

MONS PROJECT, WA

Release Date: 27 November 2024

Gallium in soil geochemistry extends footprint beyond high grade drill results

Nimy targeting maiden gallium JORC Resource with upcoming infill drilling program
High-grade gallium already outlined over 160m strike, starts at surface and remains open

Nimy Resources (ASX:NIM) is pleased to advise of its intention to establish a maiden JORC Resource at its high-grade gallium discovery at Block 3 East within the Mons Project in WA.

Results from a recently completed soil sampling program at Block 3 East have extended the mineralised footprint and the potential size of the gallium system and will underpin upcoming step-out drilling.

Soil geochemistry outlines an anomalous surface area of approx. 900m x 650m with a maximum value of 48ppm Ga₂O₃.
Nimy now targeting maiden gallium JORC Resource with upcoming infill drilling program.
High-grade gallium in drilling already outlined over 160m strike, starting at surface.
Initial discussions with potential industry partners commenced High-grade gallium already outlined over 160m strike, starts at surface

- Soil geochemistry outlines an anomalous surface area of approx. 900m x 650m
 - Nimy now targeting maiden gallium JORC Resource with upcoming infill drilling
- Initial discussions with potential industry partners commenced.

Nimy plans to undertake an infill drilling program in January, paving way for completion of the resource. Nimy's decision to establish a resource follows preliminary approaches to the Company from two overseas groups which have expressed strong interest in securing offtake rights to the Block 3 East gallium.

Nimy reported strong gallium assays from drilling conducted at Block 3 East in the previous quarters (see ASX releases dated April 18, 2024 and October 9, 2024).

Gallium, which is used in several cutting edge technologies, including powerful semiconductor chips, is on the US critical minerals list.

China has a near-monopoly on the supply of gallium and has slashed exports of the crucial metal following strict limitations imposed by the Chinese Government last year.

Nimy Executive Chairman Luke Hampson said:

"We know we have a high-grade gallium discovery which runs from surface in a tierone location.

Drilling has encountered high grade mineralisation over a 160m strike length and it remains open. We have also intersected high-grade gallium in two drill holes 220m to the west.

Soil sampling indicates significant potential to keep growing the size of the discovery. Given the strong interest from potential partner groups, we intend to establish a JORC Resource, which will help underpin these discussions".

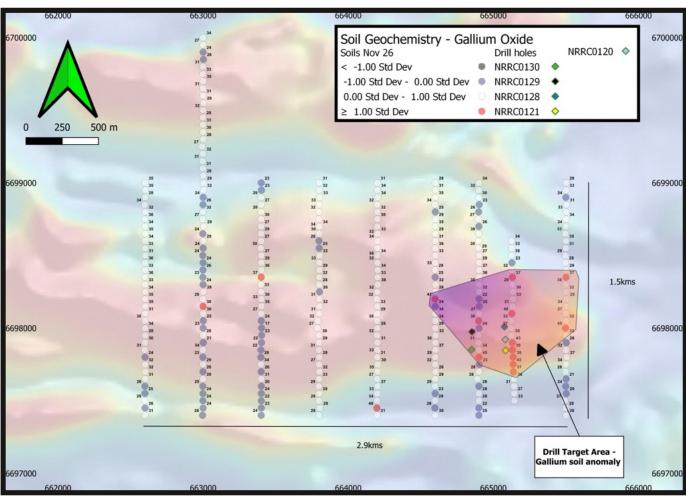


Figure 1 – Overview of gallium in soil at Block 3 East including interpreted drill target soil anomaly relative to previous drill collars over colour magnetic image.

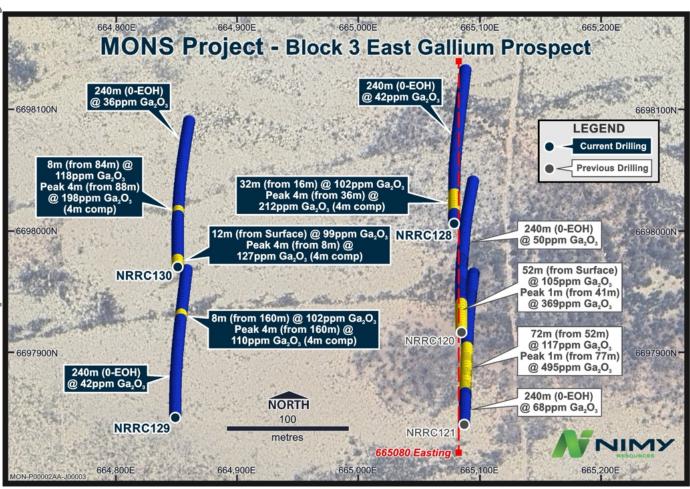


Figure 2 – Schematic view of drill holes at Block 3 East Gallium Prospect (see ASX releases dated April 18, 2024 and October 9, 2024).

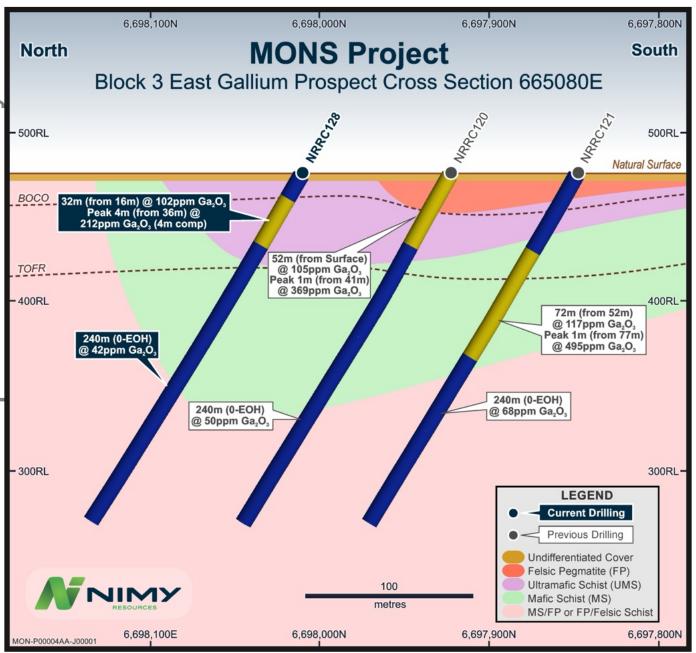


Figure 3 – Schematic cross section view of Block 3 East Gallium Prospect looking east (see ASX releases dated April 18, 2024 and October 9, 2024).

Table 1 - Geochemical assay of gallium in soil samples at the Block 3 Prospect.

Sample ID	East	North	Ga	Ga ₂ O ₃
			ppm	ppm
NRZ00906	665145	6697500	25	33
NRZ00907	665144	6697552	20	27
NRZ00908	665142	6697599	23	31
NRZ00909	665143	6697650	27	36
NRZ00910	665138	6697701	28	37
NRZ00911	665136	6697754	32	43
NRZ00912	665136	6697800	29	39
NRZ00913	665131	6697849	29	39
NRZ00914	665131	6697900	32	43
NRZ00915	665125	6697953	22	30
NRZ00916	665122	6698003	20	27
NRZ00917	665124	6698050	25	33
NRZ00918	665127	6698102	36	48
NRZ00919	665132	6698149	23	31
NRZ00920	665134	6698201	25	33
NRZ00921	665133	6698250	22	30
NRZ00922	665130	6698301	21	28
NRZ00923	665131	6698351	28	37
NRZ00924	665125	6698401	24	32
NRZ00925	665128	6698450	17	23
NRZ00926	665126	6698502	22	30
NRZ00927	665126	6698550	24	33
NRZ00928	665125	6698600	26	34
NRZ02565	662600	6697401	23	31
NRZ02566	662600	6697449	19	26
NRZ02567	662598	6697500	22	29
NRZ02568	662599	6697550	19	25
NRZ02569	662599	6697600	19	26

Sample ID	East	North	Ga	Ga ₂ O ₃
			ppm	ppm
NRZ02570	662601	6697650	23	31
NRZ02571	662601	6697699	24	32
NRZ02572	662600	6697750	24	32
NRZ02573	662600	6697799	18	24
NRZ02574	662598	6697852	23	31
NRZ02575	662600	6697900	23	30
NRZ02576	662601	6697949	21	28
NRZ02577	662600	6698001	26	34
NRZ02578	662598	6698051	22	30
NRZ02579	662601	6698100	23	31
NRZ02580	662601	6698149	26	35
NRZ02581	662600	6698200	26	35
NRZ02582	662601	6698250	25	34
NRZ02583	662600	6698300	25	33
NRZ02584	662600	6698351	27	36
NRZ02585	662600	6698400	24	33
NRZ02586	662600	6698450	27	36
NRZ02587	662601	6698499	23	31
NRZ02588	662600	6698550	25	33
NRZ02589	662601	6698600	26	34
NRZ02590	662601	6698649	26	35
NRZ02591	662600	6698700	25	34
NRZ02592	662600	6698750	27	36
NRZ02593	662601	6698799	24	32
NRZ02594	662598	6698852	25	34
NRZ02595	662601	6698900	21	28
NRZ02596	662601	6698951	26	35
NRZ02597	662600	6699000	26	35

Sample ID	East	North	Ga	Ga ₂ O ₃
			ppm	ppm
NRZ02598	663400	6697399	18	24
NRZ02599	663401	6697450	17	23
NRZ02600	663401	6697501	17	22
NRZ02601	663401	6697561	18	24
NRZ02602	663401	6697601	15	20
NRZ02603	663401	6697651	23	31
NRZ02604	663400	6697701	19	26
NRZ02605	663398	6697750	25	34
NRZ02606	663398	6697797	20	26
NRZ02607	663398	6697850	16	22
NRZ02608	663402	6697901	16	22
NRZ02609	663403	6697949	17	23
NRZ02610	663403	6698001	13	17
NRZ02611	663401	6698050	18	24
NRZ02612	663400	6698100	20	27
NRZ02613	663402	6698149	26	35
NRZ02614	663402	6698201	22	30
NRZ02615	663400	6698250	25	33
NRZ02616	663399	6698301	24	33
NRZ02617	663400	6698350	27	37
NRZ02618	663401	6698400	27	36
NRZ02619	663401	6698449	21	29
NRZ02620	663401	6698504	20	27
NRZ02621	663397	6698549	22	30
NRZ02622	663400	6698602	20	27
NRZ02623	663400	6698651	22	29
NRZ02624	663400	6698700	20	27
NRZ02625	663400	6698750	22	30

Sample ID	East	North	Ga	Ga ₂ O ₃	
			ppm	ppm	
NRZ02626	663400	6698800	21	28	
NRZ02627	663401	6698851	20	27	
NRZ02628	663400	6698901	22	29	
NRZ02629	663402	6698950	17	23	
NRZ02630	663400	6699000	17	23	
NRZ02631	663798	6697400	21	29	
NRZ02632	663804	6697450	21	28	
NRZ02633	663798	6697497	21	28	
NRZ02634	663800	6697550	21	28	
NRZ02635	663797	6697601	22	29	
NRZ02636	663800	6697650	24	33	
NRZ02637	663801	6697696	24	32	
NRZ02638	663799	6697749	20	27	
NRZ02639	663800	6697799	21	28	
NRZ02640	663797	6697854	23	31	
NRZ02641	663799	6697901	21	29	
NRZ02642	663798	6697950	23	30	
NRZ02643	663788	6698009	20	27	
NRZ02644	663790	6698051	24	32	
NRZ02645	663800	6698100	23	31	
NRZ02646	663802	6698151	24	32	
NRZ02647	663800	6698200	23	31	
NRZ02648	663802	6698251	20	26	
NRZ02649	663800	6698298	21	28	
NRZ02650	663800	6698352	24	32	
NRZ02651	663801	6698397	21	29	
NRZ02652	663801	6698450	25	33	
NRZ02653	663802	6698500	24	32	

Sample ID	East	North	Ga	Ga ₂ O ₃
			ppm	ppm
NRZ02654	663800	6698550	19	25
NRZ02655	663798	6698601	19	26
NRZ02656	663800	6698651	22	30
NRZ02657	663802	6698700	26	34
NRZ02658	663798	6698752	25	34
NRZ02659	663799	6698798	24	32
NRZ02660	663801	6698849	24	33
NRZ02661	663803	6698900	24	33
NRZ02662	663800	6698952	24	32
NRZ02663	663800	6699001	23	31
NRZ02664	664199	6697401	23	31
NRZ02665	664197	6697452	29	40
NRZ02666	664198	6697502	25	34
NRZ02667	664200	6697545	24	33
NRZ02668	664202	6697604	20	27
NRZ02669	664199	6697651	20	27
NRZ02670	664202	6697700	26	35
NRZ02671	664204	6697750	23	30
NRZ02672	664200	6697802	23	31
NRZ02673	664200	6697851	24	33
NRZ02674	664201	6697901	23	31
NRZ02675	664199	6697952	24	32
NRZ02676	664201	6698000	21	28
NRZ02677	664199	6698050	27	36
NRZ02678	664200	6698100	22	29
NRZ02679	664200	6698151	25	33
NRZ02680	664196	6698199	24	32
NRZ02681	664201	6698252	24	32

Sample ID	East	North	Ga	Ga ₂ O ₃
			ppm	ppm
NRZ02682	664204	6698300	27	36
NRZ02683	664203	6698350	24	33
NRZ02684	664203	6698399	25	34
NRZ02685	664201	6698445	24	32
NRZ02686	664202	6698501	25	34
NRZ02687	664200	6698547	27	36
NRZ02688	664201	6698599	25	34
NRZ02689	664202	6698648	24	33
NRZ02690	664200	6698695	24	32
NRZ02691	664201	6698750	22	30
NRZ02692	664201	6698802	24	32
NRZ02693	664201	6698850	24	32
NRZ02694	664203	6698899	25	34
NRZ02695	664202	6698950	26	34
NRZ02696	664200	6699002	23	31
NRZ02697	664600	6697399	22	30
NRZ02698	664597	6697451	20	26
NRZ02699	664599	6697500	21	29
NRZ02700	664599	6697550	17	23
NRZ02701	664598	6697602	22	29
NRZ02702	664600	6697649	22	29
NRZ02703	664601	6697700	21	28
NRZ02704	664598	6697751	24	32
NRZ02705	664600	6697798	22	29
NRZ02706	664602	6697850	20	27
NRZ02707	664600	6697901	22	30
NRZ02708	664602	6697950	24	33
NRZ02709	664600	6698002	21	29

Sample ID	East	North	Ga	Ga ₂ O ₃
			ppm	ppm
NRZ02710	664600	6698051	25	34
NRZ02711	664600	6698100	25	34
NRZ02712	664601	6698149	18	24
NRZ02713	664599	6698200	30	41
NRZ02714	664601	6698252	21	28
NRZ02715	664601	6698302	24	32
NRZ02716	664599	6698350	18	25
NRZ02717	664599	6698400	22	29
NRZ02718	664599	6698450	24	33
NRZ02719	664600	6698501	25	33
NRZ02720	664600	6698550	27	36
NRZ02721	664600	6698600	23	31
NRZ02722	664600	6698650	22	29
NRZ02723	664600	6698701	26	35
NRZ02724	664601	6698751	22	29
NRZ02725	664600	6698801	19	25
NRZ02726	664598	6698850	26	34
NRZ02727	664600	6698898	26	35
NRZ02728	664601	6698950	23	31
NRZ02729	664600	6699000	21	28
NRZ02730	664900	6697401	19	25
NRZ02731	664900	6697450	16	22
NRZ02732	664900	6697500	21	28
NRZ02733	664900	6697550	21	28
NRZ02734	664900	6697600	19	26
NRZ02735	664889	6697650	21	28
NRZ02736	664901	6697701	21	28
NRZ02737	664903	6697750	17	23

Sample ID	East	North	Ga	Ga ₂ O ₃
			ppm	ppm
NRZ02738	664901	6697800	34	45
NRZ02739	664900	6697850	25	34
NRZ02740	664896	6697901	23	31
NRZ02741	664898	6697950	25	34
NRZ02742	664901	6698001	18	24
NRZ02743	664899	6698050	28	38
NRZ02744	664901	6698100	20	27
NRZ02745	664902	6698149	19	25
NRZ02746	664901	6698201	16	22
NRZ02747	664901	6698250	24	32
NRZ02748	664899	6698301	26	35
NRZ02749	664902	6698346	27	36
NRZ02750	664902	6698400	20	27
NRZ02751	664901	6698450	22	29
NRZ02752	664901	6698501	20	27
NRZ02753	664897	6698548	23	30
NRZ02754	664898	6698601	21	29
NRZ02755	664899	6698650	22	30
NRZ02756	664900	6698700	19	26
NRZ02757	664896	6698749	20	27
NRZ02758	664898	6698799	19	26
NRZ02759	664902	6698848	17	23
NRZ02760	664899	6698900	22	30
NRZ02761	664899	6698949	24	32
NRZ02762	664900	6699000	26	34
NRZ02763	665501	6697402	23	30
NRZ02764	665498	6697456	21	28
NRZ02765	665492	6697502	20	27

Sample ID	East	North	Ga	Ga ₂ O ₃
			ppm	ppm
NRZ02766	665502	6697550	15	20
NRZ02767	665498	6697599	18	24
NRZ02768	665501	6697649	16	21
NRZ02769	665497	6697698	21	28
NRZ02770	665499	6697750	25	34
NRZ02771	665504	6697798	20	27
NRZ02772	665500	6697852	24	32
NRZ02773	665502	6697902	20	26
NRZ02774	665500	6697950	25	33
NRZ02775	665497	6698001	34	45
NRZ02776	665500	6698052	24	32
NRZ02777	665499	6698101	20	27
NRZ02778	665500	6698150	25	34
NRZ02779	665503	6698197	21	28
NRZ02780	665499	6698250	24	32

Sample ID	East	North	Ga	Ga ₂ O ₃
			ppm	ppm
NRZ02781	665497	6698300	22	30
NRZ02782	665500	6698350	28	37
NRZ02783	665500	6698397	22	29
NRZ02784	665498	6698452	21	28
NRZ02785	665497	6698502	22	29
NRZ02786	665499	6698551	23	31
NRZ02787	665499	6698600	26	35
NRZ02788	665496	6698652	25	33
NRZ02789	665499	6698700	25	34
NRZ02790	665501	6698749	25	34
NRZ02791	665501	6698800	25	33
NRZ02792	665503	6698850	23	31
NRZ02793	665499	6698899	18	24
NRZ02794	665501	6698950	25	33
NRZ02795	665501	6698997	22	29

Table 2 - Drill hole collar locations.

Hole ID	Tenement	Easting	Northing	RL	Dip	Azimuth	ЕОН	Туре	Prospect
24NRRC0128	E77/2714	665077	6698011	481	-60	0	240	R/C	Block 3
24NRRC0129	E77/2714	664851	6697854	477	-60	0	240	R/C	Block 3
24NRRC0130	E77/2714	664853	6697976	478	-60	0	240	R/C	Block 3
24NRRC0120	E77/2714	665083	6697923	480	-60	0	240	R/C	Block 3
24NRRC0121	E77/2714	665085	6697848	480	-60	0	240	R/C	Block 3
MGA 1994 - Zone 50									

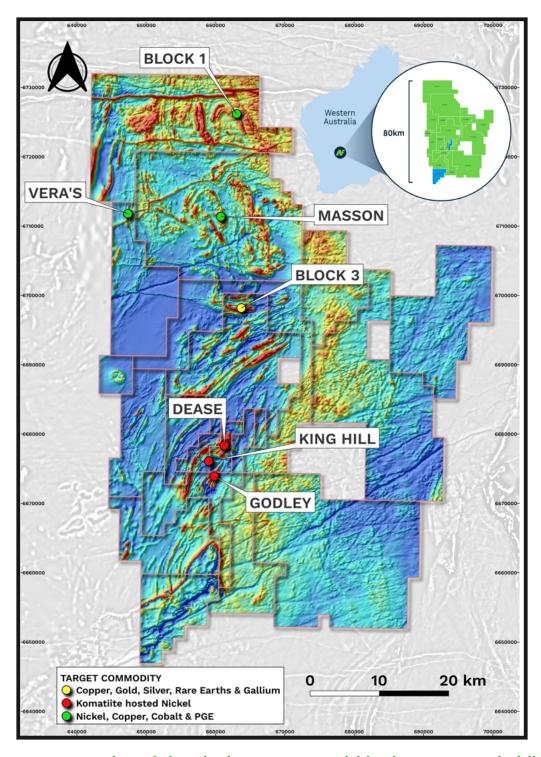


Figure 4 – Location of the Block 3 Prospect within the tenement holding.

Previous Related Announcements:

	01/11/24	Copper at depth with a 1.4km strike extension
	09/10/24	High grade gallium extended at Block 3
	07/10/24	High grade copper trend within broad sulphide intervals
0	12/09/24	Further massive sulphides intercepted
(1)	28/08/24	Massive sulphide mineralisation increasing at Masson
3	14/08/24	Massive sulphides in first RC hole at Masson
3	05/08/24	Nimy Exploration Update
	19/07/24	Drilling set to commence
	27/06/24	Extension to copper gold sulphide targets in block 3
	25/06/24	EM anomalies identified beneath Vera's Gossan
	20/06/24	EM anomalies extended at Masson
0	24/05/24	Geophysical surveys commenced at Mons
S	21/05/24	Vera's Gossan confirmed as a nickel, copper target
	18/04/24	Copper Rare Earths and Gallium at Block 3
Θ	26/03/24	Nimy receives \$1.47m R&D Refund
\bigcirc	12/03/24	Copper – Nickel Discovery Extension
_	16/02/24	Second Drill for Equity Agreement with Raglan Drilling
0	11/01/24	Drilling to Re-commence at Masson Prospect
LĹ	8/12/23	Strong Nickel Copper in large EM anomaly

Board and Management

Luke Hampson ExecutiveChairman **Christian Price**

Executive Director

Neil Warburton Non-Executive Director

Henko Vos

Joint Co-Secretary/CFO

Capital Structure

Shares on Issue - 174.92m Options on Issue - 25.38m

Contact: info@nimyresources.com.au

Joint Co-Secretary/CFO
Geraldine Holland
Joint Co-Secretary

Nimy Resources ASX:NIM

Fergus Jockel
Geological Consultant
Ian Glacken
Geological Technical Advisor

This announcement has been approved for release by the Board of Directors.

Company Information Nimy Resources Limited Richard Moody

info@nimyresources.com.au

(08) 9261 4600

Investor Information Read Corporate Paul Armstrong

info@readcorporate.com.au

(08) 9388 1474

Competent Person's Statement

The information contained in this report that pertain to Exploration Results, is based upon information compiled Nimy Resources is an emerging exploration company, by Mr. Fergus Jockel, a full-time employee of Fergus Jockel Geological Services Pty Ltd. Mr. Jockel is a Member of the Australasian Institute of Mining and Metallurgy (1987) and has sufficient experience in the activity which he is undertaking to qualify as a Competent Person as defined in the December 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (the JORC Code).

Mr Jockel consents to the inclusion in the report of the matters based upon his information in the form and context in which it appears.

Forward Looking Statement

This report contains forward looking statements concerning the projects owned by Nimy Resources Limited. Statements concerning mining reserves and resources may also be deemed to be forward looking statements in that they involve estimates based on specific assumptions. Forward-looking statements are not statements of historical fact and actual events, and results may differ materially from those described in the forward-looking statements as a result of a variety of risks, uncertainties and other factors. Forward looking statements are based on management's beliefs, opinions and estimates as of the dates the forwardlooking statements are made and no obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future developments.

About Nimy Resources and the **Mons Nickel Project**

with the vision to discover and develop critical metals for a forward-facing economy in Western Australian, a Tier 1 jurisdiction.

Nimy has prioritised the development of the Mons Project, a district scale land holding consisting of 17 approved tenements over an area of 3004km² covering an 80km north/south strike of mafic and ultramafic sequences.

Mons is located 140km north - northwest of Southern Cross and covers the Karroun Hill district on the northern end of the world-famous Forrestania belt. Mons features a similar geological setting to the southern end of that belt and importantly also the Kambalda nickel belt.

The Mons Project is situated within potentially large scale fertile "Kambalda-Style" and "Mt Keith-Style" nickel rich komatiite sequences within the Murchison Domain of the Youanmi Terrane of the Archean Yilgarn Craton.

While we are primarily Nickel focused, early indications are also offering significant opportunities with other forward-facing metals, so important to the decarbonisation of our economy going forward.

JORC Code, 2012 Edition - Table 1 report template

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections)

Criteria	JORC Code Explanation	Commentary
Sampling Techniques	 Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 All drilling and sampling was undertaken in an industry standard manner. RC holes samples were collected on a 1m basis or 4m composite basis with samples collected from a cone splitter mounted on the drill rig cyclone. Sample ranges from a typical 2.5-3.5kg. Industry prepared independent standards are inserted approximately 1 in 25 samples. Sample sizes are considered appropriate for the material sampled. The samples are considered representative and appropriate for this type of drilling. RC samples are appropriate for use in a resource estimate. Soil sampling was undertaken on nine lines ranging from 1.1 to 2.6km with 50m spacing across the Block 3 Prospect on an MGA Zone 50 grid on an MGA Zone 50 grid. Sample weight ranges from 300-500g from a nominal depth of 15cm. Sample sizes are considered appropriate for the material sampled. The independent laboratory then takes the samples which are dried, split, crushed and pulverized prior to analysis as described below. The independent laboratory pulverises the entire sample for analysis as described below. The independent laboratory pulverises the entire sample for analysis as described below.

Drilling Techniques	*	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core	•	Reverse Circulation (RC) holes were drilled with a 5 1/2-inch bit and face sampling hammer.
		diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc.).		Hallillet.
Drill Sample	•	Method of recording and assessing core	•	RC samples were visually assessed for
Recovery	ľ	and chip sample recoveries and results		recovery.
	•	assessed. Measures taken to maximise sample	•	Samples are considered representative with generally good recovery. Some
		recovery and ensure representative nature of the samples.		deeper holes encountered water, with some intervals having less than optimal
	•	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	•	recovery and possible contamination. No sample bias is observed.
Logging	*	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation,	•	The holes have been geologically logged by Company geologists, with systematic sampling undertaken based on rock type and alteration observed.
	*	mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged.	•	RC sample results will be appropriate for use in a resource estimation, except where sample recovery is poor.

Sub-sampling techniques and sample preparation

- If core, whether cut or sawn and whether quarter, half or all core taken.
- If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.
- For all sample types, the nature, quality and appropriateness of the sample preparation technique.
- Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.
- Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/ second-half sampling.
- Whether sample sizes are appropriate to the grain size of the material being sampled.

- RC sampling was carried out by a cone splitter on the rig cyclone and drill cuttings were sampled on a 1m basis or 4m composite basis.
- Each sample was dried, split, crushed and pulverised.
- Sample sizes are considered appropriate for the material sampled.
- The samples are considered representative and appropriate for this type of drilling.
- RC samples will be appropriate for use in a resource estimate.

Quality of assay data and laboratory tests

- The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.
- For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.
- Nature of quality control procedures
 adopted (e.g. standards, blanks, duplicates,
 external laboratory checks) and whether
 acceptable levels of accuracy (i.e. lack of
 bias) and precision have been established.

- The samples will be submitted to a commercial independent laboratory in Perth, Australia.
- RC samples Au was analysed by a 50g charge Fire assay fusion technique with an AAS finish and multi- elements by ICPAES and ICPMS.
- The techniques are considered quantitative in nature.
- As discussed previously the laboratory carries out internal standards in individual batches.
- The standards and duplicates were considered satisfactory.

Soil samples were submitted to a

		commercial independant laboratory in Perth, Australia. Separation and collection of ultrafine (< 2 µm) fraction from soil samples. Analysis of 40-element suite on the fine fraction, plus pH, salinity (conductivity), particle size distribution, and clay mineralogy (ASD) followed by multi-element suite analysis by ICP-MS and OES The techniques are considered quantitative in nature. No standards, blanks or duplicates were inserted into the sample batch, although Lab standards and QA/QC procedures have been historically used.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Sample results to be been merged by the company's database consultants. Results to be uploaded into the company database, with verification ongoing. No adjustments have been made to the assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 RC drill hole collar and soil sample locations are located by DGPS to an accuracy of approximately 1 metre. Locations are given in MGA94 zone 50 projection. Diagrams and location table provided in the report. Topographic control is by detailed air photo and GPS data.

Data spacing and distribution	*	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	*	Drill collar spacing was 40m and was of an exploration reconnaissance nature along drill lines at 0° Azimuth. All holes to be geologically logged and provide a strong basis for geological control and continuity of mineralisation. Data spacing and distribution of drilling is sufficient to provide support for the results to be used in a resource estimate. The soil sample spacing of 50m is appropriate for the exploration being
Orientation of data in relation to geological structure	*	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	*	The drilling is believed to be approximately perpendicular to the strike of mineralisation where known and therefore the sampling is considered representative of the mineralised zone. In some cases, drilling is not at right angles to the dip of mineralised structures and as such true widths are less than downhole widths. This is allowed for when geological interpretations are completed. Soil sampling was undertaken across nine lines of 1.1 to 2.6km with 50m spacing across the Block 3 Prospect on an MGA Zone 50 grid.
Sample security	*	The measures taken to ensure sample security.	*	Samples are collected by company personnel and delivered direct to the laboratory.
Audits or reviews	•	The results of any audits or reviews of sampling techniques and data.	*	No audits have been completed. Review of QAQC data by database consultants and company geologists is ongoing.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	◆ The tenements have had low levels of surface geochemical sampling and wide spaced drilling by Image Resources with no significant mineralisation reported.
Geology	Deposit type, geological setting and style of mineralisation.	 Potential copper, nickel, gold, platinum, palladium, molybdenum and silver (sulphide hosted) and gallium, rare earth element mineralisation. Interpreted as mafic and felsic intrusive related – full interpretation to be completed.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar. elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar. 	Drill hole location and directional information provided in the report.

	 dip and azimuth of the hole. down hole length and interception depth. hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 		
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	•	The database is insufficient at this stage to consider cut-off grades and top cuts.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	*	The drill holes are interpreted to be approximately perpendicular to the strike of mineralisation. Drilling is not always perpendicular to the dip of mineralisation and true widths are less than downhole widths. Estimates of true widths will only be possible when all results are received, and final geological interpretations have been completed. The survey area is interpreted to contain mafic and felsic rocks.

Diagrams	◆ Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.		Maps / plans are provided in the report.
Balanced	◆ Where comprehensive reporting of all	•	All drill / soil collar locations are shown in
reporting	· · · ·		
reporting	Exploration Results is not practicable,		figures and all significant results are
	representative reporting of both low and		provided in this report.
	high grades and/or widths should be	•	The report is considered balanced and
	practiced to avoid misleading reporting of		provided in context.
	Exploration Results.		
Other	◆ Other exploration data, if meaningful and	+	Metallurgical, geotechnical and
substantive	material, should be reported including (but		groundwater studies are considered
exploration data	not limited to): geological observations;		premature at this stage of the Project.
	geophysical survey results; geochemical		
	survey results; bulk samples – size and		
	method of treatment; metallurgical test		
	results; bulk density, groundwater,		
	geotechnical and rock characteristics;		
	potential deleterious or contaminating		
	substances.		
	Substances.		
Further work	The nature and scale of planned further	•	Programs of follow up soil sampling, RC
Fullier Work	work (e.g. tests for lateral extensions or		drilling are currently in the planning stage.
	depth extensions or large-scale step-out		dritting are currently in the planning stage.
	drilling).		
	Diagrams clearly highlighting the areas of		
	possible extensions, including the main		
	geological interpretations and future		
	drilling areas, provided this information is		
	not commercially sensitive.		
1			