ASX ANNOUNCEMENT

20 November 2024

High-Grade Copper, Gold and Bismuth Rock Chip Assays Returned from Mountain Home

Outstanding assay results enhance prospectivity across the Mountain Home (MH) Project

- High-grade rock chip assays returned from the MH Gossan:
 - o <u>Up to 11.95% copper, 2.3g/t gold and 9.09% bismuth</u>
- Prospective Cu-Au-Bi corridor extended to 4.5 km in length, with potential based on satellite imagery for another 3.5 km of untested strike for an estimated overall strike of 8.0 km.
- Regional target identified with elevated copper, lead, zinc and gold from soil sampling.
- Wide-scale geophysical review underway across the project to assist in identifying additional prospective targets.
- Clear pathway to project approvals ahead of initial drilling in 2025.

West Australian-based explorer E79 Gold Mines Limited (**ASX: E79**) ('E79 Gold' or 'the Company') is pleased to provide an update on exploration activities at the Mountain Home Copper-Gold Project, located in the Northern Territory.

E79 Gold CEO, Ned Summerhayes, said: *"These outstanding results from our October reconnaissance field program have further enhanced the prospectivity of the Mountain Home Project, with high-grade rock chips returning grades of up to 11.95% copper, 2.3g/t gold and 9.09% bismuth.*

"Gold and bismuth occurrences are rare in the McArthur Basin, better known to host large scale zinc-lead-silver deposits, with the copper-gold-bismuth association similar to the mineralisation observed at Tennant Creek, indicating that multiple mineralising styles may be present within the Project.

ASX Code: E79

Shares on issue: 102M Market capitalisation: \$3M Cash: \$1.6M (30 September 2024) ABN 34 124 782 038

Head Office

168 Stirling Hwy Nedlands, Western Australia 6009 T: +61 8 9287 7625 E: info@e79gold.com.au W: e79gold.com.au

"Broad spaced soil sampling has returned anomalous copper results along the 4.5km of tested prospective dolostone unit which hosts the high-grade MH Gossan. This prospective unit can be traced through satellite imagery for some distance along strike to the north and south from the MH Gossan.

"The path forward at Mountain Home is clear – E79 Gold has recently received environmental clearance approvals and are in the process of submitting a request for the requisite heritage clearance to facilitate planned drilling in 2025."

Northern Territory Project

Mountain Home (EL32470 – NT Minerals Option), EL33886 and EL33887 (both under application – 100% E79 Gold)

E79 Gold controls an area of 868km² within the highly prolific McArthur Basin in the Northern Territory. The Project covers inliers of prospective lithology of the McArthur Basin, within the younger Carpentaria Basin.

Assay results have returned from a field reconnaissance program completed in October. The program comprised a combination of rock chip sampling (16 samples) from identified areas of subcrop along the interpreted strike of the MH Gossan, with broad spaced soil sampling (80 samples) taken to evaluate 4.5 kilometres of the prospective dolostone unit, host to the MH Gossan, as well as regional targets.

Results received from this reconnaissance-style program returned anomalous Cu extending to the northern most and southern most lines of the program, with the highest copper-in-soils value of 1,020 ppm occurring on the western end of the southernmost line of sampling (refer Figure 1). This line of sampling confirmed positive historic broad-spaced soil sampling within the same stratigraphic position as the prospective dolostone unit. At the northern end of the tested dolostone unit, 1,500 metres north of the MH Gossan, an area of anomalous soils and rock chip samples was identified with rock chip sample MHR0031 (refer Figure 1), returning elevated anomalism of 0.24% copper and 334 ppm bismuth, highlighting the prospectivity of this dolostone unit as a favourable host.

Rock chip sampling of previous unmapped mineralised outcrops within the broader MH Gossan outcrops continue to demonstrate the broader regional prospectivity with high grade copper (Cu), gold (Au) and bismuth (Bi) results including;

- MHR0017 5.41% Cu, 0.17g/t Au, 0.01% Bi
- MHR0019 11.95% Cu, 2.30g/t Au, 0.16% Bi
- MHR0024 7.83% Cu, 0.04g/t Au, 9.09% Bi

Figure 1: Map of the MH gossan area with October field work sample locations.

Figure 2: Rock Chip Sample MHR0024, returned 7.83% Copper and 9.09% Bismuth¹.

E79 Gold continues to be encouraged by the elevated bismuth (Sample MHR0024 -9.09% Bi) associated with the copper and gold mineralisation as an indication of a mineralising system with significant scale potential. This Cu-Au-Bi association is similar with the Cu-Au-Bi fluids described by Skirrow² from the highly endowed Tennant Creek mineral field, located 400km to the south-west. This type of fluid association and deposit type has not been explored for in this region, giving E79 Gold an opportunity to evaluate projects with a new focus.

¹ Surface samples are typically enriched, with potential deeper drilling anticipating lower grades.

² Skirrow RG, 1993, The genesis of gold-copper-bismuth deposits, Tennant Creek, Northern Territory. PhD thesis at the Australian National University.

Figure 3: Location map of the Mountain Home Project with recent soil sample locations, and new target area.

In addition to extending the prospective MH Gossan mineralised zone, reconnaissance work has identified a regional target, located 17.5km northwest of the MH Gossan. Two lines of soils samples were taken evaluate anomalous wide spaced soil samples generated by previous explorers. Results show an +80m wide zone of anomalous copper, zinc, lead and gold, with five of the six highest gold values recorded from the soil sampling program derived from this regional target. The anomalism is unconstrained by sampling and remains open in all directions.

Next steps

E79 Gold is progressing a number of targets at the Mountain Home Project with the following in progress:

 Application for an Aboriginal Areas Protection Authority (AAPA) Certificate is in the process of being submitted, along with the environmental clearance approval received through its Mining Management Plan -Exploration. The AAPA Certificate is a key requirement for future envisaged drilling campaigns which the Company will seek to progress over the coming months.

- Comprehensive review of historic geophysical surveys completed in the area is underway. Available data will be re-processed to identify areas of interest for future exploration.
- The Company will re-evaluate historic wide spaced regional soils for opportunities related to the Cu-Au-Bi association which was not the focus of these historical exploration programs.

Figure 4: Location map of the Mountain Home Project with the McArthur and Carpentaria Basins.

Our motto: Money in the ground.

Yours sincerely,

E

Ned Summerhayes Chief Executive Officer

The information in this report that relates to Exploration Results is based on information compiled by Mr Ned Summerhayes, a Competent Person who is a member of the Australian Institute of Geoscientists. Mr Summerhayes is a full-time employee, a shareholder and an option holder of the Company. Mr Summerhayes has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Summerhayes consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Previously Reported Information: The information in this report that references previously reported exploration results is extracted from the Company's ASX market announcements released on the date noted in the body of the text where that reference appears. The previous market announcements are available to view on the Company's website or on the ASX website (www.asx.com.au). The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

Authorised for release by the CEO of E79 Gold Mines Limited.

For Further Information, please contact:

E79 Gold Mine	es Limited
---------------	------------

Media Enquiries: Phone: 08 9287 7625 Nicholas Read – Read Corporate info@e79gold.com.au Phone: 08 9388 1474

ABOUT E79 GOLD MINES LIMITED (ASX: E79)

E79 Gold's Projects comprise ~1,838km² of highly prospective ground including within the McArthur Basin of the Northern Territory, which is the world's largest accumulation of Zn-Pb³ and is prospective for copper, gold and diamonds, and within the Laverton Tectonic Zone and Murchison Goldfields, both of which are endowed with >30 million ounces of gold and located within the Yilgarn Craton of Western Australia.

Figure 5: Map of E79 Gold's exploration projects.

³ Huston et al, 2023, Zinc on the edge, Mineralium Deposita 58 (707-729)

Table 1 – Rock chip sample locations – October 2024 Program

					-		
Sample ID	East	North	RL	Cu %	Au_ppm	Bi_ppm	Ag_ppm
MHR0017	676340	8098684	183	5.41	0.17	51.3	0.23
MHR0018	676250	8099560	182	0.01	0.02	3.99	0.33
MHR0019	676245	8099561	178	11.75	2.30	1645	38.1
MHR0020	676216	8099629	181	0.02	<0.01	1.36	0.02
MHR0021	676208	8099659	180	0.01	0.02	0.76	0.02
MHR0022	676150	8099780	179	0.05	<0.01	5.70	0.08
MHR0023	676202	8099668	177	0.01	<0.01	0.67	0.02
MHR0024	676185	8099439	178	7.83	0.04	90900	9.61
MHR0025	676199	8099863	173	0.01	0.06	8.85	0.06
MHR0026	676165	8099938	173	0.01	0.01	37.6	0.04
MHR0027	676043	8100199	176	0.04	0.02	546	0.07
MHR0028	676277	8100595	176	0.02	0.01	7.58	0.03
MHR0029	676369	8100533	179	0.00	0.01	5.09	0.13
MHR0030	676309	8100622	177	0.01	<0.01	12.1	0.01
MHR0031	676176	8101022	178	0.24	0.01	334	0.14
MHR0032	676244	8100866	185	0.01	0.02	2.48	0.05

All samples in MGA_2020_53

Table 2 – Soil sample locations – October 2024 Program

All samples in MGA_2020_53

Sample ID	East	North	RL	Cu_ppm	Au_ppb	Bi_ppm	Ag_ppm	Zn_ppm	Pb_ppm	S_ppm
MHS0037	676031	8098955	184	34.4	1.6	0.776	0.033	27.9	11.0	193
MHS0038	676070	8098953	183	26.9	1.3	0.739	0.037	33.0	10.3	214
MHS0039	676112	8098951	183	18.1	0.7	0.637	0.027	33.3	8.78	235
MHS0040	676153	8098953	181	150	1.0	0.692	0.025	30.5	6.73	183
MHS0041	676195	8098952	178	27.2	1.0	0.531	0.023	33.0	6.94	157
MHS0042	676230	8098953	178	209	2.1	1.24	0.038	34.0	8.64	276
MHS0043	676273	8098951	178	399	11.0	2.79	0.067	27.3	23.1	547
MHS0044	676312	8098954	179	80.6	3.2	1.14	0.031	22.9	12.5	160
MHS0045	676357	8098951	177	361	5.5	2.20	0.080	27.4	26.2	677
MHS0046	676393	8098951	178	94.1	3.4	1.87	0.037	23.8	18.8	249
MHS0047	676433	8098951	178	51.3	1.8	1.82	0.047	27.3	23.4	599
MHS0048	676141	8098223	172	169	1.5	2.69	0.060	21.7	14.2	225
MHS0049	676224	8098231	171	84.0	1.2	1.23	0.048	27.0	10.1	323
MHS0050	676300	8098223	173	56.1	1.2	0.871	0.054	24.6	6.55	174
MHS0051	676380	8098223	174	69.3	1.7	0.798	0.045	28.4	10.6	205
MHS0052	676452	8098220	173	94.5	1.7	0.910	0.043	23.1	11.7	289
MHS0053	676498	8098222	176	60.6	1.8	0.632	0.037	22.1	7.39	259
MHS0054	676540	8098226	172	37.2	0.7	0.430	0.034	24.1	5.91	273
MHS0055	676583	8098223	171	28.3	1.6	0.354	0.036	34.2	12.0	293
MHS0056	676617	8098220	172	12.9	2.6	0.599	0.030	50.9	17.4	323

Ο
()
S
σ
Ο
10
U)
\mathbf{O}
<u> </u>
La construction de la constructi

MHS0057	676660	8098221	175	12.1	1.7	0.731	0.036	59.8	24.1	386
MHS0058	676699	8098222	173	8.20	0.9	0.761	0.022	39.1	10.1	216
MHS0059	676781	8098222	176	16.2	2.5	0.639	0.044	30.6	15.3	332
MHS0060	676856	8098223	177	26.2	0.9	0.501	0.037	28.0	15.9	446
MHS0061	676419	8099818	172	20.0	0.8	0.740	0.029	34.9	9.40	341
MHS0062	676339	8099823	171	48.1	1.6	0.654	0.040	45.2	5.06	236
MHS0063	676260	8099821	171	38.7	1.2	1.14	0.025	29.1	12.8	205
MHS0064	676213	8099818	174	41.5	1.0	0.572	0.034	26.3	10.8	206
MHS0065	676176	8099823	175	33.0	1.9	0.589	0.020	24.0	8.78	173
MHS0066	676137	8099822	176	32.8	1.9	0.466	0.017	25.2	6.22	216
MHS0067	676098	8099820	175	27.4	0.8	1.04	0.016	31.2	4.96	311
MHS0068	676059	8099824	173	15.9	0.6	0.446	0.019	24.9	7.54	194
MHS0069	675975	8099820	176	24.5	0.6	0.555	0.024	29.9	11.6	249
MHS0070	676143	8100670	173	21.2	1.3	0.611	0.029	26.8	8.32	205
MHS0071	676209	8100673	177	72.3	1.9	0.880	0.035	22.3	8.44	317
MHS0072	676269	8100670	176	35.9	1.1	0.467	0.038	20.1	4.46	217
MHS0073	676324	8100670	176	58.5	3.0	1.70	0.037	16.9	6.68	181
MHS0074	676388	8100676	176	11.3	1.0	0.322	0.026	26.8	13.8	316
MHS0075	676297	8101021	173	61.1	1.1	1.03	0.050	24.3	10.1	258
MHS0076	676220	8101021	174	187	1.9	4.43	0.052	28.2	8.26	364
MHS0077	676180	8101021	176	253	5.9	29.8	0.018	41.0	7.93	347
MHS0078	676131	8101021	176	57.5	2.0	1.65	0.040	30.2	7.22	202
MHS0079	676093	8101023	175	69.2	1.3	0.960	0.053	24.1	7.31	165
MHS0080	676055	8101025	175	202	1.5	1.38	0.053	19.2	8.26	214
MHS0081	675981	8101025	176	66.3	1.1	0.990	0.040	23.5	7.08	150
MHS0082	675898	8101022	180	114	0.8	1.13	0.031	30.9	10.8	340
MHS0083	675427	8096409	164	53.6	0.7	0.233	0.095	33.4	9.98	172
MHS0084	675509	8096405	164	128	1.2	0.972	0.042	26.0	7.79	308
MHS0085	675548	8096405	164	28.8	1.6	0.345	0.021	20.3	8.35	358
MHS0086	675633	8096400	161	47.0	2.1	0.943	0.032	64.9	8.27	208
MHS0087	675696	8096410	166	78.0	<0.5	0.440	0.016	40.6	5.59	185
MHS0088	676566	8096599	185	187	1.8	1.66	0.024	24.9	6.83	179
MHS0089	676609	8096599	188	103	2.2	1.02	0.022	22.6	6.13	196
MHS0090	676650	8096600	188	112	2.7	0.977	0.025	23.4	7.2	186
MHS0091	676737	8096599	189	180	0.8	1.69	0.026	18.6	5.34	148
MHS0092	676833	8096593	187	248	1.7	1.37	0.033	20.7	5.94	137
MHS0093	676535	8096582	186	32.0	0.8	0.927	0.010	25.1	3.44	205
MHS0094	676447	8096565	183	1020	2.6	3.45	0.041	25.2	8.24	234
MHS0095	675937	8100423	169	52.4	1.0	0.735	0.032	28.1	5.92	177
MHS0096	675859	8100423	169	37.7	0.8	0.370	0.024	27.0	8.12	256
MHS0097	675776	8100420	172	4.4	0.6	0.511	0.012	30.7	7.59	356
MHS0098	675699	8100422	172	37.4	1.1	0.644	0.032	25.7	5.33	188
MHS0099	675618	8100428	176	23.0	0.5	0.681	0.022	26.1	7.89	320
MHS0100	676020	8100421	168	42.9	1.6	0.674	0.032	30.8	7.16	206
MHS0101	676097	8100420	169	46.4	1.0	0.453	0.035	35.5	6.27	326
MHS0102	676181	8100425	170	104	1.2	1.16	0.058	24.6	11.5	226
MHS0103	676261	8100421	171	38.1	1.0	0.440	0.048	23.6	7.16	257

MHS0104	676344	8100425	174	35.5	<0.5	0.494	0.042	25.7	5.08	256
MHS0105	676423	8100425	175	30.4	1.6	0.387	0.148	27.8	5.69	301
MHS0106	676494	8100422	175	445	18.2	4.47	0.100	83.8	41.0	193
MHS0107	665386	8112355	204	879	15.4	2.32	0.078	36.8	40.0	162
MHS0108	665472	8112358	204	26.8	3.2	0.335	0.092	79.3	16.0	350
MHS0109	665552	8112359	202	626	21.3	2.85	0.086	38.6	36.6	134
MHS0110	665630	8112357	199	192	50.0	3.31	0.075	186	9.9	222
MHS0111	665316	8112360	201	651	22.5	3.58	0.150	74.0	40.3	225
MHS0112	665236	8112359	198	378	16.4	1.69	0.123	27.0	13.8	203
MHS0113	665137	8112361	200	144	3.9	0.845	0.111	25.6	12.8	226
MHS0114	665143	8112663	198	88.1	8.0	0.975	0.130	124	13.7	157
MHS0115	665220	8112660	193	84.2	7.1	1.08	0.184	98.7	11.8	202
MHS0116	665306	8112661	194	84.3	5.6	1.10	0.113	25.2	14.7	154

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information. 	 E79 Gold has recently undertaken rock chip and soil sampling activities within the Mountain Home Project. Rock chip samples were collected by hand and soil samples were taken from ~10- 15cm deep holes and sieved to 1mm. Samples were assayed by 4 acid multi-element analysis for the rock chips and Ultrafine+ analysis for the soil samples.

Criteria	JORC Code explanation	Commentary
Drilling techniques	 Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Soils holes were hand dug to a depth of ~10cm
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Not applicable as no drilling occurred
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	Soil sample location and depth were recorded
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Samples underwent industry standard sample preparation techniques consisting of crushing and grinding. Soil samples were sieved to 1mm in the field, with no further sample prep required

Criteria	JORC Code explanation	Commentary			
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established. 	 All soil samples were analysed using LabWest's UltraFine+[™] technique, whereby the sub 2 micro clay fraction is separated and analysed with the latest microwave technique and ICP-MS or ICP_OES machines. Samples were digested using an UltraFine+[™] Technique followed by analysis of gold by ICPMS with lower detection limit of 0.5ppb Au. 50 multi-elements were analysed by ICPMS/ICPOES and include; Ag, Al, As, Au, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Hg, Ho, In, K, La, Li, Lu, Mg, Mn, Mo, Nb, Nd, Ni, Pb, Pd, Pr, Pt, Rb, Re, S, Sb, Sc, Se, Sm, Sn, Sr, Ta, Tb, Te, Th, Ti, TI, Tm, U, V, W, Y, Yb, Zn, Zr No external standards were used Rock chips were analysed using ALS 4 acid digest with ICP-MS or ICP_OES finish. 48 Elements were analysed including; Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, TI, U, V, W, Y, Zn, Zr Rock chips were analysed using ALS 4 acid digest with ICP-MS or ICP_OES finish. 48 Elements were analysed including; Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, TI, U, V, W, Y, Zn, Zr Rock chips were also analysed for gold by fire assay with a 50gm charge. 			
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Data is logged onto paper in the field and entered into excel to go to a centralised database. 			
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 	 Sample locations were recorded with a handheld GPS in MGA2020 Zone 53S. RL was also recorded with handheld GPS but accuracy is 			

Criteria	JORC Code explanation	Commentary			
	 Specification of the grid system used. Quality and adequacy of topographic control. 	variable.			
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Soil sample spacing is 40m along lines and line spacing is sporadic Rock chips were taken in an uneven distribution based on rock outcrops 			
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Soil sample lines were completed on an east west pattern, roughly perpendicular to the trend of the main geological units. Rock chips were taken generally along strike of known mineralisation 			
Sample security	The measures taken to ensure sample security.	Samples were stored on site and taken directly to the laboratory by E79 staff.			
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews have been undertaken.			

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	The sampling program occurred on tenement EL32470, under control of E79 Gold Mines

Criteria	JORC Code explanation	Commentary
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Limited exploration has occurred on EL32470, in part due to the remote location of the project. From 1966-1968 undertook stream sediment samples, mapping soil samplings and IP surveys with copper found in samples around old workings. From 1990-1992 CRA undertook diamond exploration via stream sediment sampling, gravel sampling and rock chip sampling. In 1996 BHP Minerals undertook early-stage exploration over areas now covered by tenement application EL33886. Work included rock chip sampling, soil sampling and an airborne EM survey. More recently, NT Minerals undertook broad spaced soil sampling and rock chip sampling.
Geology	Deposit type, geological setting and style of mineralisation.	To date there is not enough information to determine a definite singular mineralisation style. Data and observations show evidence of SEDEX style mineralisation prevalent in the area (McArthur River Mine, Teena Deposit), while evidence (Cu-Au-Bi association) also shows features similar to the Tennant Creek ironstone hosted mineralisation.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should 	Not applicable as no drilling reported.

Criteria	JORC Code explanation	Commentary
	clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	Not applicable as no drilling reported.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known'). 	 Not applicable as no drilling reported.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Appropriate maps are included within the body of this report.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Not applicable as no drilling reported.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential 	 Relevant geological observations are included in this report.

Criteria	JORC Code explanation	Commentary
	deleterious or contaminating substances.	
Further work	 The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Additional geochemical surveys may be carried out in the future in order to assist in the delineation of drilling targets.