

27 November 2024

RIMFIRE PACIFIC MINING LTD

ASX: RIM

"Critical Minerals Explorer"

MANAGEMENT

David Hutton
MANAGING DIRECTOR / CEO

Dr Peter Crowhurst EXPLORATION MANAGER

Michael Love
GEOLOGICAL CONSULTANT

Paul Wright
GEOLOGICAL CONSULTANT

Greg Keane
CHIEF FINANCIAL OFFICER
and ALTERNATE DIRECTOR
for lan McCubbing

lan McCubbing CHAIRMAN

Andrew Knox NON-EXECUTIVE DIRECTOR

Stefan Ross COMPANY SECRETARY

OFFICE

Level 4 96 – 100 Albert Road SOUTH MELBOURNE VIC 3004

CONTACT DETAILS

David Hutton + 61 417 974 843

Greg Keane + 61 497 805 918

rimfire@rimfire.com.au www.rimfire.com.au

ABN: 59 006 911 744

_ .

Rabbit Trap Scandium Project

Highlights

- New scandium project contains historic drill intercepts at the Malamute prospect and 3 newly identified "lookalike" magnetic anomalies that need drill testing
- At Malamute, laterite hosted scandium is present over 400m x
 500m area with multiple air core drill intercepts;
 - 18m @ 217ppm Sc from 30m including 6m @ 331ppm Sc
 - o 9m @ 197ppm Sc from 8m including 3m @ 272ppm Sc
 - o 9m @ 242ppm Sc from 34m including 3m @ 373ppm Sc, and
 - o 10m @ 270ppm Sc from 25m including 4m @ 295ppm Sc
- Rabbit Trap located 50 kilometres north of the Fifield and Avondale Projects and comprises EL8666 which is subject to a Buy Option Agreement with Javelin Minerals Limited (JAV:ASX) and new adjacent ELA6848
- Subject to obtaining necessary regulatory approvals, drill testing of the magnetic anomalies planned for 1st Qtr. 2025

Rimfire Pacific Mining (**RIM:ASX**, "**Rimfire**" or "**the Company**") is pleased to provide an update for its new 100% - owned Rabbit Trap Scandium Project located 50km north of the Fifield and Avondale projects in central New South Wales (*Figure 1*).

Commenting on the announcement, Rimfire's Managing Director Mr David Hutton said: "The new Rabbit Trap Scandium Project offers multiple opportunities with laterite – hosted scandium overlying a magnetic anomaly at the Malamute prospect and three other newly identified "lookalike" magnetic anomalies that need drill testing.

Strategically the Rabbit Trap project strengthens the Company's pipeline of scandium targets and is consistent with Rimfire's corporate objective to continue building a globally significant scandium resource inventory within central New South Wales – Australia's scandium epicentre.

Subject to obtaining all necessary regulatory approvals, we plan to commence drilling in the first Quarter 2025 and look forward to providing shareholders with further updates as new information becomes available."

As previously advised Rimfire has expanded its scandium exposure in central NSW following the execution of an Option to Purchase Agreement with Javelin Minerals Limited (JAV: ASX) for their Exploration Licence 8666 (EL8666). If Rimfire elects to exercise the Option to Purchase (by 30 April 2026 at the latest), then the exploration licence will become 100% - owned by Rimfire (see Rimfire's ASX Announcement dated 31 October 2024).

Rimfire has added to the Javelin tenement with a new Exploration Licence (ELA6848) which adjoins the northern and eastern margin of EL8666 (Figure 2).

Combined the two exploration licences cover an area of 310km² and are collectively known as the "Rabbit Trap Scandium Project" because of their proximity to the well-known Rabbit Trap Hotel (est. 1929).

Rabbit Trap Scandium Opportunities

Regionally the project lies north along strike from the company's Fifield and Avondale projects and covers a north trending belt of Ordovician - age mafic / ultramafic intrusive rocks (Alaskan -Ural style) that are prospective for prospective for a range of critical minerals including scandium, nickel cobalt and the platinum group elements (PGEs).

From Rimfire's work at Fifield and Avondale, scandium typically occurs within a strongly weathered laterite horizon overlying magnetic ultramafic (pyroxenite) intrusive rocks (Figures 2 and 3).

At Rabbit Trap wide spaced (e.g. 250 x 250m centres) reconnaissance air core drilling undertaken in 2019 and 2023 by previous explorers has identified strongly anomalous scandium (Sc) within a flat – lying weathered and lateritised pyroxenite at the Malamute prospect, i.e.

- 18m @ 217ppm Sc from 30 metres in MA07 including 6m @ 331ppm Sc,
- 9m @ 197ppm Sc from 8 metres in MA08 including 3m @ 272ppm Sc,
- 9m @ 242ppm Sc from 34 metres in MA44 including 3m @ 373ppm Sc, and
- 10m @ 270ppm Sc from 25 metres in MA48 including 4m @ 295ppm Sc.

Scandium at Malamute is present over a 400m x 500m area and remains open to the west.

Consistent with other scandium occurrences in the district, Malamute is characterised by a discrete magnetic anomaly which is "mapping" the underlying pyroxenite unit (Figure 3).

While Rimfire was originally attracted to the Malamute prospect as a single scandium target to supplement the Company's flagship Murga prospect (which contains the Murga North MRE and separate Murga Exploration Target) further to the south on the Fifield project, a review of publicly available magnetic imagery for the broader Malamute area has identified three additional multiple "look alike" magnetic anomalies which have never been drill tested.

As shown on *Figure 4*, three magnetic anomalies to the northeast of Malamute require drill testing to confirm the presence of underlying pyroxenite and determine their scandium prospectivity.

Initial field reconnaissance has shown that each magnetic anomaly lies in an area of little to no outcrop with the land subject to grazing and cropping agricultural practices (*Figure 5*).

Given the similarities with the Malamute magnetic anomaly and the confirmation of scandium in the Malamute drilling, Rimfire believes that the Rabbit Trap project offers multiple opportunities for the discovery of new laterite – hosted scandium occurrences associated with the untested magnetic anomalies.

Next Steps

The project lies on freehold agricultural properties and Rimfire personnel have commenced the process of obtaining landowner consent to undertake exploration activities.

Subject to obtaining all necessary regulatory approvals, Rimfire is planning to undertake air core drill testing of the magnetic anomalies during the first Quarter 2025.

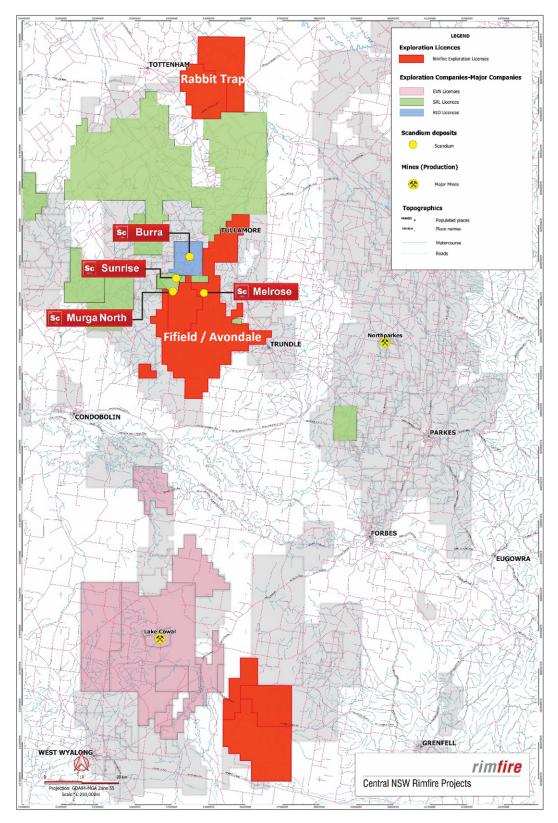


Figure 1: Rimfire Scandium Projects with regional tenement holders and target locations

Figure 2: Chip tray for air core drill hole MA07 which intersected 18m @ 217ppm Sc from 30 metres including 6m @ 331ppm Sc from 31 metres. Numbers 1 – 49 on the chip tray denote individual downhole intervals (i.e., "10" means the drill sample obtained from 9 - 10 metres).

Figure 3: Chip tray for air core drill hole MA08 which intersected 9m @ 197ppm Sc from 8 metres including 3m @ 272ppm Sc from 13 metres. Numbers 1 - 30 on the chip tray denote individual downhole intervals (i.e., "10" means the drill sample obtained from 9 - 10 metres).

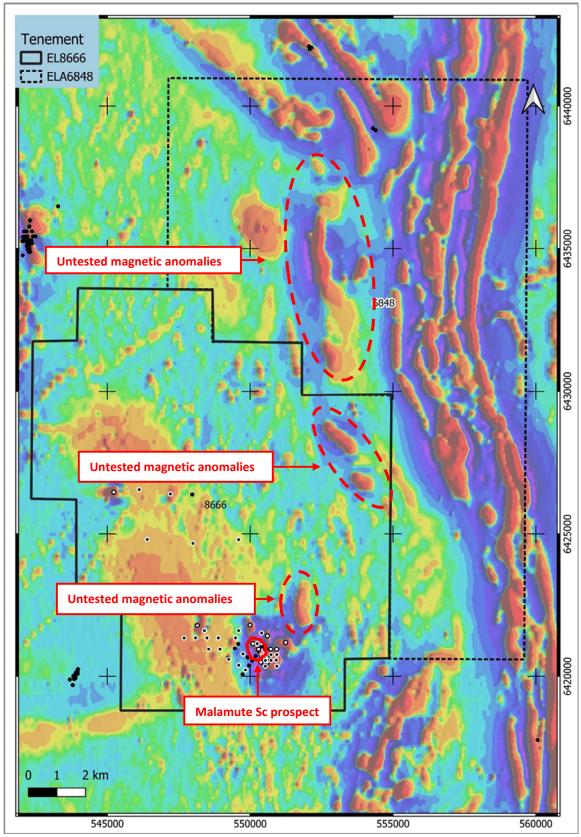


Figure 4: Rabbit Trap Scandium Project showing location of Malamute prospect and untested magnetic anomalies

Figure 5: Photo taken in vicinity of the Malamute prospect showing typical countryside

Table 1: Drillhole Specifications and Significant Intercepts (using a +100ppm Sc lower cutoff)

Hole_ID	Year drilled	Easting	Northing	Dip	ЕОН	Comments	From	Width	Sc_ppm
MA01	2019	549,250	6,420,599	-90	75	Abandoned			
MA02	2019	550,532	6,420,360	-90	70	Hole not assayed			
MA03	2019	550,735	6,420,357	-90	68	Hole not assayed			
MA04	2019	550,934	6,420,360	-90	70	Hole not assayed			
MA05	2019	550,913	6,420,570	-90	50	Hole not assayed			
MA06	2019	550,733	6,420,563	-90	36	Hole not assayed			
MA07	2019	550,534	6,420,560	-90	49	intersected UM basement	30	18	217
			Including	1			31	6	331
MA08	2019	550,533	6,420,760	-90	30	intersected UM basement	8	9	197
			Including	1			13	3	272
MA09	2019	550,733	6,420,760	-90	30	intersected UM basement	N	SI >100pp	m Sc
MA10	2019	550,934	6,420,760	-90	43	Hole not assayed			
MA11	2019	548,948	6,420,949	-90	66	Abandoned			
MA12	2019	548,548	6,420,949	-90	82	Abandoned			
MA13	2019	547,688	6,421,348	-90	45	Hole not assayed			
MA14	2019	548,090	6,421,352	-90	69	Hole not assayed			
MA15	2019	548,491	6,421,350	-90	62	Abandoned			
MA16	2019	548,889	6,421,349	-90	69	Hole not assayed			
MA17	2019	549,489	6,421,350	-90	75	Hole not assayed			
MA18	2019	548,398	6,421,600	-90	88	Hole not assayed			
MA19	2019	548,798	6,422,400	-90	64	Hole not assayed			
MA20	2019	547,627	6,422,248	-90	21	Hole not assayed			
MA21	2019	547,995	6,423,198	-90	25	Hole not assayed			
MA22	2019	549,597	6,423,195	-90	85	Hole not assayed			
MA23	2019	547,998	6,424,671	-90	81	Hole not assayed			
MA24	2019	547,209	6,426,388	-90	51	Hole not assayed			
MA25	2019	546,119	6,426,537	-90	7	Hole not assayed			
MA26	2019	547,198	6,427,199	-90	9	Hole not assayed			
MA27	2019	545,997	6,427,197	-90	48	Hole not assayed			
MA28	2019	546,400	6,428,780	-90	52	Hole not assayed			
MA29	2019	544,800	6,428,800	-90	30	Hole not assayed			
MA30	2019	548,800	6,426,400	-90	63	Hole not assayed			
MA31	2019	549,597	6,424,800	-90	84	Abandoned			
MA32	2019	546,401	6,424,806	-90	19	Hole not assayed			
MA33	2019	546,799	6,423,197	-90	2	Hole not assayed			
MA34	2019	546,398	6,422,398	-90	66	Hole not assayed			
MA35	2019	549,837	6,420,226	-90	63	Hole not assayed			
MA36	2019	549,751	6,420,785	-90	39	Hole not assayed			
MA37	2019	550,252	6,421,153	-90	37	intersected UM basement	N	SI >100pp	m Sc

MA38	2019	550,400	6,421,522	-90	45	Hole not assayed			
MA39	2019	549,600	6,420,397	-90	54	Hole not assayed			
MA40	2019	549,597	6,421,600	-90	66	Hole not assayed			
MA41	2023	550,377	6,420,497	-90	60		N:	SI >100pp	m Sc
MA42	2023	550,603	6,420,499	-90	38		N:	SI >100pp	om Sc
MA43	2023	550,600	6,420,645	-90	15		N:	SI >100pp	om Sc
MA44	2023	550,450	6,420,651	-90	57		34	9	242
			Including	1			34	3	373
MA45	2023	550,723	6,420,952	-90	30		N:	SI >100pp	m Sc
MA46	2023	550,928	6,420,949	-90	30		N:	SI >100pp	om Sc
MA47	2023	551,246	6,421,196	-90	30		N:	SI >100pp	om Sc
MA48	2023	550,297	6,420,948	-90	42		10	6	125
"	н	"	"	"	"		25	14	247
		•	Including	1			25 10 270		
MA49	2023	550,099	6,421,153	-90	20		N:	SI >100pp	m Sc
MA50	2023	550,397	6,421,146	-90	30	Hole not sampled			
MA51	2023	550,607	6,421,421	-90	60		N:	SI >100pp	m Sc
MA52	2023	550,545	6,420,952	-90	40		30	2	135
MA53	2023	549,998	6,421,802	-90	54		NSI >100ppm Sc		
MA54	2023	548,154	6,421,790	-90	20		N:	SI >100pp	om Sc
MA55	2023	547,783	6,422,437	-90	8		N:	SI >100pp	om Sc
MA56	2023	545,229	6,426,448	-90	8		N:	SI >100pp	om Sc

This announcement is authorised for release to the market by the Board of Directors of Rimfire Pacific Mining Limited.

ENDS

For further information please contact:

David Hutton Managing Director / CEO Ph: +61 417 974 843 Greg Keane CFO / Investor Relations/ Alternate Director for Ian McCubbing

Ph: +61 497 805 918

JORC Reporting

Table 2: JORC Code Reporting Criteria

Section 1 Sampling Techniques and Data - Diamond Drilling

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	This ASX Announcement details the results of historic air core drilling undertaken by Javelin Minerals Limited (JAV: ASX) on EL8666 which is located near the townsite of Albert in central NSW. Drilling was undertaken in two phases – in 2019 and 2023. Drillhole specifications are given in Table 1 of this ASX Release. Whilst all drill holes in the 2019 campaign were sampled (unless holes were abandoned before reaching target depths) only those holes that intersected favourable ultramafic basement lithologies were dispatched for analysis. The results were previously reported by Javelin in their ASX Releases of 2 December 2019 and 26 July 2023. The information in these JORC tables has been sourced from both ASX Releases. No new results have been reported. Sampling was conducted using an air core rig at Malamute. Air core samples were collected at 1m, 4m, and 5m intervals in a cyclone at the side of the drill rig and sub samples for laboratory analysis collected via a riffle or cone slitter. A
	Include reference to measures taken to ensure sample representativity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report.	split portion weighing approximately 2 kilograms was collected in numbered bags. To ensure sample representativity each hole was cut and sampled from surface to EOH for analysis. Blank samples and reference standards were inserted into the sample sequence for QA/QC. Air core samples were collected at 1m, 4m, and 5m intervals in a cyclone at the side of the drill
	In cases where 'industry standard' work has been done this would be simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g.,	rig and sub samples for laboratory analysis collected via a riffle or cone slitter. A split portion weighing approximately 2 kilograms was collected in numbered bags.

Criteria	JORC Code explanation	Commentary
	submarine nodules) may warrant disclosure of detailed information.	
Drilling techniques	Drill type (e.g., core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, facesampling bit, or other type, whether core is oriented and if so, by what method, etc).	All historic drillholes reported in this ASX Announcement are air core drill holes, the specifications of which are included in Table 1.
Drill sample	Method of recording and assessing core and	Sample recovery was generally excellent in
recovery	chip sample recoveries and results assessed.	weathered lithologies
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	To ensure sample representivity, and because the geology of each drilling location is unknown (due to no previous drilling beneath the base of weathering), the entire drillhole was typically sampled for analysis, although not all samples were submitted for analysis.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	It is not known whether a relationship exists between sample recovery and grade. No indication of sample bias is evident or has been established.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Air core samples were geologically logged to a level of detail sufficient to support appropriate Mineral Resource estimation, although that was not the objective of the drilling outlined in this ASX Announcement.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Geological logging of diamond drill core is qualitative by nature.
	The total length and percentage of the relevant intersections logged.	The entire length of drill holes was geologically logged.
Sub-sampling techniques and	If core, whether cut or sawn and whether quarter, half or all core taken.	N/A as non-core.
sample preparation	If non-core, whether riffled, tube sampled, rotary split & whether sampled wet or dry.	Air core holes were sub sampled by rig mounted cone or riffle splitter
	For all sample types, the nature, quality, and appropriateness of the sample preparation technique.	Sub-sample methods appear appropriate for deposit and sample type using accepted industry practices.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Not known as exploration data is historic.
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.	To ensure that sampling is representative of the in-situ material, field duplicates were taken at regular intervals and compared.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample sizes are considered appropriate to the grainsize of material being sampled.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Assaying has all been by a commercial laboratory – ALS Pty Ltd. Scandium analyses were undertaken in 2019 using a lithium borate fusion (method

Criteria	JORC Code explanation	Commentary
		ME-XRF12n) which is a total digest and in 2023 using an aqua regia ICP-AES (method ME-ICP41) which is a partial method.
		The methods are considered suitable for the nature of scandium mineralisation encountered.
	For geophysical tools, spectrometers, handheld XRF instruments (pXRF), etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	N/A as no geophysical tools were used or results of using geophysical tools were included in this Report.
	Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established.	Certified standards were submitted along half core samples to the laboratory.
Verification of	The verification of significant intersections by	The historic significant intersections including in
sampling and	either independent or alternative company	this Report have been verified by both Rimfire's
assaying	personnel.	Exploration Manager and Managing Director.
	The use of twinned holes.	N/A as no twinned holes drilled
	Documentation of primary data, data entry	Javelin drill data was captured using excel
	procedures, data verification, data storage	spreadsheets.
	(physical and electronic) protocols.	There has been no adjustment to assay data
Location of data	Discuss any adjustment to assay data. Accuracy and quality of surveys used to	There has been no adjustment to assay data. Sample locations are recorded using handheld
points	locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource	Garmin GPS with a nominal accuracy +/- 3m.
	estimation.	004047
	Specification of the grid system used.	GDA94 Zone 55.
	Quality and adequacy of topographic control.	Handheld GPS, which is suitable for the early stage and broad spacing of this exploration.
	. 5 .	
Data spacing and distribution	Data spacing for reporting of Exploration Results.	The location and spacing of drillholes discussed in this Report are given in Table 1 and various figures of this Report
	Whether the data spacing, and distribution is	The data spacing and distribution of drilling
	sufficient to establish the degree of geological	referred to in this Report is not sufficient to
	and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation	establish the degree of geological and grade continuity appropriate for the Mineral Resource
	procedure(s) and classifications applied.	and Ore Reserve estimation procedure(s).
	Whether sample compositing has been applied.	Sample compositing has been applied.
		No bias considered present.
in relation to	unbiased sampling of possible structures and	
geological	the extent to which this is known, considering	
structure	the deposit type. If the relationship between the drilling	The relationship between the drilling orientation
	orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be	and the orientation of key mineralised structures is not known. At this stage it is not known whether there is a sampling bias.
	assessed and reported if material.	mileator alore is a sampling plas.

Criteria	JORC Code explanation	Commentary
Sample security	The measures taken to ensure sample security.	Samples double bagged and delivered directly to the laboratory by company personnel.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No independent reviews undertaken at the time of drilling however Rimfire's senior company personnel including the Exploration Manager and Managing Director have reviewed the historic data with no negative issues identified.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	This ASX Announcement details historic drill results for air core holes drilled at the Malamute prospect area which lies on EL8666 in central NSW. All work was undertaken on Private Freehold Land. The land is used primarily for grazing and cropping.
		As discussed in this ASX Release the tenement is owned by Javelin Minerals and Rimfire has entered into an Option Agreement whereby it can exercise the option and acquire the tenement 100%.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area.	The tenements are in good standing, and all fieldwork is conducted under specific approvals from NSW Department of Planning and Energy, Resources and Geoscience.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Malamute has been the subject to some historic work which prior to 2019 has been primarily focussed on exploration for platinum group elements (PGEs). Helix Resources was a significant explorer operating in the area at the time.
Geology	Deposit type, geological setting, and style of mineralisation.	Scandium mineralisation occurs within flat – lying laterite horizons that have formed over Ordovician – age pyroxenite ultramafic units.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: • easting and northing of the drill hole collar • elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar • dip and azimuth of the hole • down hole length and interception depth.	All drillhole specifications are included within Table 1 of this ASX Announcement. All collar locations are shown on the figures included with this ASX Announcement.

Criteria	JORC Code explanation	Commentary
	If the exclusion of this information is justified on	Not applicable as no drill hole information has
	the basis that the information is not Material	been excluded.
	and this exclusion does not detract from the	
	understanding of the Report, the Competent	
	Person should clearly explain why this is the	
	case.	
Data aggregation	In reporting Exploration Results, weighting	A lower cut-off grade of 100 ppm scandium has
methods	averaging techniques, maximum and/or	been used in determining the reported
	minimum grade truncations (e.g., cutting of high	intercepts. No top cuts have been used.
	grades) and cut-off grades are usually Material	
	and should be stated.	
	Where aggregate intercepts incorporate	Length weighting has not been applied because
	short lengths of high-grade results and	all samples were of equal length.
	longer lengths of low-grade results, the	
	procedure used for such aggregation should	
	be stated and some typical examples of	
	such aggregations should be shown in	
	detail.	
	The assumptions used for any reporting of	No metal equivalents have been reported.
	metal equivalent values should be clearly	
	stated.	
Relationship	These relationships are particularly important	The drill results included in this Report are
between	in the Reporting of Exploration Results.	considered to represent downhole widths.
mineralisation	If the geometry of the mineralisation with	
widths and	respect to the drill hole angle is known, its	
intercept lengths	nature should be reported. If it is not known	
	and only the down hole lengths are reported,	
	there should be a clear statement to this effect	
	(e.g., 'down hole length, true width not known').	
Diagrams	Appropriate maps and sections (with scales)	Included within the ASX Announcement
	and tabulations of intercepts should be	
	included for any significant discovery being	
	reported These should include, but not be	
	limited to a plan view of drill hole collar	
	locations and appropriate sectional views.	
Balanced	Where comprehensive reporting of all	All significant intercepts are included in this
reporting	Exploration Results is not practicable,	Report.
	representative reporting of both low and high	
	grades and/or widths should be practiced	
	avoiding misleading reporting of Exploration	
	Results.	
Other	Other exploration data, if meaningful and	There is currently no other substantive
substantive	material, should be reported including (but not	exploration data that is meaningful and material
exploration	limited to): geological observations;	to report.
data	geophysical survey results; geochemical	
	survey results; bulk samples – size and	
	method of treatment; metallurgical test results;	
	bulk density, groundwater, geotechnical and	
	rock characteristics; potential deleterious or	
	contaminating substances.	

Criteria	JORC Code explanation	Commentary
Further work	The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling).	Planned further work will comprise geological interpretation and drilling.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Not applicable at this stage

Competent Persons Declaration

The information in the report that relates to Exploration and Resource Results is based on information reviewed and/or compiled by David Hutton who is deemed to be a Competent Person and is a Fellow of The Australasian Institute of Mining and Metallurgy.

Mr Hutton has over 30 years' experience in the minerals industry and is the Managing Director and CEO of Rimfire Pacific Mining. Mr Hutton has sufficient experience that is relevant to the style of mineralisation and type of deposits under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'.

Mr Hutton consents to the inclusion of the matters based on the information in the form and context in which it appears.

Forward looking statements Disclaimer

This document contains "forward looking statements" as defined or implied in common law and within the meaning of the Corporations Law. Such forward looking statements may include, without limitation, (1) estimates of future capital expenditure; (2) estimates of future cash costs; (3) statements regarding future exploration results and goals.

Where the Company or any of its officers or Directors or representatives expresses an expectation or belief as to future events or results, such expectation or belief is expressed in good faith and the Company or its officers or Directors or representatives, believe to have a reasonable basis for implying such an expectation or belief.

However, forward looking statements are subject to risks, uncertainties, and other factors, which could cause actual results to differ materially from future results expressed, projected, or implied by such forward looking statements. Such risks include, but are not limited to, commodity price fluctuation, currency fluctuation, political and operational risks, governmental regulations and judicial outcomes, financial markets, and availability of key personnel. The Company does not undertake any obligation to publicly release revisions to any "forward looking statement".