

ASX Announcement

3 December 2024

800W MINERALISED ZONE EXTENDS ALONG STRIKE

Predictive Discovery Limited (ASX:PDI) ("PDI" or the "Company") is pleased to announce additional near-resource drilling results for its 5.38Moz¹ Bankan Gold Project in Guinea ("the Project"). Results comprise 40 holes for 2,675m of resource definition drilling at the 800W target and 15 holes for 1,399m of exploration drilling at the SB target, both within close proximity to the NEB deposit.

HIGHLIGHTS

- 800W resource definition drilling extends mineralisation north-east along strike. Best results include:
 - o 5m @ 7.98g/t from 20m, including 2m @ 18.73g/t from 20m;
 - o 5m @ 5.78g/t from 33m, including 2m @ 12.07g/t from 34m;
 - o 4m @ 4.90g/t from 43m, including 1m @ 11.65g/t from 44m; and
 - o 3m @ 4.39g/t from 6m.
- Positive results also received to the south and south-west of the current mineralised zone, including:
 - o 9m @ 6.17g/t from 42m, including 1m @ 41.19g/t from 42m;
 - o 1m @ 25.06g/t from 98m; and
 - **6m @ 2.17g/t** from 63m.
- Resource modelling is underway and a maiden Mineral Resource estimate is planned for early 2025.
- 800W remains open to the north-east towards the Gbengbeden deposit. Future drilling in the southern part of the target area also has potential to further expand the mineralised zone.

PDI's Managing Director, Andrew Pardey, said:

"Drilling results from 800W continue to be positive, confirming potential for a satellite deposit in the NEB area that can add ounces and provide mine planning flexibility with future upside potential. We are now completing resource modelling for 800W and a maiden Mineral Resource estimate is planned for early 2025."

"Moving forward, PDI's drilling programs will be focused regionally within the Bankan permits, where the aim is to discover new deposits and maintain a healthy pipeline of exploration targets. Maiden Mineral Resource estimates are also planned for the Fouwagbe and Sounsoun targets at Argo in early 2025, following the additional resource definition drilling which is currently underway. Earlier stage regional exploration is continuing at Argo and Bokoro South."

¹ Refer to Compliance Statement at the end of this announcement.

SUMMARY OF DRILLING RESULTS

Results in this announcement are from drilling programs in the NEB area, including resource definition drilling at the 800W target and exploration drilling in the northern part of the SB target (refer to Figure 1). In total, results from 55 holes for 4,074m drilled are reported as summarised in Table 1.

Location	Drill type	Holes	Metres
800W	RC	40	2,675
(Resource Definition)	Total	40	2,675
	DD	1	229
SB (Exploration)	RC	14	1,170
	Total	15	1,399
Total		55	4,074

Table 1: Summary of drill holes reported in this announcement

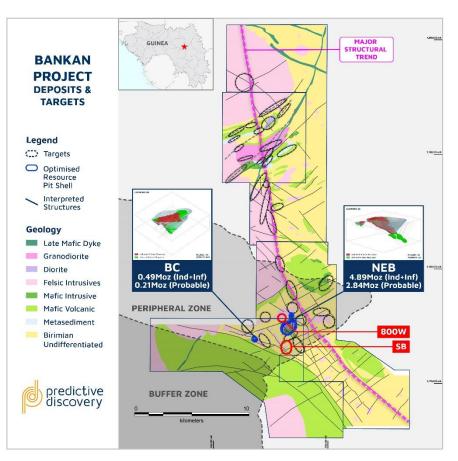


Figure 1: Summary of targets included in this announcement

800W DRILLING RESULTS

The 800W target is located approximately 400m north-west of the NEB resource pit shell on the northern edge of the ENE-WSW trending structure which runs between NEB and Gbengbeden. Previous drilling at 800W defined shallow mineralisation which was open to the north-east and south-west.

An additional 40 RC holes for 2,675m have been completed to target the potential extensions to the northeast and south-west, and to test a N-S trending geophysical anomaly. Results are shown in Figure 2.

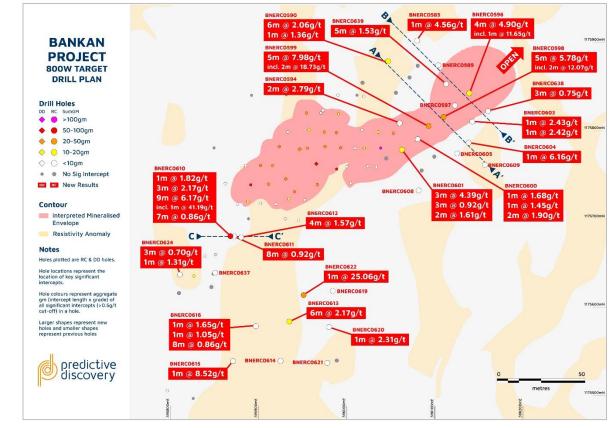


Figure 2: 800W drill plan

In the north-eastern area, the drill hole orientation was revised to 135° (south-east) to suit the interpreted orientation of the deposit. Results confirm that 800W extends along strike to the north-east and remains open towards Gbengbeden. Best intercepts are summarised below, with cross sections presented in Figures 3 and 4.

- BNERC0599: 5m @ 7.98g/t from 20m, incl. 2m @ 18.73g/t from 20m
- BNERC0598: 5m @ 5.78g/t from 33m, incl. 2m @ 12.07g/t from 34m
- BNERC0596: 4m @ 4.90g/t from 43m, incl. 1m @ 11.65g/t from 44m

2m @ 1.61g/t from 19m

- BNERC0601: 3m @ 4.39g/t from 6m 3m @ 0.92g/t from 12m
- BNERC0590: 6m @ 2.06g/t from 8m
- BNERC0639: 5m @ 1.53g/t from 69m

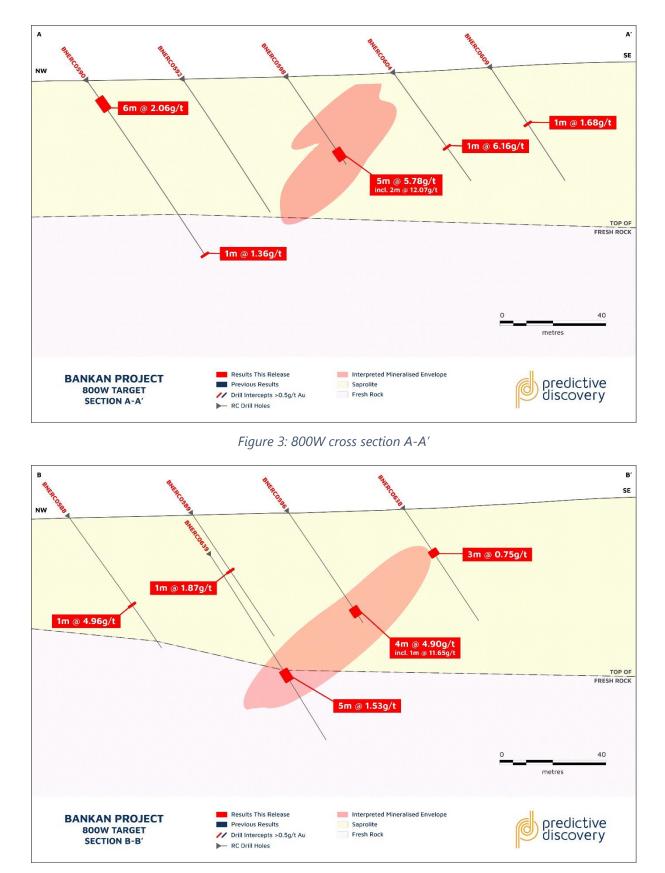


Figure 4: 800W cross section B-B'

Page 4 of 17

A line of three RC holes drilled to test mineralisation along strike to the south-west returned strong intercepts. BNERC0610 recorded 3m @ 2.17g/t from 31m and 9m @ 6.17g/t from 42m (including 1m @ 41.19g/t from 42m) in oxide, and 7m @ 0.86g/t from 56m in tonalite. Up-dip of this hole, BNERC0611 recorded 8m @ 0.92g/t from 21m and 1m @ 0.53g/t from 37m, and BNERC0612 recorded 4m @ 1.57g/t from 3m.

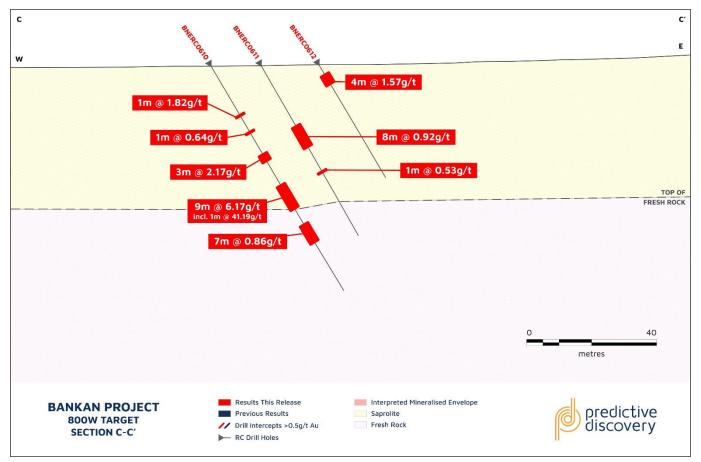


Figure 5: 800W cross section C-C'

Further to the south-west minor intercepts were recorded in BNERC0624 and BNERC0637.

Due to the current drill spacing and previous results just north of cross section C-C', additional drilling is required to established continuity of mineralisation in the south-west extension.

Wide-spaced drilling to south of 800W, designed to test the N-S geophysical anomaly, recorded positive results as shown below and in Figure 2 above:

- BNERC0622: 1m @ 25.06g/t from 98m
- BNERC0613: 6m @ 2.17g/t from 63m
- BNERC0616: 8m @ 0.86g/t from 92m
- BNERC0615: 1m @ 8.52g/t from 59m

Additional drilling is also required in this area to test mineralisation and continuity.

SB DRILLING RESULTS

The SB target area is located south of the main NEB deposit within the broad multi-kilometre N-S deformation corridor which hosts NEB and extends north to the Argo permit. Additional exploration drilling has been completed in the northern part of the target area to follow up positive intercepts of 19m @ 2.04g/t from 83m and 15m @ 8.05g/t from 105m recorded in BNERC0585.² Only minor significant intercepts were recorded in the latest drilling, indicating the area exhibits significant structural complexity.

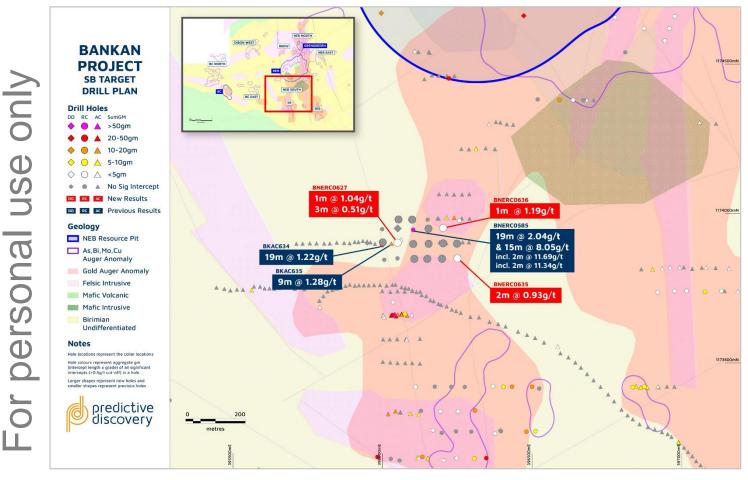


Figure 6: SB drill plan

² ASX announcement – NEB and BC Area Drilling Programs Continue to Deliver (8 August 2024).

DRILLING PROGRAMS AND NEXT STEPS

PDI is completing extensive drilling programs in the second half of 2024 as shown in Figure 7, which are focused on further growing and upgrading the current 5.38Moz Mineral Resource³ to support the Definitive Feasibility Study ("DFS"), and maintaining a healthy pipeline of exploration targets.

Infill drilling has been completed and announced for the BC and Gbengbeden deposits. Resource definition drilling has been completed and announced for the 800W target, and a maiden Mineral Resource estimate is planned for early 2025.

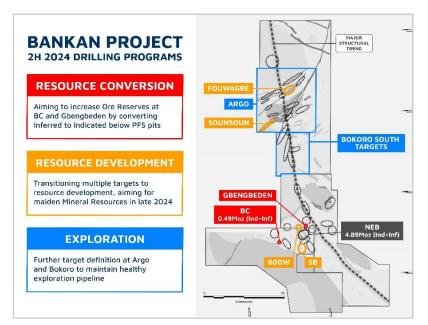


Figure 7: Bankan Project drilling programs

In the near-term, PDI's drilling efforts will be focused on regional areas. Resource development drilling is continuing at Sounsoun to infill the central part of the E-W shear zone and further test the broader target area to the south-west. Drilling will then move back to Fouwagbe to infill the drill pattern around existing holes and test extensions and other target areas. Maiden Mineral Resource estimates for Fouwagbe and Sounsoun are planned for early 2025.

Earlier stage regional exploration programs will continue at Argo and the southern part of the Bokoro permit to further develop the pipeline of targets moving through the exploration phases.

- END -

This announcement is authorised for release by PDI Managing Director, Andrew Pardey.

For further information visit our website at www.predictivediscovery.com or contact:

Investor Enquiries Brad Milne Corporate Development Manager E: brad.milne@predictivediscovery.com E: predictive@buchanancomms.co.uk P: +61 8 9216 1000

³ Refer to Compliance Statement at the end of this announcement

Media Enquiries (UK/Global) Bobby Morse/George Pope **Burson Buchanan** P: +44 (0) 20 7466 5000

Media Enquiries (Australia) Sam Macpherson

VECTOR Advisors E: smacpherson@vectoradvisors.au P: +61 401 392 925

ABOUT PREDICTIVE DISCOVERY

PDI's strategy is to identify and develop gold deposits within the Siguiri Basin, Guinea. The Company's key asset is the Tier -1 Bankan Gold Project. A Mineral Resource of 5.38Moz has been defined to date at the NEB (4.89Moz) and BC (487Koz) deposits,⁴ making Bankan the largest gold discovery in West Africa in a decade.

PDI recently completed a Pre-Feasibility Study ("PFS") and Environmental & Social Impact Assessment, which are crucial steps to secure a mining permit for the Project. The PFS outlined a 269kozpa operation over 12 years, with a maiden Ore Reserve of 3.05Moz and strong financials.⁴

The Bankan Project is highly prospective for additional discoveries. PDI is also exploring targets near the NEB and BC deposits, and regionally to the north along the 35km gold super structure which runs through the permits.

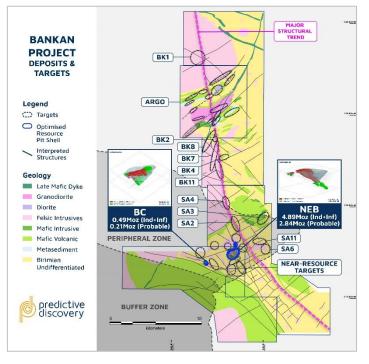


Figure 8: Bankan Project deposits and targets

COMPETENT PERSONS STATEMENT

The Exploration Results reported herein are based on information compiled by Mr Franck Bizouerne, who is a member of the European Federation of Geologists. Mr Bizouerne is a full-time employee of the Company and has sufficient experience relevant to the style of mineralisation and type of deposits being considered to qualify as a Competent Person as defined by the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Bizouerne consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

COMPLIANCE STATEMENT

The information in this announcement that relates to the previous mineral resource estimate is from the announcement titled "Bankan Mineral Resource increases to 5.38Moz" dated 7 August 2023. The information in this announcement that relates to the previous ore reserve estimate is from the announcement titled "PFS Delivers Attractive Financials & 3.05Moz Ore Reserve" dated 15 April 2024.

The estimates are summarised in the tables below. The Company it is not aware of any new information or data that materially affects the mineral resource or ore reserve estimates contained in this announcement and all material assumptions and technical parameters underpinning the mineral resource and ore reserve estimates continue to apply and have not materially changed.

Table 2: Bankan Gold Project Mineral Resource Estimate

Deposit	Classification	Cut-off (g/t Au)	Tonnes (Mt)	Grade (g/t Au)	Contained (Koz Au)
	Indicated	0.5	78.4	1.55	3,900
NEB Open Pit	Inferred	0.5	3.1	0.91	92
	Total		81.4	1.53	3,993
NEB Underground	Inferred	2.0	6.8	4.07	896
NEB Total			88.3	1.72	4,888
	Indicated	0.4	5.3	1.42	244
BC Open Pit	Inferred	0.4	6.9	1.09	243
BC Total			12.2	1.24	487
Total Bankan Project			100.5	1.66	5,376

Table 3: Bankan Gold Project Ore Reserve Estimate

Deposit	Mining Method	Classification	Cut-off (g/t Au)	Tonnes (Mt)	Grade (g/t Au)	Contained (Koz Au)
	Open Pit	Probable	0.5	46.2	1.41	2,101
NEB	Underground	Probable	1.7	7.1	3.24	739
	Total			53.3	1.66	2,840
DC.	Open Pit	Probable	0.4	4.3	1.48	207
BC	Total			4.3	1.48	207
Total Open Pit				50.6	1.42	2,308
Total Underground Total Bankan Project				7.1	3.24	739
				57.7	1.64	3,047

The production targets and forecast financial information referred to in this announcement is from the announcement titled "PFS Delivers Attractive Financials & 3.05Moz Ore Reserve" dated 15 April 2024. The Company confirms that all the material assumptions underpinning the production targets and forecast financial information derived from the production targets in the previous announcement continue to apply and have not materially changed.

The information in this announcement that relates to the previous exploration results have been cross referenced to the original announcement or are from announcements listed in the table below. The Company confirms that it is not aware of any new information or data that materially affects previous exploration results referred to in this announcement. The Company also confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the relevant original market announcements.

Date	Announcement	Date	Announcement
27 November 2024	Additional High-Grade Intercepts at Fouwagbe	30 September 2021	3.65 Million-Ounce Bankan Maiden Mineral Resource Estimate
30 September 2024	Argo and Bokoro Drilling Results	23 September 2021	28m @ 12.1g/t Gold 1.5 Km from NE Bankan
8 August 2024	NEB and BC Area Drilling Programs Continue to Deliver	16 September 2021	High-Grade Gold Zone Confirmed Up To 400m Vertical Depth
16 July 2024	Strong Drilling Results and Permitting Update	24 August 2021	Strong Widths and Grades from Bankan Creek Resource Drilling
27 June 2024	BC Resource Definition Drilling Returns Positive Intercepts	02 August 2021	More Broad Widths and High-Grades from Bankan Drilling
12 June 2024	Fouwagbe & Sounsoun Progress to Resource Development	19 July 2021	Bonanza Gold Grades as High-Grade Zone Is Revealed at Bankan
24 April 2024	BC East Drilling Confirms Previous Positive Results	17 June 2021	Broad Gold Intercepts from Bankan Creek and NE Bankan
15 April 2024	PFS Delivers Attractive Financials & 3.05Moz Ore Reserve	03 June 2021	NE Bankan Extends to Depth with Strong Gold Grades
9 April 2024	Excellent Results from Argo Central Trend	31 May 2021	6m at 32g/t Gold from First Drilling at Koundian, Guinea
1 February 2024	Sounsoun, SB and SEB Targets Advanced by Latest Drilling	13 May 2021	Widespread & High-Grade Gold from Bankan Regional Auger
11 December 2023	Drilling at Bankan Delivers More Positive Results	06 May 2021	NE Bankan Central Gold Zone Extending to South at Depth
24 October 2023	Promising Results from Across the Bankan Gold Project	28 April 2021	Bankan Aeromag Many New Drill Targets Along 35km Structure
12 September 2023	Further Strong Drilling Results from the NEB & BC Area	15 April 2021	NE Bankan Gold Mineralisation Substantially Extends at Depth
29 August 2023	Encouraging Initial Argo RC Results	31 March 2021	NE Bankan Grows To 300m Wide. High Grade Gold from Surface
7 August 2023	Bankan Mineral Resource Increases to 5.38Moz	15 March 2021	Exceptionally High Grades, Thick Intercepts from NE Bankan
7 August 2023	Resource Definition Drilling Results	05 March 2021	Substantial Oxide Gold Zone Emerging at NE Bankan Project
19 June 2023	Encouraging Drill Results at NEB, BC and Nearby Targets	25 February 2021	More Depth Extensions from Drilling Bankan Gold Discoveries
19 June 2023	Argo Target Upgraded by Recent Auger Results	11 February 2021	High Grade Drill Results Extend Bankan Ck Discovery to North
5 June 2023	Positive Resource Drilling Results from NEB and BC	28 January 2021	Outstanding, Wide Gold Intercept Grows Bankan at Depth
22 May 2023	Multiple High Priority Drill Targets Identified at Argo	22 January 2021	Bankan Gold Project Drilling Accelerated
6 April 2023	RC Drilling Underway at Near-Resource Targets	27 November 2020	Exploration Update - Bankan Gold Project, Guinea
4 April 2023	Infill Drilling Results	20 October 2020	Exploration Update - Bankan-2 Gold Drilling Underway
21 February 2023	High-Grade Intercepts Extends Underground Mineralisation	13 October 2020	92m at 1.9g/t Gold - Diamond Drilling Expands Bankan Project
06 February 2023	50% Of NEB'S 3.5Moz Open Pit Resource Upgraded to Indicated	25 September 2020	NE Bankan Gold Deposit Grows with More Strong Drill Results
30 January 2023	Outstanding Infill Drilling Results Continue	10 September 2020	55m at 2.94g/t Gold-Broad True Widths Confirmed At Bankan
30 November 2022	Promising Near-Resource Drilling and Geophysics Results	03 September 2020	NE Bankan Now 1.6km Long with Possible Parallel Gold Zone
10 November 2022	Positive Infill Drill Results & Grade Control Program Complete	27 August 2020	Bankan Creek Gold Zone Further Expanded
29 September 2022	High Grade Gold 200m Below NE Bankan's 3.9Moz Resource	19 August 2020	Strong Wide Gold Intercepts from Bankan Creek and NE Bankan
25 August 2022	Impressive Gold Hits Continue At 4.2Moz Bankan Gold Resource	07 August 2020	Outstanding High-Grade Gold Results from NE Bankan, Guinea
01 August 2022	4.2Moz Bankan Gold Resource	31 July 2020	Diamond Drilling Confirms Gold at Depth at NE Bankan, Guinea
15 June 2022	Deepest Hole to Date Intercepts Gold 630m Down Dip	17 July 2020	Impressive 1st RC Drill Results Grow NE Bankan Discovery
19 May 2022	60,000m Drill Program Underway at Bankan & Key Appointments	30 June 2020	NE Bankan Discovery Guinea Extended 30% To 1.3km In Length
27 April 2022	41.5m @ 5.2g/t Au Intersected at NE Bankan	27 May 2020	Kaninko Auger Results Double Gold-Mineralised Strike Length
02 February 2022	Multi-Deposit Potential Grows with Strong Results	07 May 2020	Drilling Update - Kaninko Project, Guinea
13 January 2022	33m @ 4.5 g/t Au at NE Bankan, Guinea	30 April 2020	Final Drill Results, Bankan Creek, Kaninko Project, Guinea
16 December 2021	Bankan Project Grows with New Gold Discoveries	27 April 2020	44m at 2.06g/t Gold from Bankan Creek, Kaninko, Guinea
09 December 2021	Predictive Intersects 34m @ 5.5 g/t Au at NE Bankan	15 April 2020	Outstanding Drill Results from New Gold Discovery in Guinea
22 November 2021	Further Depth Extension to Bankan High-Grade Gold	07 April 2020	Guinea Ground Acquired Near Plus-2 Million Oz Gold Deposits
03 November 2021	High-Grade Gold Zone Extended Below Resource Pit Shell	19 March 2020	High-Grades-Broad Widths from Guinea Auger-Trenching Program
28 October 2021	AC Drilling Identifies New Gold Prospects at Bankan	26 February 2020	Up To 8g/t Gold from Power Auger Drilling in Guinea
19 October 2021	NE Bankan High-Grade Gold Zone Reinforced and Extended		

APPENDIX 1: 800W RESOURCE DEFINITION DRILLING RESULTS

	Hale Town	UTM 29N	UTM 29N	RL	Hole	Hole	Hole		0.5g/t gold	d cut-off	
Hole No.	Hole Type	East	North	(GPS)	azimuth	dip	depth	From	Interval	Au g/t	GM
800W											
BNERC0588	RC	396,062	1,175,918	388	131.9	-54.3	60	40	1	4.96	5
BNERC0589	RC	396,094	1,175,884	389	135.2	-56.1	55	25	1	1.87	2
BNERC0590	RC	396,043	1,175,883	389	133.4	-54.5	80	8	6	2.06	12
								79	1	1.36	1
BNERC0591	RC	396,018	1,175,854	389	134.1	-54.0	75		No significan		
BNERC0592	RC	396,071	1,175,860	389	136.2	-55.5	60		No significan		
BNERC0593	RC	396,056	1,175,843	389	133.9	-55.4	55		No significan		
BNERC0594	RC	396,042	1,175,826	389	133.3	-55.6	60	43	2	2.79	6
BNERC0595	RC	396,080	1,175,873	389	135.3	-55.2	60		No significan		
BNERC0596	RC	396,122	1,175,860	390	135.4	-55.3	50	43	4	4.90	20
BNERC0597	RC	396,109	1,175,844	390	138.5	-55.5	40	38	1	1.02	1
BNERC0598	RC	396,096	1,175,829	390	135.1	-55.8	40	33	5	5.78	29
BNERC0599	RC	396,083	1,175,814	390	132.4	-55.0	40	20	5	7.98	40
BNERC0600	RC	396,072	1,175,799	390	133.4	-54.5	40	3 13	1	1.68	2
								30	2	1.45 1.90	4
BNERC0601	RC	396,058	1,175,783	390	135.4	-55.3	40	6	3	4.39	4
BINERCOOUT	RC I	390,030	1,175,765	390	155.4	-33.5	40	12	3	0.92	3
								12	2	1.61	3
BNERC0602	RC	396,045	1,175,769	390	137.2	-55.6	40	15	No significan	1	5
BNERC0602	RC	396,137	1,175,816	390	137.2	-54.9	40	10	1	2.43	2
		550,157	., ., ., ., ., ., .	331		54.5		10	1	2.43	2
								18	1	0.70	1
BNERC0604	RC	396,125	1,175,801	391	135.3	-54.4	50	34	1	6.16	6
BNERC0605	RC	396,112	1,175,787	391	133.0	-55.6	40	32	1	0.74	1
BNERC0606	RC	396,099	1,175,771	392	134.3	-55.6	50		No significan	1	
BNERC0607	RC	396,085	1,175,755	391	135.3	-55.2	40		No significan		
BNERC0608	RC	396,073	1,175,741	392	134.2	-54.4	40	14	1	0.51	1
			, .,					28	1	1.11	1
BNERC0609	RC	396,148	1,175,771	393	137.1	-56.0	50	24	1	1.68	2
BNERC0610	RC	395,845	1,175,681	388	91.6	-59.4	80	17	1	1.82	2
								23	1	0.64	1
								31	3	2.17	7
								42	9	6.17	56
								56	7	0.86	6
BNERC0611	RC	395,860	1,175,680	389	91.2	-60.0	60	21	8	0.92	7
								37	1	0.53	1
BNERC0612	RC	395,878	1,175,679	389	88.6	-59.3	40	3	4	1.57	6
BNERC0613	RC	395,900	1,175,585	390	92.4	-58.2	100	55	1	0.54	1
								63	6	2.17	13
								79	1	0.83	1
BNERC0614	RC	395,889	1,175,540	390	90.4	-61.6	100	78	1	1.64	2
BNERC0615	RC	395,841	1,175,540	388	91.4	-60.5	100	59	1	8.52	9
BNERC0616	RC	395,851	1,175,580	388	89.4	-60.0	100	47	1	1.65	2
								88	1	1.05	1
								92	8	0.86	7
BNERC0617	RC	395,846	1,175,623	388	92.6	-60.9	100		No significan		
BNERC0618	RC	395,989	1,175,540	392	91.2	-61.0	100		No significan	1	
BNERC0619	RC	395,956	1,175,620	391	93.6	-60.9	100	58	1	0.53	1
		205 0-5	4 475 575	201	C1 :		100	62	1	0.75	1
BNERC0620	RC	395,953	1,175,578	391	91.4	-61.1	100	42	1	0.67	1
		205.0.12	4 475 500	201	02.1	50.0	100	74	1	2.31	2
BNERC0621	RC	395,943	1,175,539	391	92.1	-59.8	100	53	1	0.77	1
		205.002	1 175 617	200	0.1.5	60.0	100	86	1	1.41	1
BNERCO622	RC	395,903	1,175,617	390	94.5	-60.9	100	98	1 No significan	25.06	25
BNERCO623	RC	395,810	1,175,616	388	91.0	-59.9	80	24	No significan		
BNERC0624	RC	395,787	1,175,640	388	97.2	-60.5	100	24	3	0.70	2
								30	1	0.76	1
								74	1	1.31	1
PNIEDCOCOT	DC	205 020	1 175 6 40	200	00.4	FO 1	60	91	1	0.83	1
BNERCO637	RC RC	395,829	1,175,640	388	90.4 131.7	-59.1 -55.2	60 50	42 18	2	0.85	2
BNERC0638 BNERC0639	RC RC	396,152 396,084	1,175,829	391						0.75	
	R R	396 U84	1,175,879	389	133.6	-56.0	100	69	5	153	8

APPENDIX 2: SB EXPLORATION DRILLING RESULTS

		UTM 29N	UTM 29N	RL	Hole	Hole	Hole		0.5g/t gold	cut-off	
Hole No.	Hole Type	East	North	(GPS)	azimuth	dip	depth	From	Interval	Au g/t	GM
SB											
BNEDD0271	DD	396,050	1,173,951	403	89.4	-57.1	229		No significant	intercepts	
BNERC0625	RC	396,106	1,173,849	406	91.3	-55.6	80		No significant	intercepts	
BNERC0626	RC	396,102	1,173,899	405	92.9	-54.0	80		No significant	intercepts	
BNERC0627	RC	396,050	1,173,904	404	89.7	-54.6	80	24	1	1.04	1
								45	3	0.51	2
BNERC0628	RC	396,000	1,173,904	402	91.9	-54.5	80	No significant intercepts			
BNERC0629	RC	396,152	1,173,951	406	92.3	-55.8	120	No significant intercepts			
BNERC0630	RC	396,154	1,173,900	407	88.7	-55.0	80		No significant	intercepts	
BNERC0631	RC	396,202	1,173,901	408	91.5	-56.0	80		No significant	intercepts	
BNERC0632	RC	396,249	1,173,900	409	88.9	-57.3	80		No significant	intercepts	
BNERC0633	RC	396,149	1,173,850	408	87.8	-55.7	80		No significant	intercepts	
BNERC0634	RC	396,199	1,173,851	409	87.5	-55.6	80		No significant	intercepts	
BNERC0635	RC	396,250	1,173,851	410	90.3	-54.7	80	24	2	0.93	2
BNERC0636	RC	396,202	1,173,953	407	89.5	-55.6	90	47	1	1.19	1
BNERC0640	RC	396,099	1,173,981	404	91.5	-57.9	80		No significant	intercepts	
BNERC0641	RC	396,051	1,173,981	403	90.3	-54.7	80		No significant	intercepts	
BNERC0625	RC	396,106	1,173,849	406	91.3	-55.6	80		No significant	intercepts	

APPENDIX 3: JORC CODE TABLE 1

Section 1: Sampling Techniques and Data							
Criteria JORC Code Explanation		Commentary					
Sampling Technique	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	 Samples assayed were cut diamond drill ("DD") core and reverse circulation ("RC") and aircore ("AC") drill chips. Core was cut in half with a core saw where competent and with a knife in soft saprolite in the upper sections of the DD holes. One metre RC chip samples were riffle split producing samples which weighed 2-3kg for submission to the assay laboratory. AC drill samples were collected at 1m intervals and submitted as 2m interval composites. For each 1m sample, an approximate 1 to 1.5 kg subsample was riffle split and combined to obtain an approximate 2 to 3 kg "2m-composite" sample for laboratory analysis. Sampling was supervised by qualified geologists. The majority of samples are 1m downhole, with diamond core sampling intervals breaking at lithological contacts where appropriate. All samples were dried, crushed and pulverised at the SGS laboratory in Bamako to produce a 50g fire assay charge with Au analysed by FAA505. Any samples which returned >100gt were re-assayed using gravimetric method GO FAG50V. Duplicate samples were also retained for re-assay. 					
Drilling	Drill type (eg core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	DD holes included in this announcement were from a EDM2000 multi- purpose rig. Diamond drilling is a combination of PQ, HQ and NQ core. Core was oriented using WELLFORCE orientation tools. RC/AC holes included in this announcement were from a Thor 5000 rig and EDM2000 rig.					
Drill Sample Recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Core recoveries were recorded by dividing the total length of core returned from each run by the length of the run. Overall core recoveries average around 92%, with the poorest recoveries (averaging 82%) in the first 40m of the drillholes. Overall RC and AC recovery is very good at 90%. However, samples in the first metre have lower than average recovery from the collaring process. Drill holes with poor recoveries were re-drilled within a radius of around 3 to 5m from the initial collar. A regularity of the recovery pattern downhole suggests considerable lag between the sample being generated at the hammer and reporting to the cyclone. Drillers do not always adhere to the metre marks on the mast, leading to randomly occurring overlength and underlength samples. The splitters are regularly checked and cleaned to ensure sample build up is minimised. The RC and AC rig cyclones are regularly cleaned (several times during drilling and between drilling) in order to minimise sample accumulation and contamination, and to increase the recovery rate. No relationship between sample recovery and grade has been analysed. It is unlikely that the grade of the RC drill samples has been biased, however the combination of regularly and randomly occurring sample weight variations will lead to a degradation of the local grade estimate and a higher than necessary nugget, as well as increased inaccuracy in the spatial delimitation of ore waste boundaries.					

Logging	 Whether core and chip samples have been geologically and geotechnical logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean/Trench, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	All drill samples were logged systematically for lithology, weathering, alteration, veining, structure and minor minerals. Minor minerals were estimated quantitively. The Competent Person considers that the availability of qualitative and quantitative logging has appropriately informed the geological modelling, including weathering and oxidation, water table level and rock type. Photographs have been taken of each core tray and chip tray. A WELLFORCE core orientation device was employed on all drilled core enabling orientated structural measurements to be taken. The Competent Person considers that the level of detail is sufficient for the reporting of Mineral Resources.
Sub-Sampling Technique and Sample Preparation	If core, whether cut or sawn and whether quarter, half or all core taken.If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.For all sample types, the nature, quality and appropriateness of the sample preparation technique.Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.Whether sample sizes are appropriate to the grain size of the material being sampled.	 The DD samples were collected by longitudinally splitting core using a core saw or a knife where core was very soft and clayey. Routine samples were half-core, with predetermined diamond core duplicates being quarter-core. The sampling method is considered adequate for a DD program of this type. The RC/AC samples were collected by riffle splitting 2-3kg from 1m 30kg bulk samples collected directly from the cyclone attached to the drill rig. Sample quality and condition are logged critically and any loss of sample integrity will trigger the hole being immediately stopped. One blind field duplicate is inserted into the sample stream and assayed routinely. The sampling procedures are industry standard. RC/AC sample weights are recorded immediately after collection from the cyclone. Field duplicate results demonstrated no bias in the sample results. There is considerable scatter in the diamond duplicate pairs suggesting that the mineralisation is likely to be highly variable at a short scale, and this variability needs to be taken into account when planning future sampling programs. Sample sizes are considered to be appropriate to the grain size of the material being sampled.
Quality of Assay Data and Laboratory Tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	All samples were assayed by SGS. Analysis of gold is by fire assay technique using SGS method FAA505 with a lower detection limit of 5ppb Au. Any samples with gold values exceeding 10g/t Au were re-assayed using SGS method FAA515 with a detection limit of 0.01g/t Au. Any samples with gold values exceeding 100g/t Au were re-assayed using gravimetric method GO FAG50V. Duplicate samples were also retained for re-assay. Field duplicates, standards and blank samples were each submitted in sequence every 15 samples. Diamond core duplicates were obtained by cutting the half core sample into two quarter core samples. As samples are not homogenised, some variation is expected. Duplicate and standards analysed were all within acceptable limits of expected values. Analysis of this QAQC data demonstrated that the DD/RC data is of acceptable quality to be used for Mineral Resource estimation.

Verification of Sampling and Assaying	The verification of significant intersections by either independent or alternative company personnel.	At this stage, the int	ersections have	not been verified independently.	
		No twin holes have	been conducted		
	The use of twinned holes.	Drillholo logging is	completed on pa	per sheets and manually entered into	
	The verification of significant intersections by either			ged by a company employee, who	
	independent or alternative company personnel.			ults are returned electronically from	
	Diana and diantee the second data	the assay laboratory	and are merged	into the assay table of the database.	
	Discuss any adjustment to assay data.	No adjustments or o	corrections have	been made to any assay interval data.	
		All intercepts are rep			
Location of Data points	Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.		m. The project s	ion is collected in-house using a Leica urvey grid is tied to the West African I projection.	
	Specification of the grid system used.			urveyed by using north-seeking	
	Quality and adequacy of topographic control.	WELLFORCE CHAMF	gyro.		
Data Spacing and	Data spacing for reporting of Exploration Results.	800W target has ma	inly been drilled	on a 20m x 20m drill spacing in the	
Distribution		main part of the targ	get area. Extendi	ng southwards, the target has been	
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade	drilled on a 40m x 5	0m drill spacing.		
	continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The northern part of spacing.	f the SB target ha	as been drilled on a 50x50m drill	
	Whether sample compositing has been applied.				
Orientation of Data in Relation to Geological Structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The latest drilling in 800W's north-eastern extension is orientated to th south-east and dipping at 55° to intercept the mineralisation, which is interpretated as striking to the NE-SW and dipping at 40° to the north-			
	If the relationship between the drilling orientation and the orientation of key mineralised structures is		00W is orientated	nal. The latest drilling in the south d to the east and dipping at 55-60°,	
	considered to have introduced a sampling bias, this should be assessed and reported if material.	Drilling at SB is earli currently unknown.	er stage and the	geometry of mineralisation is	
Sample Security	The measures taken to ensure sample security.	Samples are stored in a guarded location close to the nearby Bankan Villa Samples are picked up and transported to Bamako by PDI/SGS truck. Coa rejects and pulps will be eventually recovered from SGS and stored at PDI office in Kouroussa or at the core shed.			
Audits or Reviews	The results of any audits or reviews of sampling techniques and data.	CSA Global has revie procedures at the pr		ng techniques and chain of custody	
	Section 2 Reporting of E	xploration R	lesults		
Mineral Tenement and	Type, reference name/number, location and ownership	The Bankan Gold Pr	oiect consists of	four Permis de Recherche Industrielle	
Land Tenure Status	including agreements or material issues with third parties such as joint ventures, partnerships, overriding	(Or), or exploration	•		
	royalties, native title interests, historical sites, wilderness	Permit Name	Area (km ²)	Holder	
	or national park and environmental settings.	Kaninko	98.22	Mamou Resources SARLU	
	The security of the tenure held at the time of reporting	Saman Bokoro	99.78 99.98	Mamou Resources SARLU Kindia Resources SARLU	
	along with any known impediments to obtaining a	Argo	57.54	Argo Mining SARLU	
	licence to operate in the area.	The permits are located between 9°51'00"W and 10°03'24"W and betwee 10°32'26"N and 10°52'00"N, situated to the northwest, west and southwest of the town of Kouroussa in Guinea.			
		subsidiaries of PDI. PDI can progressive	The Argo permit ly earn 90% by p	mits are held by 100% owned is subject to a joint venture, whereby ayment of US\$100,000 and can sion to mine in exchange for a 2% net	

		 smelter royalty on production. The permit expiry dates have passed and PDI has submitted renewal documents in accordance with Guinean requirements. The renewal process is ongoing, and the Ministry of Mines and Geology has indicated its support to PDI for these renewals. Parts of the Kaninko and Saman permits, including the NEB and BC deposits, are situated in the Peripheral Zone of the Upper Niger National Park. The deposits are 21 km and 18 km, respectively, away from the closest point of the Core Conservation Area. PDI intends to apply for a mining exploitation title and enter into a mining convention with the Ministry of Mines and Geology to carry out exploitation activities within the area covered by the exploration permits. PDI has taken a robust approach to address the sensitivities associated with the location of the Project within the Peripheral Zone of the Upper Niger National Park and appointed ERM to prepare the ESIA and ESMP framework, which are essential prerequisites to be submitted by PDI when applying for the exploitation title. As a result of overlapping regulations and decrees governing mining activities in natural protected areas in Guinea, including the Upper Niger National Park's management plan, there is a lack of clarity on the legal basis for mining exploitation activities in the Peripheral Zone of the Upper Niger National Park. It is expected that a clear basis, as well as the framework and conditions for the development of the Project, will be provided in the mining convention to be entered into in connection with the Project.
Exploration Done by Other Parties	Acknowledgment and appraisal of exploration by other parties.	Previous exploration work has been completed in the Argo area by Cassidy Gold, including soil sampling, AC and RC drilling.
		Artisanal miners have extracted an unknown quantity of gold from shallow hand dug pits and shafts, with panning and loaming used to identify mineralised areas.
Geology	Deposit type, geological setting and style of mineralisation.	 The Bankan deposits are hosted in Paleoproterozoic rocks of the Birimian Supergroup in the Siguiri Basin, which is host to several significant large active gold mining operations. The predominant rock types consist of felsic intrusives including granite and tonalite, with mafic to intermediate volcanics and intrusives. Metasediments including marble, chert and schists have also been observed. Weathering has formed a deep saprolite profile, with a pisolitic and nodular lateritic cover which hosts remobilised gold, generally above the primary deposits or dispersed a few tens of metres laterally. 800W: 800W consists of a series of mineralised zones developing along parallel deformation zones and plunging to the NW into an intrusive host rock. Two mineralised branches have been identified: an NNE-SSW axis and an ENE-WSW axis, globally interconnected at the centre of 800W. In its central western part, this series of mineralised bodies appears to be aligned along a NNE-SSW trending resistive corridor highlighted by the previous ground geophysics campaign. In the central eastern part of the property, the series of mineralised bodies trend along an ENE-WSW axis.
Drill Hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, 	See Appendix 1 and Appendix 2.

	the Competent Person should clearly explain why this is the case.	
Data Aggregation Methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Sampling was generally in 1m intervals. Up to 2m (down-hole) of internal waste is included for results reported at the 0.5g/t Au cut-off grade. Mineralised intervals are reported on a weighted average basis.
Relationship Between	The assumptions used for any reporting of metal equivalent values should be clearly stated. These relationships are particularly important in the	At 800W, drill holes are typically inclined at 55-60° to the east and the
Mineralisation Widths and Intercept Lengths	reporting of Exploration Results If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	south-east, in order to target mineralised trend structures that appear to plunge globally towards the west and the north-west and develop along a generally NNE-SSW to ENE_WSW axis, in two distinct branches. This implies down-hole intercept lengths of approximately true thickness.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate maps and sections are included in this release.
Balanced Reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Comprehensive reporting of the drill results is provided in Appendix 1 and Appendix 2.
Other Substantive Exploration Data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All other exploration data on this area has been reported previously by PDI.
Further Work	The nature and scale of planned further work (eg tests for lateral extensions or large scale step out drilling. Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Refer to the text in the announcement for information on follow-up and/or next work programs.