1 to 40m thick and has been modelled from drill hole intersections.
Drill hole Information	 A summary of all information to the understanding of the exploration results including a tabulation of the following info for all Material drill holes: easting and northing of the dr 	by CEL are detailed in CEL ASX releases: 1 June 2022 (Maiden MRE): <u>https://announcements.asx.com.au/asxpdf/20220601/pdf/459jfk8g7x2mty.pdf</u> and 29 March 2023 (MRE update):
	 collar elevation or RL (Reduced Level) elevation above sea level in no of the drill hole collar 	A cut-off grade of 1 g/t Au equivalent has been used with up to 2m of internal diltion or a cut-off grade of 0.2 g/t Au equivalent and up to 4m of internal diltion has been allowed. No metallurcial or recovery
enger Gold Limited 123 591 382 CEL	1,526.2m shares Level 1 126.7m options (\$0.14) 100 Hav	n Registered Office Directors Contact Mr Kris Knauer, MD and CEO T: +61 8 6385 2743 bock Street Mr Sergio Rotondo, Chairman E: admin@challengergold.com h WA 6005 Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

Criteria	JORC Code explanation	Commentary		
	 dip and azimuth of the hole down hole length and intercedepth hole length. If the exclusion of this inform justified on the basis that the information is not Material as exclusion does not detract funderstanding of the report a Competent Person should cexplain why this is the case. 	ation is d this m the ne		
Data aggregation methods	 In reporting Exploration Res averaging techniques maxin minimum grade truncations high grades) and cut-off grad Material and should be state Where aggregate intercepts 	um and/or are reported are reported are usually up to 10r metal primetal pr	ted to cut-off grade of a ernal dilution between sa n of internal dilution betw	ercepts are reported to a gold grade equivalent (AuEq). Results 1.0 g/t Au equivalent and 10 g/t Au equivalent allowing for up to amples above the cut-off grade and 0.2 g/t Au equivalent allowin ween samples above the cut-off grade. The following metals and report gold grade equivalent (AuEq): Au US\$ 1780 / oz Ag US\$2
	 short lengths of high-grade in longer lengths of low-grade procedure used for such agging should be stated and some in examples of such aggregation shown in detail. The assumptions used for an metal equivalent values show stated. 	esults and Metallurg esults the metallurg regation combinat rpical Using da s should be significar recovery y reporting of Metal pri Id be clearly US 2,000 Accordin (0.909/0. (0.578/.9 Metallurg included recovery economic	ical test work completed ion of gravity and flotati- ta from the interim test r it intercepts, gold recover is estimated to be 94.9% ces used to report AuEq)/t gly, the formula used for 949)] + [Zn (%) x (40.00 490}. in the metal equivalents . While Cu and Pb are r cally significant at the tir	Ag and Zn have been estimated from the results of interim d by SGS Metallurgical Operations in Lakefield, Ontario using a on of a combined metallurgical sample from 5 drill holes. esults, and for the purposes of the AuEq calculation for drill hole ery is estimated For the AuEq calculation average metallurgical % for gold, 90.9% for silver, 67.0% for Zn and 57.8% for Pb. are Au US\$ 1900 / oz, Ag US\$24 /oz, Zn US\$ 4,000 /t and Pb r Au Equivalent is: AuEq (g/t) = Au (g/t) + [Ag (g/t) x (24/1900) x *31.1/1900) x (0.670/0.949)] + (Pb (%) x 20.00*31.1/1900) x pgical and petrographic descriptions suggest all the elements or calculation have reasonable potential of eventual economic reported in the table above as they were not yet considered ne of the interim metallurgical test results, these metals were not at this early stage of the Project.
		•	uts have been applied to	
Relationship between mineralisation	 These relationships are part important in the reporting of Exploration Results. 	there is insuffi		eeply dipping and strikes NNE and ENE. For some drill holes, idently establish the true width of the mineralized intersections a
enger Gold Limited 123 591 382 CEL	1,526.2m shares Level 126.7m options (\$0.14) 100 H	velock Street Mr Se erth WA 6005 Dr Sc Mr Fl	t tors is Knauer, MD and CEO irgio Rotondo, Chairman nia Delgado, Exec. Director etcher Quinn, Non-Exec. Director ni Althaus , Non Exec Director	Contact T: +61 8 6385 2743 E: admin@challengergold.com

Mr Brett Hackett Non Exec Director

Criteria	JORC Code explanation	Commentary
widths and intercept lengths	 If the geometry of the mineralisation with respect to the drill hole angle is 	Apparent widths may be thicker in the case where the dip of the mineralisation changes and/or bedding parallel mineralisation intersects NW or ENE-striking cross faults and veins.
	 known its nature should be reported. If it is not known and only the down hole lengths are reported there should be a clear statement to this effect (eg 'down hole length true width not known'). 	Representative cross section interpretations have been provided periodically with releases of significan intersections to allow estimation of true widths from individual drill intercepts.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Representative maps and sections are provided in the body of reports released to the ASX.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All available final data have been reported where possible.
Other substantive exploration data	 Other exploration data if meaningful and material should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density groundwater geotechnical and rock characteristics; potential deleterious or contaminating substances. 	Specific gravity measurements have been taken from the drill core recovered during the drilling program. These data are used to estimate densities in Resource Estimates. Eight Induced Polarisation (IP) lines have been completed in the northern areas of the Project. Stage 7 surveying was done on 1 kilometre length lines oriented 115° azimuth, spaced 100m apart with a 50m dipole. The initial results indicate possible extension of the mineralisation with depth. Stage 2 surveying was done across the entire field on $1 - 3$ kilometre length lines oriented 090°, spaced 400m apart with a 50m dipole. On-going data interpretation is being done as drilling proceeds. Three ground magnetic surveys and a drone magnetic survey have been completed. The results of these data and subsequent geological interpretations are being used to guide future exploration. Metallurgical test results are used to estimate the AuEq (gold equivalent) as detailed above in <i>Data Aggregation</i> and below in <i>Section 3: Metallurgical Factors or Assumptions</i> . The formula used for AuEq is: AuEq (g/t) = Au (g/t) + [Ag (g/t) x (24/1900) x (0.909/0.949)] + [Zn (%) x (40.00*31.1/1900) x (0.670/0.949)] + (Pb (%) x 20.00*31.1/1900) x (0.578/.9490). Point resistivity surveys have been completed east of the Project for the purposes of detecting the presence of groundwater. Three surveys (total of 22 points) have been completed. A water bore has been drilled approximately 4 kilometres to the east of the Project which found water in permeable Quaternary sedimentary deposits above hard-rock basement at 128 metres vertical depth. Testing and

Issued Capital 1,526.2m shares 126.7m options (\$0.14) 68.1m perf rights

Australian Registered Office Level 1 100 Havelock Street West Perth WA 6005

Directors

T: +61 8 6385 2743 Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Chairman Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

E: admin@challengergold.com

Criteria	JORC Code explanation	Commentary
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions including the main geological interpretations 	 commissioning of the bore has yet to be completed. Further geophysical test work is planned to determine the extent of the aquifer. CEL Plans to undertake the following over the next 12 months Additional resource extension, infill and exploration drilling; Geophysical tests for undercover areas. Structural interpretation and alteration mapping using high resolution satellite data and geophysics to better target extensions of known mineralisation. Field mapping program targeting extensions of known mineralisation.
and future d	and future drilling areas provided this information is not commercially	Further metallurgical test work.

Issued Capital 1,526.2m shares 126.7m options (\$0.14) 68.1m perf rights Australian Registered Office Level 1 100 Havelock Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Chairman Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett Non Exec Director

Contact T: +61 8 6385 2743 E: admin@challengergold.com

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by for example transcription or keying errors between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	Geological logging completed by previous explorers was done on paper copies and transcribed into a series of excel spreadsheets. These data have been checked for errors. Checks have been made against the original logs an with follow-up twin and close spaced drilling. Only some of the historic drill holes have been used in the Resource Estimate, including the results presented in Section2. Some drill holes have been excluded where the geology indicates that the drill hole is likely mis-located or where the drill hole has been superseded by CEL drilling. For CEL drilled holes, assay data is received in digital format. Backup copies are backed up into a cloud-based file states and the data is entered into a drill hole data been which is also expressive backed up of site.
		storage system and the data is entered into a drill hole database which is also securely backed up off site.
		The drill hole data is backed up and is updated periodically by the CEL GIS and data management team.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	The Competent Person has undertaken site visits during exploration. Site visits were undertaken in 2019 and 2020 before COVID-19 closed international travel. Post COVID numerous site visits have undertaken since November 2021. The performance of the drilling program, collection of data, sampling procedures, sample submission and exploration program were initiated and reviewed during these visits.
Geological interpretation	 Confidence in (or conversely the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect if any of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	The geological interpretation is considered appropriate given the drill core density of data that has been collected access to mineralisation at surface and underground exposures. Given the data, geological studies past and completed by CEL, the Competent Person has a high level of confidence in the geological model that has been use to constrain the mineralised domains. It is assumed that networks of fractures controlled by local geological factors have focussed hydrothermal fluids and been the site of mineralisation in both the prograde zinc skarn and retrograde mesothermal – epithermal stages of hydrothermal evolution. The interpretation captures the essential geometry of the mineralised structure and lithologies with drill data supporting the findings from the initial underground sampling activities. Mineralised domains have been built using explicit wireframe techniques from $0.2 - 0.5$ g/t AuEq mineralised intersections, joined between holes by the instruction from the geology and structure. Continuity of grade between drill holes is determined by the intensity of fracturing, the host rock contacts (particularly dacite – limestone contacts) and by bedding parallel faults, particularly within limestone, at the limestone and overlying sedimentary rock contact and within the lower sequences of the sedimentary rocks within 40m of the contact. No alternative interpretations have been made form which a Mineral Resource Estimate has been made.
Dimensions	- The extent and variability of the Mineral Resource expressed as length (along strike or otherwise) plan width and depth below surface to the upper and lower limits of the Mineral	31 separate domains were interpreted over a strike length of 2.3kms. The domains vary in width and orientation from 2m up to 100m in width. The deepest interpreted domain extends from the surface down approximately 600m below surface.

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,526.2m shares 126.7m options (\$0.14) 68.1m perf rights Australian Register Level 1 100 Havelock Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Chairman Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

T: +61 8 6385 2743

E: admin@challengergold.com

Criteria	JORC Code explanation	Commentary
	Resource.	
stimation and nodelling echniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions including treatment of extreme grade values domaining interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other 	 A 2m composite length was selected after reviewing the original sample lengths from the drilling which showed average length of 1.54m for samples taken within the mineralised domains. A statistical analysis was undertaken on the sample composites top cuts for Au, Ag, Zn and Pb composites on a domain-by-domain basis. The domains were then grouped by host rock and mineralisation style and group dom top cuts were applied in order to reduce the influence of extreme values on the resource estimates without downgrading the high-grade composites too severely. The top-cut values were chosen by assessing the high-end distribution of the grade population within each group and selecting the value above which the distribution became erratic. The following table shows the top cuts applied to each group and domain for Au, Ag, Zn and Pb.
	non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation).	No top cut was applied to estimation of Fe and S.
	 In the case of block model interpolation the block size in relation to the average sample 	GroupAu (ppm)Ag (ppm)Zn (%)Pb (%)Fault Zone hosted (Magnata and Sanchez) and CAL (limestone) hosted80300205
 spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource 	spacing and the search employed.	LUT (siltstone) hosted 20 100 5 1
		DAC (intrusive) hosted 15 70 5 1.8
	Block modelling was undertaken in Surpac™ V6.6 software.	
		(E) x 5.0m (N) x 2.5m (RL) to maintain the resolution of the mineralised domains. The 20m Y and vertical block
		dimensions were chosen to reflect drill hole spacing and to provide definition for potential mine planning. The

For personal use only

Challenger Gold Limited ACN 123 591 382 ASX: CEL

Issued Capital 1,526.2m shares 126.7m options (\$0.14) 68.1m perf rights Australian Registere Level 1 100 Havelock Street West Perth WA 6005

Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Chairman Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett Non Exec Director

Criteria	JORC Code explanation	Commentary
		All relevant variables; Au, Ag, Pb, Zn, Fe and S in each domain were estimated using Ordinary Kriging using only data from within that domain. The orientation of the search ellipse and variogram model was controlled using surfaces designed to reflect the local orientation of the mineralized structures.
		An oriented "ellipsoid" search for each domain was used to select data for interpolation. A 3 pass estimation search was conducted, with expanding search ellipsoid dimensions and decreasing minimum number of samples with each successive pass. First passes were conducted with ellipsoid radii corresponding to 40% of the complete range of variogram structures for the variable being estimated. Pass 2 was conducted with 60% of the complete range of variogram structures for the variable being estimated. Pass 3 was conducted with dimensions corresponding to 200% of the semi-variogram model ranges. Blocks within the model where Au was not estimated during the first 3 passes were assigned as unclassified. Blocks for Ag, Pb, Zn, Fe and S that were not estimated were assigned the average values on a per-domain basis.
		Validation checks included statistical comparison between drill sample grades and Ordinary Kriging block estimate results for each domain. Visual validation of grade trends for each element along the drill sections was also completed in addition to swath plots comparing drill sample grades and model grades for northings, eastings and elevation. These checks show good correlation between estimated block grades and drill sample grades.
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture and the method of determination of the moisture content. 	Tonnage is estimated on a dry basis.
Cut-off parameters	- The basis of the adopted cut-off grade(s) or quality parameters applied.	The following metals and metal prices have been used to report gold grade equivalent (AuEq): Au US\$ 1900 / oz, Ag US\$24 /oz, Zn US\$ 4,000 /t and Pb US 2,000/t.
,		Average metallurgical recoveries for Au, Ag, Zn and Pb have been estimated from the results of Stage 1 metallurgical test work completed by SGS Metallurgical Operations in Lakefield, Ontario using a combination of gravity and flotation combined metallurgical samples as detailed in the Criteria below. For the AuEq calculation average metallurgical recovery is estimated as 94.9% for gold, 90.9% for silver, 67.0% for Zn and 57.8% for Pb. Accordingly, the formula used for Au Equivalent is: AuEq (g/t) = Au (g/t) + [Ag (g/t) x (24/1900) x (0.909/0.949)] + [Zn (%) x (40.00*31.1/1900) x (0.670/0.949)] + (Pb (%) x 20.00*31.1/1900) x (0.578/.9490}.
		Based on the break-even grade for an optimised pit shell for gold equivalent, a AuEq cut-off grade of 0.30 ppm is used to report the resource within an optimised pit shell run at a gold price of US\$1,800 per ounce and allowing for Ag, Zn and Pb credits. Under this scenario, blocks with a grade above the 0.30 g/t Au Eq cut off are considered to have reasonable prospects of mining by open pit methods. A AuEq cut-off grade of 1.0 ppm was used to report the resource beneath the optimised pit shell run as these
		blocks are considered to have reasonable prospects of future mining by underground methods.

For personal use only

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,526.2m shares 126.7m options (\$0.14) 68.1m perf rights Australian Registered Office Level 1 100 Havelock Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Chairman Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

Contact

T: +61 8 6385 2743

E: admin@challengergold.com

Criteria	JORC Code explanation	Commentary
Mining factors or assumptions	- Assumptions made regarding possible mining methods minimum mining dimensions and internal (or if applicable external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case this should be reported with an explanation of the basis of the mining assumptions made.	 The Resource estimate has assumed that near surface mineralisation would be amenable to open pit mining given that the mineralisation is exposed at surface and under relatively thin unconsolidated cover. A surface mine optimiser has been used to determine the proportion of the Resource estimate model that would be amenable to eventual economic extraction by open pit mining methods. The surface mine optimiser was bult using the following parameters with prices in USD: Au price of \$1,800 per oz, Ag price of \$23.4 per oz, Zn price of \$3,825 per tonne and Pb price of \$1,980 per tonne Average metallurgical recoveries of 94.9% for Au, 90.9% for Ag and 67% for Zn and 57.8% for Pb. Ore and waste mining cost of \$2.00 per tonne Unconsolidated cover removal cost of \$0.10 per tonne Processing cost of \$10.00 per tonne Transport and marketing of \$50 / oz of AuEq (road to Jan Juan then rail to Rosario Port) Royalty of \$60 per oz Au, 3% for Ag, Zn and Pb. Assumed concentrate payability of 94.1% for Au, 82.9% for Ag, 90% for Zn and 95% for Pb. 45° pit slopes on the western side of the pit and 55° on the eastern side of the pit Blocks above a 0.30 g/t AuEq within the optimised open pit shell are determined to have reasonable prospects of future economic extraction by open pit mining and are included in the Resource estimate on that basis. Blocks below the open pit shell that are above 1.0 g/t AuEq are determined to have reasonable prospects of future
Metallurgical factors or assumptions	- The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case this should be reported with an explanation of the basis of the metallurgical assumptions made.	 economic extraction by underground mining methods and are included in the Resource estimate on that basis. CEL has completed Stage 1 metallurgical test work on representative composite sample of mineralisation from: Two separate composite samples of limestone-hosted massive sulphide (manto) Sample A has a weighted average grade of 10.4 g/t Au, 31.7 g/t Ag, 3.2 % Zn and 0.46 % Pb. Sample B has a weighted average grade of 9.7 g/t Au, 41.6 g/t Ag, 4.0% Zn and 0.48% Pb. One dacite (intrusive) composite sample with a weighted average grade of 1.1 g/t Au, 8.1 g/t Ag and 0.10 f Zn and 0.04% Pb. One sediment hosted (fine grained sandstone and siltstone) composite sample with a weighted average grade of 0.68 g/t Au, 7.5 g/t Ag, 0.34 % Zn and 0.06 % Pb. One oxidised limestone (manto oxide) composite sample with a weighted average grade of 7.0 g/t Au, 45 g/t Ag, 3.7% Zn and 0.77% Pb. Gravity recovery and sequential flotation tests of the higher-grade limestone hosted mineralisation involved; primary P80 = 51 micron primary grind, gravity recovery, Pb-Cu followed by Zn rougher flotation,

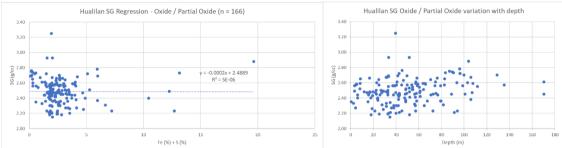
Issued Capital 1,526.2m shares 126.7m options (\$0.14) 68.1m perf rights Australian Registered Office Level 1 100 Havelock Street West Perth WA 6005 DirectorsContactMr Kris Knauer, MD and CEOT: +61 8 6385 2743Mr Sergio Rotondo, ChairmanE: admin@challengergold.comDr Sonia Delgado, Exec. DirectorMr Flietcher Quinn, Non-Exec. DirectorMr Pini Althaus , Non Exec DirectorHerter Althaus , Non Exec DirectorMr Brett Hackett Non Exec DirectorHerter Althaus , Non Exec Director

Criteria	JORC Code explanatio	n C	ommentary
			4. p80 = 29 micron regrind of the Zn rougher concentrate,
			5. two re-cleaning stages of the Pb/Cu rougher concentrate,
			6. four re-cleaning Sages on the Zn rougher concentrate, and
			7. additional gravity recovery stages added to the Zn Rougher concentrate
			This results in the following products that are likely to be saleable
			 Au-Ag concentrate (118 g/t Au, 286 g/t Ag) with low deleterious elements,
			- Pb concentrate (65% Pb, 178 g/t Au, 765 g/t Ag) with low deleterious elements, and
			- Zn concentrate (51% Zn, 10 g/t Au, 178 g/t Ag) with low deleterious elements, relatively high Cd, but at a
			level that is unlikely to attract penalties.
			- tailing grades of 2 to 3 g/t Au which respond to intensive cyanide leach with recoveries of 70-80% of any
			residual gold and silver to a gold doré bar.
			Two intensive leach tests of Au-Ag concentrate to doré have been completed using a representative sample
			the Au-Ag concentrate. One split of the sample was finely ground to p80 of 16.7 μ m and the second split
			finely ground to p80 of 40 µm. The 16.7 µm sample returned a recovery of 96.0% Au and the 40 µm sample
			returned a recovery of 92.8% Au. These results provide an option to eliminate concentrate transport costs a
			increase payability for the Au-Ag concentrate.
			Gravity recovery and flotation tests of the intrusive-hosted mineralisation involved;
			1. primary P80 = 120-80 micron primary grind,
			2. gravity recovery,
			3. single stage rougher sulphide flotation,
			P80 = 20-30 micron regrind of the rougher concentrate (5-10% mass),
			5. one or two re-cleaning stages of the Au-Ag Rougher concentrate
			At primary grind of p80 = 76 micron and regrind of p80 = 51 micron an Au-Ag concentrate can be produced grading 54 g/t Au and 284 g/t Ag with total recoveries of 97% (Au) and 85% (Ag).
			One test of a sediment hosted composite sample (5-10% of the mineralisation at the Project) was a repeat o
			the testing done on the intrusive-hosted mineralisation. This produced an Au-Ag concentrate grading 23.6 g
			Au and 234 g/t Ag at total recoveries of 85% (Au) and 87% (Ag). Further test work is likely to be done as par
			of more detailed studies. It is likely that the concentrate produced from the sediment-hosted mineralisation
			will be combined with the Au-Ag concentrate from the limestone and intrusive-hosted mineralisation.
			Applying recoveries of 70% for both gold and silver to the various concentrate tailings components
			where leaching is likely to be undertaken during production generates recoveries of:
			• 95% (Au), 93% (Ag), 89% (Zn), 70% (Pb) from the high-grade skarn (manto) component of the mineralisatio
enger Gold Limited	Issued Capital	Australian Registered Office	Directors Contact
123 591 382 CEL	1,526.2m shares 126.7m options (\$0.14)	Level 1 100 Havelock Street	Mr Kris Knauer, MD and CEO T: +61 8 6385 2743 Mr Sergio Rotondo, Chairman E: admin@challengergold.com
	68.1m perf rights	West Perth WA 6005	Dr Sonia Delgado, Exec. Director
			Mr Fletcher Quinn, Non-Exec. Director

Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

Criteria	JORC Code explanation		Commentary	
				he intrusion-hosted component of the mineralisation; he sediment-hosted component of the mineralisation;
			of 78% (Au) and 64% (Ag) whicl the mineralisation comprises o	of oxide (limestone and dacite hosted mineralisation has produced recoveries n is expected to be recovered into gold doré bar. While the oxide component o nly a small percentage of the Hualilan mineralisation its lies in the top 30-40 rly in the case of an open pit operation.
			geological model, it is expected - 94.9% Au, - 90.9% for Ag - 67.0% for Zn and - 57.8% for Pb	and the proportions of the various mineralisation types in the current that overall average recoveries for potentially saleable metals will be: these assumptions will be updated.
			_	ng column testing of low-grade material, improved recovery of Zn in lower- tion and variability testing, blended test work, and pilot plant testing is
Environmental factors or assumptions	 Assumptions made rega and process residue disp always necessary as par determining reasonable economic extraction to environmental impacts processing operation. W determination of potent impacts particularly for may not always be well early consideration of th environmental impacts Where these aspects ha this should be reported the environmental assu 	posal options. It is rt of the process of prospects for eventual consider the potential of the mining and /hile at this stage the tial environmental a greenfields project advanced the status of hese potential should be reported. we not been considered with an explanation of	•	nificant environmental factors which would prevent the eventual extraction of al surveys and assessments have been completed in the past and will form a
Bulk density	 Whether assumed or de the basis for the assumption 	,	CEL has collected specific gravity (SC densities for the Resource estimate.	6) measurements from drill core, which have been used to estimate block
enger Gold Limited 123 591 382 CEL	Issued Capital 1,526.2m shares 126.7m options (\$0.14) 68.1m perf rights	Australian Registered Office Level 1 100 Havelock Street West Perth WA 6005		Contact T: +61 8 6385 2743 E: admin@challengergold.com

Criteria JORC Code explanation


the method used whether wet or dry the frequency of the measurements the nature size and representativeness of the samples.

- The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs porosity etc) moisture and differences between rock and alteration zones within the deposit.
- Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.

Commentary Within the mineralised domains there are 956 SG m

Within the mineralised domains there are 956 SG measurements made on drill core samples of 0.1 - 0.2 metres length. Measurements we determined on a dry basis by measuring the difference in sample weight in water and weight in air. For porous samples, the weight in water was measured after wrapping the sample so that no water enters the void space during weighing.

In oxidised and partially oxidised rocks, SG clusters around an average of 2.49 g/cc (2,490 kg/m3) which is independent of depth. A density of 2,490 kg/m3 has been used for oxidised, fracture oxidised and partially oxidised blocks.

In fresh rock samples, a regression model for block density determination has been made by plotting assay interval Fe (%) + S (%) from the interval where the SG measurement was made against the SG measurement. Fe and S are the two elements that form pyrite which is the mineral that is commonly associated with gold and base metal mineralisation at Hualilan. SG plotted against (Fe+S) follows a linear trend within the mineralised domains for oxide and fresh rock as shown below.

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,526.2m shares 126.7m options (\$0.14) 68.1m perf rights Australian Registered Office Level 1 100 Havelock Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Chairman Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett Non Exec Director Contact T: +61 8 6385 2743 E: admin@challengergold.com

Hualilan SG Regression - Oxide / Partial Oxide (n = 790) 5.00 y = 0.0261x + 2.5301 4.50 y = 0.7214 4.50 y = 0.7214	Criteria	JORC Code explanation	Commentary
 Classification The basis for the classification of the Mineral Resources into varying confidence actegories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in continuity of geology and metal values quality quantity and distribution of the data). Whether the result appropriately reflects the continuity of geology and metal values quality quantity and distribution of the data). Whether the result appropriate to continuity of geology and metal values quality quantity and distribution of the data). Whether the result appropriate to continuity of geology and metal values quality quantity and distribution of the data). Whether the result appropriate to continuity of geology and metal values quality quantity and distribution of the data). Whether the result appropriate to continuity of geology and metal values quality quantity and distribution of the data). Whether the result appropriate to continuity of geology and metal values quality quantity and distribution of the data). Whether the result appropriate to continuity of geology and metal values quality quantity and distribution of the data). Whether the result appropriate to continuity of geology and metal values quality quantity and distribution of the data). Whether the result appropriate to result appropriate to the domains with closer spaced drilling. Whether the result appropriate to result appropr		 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken 	$\label{eq:hardenergy} Hualilan SG Regression - Oxide / Partial Oxide (n = 790) \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
		tonnage/grade estimations reliability of input data confidence in continuity of geology and metal values quality quantity and distribution	The estimation search strategy was undertaken in three separate passes with different search distances, and the minimum number of samples used to estimate a block which were then used as a guide for the classification of resource into Indicated, Inferred and Unclassified. The classification was then further modified to restrict the Indicated Resource to the domains with closer spaced drilling. The potential open pit resource was constrained within an optimised pit shell run using a gold price of US\$1,80 per ounce. Resources reported inside the pit shell were reported above a AuEq cut-off grade of 0.3 g/t and Resources outside the pit shell were reported above a AuEq cut-off grade of 1.0 g/t. Scoping study results have

Issued Capital 1,526.2m shares 126.7m options (\$0.14) 68.1m perf rights

Austral Level 1 14) 100 Hav West Pe

Australian Registered Office Level 1 100 Havelock Street West Perth WA 6005

Directors Contact Mr Kris Knauer, MD and CEO T: +61 8 6385 2743 Mr Sergio Rotondo, Chairman E: admin@challengergold.com Dr Sonia Delgado, Exec. Director Hr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Heretor

Mr Brett Hackett Non Exec Director

Criteria	JORC Code explanation	Commentary
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits or if such an approach is not deemed appropriate a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates and if local state the relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence with production data where available. 	 There is sufficient confidence in the data quality drilling methods and analytical results that they can be relied upon. The available geology and assay data correlate well. The approach and procedure is deemed appropriate given the confidence limits. The main factors which could affect relative accuracy are: domain boundary assumptions orientation grade continuity top cut. Grade continuity is variable in nature in this style of deposit and has not been demonstrated to date and closer spaced drilling is required to improve the understanding of the grade continuity in both strike and dip directions. It is noted that the results from the twinning of three holes by La Mancha are encouraging in terms of grade repeatability. The deposit contains very high grades and there is need for the use of top cuts. No production data is available for comparison.

Issued Capital 1,526.2m shares 126.7m options (\$0.14) 68.1m perf rights

Australian Registered Office Level 1 100 Havelock Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Chairman Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

Contact T: +61 8 6385 2743 E: admin@challengergold.com