

ASX ANNOUNCEMENT

18 November 2024

17 MILLION TONNE MINERAL RESOURCE ESTIMATE AT IGUANA DEPOSIT

HIGHLIGHTS

The JORC Mineral Resource Estimate for Iguana Deposit at Lady Ida stands at 17 million tonnes @
 1.11 g/t Au for 609,000 ounces of gold inside an optimised A\$4,000 pit shell

PROJECT CL		CUT OFF	MEASURED		INDICATED		INFERRED		TOTAL MATERIAL		
	Pit Shell)	0.5 (g/t Au)	('000t)	(g/t Au)	('000t)	(g/t Au)	('000t)	(g/t Au)	('000t)	(g/t Au)	('000oz)
IGUANA	OPEN PIT	-	583	1.49	3,823	1.18	12,629	1.08	17,035	1.11	609

- The Mineral Resource Estimate category breakdown is 3% Measured, 23% Indicated and 74% Inferred
- A total of 4.4 million tonnes at 1.22 g/t Au for 173,000 ounces is in the Measured and Indicated categories at Iguana
- An ore reserve is currently being estimated for the Iguana Deposit at Lady Ida and is expected to be released later this quarter.
- The Iguana Mineral Resource Estimate is located 33km northwest of the Jaurdi Processing Plant on the Lady Ida Project tenure
- The mineralisation remains open at depth with no known geological features that might cause the ore body to terminate
- Beacon will begin resource definition drilling at the Iguana Deposit in 2025 as well as some structural diamond drill holes to further Beacon's understanding of the Iguana Deposit

Beacon Minerals Managing Director Graham McGarry commented:

"This Mineral Resource Estimate (MRE) is a significant milestone for the Lady Ida Project and Beacon is pleased with the potential. The Iguana Project is part of Beacon's strategy in building resource confidence and growing ounces to utilize our established infrastructure.

"Our focus for Lady Ida is to complete and release an ore reserve statement for the Iguana Project, expected to release by the end of the year, with a pre-feasibility study to be released shortly after.

"Our total mineral resource inventory is fast approaching the one million ounce mark"

Overview

Beacon Minerals Limited (ASX: **BCN**) ("**Beacon**" or "the **Company**") is pleased to announce the Mineral Resource Estimate (MRE) for the Iguana Deposit which is located 80 kilometres northwest of Coolgardie in Western Australia (Figure 1).

Beacon engaged external consultants Snowden Optiro to complete the MRE.

The Lady Ida Project consists of M16/262, M16/263, M16/264, L15/224, L16/58, L16/62, L16/103 and applications L16/138 and L16/142 (Lady Ida Project), which will become the ground subject to the Earn-In, JV and Tenement Transfer Agreement with Lamerton Pty Ltd (Lamerton) and Geoda Pty Ltd (Geoda)

Details of the Earn-In, JV and Tenement Transfer Agreement with Lamerton and Geoda which include:

- (a) the Company's wholly owned subsidiary Beacon Mining Pty Ltd (ACN 603 853 916) (Beacon Mining) will earn up to 50% beneficial ownership as a tenant in common of an undivided share in the Lady Ida Project;
- (b) Lamerton, Geoda and Beacon Mining will form an unincorporated joint venture to mine and develop the Lady Ida Project; and
- (c) Lamerton and Geoda will transfer 100% legal and beneficial ownership of the Lady Ida Project to Beacon Minerals once 72,500 ounces of gold have been recovered from the Lady Ida Project and verified in accordance with the terms and conditions of the Earn-In, JV and Tenement Transfer Agreement.

Entry into the Earn-In, JV and Tenement Transfer Agreement was approved by the Company's shareholders at a general meeting held on 9 August 2024.

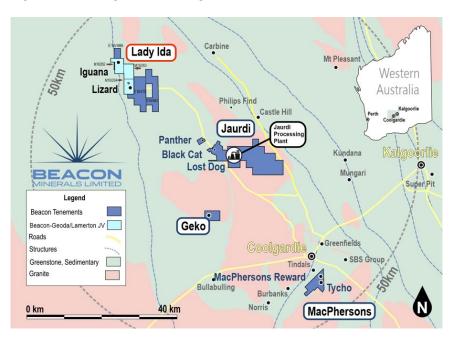


Figure 1: Location of the Lady Ida Project (Iguana Deposit) in relation to Beacon tenements

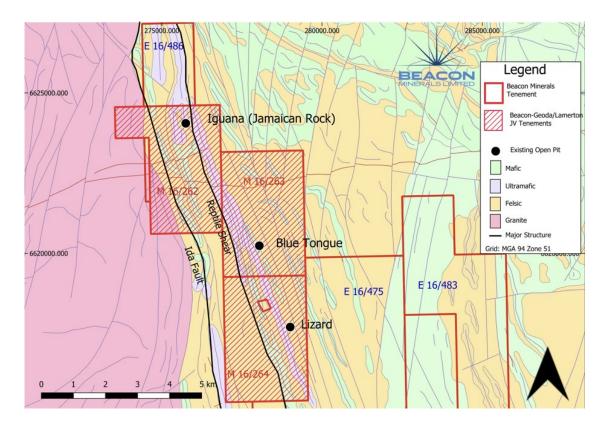


Figure 2: Iguana Local Geology

A summary of other material information pursuant to ASX Listing Rule 5.8 is provided below.

Iguana Deposit Geology and Mineralisation

The Iguana deposit is a part of the Lady Ida Project, which sits on the inferred extension of the Ida Fault and is a part of the north-south striking Mount Ida Greenstone Belt, comprising predominantly metamorphosed (upper greenschist-amphibolite facies) mafic and ultramafic rocks. The complex structural history provides the space for mineralisation deposition. The mineralisation is controlled by structural and hydrothermal alteration.

On the deposit scale, the depth of weathering increases significantly within shear zones and reaches depths of 90 m in the centre of the deposit. Supergene gold enrichment is apparent from grade control drilling in the upper portion of the existing Jamaica Rock pit (mined by Delta Gold in 2000), where significantly higher grades were mined compared to the current resource model.

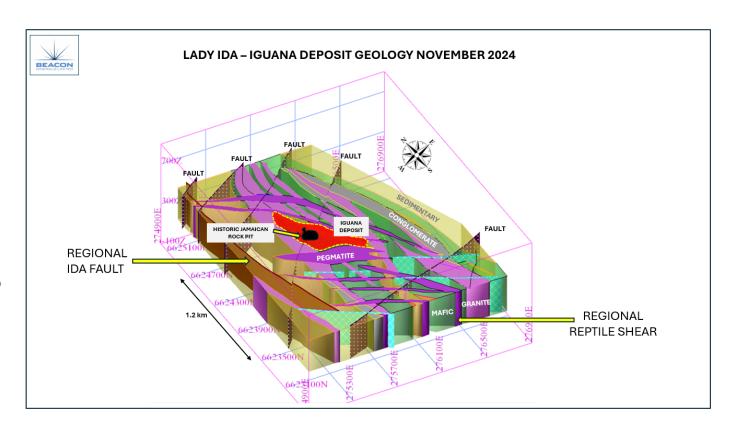


Figure 3: Iguana Deposit Geology

Iguana Deposit Mineral Resource Estimate

PROJECT LADY IDA		CUT OFF MEASURED		SURED	INDICATED		INFERRED		TOTAL MATERIAL		
		0.5 (g/t Au)	('000t)	(g/t Au)	('000t)	(g/t Au)	('000t)	(g/t Au)	('000t)	(g/t Au)	('000oz)
UANA	OPEN PIT	-	583	1.49	3,823	1.18	12,629	1.08	17,035	1.11	609

Table 1: Iguana Open Pit Mineral Resource Estimate

Project Area	Mineral Resource Category	Tonnes (t)	Grade (g/t Au)	Gold (oz)
Iguana Deposit	Measured	583,327	1.49	27,917
Optimised Pit	Indicated	3,823,293	1.18	144,536
(A\$4,000 Shell)	Inferred	12,629,353	1.08	436,993
	Total	17,035,974	1.11	609,443

Table 2: Iguana Total Mineral Resource (A\$4,000 Shell) above lower cut-off of 0.5 g/t Au

IGUANA MRE RESOURCES AT VARYING LOWER GRADE CUT-OFF GRADES											
Classification	Cut-off	Tonnes (t)	Au (g/t)	Gold Metal (oz)							
Measured	0.4	583,384	1.49	27,914							
Indicated	0.4	4,571,868	1.06	155,345							
Inferred	0.4	15,649,242	0.96	480,549							
Sub-total	0.4	20,804,494	0.99	663,808							
Measured	0.5	583,327	1.49	27,914							
Indicated	0.5	3,823,293	1.18	144,536							
Inferred	0.5	12,629,353	1.08	436,993							
Sub-total	0.5	17,035,973	1.11	609,443							
Measured	0.6	582,892	1.49	27,905							
Indicated	0.6	3,167,931	1.31	132,979							
Inferred	0.6	10,067,469	1.21	391,829							
Sub-total	0.6	13,818,290	1.24	552,713							

Table 3: Iguana Resource at cut-off grades of between 0.4 and 0.6 g/t Au

The full results are set out in Appendix 2.

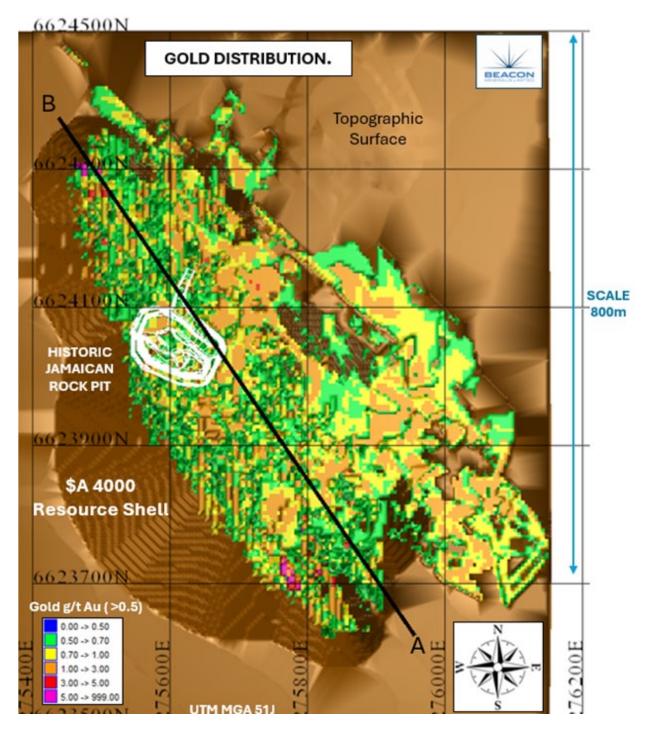


Figure 4: Iguana MRE Plan View showing Gold Distribution

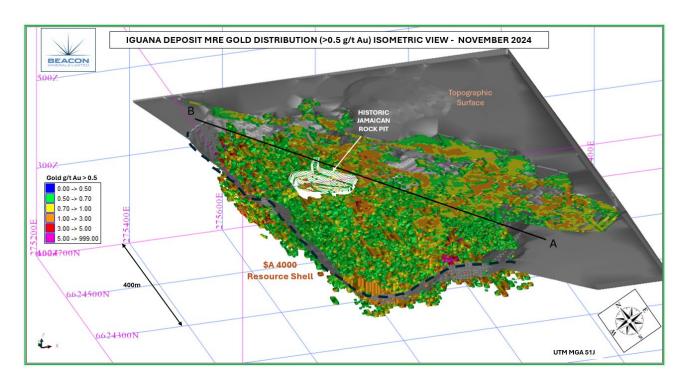


Figure 5: Iguana MRE Isometric View showing Gold Distribution within A\$4,000 shell

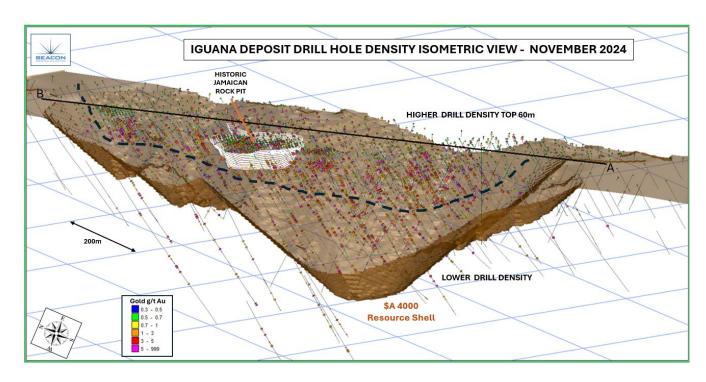


Figure 5.1 Iguana Deposit Drill Density used in MRE

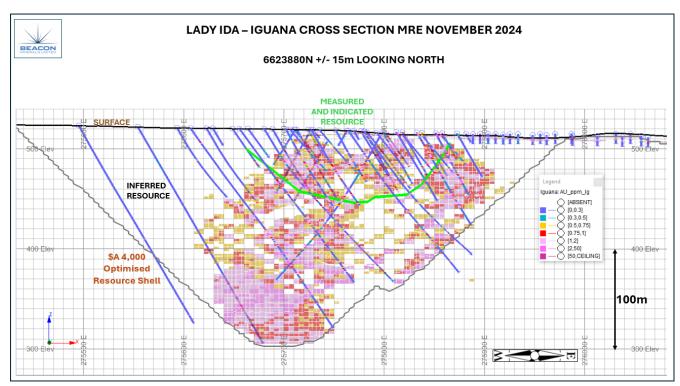


Figure 5.2 Iguana Deposit Cross Section 6623880N

Figure 5.3 Iguana Deposit Cross Section 6624040N

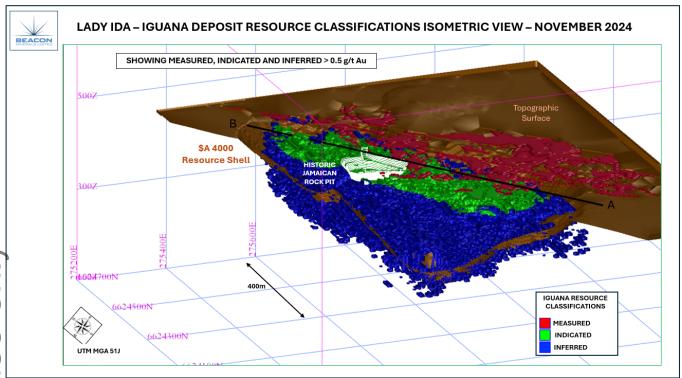


Figure 6: Iguana MRE Isometric View showing Gold Classifications within A\$4,000 shell

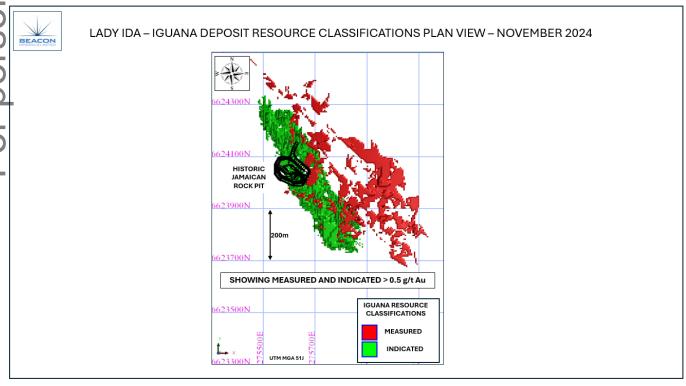


Figure 7: Iguana MRE Plan View showing Measured and Indicated Gold Classifications

Authorised for release by the Board of Beacon Minerals Limited.

For more information contact:

Graham McGarry
Managing Director/Chairman
Beacon Minerals Ltd
M: 0459 240 379

Geoffrey Greenhill Non-Executive Director **Beacon Minerals Ltd** M: 0419 991 713

Competent Person's Statement

Information relating to the Iguana Mineral Resource Estimate has been compiled by Gregory Zhang, a Competent Person who is a Member of the Australasian Institute of Mining and Metallurgy. Gregory Zhang is a full-time employee of Snowden Optiro. Gregory Zhang is independent of Beacon Minerals Limited and holds no shares in the Company.

Gregory Zhang has sufficient experience that is relevant to the style of mineralisation and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the JORC Code). Gregory Zhang consents to the inclusion in this annoucement of information based upon his review and endorsement of the Iguana Mineral Resource estimate in the form and context in which it appears.

Forward looking statements

This ASX announcement (Announcement) has been prepared by Beacon Minerals Limited ("Beacon" or "the Company"). It should not be considered as an offer or invitation to subscribe for or purchase any securities in the Company or as an inducement to make an offer or invitation with respect to those securities. No agreement to subscribe for securities in the Company will be entered into on the basis of this Announcement.

This Announcement contains summary information about Beacon, its subsidiaries and their activities which is current as at the date of this Announcement. The information in this Announcement is of a general nature and does not purport to be complete nor does it contain all the information which a prospective investor may require in evaluating a possible investment in Beacon.

By its very nature exploration for minerals is a high-risk business and is not suitable for certain investors. Beacon's securities are speculative. Potential investors should consult their stockbroker or financial advisor. There are a number of risks, both specific to Beacon and of a general nature which may affect the future operating and financial performance of Beacon and the value of an investment in Beacon including but not limited to economic conditions, stock market fluctuations, gold price movements, regional infrastructure constraints, timing of approvals from relevant authorities, regulatory risks, operational risks, and reliance on key personnel.

Certain statements contained in this announcement, including information as to the future financial or operating performance of Beacon and its projects, are forward-looking statements that:

- may include, among other things, statements regarding targets, estimates and assumptions in respect
 of mineral reserves and mineral resources and anticipated grades and recovery rates, production and
 prices, recovery costs and results, capital expenditures, and are or may be based on assumptions and
 estimates related to future technical, economic, market, political, social, and other conditions.
- are necessarily based upon a number of estimates and assumptions that, while considered reasonable by Beacon, are inherently subject to significant technical, business, economic, competitive, political, and

- social uncertainties and contingencies; and,
- involve known and unknown risks and uncertainties that could cause actual events or results to differ materially from estimated or anticipated events or results reflected in such forward-looking statements.

Beacon disclaims any intent or obligation to update publicly any forward-looking statements, whether as a result of new information, future events, or results or otherwise. The words 'believe', 'expect', 'anticipate', 'indicate', 'contemplate', 'target', 'plan', 'intends', 'continue', 'budget', 'estimate', 'may', 'will', 'schedule' and similar expressions identify forward-looking statements.

All forward looking statements made in this announcement are qualified by the foregoing cautionary statements. Investors are cautioned that forward-looking statements are not guarantees of future performance and accordingly investors are cautioned not to put undue reliance on forward-looking statements due to the inherent uncertainty therein.

No verification: Although all reasonable care has been undertaken to ensure that the facts and opinions given in this Announcement are accurate, the information provided in this Announcement has not been independently verified.

APPENDIX 1: SUPPORTING INFORMATION

Material information summary

Iguana Mineral Resource update

As per ASX report guidelines Section 5.8.1, information material to the reporting of the Iguana gold deposit Mineral Resource Estimate update is summarised below.

Mineral Resource Statement

The Mineral Resource Statement for the Iguana Open Pit Gold Mineral Resource Estimate (MRE) was prepared during 2024 and is reported according to the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the 'JORC Code') 2012 edition.

In the opinion of Snowden Optiro, the resource evaluation reported herein is a reasonable representation of the global open pit gold mineral resources within the Iguana gold deposit, based on sampling data from reverse circulation and diamond drilling available as of March 2024. The Mineral Resource Statement is presented in Table **Error! No text of specified style in document.**-1. Note that totals may not sum exactly due to rounding.

Table Error! No text of specified style in document.-1 Iguana 2024 MRE constrained by A\$4,000 optimised pit at 0.5 g/t cut-off

Classification	Tonnes (kt)	Au g/t	Metal (koz)
Measured	580	1.49	28
Indicated	3,830	1.18	145
Inferred	12,630	1.08	437
Total	17,040	1.11	609

Competent Person's Statement

Competent Person Statement – JORC Table 1, Section 3 Iguana Mineral Resource Estimate: Information relating to the estimation and reporting of the Iguana Mineral Resource Estimate has been compiled by Gregory Zhang, who is a Member of the Australasian Institute of Mining and Metallurgy. Gregory Zhang is a full-time employee of Snowden Optiro. Gregory Zhang is independent of Beacon Minerals Ltd. Gregory Zhang has sufficient experience that is relevant to the style of mineralisation and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the JORC Code). Gregory Zhang consents to the inclusion in the report of information based upon his review and endorsement of the Iguana Mineral Resource estimate in the form and context in which it appears.

Drilling techniques

There have been various drilling campaigns at the Iguana gold deposit. The most recent drilling was conducted by OBM, with 54 RC holes and 4 RCDD holes. A face sampling hammer, with samples collected from a cone splitter, was used for the RC holes with 5.25–5.5-inch diameter. For the DD holes, HQ and HQ3 core diameters were used to approximately 40 m depth, then NQ2 to the bottom of the hole. For the historical drilling campaigns, please refer to JORC Table 1 for details.

Sampling and sub-sampling techniques

RC samples were submitted either as individual 1 m samples taken onsite from the cone splitter, or as 4 m composite samples speared from the onsite drill reject piles. Half-core samples were cut by saw. Core sample intervals were selected by geologist and were defined by geological boundaries.

RC samples were dried, crushed, split, pulverised and a 50 g charge was taken for fire assay. 4 m composite samples with gold values greater than 0.2 g/t Au were re-sampled as 1 m splits and submitted to the lab for further analysis.

For the rest of the historical drilling campaigns please refer to JORC Table 1 for details.

Sample analysis method

All samples were sent to an accredited laboratory (NAGROM Laboratories in Perth, Intertek-Genalysis in Kalgoorlie or SGS in Kalgoorlie). The samples have been analysed by firing a 50 g charge. This is the classical fire assay process and gives a total separation of gold. An ICP-OES finish was used. Commercially prepared standard samples and blanks were inserted in the sample stream at a rate of 1:12. Sizing results (percentage of pulverised sample passing a 75 µm mesh) were undertaken on approximately 1 in 40 samples. The accuracy (standards) and precision (repeats) of assaying are acceptable. Standards and blanks were inserted into the sample stream at a rate of approximately 1:12. Duplicates were submitted at a rate of approximately 1:30.

For the rest of the historical drilling campaigns please refer to JORC Table 1 for details.

Bulk density

Density measurements were taken by Delta Gold NL using downhole gamma readings (377 in total). All of these drillholes are in the Iguana deposit area. The probe-based density readings are considered appropriate to provide an estimation of bulk density.

Average density values were assigned based on different material types defined by weathering and oxidation surfaces and pegmatite wireframes, using the probe density data. The backfill material volume was calculated by the difference between the 2009 and 2023 topography surfaces.

Geology and geological interpretation

Weathering and oxidation surfaces from OBM were used to guide the boundary between laterite and bedrock mineralisation.

Pegmatite intrusions were remodelled during the 2024 MRE based upon the structural orientations observed in the pit during the 2024 site visit and texture logging in the provided Microsoft Access database.

The 2024 MRE uses the BCN laterite mineralisation interpretation, which is based upon the AC, RC and DD drillhole sample grade data and lithological logging.

For bedrock mineralisation, lithology and alteration coding was reviewed; the mineralisation seems to be closely related to the hydrothermal alteration, particularly biotite and silica alteration. However, no consistent mineralisation-alteration trends were able to be modelled.

Based on the observation from nearby gold deposits with similar geological settings, Jonathan Sharp, Geology Manager of BCN, provided a set of individual anticlinal wireframes for the Dynamic Anisotropy estimation. The estimation results provide local rotation angles for further grade estimation. Mr Sharp also provided one bulk anticlinal wireframe to constrain the area of grade estimation.

Two structural orientations observed in the Jamaican Rock trial pit were used as the guidance to model the pegmatite intrusions, which cut out the mineralisation.

Estimation methodology

Laterite mineralisation

Grade estimation for the laterite mineralisation used 1 m downhole composites controlled by BCN mineralisation interpretations. Block grade estimation used Ordinary Kriging (OK) techniques in Datamine software. Grade estimation by OK is considered appropriate due to the moderate variability exhibited by the gold as estimated into the weathering domains. No top cut was applied.

Bedrock mineralisation

Localised multiple indicator kriging (LMIK) was applied for gold grade estimation in the bedrock mineralisation. Two estimates were conducted in sequence. The first was the point estimate. A total of 11 grade thresholds were selected and 11 corresponding indicator variogram models were created to separate the different populations and rebuild the gold data distribution in the block model. The point estimate resulted in the definition of the probabilities of the grade thresholds for each block. After interpolation and extrapolation of the discrete cumulative distribution function (CDF) and change of support for each block, a continuous CDF was created at the panel support (10 m(X) by 10 m(Y) by 5 m(Z)). Indirect lognormal transformation was applied for the point to SMU change of support. The ranking estimate was later created for the localisation step. Various values were discretised from the panel CDF and allocated to the SMUs, which have dimensions of 5 m(X) by 5 m(Y) by 2.5 m(Z).

The panels were estimated in the first pass with searches of 50 m (major direction) 30 m (semi-major direction) and 30 m (minor direction) with a minimum of 20 samples and a maximum of 30 samples used, and validated well with the input data. This was regarded as a high confidence area. A second search pass was used, with the search distances doubled in all three directions. The number of samples used were kept the same. Under-estimation was observed when compared with the sample data. However, this is reflected in the low confidence of estimation in this area, and all the material estimated in the second search pass was classified as Inferred. This is considered to be a conservative approach.

Supervisor 8.15.1.2 was used for various geostatistical analyses, including variogram modelling.

Datamine Studio RM 1.13.202.0 was used for both laterite and bedrock mineralisation grade estimation.

Snowden Optiro's inhouse software was used for LMIK post-processing.

Classification criteria

The Mineral Resource classification criteria are based on the robustness of the input data, the local drillhole spacing and depth coverage, confidence in the geological interpretation and the continuity demonstrated by the gold mineralisation.

A Measured classification was applied only for the laterite mineralisation, which has been partially mined. The drillhole coverage was generally on a 20 m \times 20 m grid, decreasing to 50 m \times 50 m towards the edge.

The Indicated classification was applied where average drillhole spacing was no larger than a 25 m distance and different angles drillings were used. No Measured Resources were declared for the bedrock mineralisation.

Any mineralisation that did not satisfy the criteria for a Measured or Indicated classification was assigned an Inferred classification. In general, Inferred mineralisation is supported by drillhole spacings from 20 m x 25 m up to 50 m x 50 m grid.

Cut-off grade

A 0.5 g/t cut-off grade was used for laterite mineralisation wireframing.

Since recoverable resources were estimated using the LMIK approach it was possible to report the Mineral Resources at any cut-off. 0.5 g/t is currently used for resource reporting.

Project history and historical mineral resources

BCN acquired the Iguana gold deposit from OBM in March 2023.

Delta Gold NL (Delta) commenced modern exploration in the Lady Ida area in 1993, completing an extensive programme of soil sampling. An extensive laterite and bedrock resource was defined by Delta.

Mining commenced in February 2000 and was completed in September 2001, comprising the Lizard, Iguana and Blue Tongue bedrock pits. The Jamaican Rock test pit was developed on one of these areas within the laterite outcrop. Mining of the bedrock Jamaican Rock pit at Iguana commenced in April 2000 and was completed in August 2001.

Delta merged with Goldfields Limited in 2002 to form Aurion Gold Limited. Aurion Gold was acquired by Placer Dome Inc. in 2003 who immediately offered the Lady Ida Project for sale.

Siberia Mining Corporation acquired the Lady Ida Project from Placer Dome in 2004 and completed additional drilling and resource estimates.

Siberia Mining Corporation was acquired by Monarch Gold in 2007, who completed limited RC drilling and an updated resource. It was recognised that some cross faulting appears to host very narrow high-grade mineralisation.

Monarch Gold went into administration in 2008, and the project was subsequently acquired by Swan Gold which underwent a name change to Eastern Goldfields in 2016. Swan Gold drilled a small number of RC holes at Lizard and Iguana. Eastern Goldfields Limited changed its name to OBM on 25 June 2019. OBM drilled 27 RC holes at Iguana in 2021.

Assessment of Reasonable Prospects for Eventual Economic Extraction (RPEEE)

There are two Komatsu PC 1250 excavators, nine Komatsu HD785 dump trucks and various other BCN ancillary fleet available on site. Although these equipment items have not been considered during the pit optimisation, they are available for future mining at Iguana.

Mining dilution varies from 10% to 20% according to weathering state. Mining recovery is assumed to be 95%. These parameters have been provided by BCN.

Mining equipment was assumed to be able to achieve the mining costs, dilution and recoveries used in pit optimisation or RPEEE pit shell creation. An A\$4,000 gold price RPEEE pit shell was provided to Snowden Optiro and a 0.5 g/t cut-off was used for Mineral Resource reporting.

No dilution or cost factors were applied to the estimate.

The metallurgical recovery used for the optimisation was assumed to be 95% regardless of weathering state. The processing method was assumed to be able to achieve the processing costs and assumed recovery for pit optimisation.

No metallurgical recovery factors have been applied to the estimate.

APPENDIX 2: DRILL HOLES

SNOWDEN Optiro

For personal use only

BHID	Hole type	Maximum depth	X collar	Y collar	Z collar	Lease ID	Date completed
G1001	RC	35	275631.383	6623932.327	520.89	M16/0262	8/05/2001
G1002	RC	35	275636.463	6623932.297	520.75	M16/0262	8/05/2001
G1003	RC	35	275641.283	6623932.517	520.6099	M16/0262	8/05/2001
G1005	RC	35	275651.313	6623932.277	520.4699	M16/0262	8/05/2001
G1006	RC	35	275656.254	6623932.317	520.44	M16/0262	8/05/2001
G1007	RC	35	275661.244	6623932.697	520.3499	M16/0262	8/05/2001
G1008	RC	30	275666.234	6623932.287	520.3599	M16/0262	8/05/2001
G1009	RC	30	275671.394	6623932.527	520.33	M16/0262	8/05/2001
G1010	RC	25	275676.694	6623932.597	520.34	M16/0262	8/05/2001
G1011	RC	40	275633.293	6623942.077	521.08	M16/0262	8/05/2001
G1012	RC	40	275638.433	6623941.917	521.01	M16/0262	8/05/2001
G1013	RC	40	275643.103	6623942.107	520.89	M16/0262	8/05/2001
G1014	RC	30	275656.574	6623942.037	520.69	M16/0262	8/05/2001
G1015	RC	30	275661.754	6623942.047	520.65	M16/0262	8/05/2001
G1016	RC	25	275666.664	6623942.007	520.6199	M16/0262	8/05/2001
G1017	RC	20	275671.504	6623942.257	520.33	M16/0262	8/05/2001
G1018	RC	40	275631.073	6623951.977	521.45	M16/0262	8/05/2001
G1019	RC	40	275636.183	6623951.917	521.33	M16/0262	8/05/2001
G1020	RC	40	275641.383	6623951.777	521.13	M16/0262	8/05/2001
G1021	RC	40	275646.283	6623951.797	521.07	M16/0262	8/05/2001
G1022	RC	35	275651.293	6623951.887	521.0999	M16/0262	8/05/2001
G1023	RC	35	275656.354	6623951.877	520.9199	M16/0262	8/05/2001
G1024	RC	30	275661.104	6623952.047	520.89	M16/0262	10/05/2001
G1025	RC	30	275666.174	6623952.257	520.8499	M16/0262	10/05/2001
G1026	RC	30	275671.504	6623952.257	520.4299	M16/0262	10/05/2001
G1027	RC	30	275676.504	6623952.257	520.2199	M16/0262	1/05/2000
G1028	RC	50	275596.503	6624007.257	520	M16/0262	7/05/2001
G1029	RC	50	275601.873	6624007.107	523.28	M16/0262	7/05/2001
G1030	RC	50	275606.503	6624007.257	523.52	M16/0262	7/05/2001
G1031	RC	50	275611.963	6624007.187	522.8099	M16/0262	7/05/2001
G1032	RC	50	275616.503	6624007.257	523.01	M16/0262	7/05/2001
G1033	RC	50	275621.143	6624007.297	522.5599	M16/0262	7/05/2001
G1034	RC	50	275626.693	6624007.197	522.3499	M16/0262	7/05/2001
G1035	RC	40	275631.633	6624007.227	522.1199	M16/0262	7/05/2001
G1036	RC	40	275636.543	6624007.397	521.9699	M16/0262	7/05/2001
G1037	RC	50	275601.793	6624017.587	523.2	M16/0262	7/05/2001
G1038	RC	50	275606.643	6624017.647	522.9699	M16/0262	7/05/2001
G1039	RC	50	275616.503	6624016.677	522.51	M16/0262	7/05/2001
G1040	RC	50	275621.873	6624017.597	522.3499	M16/0262	7/05/2001
G1041	RC	40	275626.733	6624017.317	522.1799	M16/0262	7/05/2001
G1042	RC	40	275632.133	6624017.177	521.9699	M16/0262	7/05/2001
G1043	RC	50	275591.433	6624027.387	523.6799	M16/0262	7/05/2001
G1044	RC	50	275596.493	6624027.087	523.44	M16/0262	7/05/2001
G1045	RC	50	275600.583	6624027.127	523.3599	M16/0262	7/05/2001
G1046	RC	50	275606.733	6624026.987	523.02	M16/0262	1/05/2000
G1047	RC	50	275611.603	6624027.077	522.89	M16/0262	7/05/2001
G1047 G1048	RC	45	275616.593	6624027.227	522.75	M16/0262	7/05/2001
G1048 G1049	RC	45 45	275621.583	6624027.097	522.73	M16/0262	7/05/2001
G1049 G1050	RC	40 40	275626.903	6624027.227	522.53	M16/0262	7/05/2001
G 1000	, KC	40	210020.903	0024021.221	022.14	IVI I 0/UZ0Z	1/03/2001

BHID	Hole type	Maximum depth	X collar	Y collar	Z collar	Lease ID	Date completed
G1051	RC	40	275631.483	6624027.247	522.1199	M16/0262	7/05/2001
G1052	RC	35	275636.513	6624027.347	522.0599	M16/0262	7/05/2001
G1053	RC	50	275556.822	6624033.437	524.78	M16/0262	7/05/2001
G1054	RC	50	275561.702	6624033.277	524.6099	M16/0262	7/05/2001
G1055	RC	50	275566.472	6624032.847	524.5	M16/0262	8/05/2001
G1056	RC	50	275571.553	6624032.677	524.3699	M16/0262	8/05/2001
G1057	RC	50	275576.563	6624032.417	524.21	M16/0262	8/05/2001
G1058	RC	50	275581.533	6624032.257	523.82	M16/0262	8/05/2001
G1059	RC	50	275586.503	6624032.257	524.39	M16/0262	8/05/2001
G1060	RC	50	275546.932	6624044.297	522.6699	M16/0262	8/05/2001
G1061	RC	50	275551.682	6624044.567	522.57	M16/0262	8/05/2001
G1062	RC	50	275561.682	6624043.407	522.2299	M16/0262	8/05/2001
G1063	RC	50	275566.792	6624043.817	521.9699	M16/0262	8/05/2001
G1064	RC	50	275572.033	6624043.657	521.94	M16/0262	8/05/2001
G1065	RC	50	275546.482	6624052.117	522.2899	M16/0262	8/05/2001
G1066	RC	50	275551.352	6624052.337	522.1699	M16/0262	10/05/2001
G1067	RC	50	275556.502	6624052.137	522.09	M16/0262	10/05/2001
G1068	RC	50	275561.502	6624052.257	524.76	M16/0262	10/05/2001
G1069	RC	50	275566.042	6624052.227	522.03	M16/0262	10/05/2001
G1070	RC	50	275571.433	6624052.157	521.8099	M16/0262	10/05/2001
G1071	RC	45	275576.513	6624052.197	521.7399	M16/0262	10/05/2001
G1072	RC	45	275581.483	6624052.077	521.76	M16/0262	10/05/2001
G1073	RC	45	275586.503	6624052.257	524.33	M16/0262	10/05/2001
G1074	RC	54	275486.192	6624257.478	526.6099	M16/0262	10/05/2001
G1075	RC	54	275491.042	6624257.088	525.0499	M16/0262	10/05/2001
G1076	RC	50	275496.362	6624257.138	524.9699	M16/0262	10/05/2001
G1077	RC	50	275501.372	6624257.328	524.8599	M16/0262	10/05/2001
G1078	RC	50	275506.212	6624257.328	524.8599	M16/0262	10/05/2001
G1079	RC	50	275511.242	6624257.228	524.7999	M16/0262	10/05/2001
G1080	RC	45	275516.502	6624257.258	525.1799	M16/0262	10/05/2001
G1081	RC	40	275521.162	6624257.188	524.84	M16/0262	10/05/2001
G1082	RC	35	275526.212	6624257.408	524.9699	M16/0262	10/05/2001
G1083	RC	54	275481.502	6624267.258	525	M16/0262	10/05/2001
G1084	RC	54	275491.192	6624266.848	524.75	M16/0262	10/05/2001
G1085	RC	54	275496.032	6624267.148	524.7199	M16/0262	10/05/2001
G1086	RC	50	275501.192	6624267.118	524.6699	M16/0262	10/05/2001
G1087	RC	45	275506.182	6624266.908	524.7199	M16/0262	10/05/2001
G1088	RC	40	275516.502	6624267.258	525.0399	M16/0262	10/05/2001
G1089	RC	40	275521.232	6624267.328	524.71	M16/0262	10/05/2001
G1090	RC	35	275526.092	6624267.268	524.7899	M16/0262	10/05/2001
G1090	RC	40	275486.002	6624277.609	524.7299	M16/0262	10/05/2001
G1092	RC	40	275491.282	6624277.429	524.57	M16/0262	10/05/2001
G1092	RC	40	275491.202	6624277.259	525	M16/0262	10/05/2001
G1093	RC	40	275501.502	6624277.259	525 525	M16/0262	10/05/2001
G1095	RC RC	40	275505.172	6624277.529	524.4099 524.58	M16/0262	10/05/2001
G1096		40	275510.472	6624277.409	524.58	M16/0262	10/05/2001
G1097	RC	35 35	275515.392	6624277.419	524.5599	M16/0262	10/05/2001
G1098	RC BC	35	275520.262	6624277.568	524.6099	M16/0262	10/05/2001
G1099	RC	30	275525.472	6624277.308	524.57	M16/0262	10/05/2001
G1100	RC	40	275490.872	6624287.999	524.44	M16/0262	9/05/2001
G1101	RC	40	275496.342	6624287.679	524.45	M16/0262	9/05/2001
G1102	RC	40	275501.302	6624287.619	524.4199	M16/0262	9/05/2001

BHID	Hole type	Maximum depth	X collar	Y collar	Z collar	Lease ID	Date completed
G1103	RC	40	275506.402	6624287.529	524.4	M16/0262	9/05/2001
G1104	RC	35	275511.472	6624287.449	524.2999	M16/0262	9/05/2001
G1105	RC	35	275516.212	6624287.519	524.2299	M16/0262	9/05/2001
G1106	RC	30	275521.062	6624287.469	524.4899	M16/0262	9/05/2001
G1107	RC	10	275491.182	6624297.419	524.27	M16/0262	9/05/2001
G1108	RC	10	275496.382	6624297.319	524.2199	M16/0262	9/05/2001
G1109	RC	10	275501.222	6624297.119	524.21	M16/0262	9/05/2001
G1110	RC	10	275511.292	6624297.109	524.28	M16/0262	9/05/2001
G1111	RC	10	275516.282	6624296.949	524.28	M16/0262	9/05/2001
G1112	RC	10	275521.392	6624297.319	524.27	M16/0262	10/05/2001
G1113	RC	10	275490.922	6624307.859	524.27	M16/0262	10/05/2001
G1114	RC	10	275496.212	6624307.959	524.0999	M16/0262	10/05/2001
G1115	RC	10	275501.002	6624307.719	524.08	M16/0262	10/05/2001
G1116	RC	10	275506.392	6624307.159	524.0599	M16/0262	10/05/2001
G1117	RC	10	275511.402	6624307.249	525.0499	M16/0262	10/05/2001
G1118	RC	10	275516.522	6624307.309	523.9299	M16/0262	10/05/2001
G1119	RC	10	275521.262	6624307.259	524.1699	M16/0262	17/05/2001
G1123	RC	55	275586.503	6624007.257	524.38	M16/0262	16/05/2001
G1124	RC	55	275591.503	6624007.257	524.1799	M16/0262	16/05/2001
G1125	RC	40	275641.503	6624007.257	522	M16/0262	17/05/2001
G1126	RC	50	275596.503	6624017.257	524	M16/0262	17/05/2001
G1127	RC	35	275641.503	6624017.257	522	M16/0262	17/05/2001
G1128	RC	30	275646.503	6624017.257	522	M16/0262	17/05/2001
G1129	RC	50	275546.502	6624032.257	525	M16/0262	17/05/2001
G1130	RC	50	275551.502	6624032.257	525	M16/0262	17/05/2001
G1131	RC	50	275536.502	6624052.257	525.09	M16/0262	17/05/2001
G1132	RC	50	275541.502	6624052.257	525.0999	M16/0262	17/05/2001
G1133	RC	30	275591.503	6624052.257	524	M16/0262	17/05/2001
G1134	RC	30	275596.503	6624052.257	524	M16/0262	17/05/2001
G1135	RC	25	275496.242	6624296.499	524.2199	M16/0262	17/05/2001
G1136	RC	40	275485.882	6624308.109	524.2299	M16/0262	17/05/2001
G1137	RC	30	275493.502	6624308.069	524.2	M16/0262	17/05/2001
G1138	RC	10	275623.563	6623955.847	522	M16/0262	17/05/2001
G1139	RC	10	275618.093	6623981.127	523	M16/0262	17/05/2001
G1140	RC	10	275610.143	6623993.187	523.46	M16/0262	17/05/2001
G1141	RC	10	275545.092	6624021.127	525	M16/0262	17/05/2001
G1142	RC	10	275518.702	6624065.637	525.4199	M16/0262	17/05/2001
G1143	RC	10	275516.062	6624078.938	525.7	M16/0262	17/05/2001
G1144	RC	10	275522.642	6624093.538	525.94	M16/0262	17/05/2001
G1145	RC	10	275572.973	6624126.608	526.7	M16/0262	17/05/2001
G1147	RC	10	275630.514	6624192.148	523.32	M16/0262	17/05/2001
G1148	RC	10	275637.104	6624242.308	522	M16/0262	17/05/2001
G1149	RC	10	275641.204	6624258.928	521.94	M16/0262	17/05/2001
G1150	RC	10	275684.394	6624268.958	520.4199	M16/0262	17/05/2001
G1151	RC	10	275706.655	6624243.738	520	M16/0262	17/05/2001
G1152	RC	10	275717.505	6624218.388	519.38	M16/0262	17/05/2001
G1153	RC	10	275727.945	6624218.078	519.02	M16/0262	17/05/2001
G1154	RC	10	275738.045	6624218.268	519	M16/0262	17/05/2001
G1156	RC	10	275760.435	6624181.568	518	M16/0262	17/05/2001
G1158	RC	10	275824.426	6624118.907	516.58	M16/0262	17/05/2001
G1159	RC	10	275820.116	6624082.297	516.2	M16/0262	17/05/2001
G1161	RC	10	275797.075	6623968.557	516	M16/0262	17/05/2001

BHID	Hole type	Maximum depth	X collar	Y collar	Z collar	Lease ID	Date completed
G1162	RC	10	275826.916	6623945.606	515.51	M16/0262	17/05/2001
G1163	RC	10	275881.456	6623888.776	515	M16/0262	17/05/2001
G1164	RC	10	275856.106	6623852.926	515.9	M16/0262	17/05/2001
G1165	RC	10	275797.785	6623849.586	517.64	M16/0262	17/05/2001
G1166	RC	10	275780.015	6623875.746	517.7299	M16/0262	17/05/2001
G1167	RC	10	275769.885	6623875.906	517.94	M16/0262	17/05/2001
G1168	RC	10	275754.835	6623917.866	517.96	M16/0262	17/05/2001
G1169	RC	10	275754.515	6623937.926	517.6699	M16/0262	17/05/2001
G1170	RC	10	275733.785	6623930.986	518.4799	M16/0262	17/05/2001
G1171	RC	10	275703.474	6623934.857	519.6599	M16/0262	16/05/2001
G1172	RC	10	275677.574	6623923.707	520	M16/0262	16/05/2001
G1173	RC	10	275651.763	6623924.777	520.15	M16/0262	16/05/2001
G1175	RC	20	275626.773	6623991.967	516.8099	M16/0262	1/09/2000
G1176	RC	15	275632.343	6623992.487	516.7199	M16/0262	1/09/2000
G1177	RC	10	275637.303	6623992.367	516.9099	M16/0262	1/09/2000
G1178	RC	10	275641.813	6623992.447	516.7299	M16/0262	1/09/2000
G1179	RC	15	275629.283	6623998.097	516.7999	M16/0262	1/09/2000
G1180	RC	10	275633.823	6623997.387	516.7299	M16/0262	24/05/2001
G1181	RC	20	275638.813	6623997.057	516.75	M16/0262	24/05/2001
G1182	RC	20	275616.363	6624002.837	517.4099	M16/0262	24/05/2001
G1183	RC	20	275621.813	6624002.487	517.4099	M16/0262	24/05/2001
G1184	RC	20	275626.823	6624002.437	517.2	M16/0262	24/05/2001
G1185	RC	20	275631.523	6624001.937	516.83	M16/0262	24/05/2001
G1196	RC	20	275582.313	6624013.687	518.83	M16/0262	24/05/2001
G1196	RC	20	275586.743	6624013.697	518.6699	M16/0262	24/05/2001
G1197 G1198	RC	20	275591.803	6624013.407	518.3699	M16/0262	1/09/2000
	RC RC	20					
G1199	RC RC		275596.953	6624012.927	518.1799	M16/0262	1/09/2000
G1200 G1201	RC RC	20 20	275601.913 275606.803	6624012.837 6624012.397	518.02 517.83	M16/0262 M16/0262	1/09/2000 1/09/2000
	RC			6624011.937			
G1202	RC RC	20	275612.003		517.53	M16/0262	1/09/2000
G1203		20	275616.723	6624012.407	517.3499	M16/0262	28/05/2001
G1204	RC	20	275621.283	6624012.567	517.13	M16/0262	28/05/2001
G1216	RC	20	275582.653	6624022.627	518.69	M16/0262	28/05/2001
G1217	RC	20	275587.213	6624022.297	518.2399	M16/0262	28/05/2001
G1218	RC	20	275591.873	6624022.337	517.9799	M16/0262	28/05/2001
G1219	RC	20	275596.823	6624022.107	517.76	M16/0262	29/05/2001
G1220	RC	20	275601.633	6624022.247	517.76	M16/0262	29/05/2001
G1221	RC	20	275606.743	6624022.297	517.58	M16/0262	29/05/2001
G1228	RC	20	275572.093	6624027.577	519.2199	M16/0262	29/05/2001
G1229	RC	20	275575.833	6624027.537	518.8499	M16/0262	29/05/2001
G1230	RC	20	275583.853	6624027.097	518.39	M16/0262	29/05/2001
G1231	RC	20	275590.023	6624027.057	517.84	M16/0262	29/05/2001
G1232	RC	20	275596.843	6624032.197	517.46	M16/0262	29/05/2001
G1233	RC	20	275601.723	6624032.577	517.4299	M16/0262	29/05/2001
G1234	RC	20	275606.603	6624032.667	517.5	M16/0262	29/05/2001
G1241	RC	20	275569.343	6624037.517	518.71	M16/0262	29/05/2001
G1242	RC	20	275574.943	6624037.577	518.32	M16/0262	29/05/2001
G1243	RC	20	275578.393	6624037.597	518.38	M16/0262	29/05/2001
G1244	RC	20	275584.273	6624037.437	518.03	M16/0262	29/05/2001
G1245	RC	20	275589.173	6624037.267	517.6599	M16/0262	29/05/2001
G1246	RC	20	275594.143	6624037.427	517.5	M16/0262	29/05/2001
G1247	RC	20	275599.043	6624037.357	517.39	M16/0262	29/05/2001

BHID	Hole type	Maximum depth	X collar	Y collar	Z collar	Lease ID	Date completed
G1248	RC	20	275603.733	6624036.867	517.5	M16/0262	10/06/2001
G1249	RC	20	275609.003	6624037.257	517.88	M16/0262	29/05/2001
G1251	RC	20	275586.543	6624042.277	517.8099	M16/0262	29/05/2001
G1252	RC	20	275591.083	6624042.297	517.7	M16/0262	29/05/2001
G1253	RC	20	275596.323	6624042.107	517.52	M16/0262	29/05/2001
G1256	RC	20	275559.382	6624047.067	519.33	M16/0262	2/06/2001
G1257	RC	20	275564.552	6624047.147	518.89	M16/0262	2/06/2001
G1258	RC	20	275569.253	6624047.237	518.65	M16/0262	2/06/2001
G1259	RC	20	275573.903	6624047.117	518.3699	M16/0262	2/06/2001
G1260	RC	20	275579.053	6624047.057	518.2399	M16/0262	7/06/2001
G1261	RC	20	275584.443	6624047.217	517.9699	M16/0262	2/06/2001
G1262	RC	20	275588.663	6624047.167	517.8599	M16/0262	2/06/2001
G1263	RC	20	275593.583	6624047.127	517.69	M16/0262	2/06/2001
G1264	RC	20	275599.383	6624047.277	517.5399	M16/0262	2/06/2001
G1265	RC	20	275603.903	6624047.307	517.57	M16/0262	2/06/2001
G1266	RC	20	275608.793	6624047.387	517.65	M16/0262	7/06/2001
G1268	RC	20	275601.093	6624052.877	517.5599	M16/0262	2/06/2001
G1269	RC	20	275606.093	6624052.997	517.59	M16/0262	2/06/2001
G1272	RC	20	275559.662	6624057.597	519.1699	M16/0262	2/06/2001
G1273	RC	20	275563.902	6624057.337	518.83	M16/0262	7/06/2001
G1274	RC	20	275568.693	6624057.217	518.6599	M16/0262	2/06/2001
G1275	RC	20	275573.583	6624057.047	518.38	M16/0262	2/06/2001
G1276	RC	20	275578.513	6624057.277	518.13	M16/0262	2/06/2001
G1277	RC	20	275584.183	6624057.447	518.03	M16/0262	2/06/2001
G1277	RC	20	275588.533	6624057.367	518.01	M16/0262	2/06/2001
G1279	RC	20	275593.783	6624057.277	517.8099	M16/0262	2/06/2001
G1279	RC	20	275593.763	6624057.317	517.65	M16/0262	2/06/2001
G1281	RC	20	275603.883	6624057.227	517.5399	M16/0262	2/06/2001
G1283	RC	20	275559.002	6624097.258	519.1799	M16/0262	3/06/2001
G1284	RC	20	275566.563	6624061.897	518.7	M16/0262	3/06/2001
G1285	RC	20	275572.083	6624062.217	518.26	M16/0262	3/06/2001
G1286	RC	20	275576.283	6624062.477	518.26	M16/0262	3/06/2001
G1287	RC	20	275570.263	6624062.607	518.0999	M16/0262	3/06/2001
	RC						3/06/2001
G1288		20	275586.103	6624062.457	518.08	M16/0262	
G1289	RC	20	275591.653	6624062.327	518.0399	M16/0262	3/06/2001
G1290	RC	20	275595.783	6624062.037	518.02	M16/0262	3/06/2001
G1291	RC	20	275601.173	6624062.097	517.6199	M16/0262	3/06/2001
G1292	RC	20	275606.533	6624062.227	517.5	M16/0262	3/06/2001
G1293	RC	20	275611.103	6624062.117	517.3699	M16/0262	3/06/2001
G1294	RC	20	275561.742	6624092.258	519.4799	M16/0262	3/06/2001
G1295	RC	20	275572.433	6624067.057	518.51	M16/0262	7/06/2001
G1296	RC	20	275578.473	6624067.547	518.38	M16/0262	3/06/2001
G1297	RC	20	275584.773	6624067.707	518.34	M16/0262	3/06/2001
G1298	RC	20	275594.273	6624067.587	517.96	M16/0262	3/06/2001
G1299	RC	20	275599.083	6624067.477	517.8599	M16/0262	3/06/2001
G1300	RC	20	275604.033	6624067.737	517.6599	M16/0262	3/06/2001
G1301	RC	20	275609.073	6624067.677	517.57	M16/0262	3/06/2001
G1302	RC	20	275614.173	6624067.567	517.51	M16/0262	3/06/2001
G1303	RC	20	275560.582	6624072.497	519.52	M16/0262	7/06/2001
G1304	RC	20	275566.393	6624072.627	519.0499	M16/0262	3/06/2001
G1305	RC	20	275571.953	6624072.457	518.64	M16/0262	3/06/2001
G1306	RC	20	275576.513	6624072.487	518.5399	M16/0262	3/06/2001

BHID	Hole type	Maximum depth	X collar	Y collar	Z collar	Lease ID	Date completed
G1307	RC	20	275581.463	6624072.407	518.44	M16/0262	3/06/2001
G1308	RC	20	275586.603	6624072.417	518.27	M16/0262	3/06/2001
G1309	RC	20	275591.303	6624072.477	518.03	M16/0262	3/06/2001
G1310	RC	20	275596.503	6624072.387	517.84	M16/0262	3/06/2001
G1311	RC	20	275601.353	6624072.407	517.7899	M16/0262	6/06/2001
G1312	RC	20	275607.333	6624072.487	517.7199	M16/0262	3/06/2001
G1313	RC	20	275611.483	6624072.037	516.7999	M16/0262	3/06/2001
G1314	RC	20	275566.493	6624092.318	519.27	M16/0262	3/06/2001
G1315	RC	20	275553.902	6624097.208	520	M16/0262	3/06/2001
G1316	RC	20	275573.953	6624077.577	518.76	M16/0262	3/06/2001
G1317	RC	20	275578.773	6624077.537	518.63	M16/0262	3/06/2001
G1318	RC	20	275583.573	6624077.407	518.53	M16/0262	3/06/2001
G1319	RC	20	275588.653	6624077.347	518.25	M16/0262	7/06/2001
G1320	RC	20	275593.863	6624077.207	517.95	M16/0262	3/06/2001
G1321	RC	20	275598.893	6624077.187	517.8599	M16/0262	3/06/2001
G1322	RC	20	275603.573	6624076.937	517.83	M16/0262	3/06/2001
G1323	RC	20	275608.833	6624077.157	517.6599	M16/0262	3/06/2001
G1324	RC	20	275566.423	6624082.257	519.3099	M16/0262	3/06/2001
G1325	RC	20	275571.643	6624082.627	519.01	M16/0262	3/06/2001
G1326	RC	20	275576.813	6624082.627	518.83	M16/0262	3/06/2001
G1327	RC	20	275581.873	6624082.577	518.5499	M16/0262	3/06/2001
G1328	RC	20	275586.393	6624082.587	518.4299	M16/0262	3/06/2001
G1329	RC	20	275591.533	6624082.307	518.2899	M16/0262	3/06/2001
G1330	RC	20	275596.523	6624082.277	518.2	M16/0262	3/06/2001
G1331	RC	20	275590.523	6624082.157	517.9799	M16/0262	3/06/2001
G1331	RC	20	275606.083	6624082.167	517.75	M16/0262	3/06/2001
G1333	RC	20	275569.253	6624087.227	519.2399	M16/0262	3/06/2001
G1334	RC	20	275574.323	6624087.487	519.2399	M16/0262	3/06/2001
G1335	RC	20	275574.323	6624087.517	518.8599	M16/0262	3/06/2001
G1336	RC	20	275584.113	6624087.307	518.7299	M16/0262	3/06/2001
G1337	RC RC	20	275589.053	6624087.337	518.59	M16/0262	3/06/2001
G1338	RC	20	275593.843	6624087.447	518.3499	M16/0262	3/06/2001
G1339	RC	20	275599.183	6624087.507	518.02	M16/0262	3/06/2001
G1340	RC	20	275604.443	6624087.487	517.8599	M16/0262	3/06/2001
G1341	RC	20	275571.543	6624092.287	519.07	M16/0262	3/06/2001
G1342	RC	20	275581.193	6624092.457	518.82	M16/0262	3/06/2001
G1343	RC	20	275586.273	6624092.347	518.71	M16/0262	3/06/2001
G1344	RC	20	275592.213	6624091.977	518.27	M16/0262	3/06/2001
G1346	RC	20	275563.573	6624097.208	519.5499	M16/0262	3/06/2001
G1347	RC	20	275569.253	6624097.298	519.1599	M16/0262	3/06/2001
G1348	RC	20	275574.003	6624097.258	518.6199	M16/0262	3/06/2001
G1349	RC	20	275579.253	6624097.538	518.7299	M16/0262	3/06/2001
G1350	RC	20	275584.053	6624097.388	518.57	M16/0262	3/06/2001
G1351	RC	20	275588.883	6624097.368	518.3599	M16/0262	3/06/2001
G1352	RC	20	275593.893	6624097.187	518.0999	M16/0262	3/06/2001
G1353	RC	20	275599.583	6624097.167	517.9899	M16/0262	3/06/2001
G1354	RC	10	275966.628	6624070.037	513.07	M16/0262	3/06/2001
G1356	RC	10	276016.888	6623995.986	512.2999	M16/0262	3/06/2001
G1357	RC	10	276032.688	6623994.936	511.9599	M16/0262	4/06/2001
G1359	RC	10	275955.257	6623948.026	512.7899	M16/0262	4/06/2001
G1360	RC	10	276014.488	6623944.436	511.69	M16/0262	4/06/2001
G1366	RC	10	276047.798	6623844.926	512.3699	M16/0262	4/06/2001

BHID	Hole type	Maximum depth	X collar	Y collar	Z collar	Lease ID	Date completed
G1367	RC	10	276036.518	6623830.016	512.51	M16/0262	4/06/2001
G1368	RC	10	276019.708	6623830.386	512.88	M16/0262	4/06/2001
G1369	RC	10	276004.968	6623831.366	513.19	M16/0262	4/06/2001
G1372	RC	10	275982.798	6623793.045	513.82	M16/0262	4/06/2001
G1373	RC	10	276005.968	6623790.755	513.4	M16/0262	4/06/2001
G1374	RC	10	276016.318	6623739.175	513.4099	M16/0262	4/06/2001
G1383	RC	10	275559.162	6624097.598	519.78	M16/0262	4/06/2001
G1384	RC	10	275720.085	6624319.618	519.8699	M16/0262	4/06/2001
G1385	RC	10	275732.705	6624319.478	519.4799	M16/0262	4/06/2001
G1386	RC	12	275752.785	6624319.518	518.82	M16/0262	4/06/2001
G1387	RC	10	275754.035	6624296.438	518.75	M16/0262	4/06/2001
G1388	RC	10	275720.575	6624297.848	519.6099	M16/0262	4/06/2001
G1389	RC	10	275648.744	6624293.578	521.4	M16/0262	4/06/2001
G1390	RC	10	275618.483	6624296.308	522.0499	M16/0262	4/06/2001
G1391	RC	10	275583.763	6624266.998	523.5499	M16/0262	4/06/2001
G1392	RC	10	275597.063	6624268.388	523.03	M16/0262	4/06/2001
G1393	RC	10	275720.845	6624268.018	519.38	M16/0262	4/06/2001
G1394	RC	10	275736.215	6624266.648	519.0499	M16/0262	4/06/2001
G1395	RC	10	275750.255	6624268.958	518.7199	M16/0262	4/06/2001
G1396	RC	10	275903.897	6623868.246	515	M16/0262	4/06/2001
G1397	RC	10	275888.746	6623868.296	515 515	M16/0262	4/06/2001
G1398	RC	10	275836.246	6623835.126	513	M16/0262	4/06/2001
G1399	RC	10	275875.806	6623831.886	515 515	M16/0262	4/06/2001
	RC	10					
G1400 G1401	RC	10	275896.716 275916.437	6623829.346 6623830.916	515.4199 515	M16/0262 M16/0262	4/06/2001 4/06/2001
	RC				513		
G1402	RC RC	10 10	276055.349	6623829.846	513	M16/0262 M16/0262	4/06/2001
G1403	RC RC	10	276045.988 276031.538	6623816.996	513 513		4/06/2001
G1404	RC RC		276031.536	6623817.106	513	M16/0262	4/06/2001
G1405		10		6623817.126		M16/0262	4/06/2001
G1407	RC	10	276016.238	6623789.315	512.89	M16/0262	4/06/2001
G1408	RC	10	275964.457	6623784.115	514.0399	M16/0262	4/06/2001
G1409	RC	10	275948.617	6623784.445	514.39	M16/0262	4/06/2001
G1410	RC	10	276010.628	6623769.205	513	M16/0262	4/06/2001
G1411	RC	10	276030.938	6623769.255	513	M16/0262	4/06/2001
G1413	RC	10	275614.473	6624344.789	523.14	M16/0262	4/06/2001
G1414	RC	10	275636.714	6624332.179	522.19	M16/0262	4/06/2001
G1415	RC	10	275651.434	6624332.239	521.82	M16/0262	4/06/2001
G1416	RC	10	275666.904	6624332.469	521.4	M16/0262	4/06/2001
G1417	RC	10	275559.503	6624316.769	523.6099	M16/0262	4/06/2001
G1418	RC	10	275573.113	6624318.369	523.25	M16/0262	4/06/2001
G1419	RC	10	275622.984	6624317.549	522.2	M16/0262	4/06/2001
G1420	RC	10	275895.627	6623885.246	515	M16/0262	4/06/2001
G1421	RC	10	275911.087	6623884.856	515	M16/0262	4/06/2001
G1422	RC	10	275925.227	6623885.056	515	M16/0262	4/06/2001
G1423	RC	10	275752.785	6624319.518	518.82	M16/0262	4/06/2001
G1424	RC	10	275955.617	6623885.026	515	M16/0262	4/06/2001
G1425	RC	10	275970.537	6623884.306	515	M16/0262	6/06/2001
G1426	RC	10	275986.988	6623884.236	515	M16/0262	6/06/2001
G1427	RC	10	276031.058	6623883.646	515	M16/0262	6/06/2001
G1428	RC	10	276045.768	6623883.786	515	M16/0262	6/06/2001
G1429	RC	10	276056.699	6623866.616	513	M16/0262	6/06/2001
G1430	RC	10	275948.367	6623869.306	514	M16/0262	6/06/2001

BHID	Hole type	Maximum depth	X collar	Y collar	Z collar	Lease ID	Date completed
G1431	RC	10	275933.587	6623868.726	515	M16/0262	6/06/2001
G1432	RC	10	275918.877	6623868.486	514.5	M16/0262	6/06/2001
G1434	RC	10	275572.003	6624370.079	524.21	M16/0262	6/06/2001
G1435	RC	10	275601.673	6624370.269	524.15	M16/0262	6/06/2001
G1436	RC	10	275650.074	6624371.459	522.5599	M16/0262	6/06/2001
G1437	RC	10	275674.694	6624367.819	521.6799	M16/0262	6/06/2001
G1438	RC	10	275636.074	6624346.979	522.5599	M16/0262	6/06/2001
G1439	RC	10	275650.704	6624345.549	522.0399	M16/0262	6/06/2001
G1440	RC	12	275665.824	6624347.159	521.64	M16/0262	6/06/2001
G1441	RC	10	275680.724	6624348.099	521.14	M16/0262	6/06/2001
G1442	RC	10	275684.334	6624333.429	520.82	M16/0262	6/06/2001
G1443	RC	10	275699.865	6624339.269	520.45	M16/0262	6/06/2001
G1444	RC	10	275691.164	6624319.108	520.5499	M16/0262	6/06/2001
G1445	RC	10	275706.605	6624318.488	520.32	M16/0262	6/06/2001
G1446	RC	10	275694.664	6624296.188	520.27	M16/0262	6/06/2001
G1447	RC	10	275666.724	6624281.658	520.78	M16/0262	6/06/2001
G1448	RC	10	275633.134	6624279.828	521.58	M16/0262	6/06/2001
G1449	RC	10	275616.063	6624278.768	522.14	M16/0262	6/06/2001
G1450	RC	10	275610.623	6624257.028	522.63	M16/0262	6/06/2001
G1452	RC	10	275704.685	6624267.928	519.7199	M16/0262	6/06/2001
G1453	RC	10	275720.775	6624282.028	519.5599	M16/0262	6/06/2001
G1454	RC	10	275736.595	6624283.148	519.0499	M16/0262	6/06/2001
G1455	RC	10	275728.905	6624255.608	519.1199	M16/0262	6/06/2001
G1456	RC	10	275713.985	6624254.578	519.4899	M16/0262	6/06/2001
G1457	RC	10	275947.597	6623932.516	513.25	M16/0262	6/06/2001
G1458	RC	10	275963.767	6623933.356	513.0499	M16/0262	6/06/2001
G1459	RC	12	275977.538	6623931.186	512.83	M16/0262	6/06/2001
G1460	RC	10	275992.978	6623930.126	512.6699	M16/0262	6/06/2001
G1461	RC	12	275974.127	6623852.316	513.5599	M16/0262	6/06/2001
G1462	RC	10	275987.248	6623851.416	513.2199	M16/0262	6/06/2001
G1463	RC	10	275995.068	6623832.886	513.2	M16/0262	6/06/2001
G1464	RC	10	276062.799	6623845.706	511.57	M16/0262	6/06/2001
G1465	RC	10	276069.759	6623829.426	511.63	M16/0262	6/06/2001
G1466	RC	10	276059.669	6623816.875	511.73	M16/0262	6/06/2001
G1467	RC	12	276074.649	6623818.875	511.45	M16/0262	6/06/2001
G1468	RC	10	276072.579	6623801.875	511.6	M16/0262	7/06/2001
G1469	RC	10	276042.548	6623804.575	511.9299	M16/0262	7/06/2001
G1470	RC	10	276040.198	6623792.885	512.26	M16/0262	6/06/2001
G1471	RC	10	275934.827	6623784.175	514.4099	M16/0262	6/06/2001
G1471	RC	10	275939.807	6623768.915	514.59	M16/0262	6/06/2001
G1473	RC	10	275955.457	6623766.455	514.27	M16/0262	6/06/2001
G1474	RC	10	275971.027	6623767.905	513.9299	M16/0262	6/06/2001
G1475	RC	10	275961.357	6623744.325	514.07	M16/0262	6/06/2001
G1476	RC	10	275971.807	6623743.285	513.9	M16/0262	6/06/2001
G1470 G1477	RC	10	275985.217	6623741.665	513.5999	M16/0262	6/06/2001
G1477 G1478	RC	10	276000.128	6623739.805	513.4	M16/0262	6/06/2001
G1478 G1479	RC	10	276031.248	6623739.805	513.4	M16/0262	6/06/2001
G1479 G1480	RC	10	276031.248	6623737.765	512.3399	M16/0262	6/06/2001
G1480 G1481	RC RC	10	276035.378	6623711.155	512.46 512.8699	M16/0262	6/06/2001
G1482	RC RC	10	276035.378	6623713.885	512.8699	M16/0262	6/06/2001
G1483	RC RC	10	275997.778	6623714.025	513.33	M16/0262	6/06/2001
G1484	RC	10	275980.597	6623713.955	513.9	M16/0262	6/06/2001

BHID	Hole type	Maximum depth	X collar	Y collar	Z collar	Lease ID	Date completed
G2068	RC	18	275596.222	6624025.257	500.194	M16/0262	1/01/2001
G2070	RC	25	275603.503	6624032.257	500.1419	M16/0262	1/01/2001
G2071	RC	25	275607.222	6624035.757	500	M16/0262	1/01/2001
G2072	RC	25	275600.097	6624042.757	500.032	M16/0262	1/01/2001
G2073	RC	12	275618.378	6624047.257	500.0629	M16/0262	1/01/2001
G2074	RC	12	275620.972	6624049.757	500.2219	M16/0262	1/01/2001
IGC001	RC	7	275694.504	6624194.258	519.63	M16/0262	1/02/1999
IGC002	RC	6	275743.505	6624194.258	518.2299	M16/0262	1/02/1999
IGC003	RC	6	275794.506	6624194.258	517.44	M16/0262	1/02/1999
IGC004	RC	6	275687.985	6624416.409	522.2299	M16/0262	1/02/1999
IGC005	RC	6	275662.974	6624392.089	522.77	M16/0262	1/02/1999
IGC006	RC	6	275712.605	6624394.079	520.7	M16/0262	1/02/1999
IGC007	RC	10	275561.603	6624367.469	524.08	M16/0262	1/02/1999
IGC008	RC	10	275586.233	6624367.889	524.28	M16/0262	1/02/1999
IGC009	RC	10	275610.563	6624367.929	523.9899	M16/0262	1/02/1999
IGC010	RC	10	275636.794	6624369.139	523.33	M16/0262	1/02/1999
IGC011	RC	6	275662.094	6624367.959	522.2999	M16/0262	1/02/1999
IGC012	RC	6	275688.924	6624366.399	521.1599	M16/0262	1/02/1999
IGC013	RC	10	275588.313	6624316.659	522.89	M16/0262	1/02/1999
IGC014	RC	10	275611.643	6624317.699	522.4899	M16/0262	1/02/1999
IGC015	RC	10	275635.874	6624318.409	522.02	M16/0262	1/02/1999
IGC016	RC	10	275661.184	6624319.349	521.46	M16/0262	1/02/1999
IGC017	RC	10	275661.784	6624293.808	521.0999	M16/0262	1/02/1999
IGC018	RC	10	275612.693	6624269.348	522.3499	M16/0262	1/02/1999
IGC019	RC	10	275638.304	6624268.698	521.5399	M16/0262	1/02/1999
IGC020	RC	10	275660.554	6624269.018	520.76	M16/0262	1/02/1999
IGC021	RC	10	275661.834	6624243.638	520.8699	M16/0262	1/02/1999
IGC022	RC	10	275611.323	6624219.498	523.4199	M16/0262	1/02/1999
IGC023	RC	9	275636.254	6624217.138	522.26	M16/0262	1/02/1999
IGC024	RC	10	275661.814	6624216.788	521.08	M16/0262	1/02/1999
IGC025	RC	6	275687.574	6624217.868	519.9799	M16/0262	1/02/1999
IGC026	RC	10	275662.334	6624193.598	521.2299	M16/0262	1/02/1999
IGC027	RC	10	275688.454	6624194.748	519.9299	M16/0262	1/02/1999
IGC028	RC	10	275711.845	6624195.338	518.9699	M16/0262	1/02/1999
IGC029	RC	10	275737.035	6624195.598	518.4099	M16/0262	1/02/1999
IGC030	RC	10	275710.575	6624169.538	518.76	M16/0262	1/02/1999
IGC031	RC	10	275736.085	6624168.588	517.9199	M16/0262	1/02/1999
IGC032	RC	6	275760.785	6624168.808	517.69	M16/0262	1/02/1999
IGC033	RC	6	275786.805	6624167.908	517.4099	M16/0262	1/02/1999
IGC034	RC	6	275761.715	6624145.188	517.33	M16/0262	1/02/1999
IGC035	RC	6	275788.315	6624146.867	517.01	M16/0262	1/02/1999
IGC036	RC	6	275811.426	6624143.877	516.8599	M16/0262	1/02/1999
IGC037	RC	10	275713.074	6624118.727	518.63	M16/0262	1/02/1999
IGC038	RC	6	275736.825	6624117.697	517.6199	M16/0262	1/02/1999
IGC039	RC	6	275761.055	6624117.137	516.95	M16/0262	1/02/1999
IGC040	RC	6	275787.455	6624117.707	516.6199	M16/0262	1/02/1999
IGC041	RC	6	275812.356	6624118.447	516.46	M16/0262	1/02/1999
IGC042	RC	6	275836.006	6624118.777	516.1799	M16/0262	1/02/1999
IGC043	RC	6	275861.516	6624119.137	515.5999	M16/0262	1/02/1999
IGC044	RC	6	275762.575	6624096.727	517	M16/0262	1/02/1999
IGC045	RC	6	275787.545	6624095.057	516.52	M16/0262	1/02/1999
IGC046	RC	6	275837.116	6624097.117	515.9899	M16/0262	1/02/1999

SNOWDEN Optico

BHID	Hole type	Maximum depth	X collar	Y collar	Z collar	Lease ID	Date completed
IGC047	RC	6	275862.246	6624095.027	515.51	M16/0262	1/02/1999
IGC048	RC	6	275736.975	6624067.757	518.19	M16/0262	1/02/1999
IGC049	RC	6	275762.385	6624066.947	517.39	M16/0262	1/02/1999
IGC050	RC	6	275787.575	6624067.067	516.71	M16/0262	1/02/1999
IGC051	RC	6	275811.506	6624069.257	516.5	M16/0262	1/02/1999
IGC052	RC	6	275838.796	6624066.377	515.78	M16/0262	1/02/1999
IGC053	RC	6	275861.846	6624067.507	515.6199	M16/0262	1/02/1999
IGC054	RC	6	275962.018	6624065.647	513.13	M16/0262	1/02/1999
IGC055	RC	6	275988.068	6624065.747	512.53	M16/0262	1/02/1999
IGC056	RC	6	276013.368	6624069.217	512.07	M16/0262	1/02/1999
IGC057	RC	6	276038.769	6624069.027	511.57	M16/0262	1/02/1999
IGC058	RC	6	275837.506	6624045.507	515.5599	M16/0262	1/02/1999
IGC059	RC	6	275862.266	6624047.177	515.33	M16/0262	1/02/1999
IGC060	RC	10	275787.485	6624019.847	516.53	M16/0262	1/02/1999
IGC061	RC	6	275812.786	6624018.297	515.77	M16/0262	1/02/1999
IGC062	RC	6	275837.606	6624017.067	515.1599	M16/0262	1/02/1999
IGC063	RC	6	275862.556	6624015.977	514.9699	M16/0262	1/02/1999
IGC064	RC	10	275961.988	6624017.697	513.45	M16/0262	1/02/1999
IGC065	RC	10	275986.988	6624016.227	512.7899	M16/0262	1/02/1999
IGC066	RC	10	276013.288	6624017.947	512.15	M16/0262	1/02/1999
IGC067	RC	10	276039.559	6624017.097	511.72	M16/0262	1/02/1999
IGC068	RC	10	275713.344	6623969.307	519.3099	M16/0262	1/02/1999
IGC069	RC	10	275739.215	6623967.367	518.1199	M16/0262	1/02/1999
IGC070	RC	6	275762.685	6623967.557	517.14	M16/0262	1/02/1999
IGC071	RC	6	275786.935	6623968.267	516.4099	M16/0262	1/02/1999
IGC072	RC	6	275813.376	6623968.147	515.8099	M16/0262	1/02/1999
IGC073	RC	6	275838.186	6623967.397	515.2899	M16/0262	1/02/1999
IGC074	RC	6	275837.696	6623945.476	515.4299	M16/0262	1/02/1999
IGC075	RC	6	275812.476	6623918.406	516.27	M16/0262	1/02/1999
IGC076	RC	6	275835.166	6623919.906	515.75	M16/0262	1/02/1999
IGC077	RC	10	275861.686	6623919.126	515.27	M16/0262	1/02/1999
IGC078	RC	10	275936.637	6623916.386	513.8499	M16/0262	1/02/1999
IGC079	RC	10	275963.127	6623917.286	513.4	M16/0262	1/02/1999
IGC080	RC	10	275988.218	6623919.756	512.9299	M16/0262	1/02/1999
IGC081	RC	10	276013.678	6623918.086	512.32	M16/0262	1/02/1999
IGC082	RC	10	276037.848	6623918.726	511.7799	M16/0262	1/02/1999
IGC083	RC	10	276063.529	6623920.236	511.0899	M16/0262	1/02/1999
IGC084	RC	10	276010.358	6623895.396	512.6599	M16/0262	1/02/1999
IGC085	RC	10	276063.049	6623892.546	511.39	M16/0262	1/02/1999
IGC086	RC	10	275962.157	6623870.986	513.8499	M16/0262	1/02/1999
IGC087	RC	10	275988.048	6623867.716	513.26	M16/0262	1/02/1999
IGC088	RC	10	276012.758	6623869.906	512.84	M16/0262	1/02/1999
IGC089	RC	10	276037.878	6623867.816	512.2399	M16/0262	1/02/1999
IGC090	RC	10	275935.017	6623843.246	514.52	M16/0262	1/02/1999
IGC091	RC	10	275937.907	6623818.236	514.32	M16/0262	1/02/1999
IGC092	RC	10	275960.907	6623817.416	513.9099	M16/0262	1/02/1999
IGC093	RC	10	275985.998	6623817.006	513.34	M16/0262	1/02/1999
IGC094	RC	6	275988.678	6623792.155	513.4299	M16/0262	1/02/1999
IGC095	RC	6	275688.314	6623770.266	519.15	M16/0262	1/02/1999
IGC096	RC	6	275715.234	6623770.876	518.69	M16/0262	1/02/1999
IGC097	RC	6	275889.266	6623768.165	515.59	M16/0262	1/02/1999
IGC098	RC	6	275914.007	6623767.625	515.0599	M16/0262	1/02/1999

BHID	Hole type	Maximum depth	X collar	Y collar	Z collar	Lease ID	Date completed
IGC099	RC	6	275936.007	6623766.775	514.6699	M16/0262	1/02/1999
IGC100	RC	6	275964.817	6623766.435	514.15	M16/0262	1/02/1999
IGC101	RC	6	275990.518	6623769.015	513.46	M16/0262	1/02/1999
IGC102	RC	10	275599.293	6624016.567	523.4299	M16/0262	1/02/1999
IGC103	RC	10	275624.693	6624016.487	522.4299	M16/0262	1/02/1999
IGC104	RC	10	275649.994	6624015.797	521.5	M16/0262	1/02/1999
IGC105	RC	10	275597.923	6624030.537	523.4299	M16/0262	1/02/1999
IGC106	RC	10	275612.473	6624031.237	522.8499	M16/0262	1/02/1999
IGC107	RC	10	275623.813	6624031.267	522.5399	M16/0262	1/02/1999
IGC108	RC	10	275636.613	6624030.247	522.03	M16/0262	1/02/1999
IGC109	RC	10	275650.914	6624029.397	521.4799	M16/0262	1/02/1999
IGC110	RC	10	275663.234	6624028.887	521.02	M16/0262	1/02/1999
IGC111	RC	10	275607.613	6624043.127	523	M16/0262	1/02/1999
IGC112	RC	10	275630.573	6624044.267	522.1799	M16/0262	1/02/1999
IGC112	RC	10	275650.064	6624044.107	521.4099	M16/0262	1/02/1999
IGC114	RC	10	275599.503	6624056.227	523.4299	M16/0262	1/02/1999
IGC114	RC	10	275612.863	6624055.997	523.4299	M16/0262	1/02/1999
IGC116	RC RC	10	275625.933	6624055.107	522.39	M16/0262	1/02/1999
IGC117	RC	10	275637.673	6624054.687	522.39	M16/0262	1/02/1999
IGC117	RC RC	10	275652.444	6624054.747	521.39	M16/0262	1/02/1999
	RC RC						
IGC119		10	275663.304	6624054.957	521.0399	M16/0262	1/02/1999
IGC120	RC	10	275599.573	6624067.737	523.51	M16/0262	1/02/1999
IGC121	RC	10	275623.943	6624067.257	522.5499	M16/0262	1/02/1999
IGC122	RC	10	275649.624	6624066.857	521.57	M16/0262	1/02/1999
IGC123	RC	10	275685.304	6624168.378	520	M16/0262	1/02/1999
IGC124	RC	10	275696.874	6624142.888	519.39	M16/0262	1/02/1999
IGC125	RC	10	275721.595	6624095.597	518.4899	M16/0262	1/02/1999
IGC126	RC	10	275546.362	6624093.818	525.5999	M16/0262	1/02/1999
IGC127	RC	10	275512.122	6624065.247	525.08	M16/0262	1/02/1999
IGC128	RC	10	275737.225	6624046.767	518.13	M16/0262	1/02/1999
IGC129	RC	6	275763.025	6624048.467	517.3599	M16/0262	1/02/1999
IGC130	RC	6	275787.355	6624046.977	516.6199	M16/0262	1/02/1999
IGC131	RC	6	275814.286	6624048.027	515.88	M16/0262	1/02/1999
IGC132	RC	10	275963.428	6624050.187	513.14	M16/0262	1/02/1999
IGC133	RC	10	275987.528	6624050.977	512.5499	M16/0262	1/02/1999
IGC134	RC	10	275813.356	6623997.477	515.78	M16/0262	1/02/1999
IGC135	RC	10	275987.688	6623995.246	512.7899	M16/0262	1/02/1999
IGC136	RC	10	276011.688	6623993.306	512.32	M16/0262	1/02/1999
IGC137	RC	6	275741.584	6623770.606	518.2299	M16/0262	1/02/1999
IGC138	RC	6	275767.135	6623768.796	517.8099	M16/0262	1/02/1999
IGRC001	RC	20	275849.523	6623767.016	516.288	M16/0262	2/08/2007
IGRC002	RC	55	275819.995	6623766.883	516.9409	M16/0262	2/08/2007
IGRC003	RC	75	275788.036	6623767.211	515.965	M16/0262	3/08/2007
IGRC004	RC	60	275763.664	6623767.094	516.3079	M16/0262	3/08/2007
IGRC005	RC	35	275795.114	6623816.865	517.3599	M16/0262	3/08/2007
IGRC006	RC	40	275743.836	6623816.781	517.28	M16/0262	3/08/2007
IGRC007	RC	60	275720.107	6623816.726	517.5109	M16/0262	4/08/2007
IGRC008	RC	40	275856.661	6623866.964	514.2069	M16/0262	4/08/2007
IGRC009	RC	50	275837.53	6623866.902	514.129	M16/0262	4/08/2007
IGRC010	RC	50	275818.409	6623866.885	514.3809	M16/0262	4/08/2007
IGRC011	RC	55	275735.605	6623866.914	519.0919	M16/0262	4/08/2007
IGRC012	RC	55	275706.244	6623867.057	519.609	M16/0262	4/08/2007

SNOWDEN Optico

BHID	Hole type	Maximum depth	X collar	Y collar	Z collar	Lease ID	Date completed
IGRC013	RC	60	275794.644	6623916.799	514.02	M16/0262	5/08/2007
IGRC014	RC	60	275770.929	6623917.016	516.486	M16/0262	5/08/2007
IGRC015	RC	75	275747.9	6623966.878	514.6879	M16/0262	5/08/2007
IGRC016	RC	75	275720.323	6623966.583	515.7299	M16/0262	5/08/2007
IGRC017	RC	40	275730.823	6624091.922	515.4479	M16/0262	5/08/2007
IGRC018	RC	40	275710.452	6624091.968	515.3419	M16/0262	6/08/2007
IGRC019	RC	70	275654.777	6624091.853	517.114	M16/0262	6/08/2007
IGRC020	RC	30	275647.786	6624166.551	516.9879	M16/0262	6/08/2007
IGRC021	RC	60	275630.299	6624213.613	521.122	M16/0262	6/08/2007
IGRC022	RC	80	275592.482	6624216.059	524.7	M16/0262	7/08/2007
IGRC023	RC	75	275591.906	6624167.394	525.689	M16/0262	9/08/2007
IGRC024	RC	50	275630.455	6624166.721	519.739	M16/0262	9/08/2007
IGRC025	RC	60	275539.44	6624242.187	525.257	M16/0262	9/08/2007
IGRC026	RC	50	275515.53	6624242.147	525.1439	M16/0262	9/08/2007
IGRC027	RC	70	275487.837	6624242.206	525.2609	M16/0262	10/08/2007
IGRC028	RC	60	275520.312	6624292.138	524.3229	M16/0262	10/08/2007
IGRC029	RC	60	275594.029	6624342.164	521.375	M16/0262	10/08/2007
IGRC030	RC	45	275550.133	6624442.232	525.564	M16/0262	10/08/2007
IGRC031	RC	60	275781.148	6623749.818	517.453	M16/0262	21/01/2008
IGRC032	RC	90	275748.865	6623765.308	516.931	M16/0262	21/01/2008
IGRC033	RC	25	275810.322	6623793.886	517.1049	M16/0262	21/01/2008
IGRC034	RC	40	275838.018	6623843.59	513.6459	M16/0262	22/01/2008
IGRC035	RC	40	275812.257	6623843.719	514.5919	M16/0262	22/01/2008
IGRC036	RC	45	275792.74	6623871.584	516.0689	M16/0262	22/01/2008
IGRC037	RC	40	275710.186	6623883.473	519.254	M16/0262	22/01/2008
IGRC038	RC	40	275801.932	6623894.1	514.5989	M16/0262	23/01/2008
IGRC039	RC	71	275782.624	6623894.182	516.3159	M16/0262	23/01/2008
IGRC040	RC	53	275804.761	6623918.754	513.8319	M16/0262	23/01/2008
IGRC041	RC	47	275811.84	6623944.969	514.215	M16/0262	23/01/2008
IGRC042	RC	41	275774.49	6623944.998	514.4639	M16/0262	23/01/2008
IGRC043	RC	30	275646.985	6623963.947	519.009	M16/0262	25/01/2008
IGRC044	RC	41	275704.491	6623905.204	519.315	M16/0262	25/01/2008
IGRC045	RC	50	275737.441	6623925.677	517.8229	M16/0262	25/01/2008
IGRC046	RC	50	275671.665	6624000.153	517.052	M16/0262	25/01/2008
IGRC047	RC	40	275695.007	6624067.596	516.005	M16/0262	25/01/2008
IGRC048	RC	40	275697.487	6624067.514	515.89	M16/0262	25/01/2008
IGRC049	RC	35	275676.108	6624117.073	515.932	M16/0262	25/01/2008
IGRC050	RC	90	275565.068	6624215.668	525.445	M16/0262	26/01/2008
IGRC051	RC	110	275545.528	6624215.784	526.3179	M16/0262	26/01/2008
IGRC052	RC	80	275583.817	6624191.04	525.106	M16/0262	27/01/2008
IGRC053	RC	50	275614.325	6624191.741	521.739	M16/0262	27/01/2008
IGRC054	RC	60	275576.06	6624266.516	523.3549	M16/0262	27/01/2008
IGRC055	RC	59	275561.057	6624266.923	524.413	M16/0262	28/01/2008
IGRC056	RC	60	275545.409	6624266.864	524.604	M16/0262	29/01/2008
IGRC057	RC	40	275581.739	6624290.1	522.8629	M16/0262	29/01/2008
IGRC058	RC	40	275564.212	6624290.831	523.71	M16/0262	29/01/2008
IGRC059	RC	40	275540.513	6624291.29	524.5109	M16/0262	29/01/2008
IGRC060	RC	60	275577.632	6624365.062	523.531	M16/0262	29/01/2008
IGRC061	RC	60	275577.032	6624390.245	523.551	M16/0262	29/01/2008
IGRC061	RC	60	275560.97	6624415.952	525.3809	M16/0262	30/01/2008
IGRC062	RC	47	275589.9	6624319.4	523.3609	M16/0262	4/07/2013
IGRC064	RC	72	275550.6	6624318.3	523.5	M16/0262	4/07/2013

BHID	Hole type	Maximum depth	X collar	Y collar	Z collar	Lease ID	Date completed
IGRC065	RC	60	275514.6	6624317.1	524.1	M16/0262	5/07/2013
IGRC066	RC	57	275474.4	6624318	524.3	M16/0262	6/07/2013
IGRC067	RC	102	275565.1	6624189.9	526.2	M16/0262	7/07/2013
IGRC068	RC	114	275610.5	6623954.4	522	M16/0262	9/07/2013
IGRC069	RC	114	275798.3	6623778.6	516	M16/0262	10/07/2013
IGRC21001	RC	84	275840.163	6623723.919	516.822	M16/0262	5/04/2021
IGRC21002	RC	144	275797.838	6623723.518	517.515	M16/0262	6/04/2021
IGRC21003	RC	150	275697.633	6623765.219	518.961	M16/0262	7/04/2021
IGRC21004	RC	168	275731.191	6623786.689	516.566	M16/0262	7/04/2021
IGRC21005	RC	162	275751.564	6623812.029	517.035	M16/0262	8/04/2021
IGRC21006	RC	198	275650.72	6623818.233	519.992	M16/0262	9/04/2021
IGRC21007	RC	198	275655.492	6623869.596	520.319	M16/0262	10/04/2021
IGRC21008	RC	156	275653.609	6623918.27	520.079	M16/0262	11/04/2021
IGRC21009	RC	246	275606.77	6623869.356	520.888	M16/0262	12/04/2021
IGRC21010	RC	120	275706.253	6623968.349	516.284	M16/0262	13/04/2021
IGRC21011	RC	96	275657.961	6623964.571	518.373	M16/0262	13/04/2021
IGRC21012	RC	180	275601.555	6623963.244	522.336	M16/0262	15/04/2021
IGRC21013	RC	246	275550.431	6623967.706	524.759	M16/0262	16/04/2021
IGRC21014	RC	156	275510.763	6624116.673	525.659	M16/0262	17/04/2021
IGRC21015	RCDD	78	275514.077	6624019.611	525.278	M16/0262	17/04/2021
IGRC21016	RC	132	275574.009	6624168.253	526.596	M16/0262	18/04/2021
IGRC21017	RCDD	60	275509.914	6624168.545	526.104	M16/0262	18/04/2021
IGRC21018	RC	138	275522.302	6624208.409	525.811	M16/0262	18/04/2021
IGRC21019	RC	156	275462.886	6624215.421	525.908	M16/0262	19/04/2021
IGRC21020	RC	144	275463.577	6624243.723	525.38	M16/0262	20/04/2021
IGRC21021	RC	90	275527.648	6624272.139	524.889	M16/0262	20/04/2021
IGRC21022	RC	84	275503.685	6624271.61	524.771	M16/0262	20/04/2021
IGRC21023	RC	114	275473.48	6624266.891	525.117	M16/0262	21/04/2021
IGRC21024	RC	150	275437.491	6624267.11	525.691	M16/0262	21/04/2021
IGRC21025	RCDD	72	275598.178	6623917.565	521.722	M16/0262	22/04/2021
IGRC21026	RC	180	275764.287	6623868.882	518.464	M16/0262	22/04/2021
IGRC23001	RC	120	275487.611	6624210.899	525.449	M16/0262	18/02/2023
IGRC23002	RC	126	275531.483	6624190.244	526.547	M16/0262	19/02/2023
IGRC23003	RC	102	275514.196	6624190.172	526.049	M16/0262	19/02/2023
IGRC23004	RC	126	275550.337	6624167.821	526.764	M16/0262	20/02/2023
IGRC23005	RC	72	275646.387	6624121.523	517.372	M16/0262	21/02/2023
IGRC23006	RC	72	275662.528	6624114.208	516.413	M16/0262	21/02/2023
IGRC23007	RC	102	275681.93	6624121.556	515.886	M16/0262	22/02/2023
IGRC23008	RC	66	275655.27	6624117.439	516.787	M16/0262	22/02/2023
IGRC23009	RC	90	275530.706	6624127.284	526.509	M16/0262	22/02/2023
IGRC23010	RC	48	275714.942	6624043.708	515.437	M16/0262	22/02/2023
IGRC23011	RC	60	275784.165	6623965.839	514.447	M16/0262	24/02/2023
IGRC23012A	RC	72	275679.697	6623965.351	517.344	M16/0262	23/02/2023
IGRC23013	RC	114	275624.843	6623963.213	520.564	M16/0262	23/02/2023
IGRC23014	RC	72	275789.268	6623945.592	514.209	M16/0262	23/02/2023
IGRC23015	RC	114	275664.443	6623944.028	518.213	M16/0262	24/02/2023
IGRC23016	RC	96	275749.68	6623923.797	517.508	M16/0262	25/02/2023
IGRC23017	RC	90	275671.876	6623918.118	519.651	M16/0262	25/02/2023
IGRC23018	RC	108	275619.368	6623917.878	520.917	M16/0262	25/02/2023
IGRC23019	RC	60	275663.869	6623883.479	520.36	M16/0262	25/02/2023
IGRC23020	RC	84	275648.514	6623881.266	520.198	M16/0262	26/02/2023
IGRC23021	RC	90	275804.657	6623842.697	515.158	M16/0262	26/02/2023

BHID	Hole type	Maximum depth	X collar	Y collar	Z collar	Lease ID	Date completed
IGRC23022	RC	120	275692.328	6623815.972	518.974	M16/0262	26/02/2023
IGRC23023	RC	102	275726.552	6623762.392	518.502	M16/0262	27/02/2023
IGRC23024	RC	84	275769.169	6623748.462	517.824	M16/0262	27/02/2023
IGRC23025	RC	96	275820.437	6623723.192	517.256	M16/0262	27/02/2023
IGRC23026	RC	42	275856.06	6623724.001	516.46	M16/0262	27/02/2023
KORC001	RC	25	275727	6627161	489	E16/0486	29/09/2021
KORC001A	RC	114	275728	6627162	487	E16/0486	1/10/2021
KORC002	RC	100	275661	6627163	497	E16/0486	2/10/2021
KORC003	RC	110	275624	6627167	491	E16/0486	20/10/2021
LAC018	RC	150	275741.027	6623843.725	518.94	M16/0262	1/05/1995
LAC019	RC	150	275662.928	6623842.283	520.0399	M16/0262	1/05/1995
LAC020	RC	150	275581.013	6623841.56	521.0399	M16/0262	1/05/1995
LAC021	RC	100	275617.271	6624043.997	522.64	M16/0262	1/05/1995
LAC022	RC	150	275577.163	6624043.653	524.0399	M16/0262	1/05/1995
LAC023	RC	150	275536.772	6624042.504	524.84	M16/0262	1/05/1995
LAC024T	DDH	301.4	275497.773	6624041.783	524.84	M16/0262	1/02/1997
LAC025	RC	150	275565.914	6624240.789	524.5399	M16/0262	1/05/1995
LAC026	RC	150	275485.822	6624239.004	524.5399	M16/0262	1/05/1995
LAC027	RC	100	275668.572	6624044.876	520.7399	M16/0262	1/05/1995
LAC028	RC	150	275824.599	6623846.584	516.7399	M16/0262	1/05/1995
LAC029	RC	100	275533.556	6624342.846	523.64	M16/0262	1/05/1995
LAC030	RC	100	275481.864	6624341.559	524.14	M16/0262	1/05/1995
LAC031	RC	100	275596.835	6624145.204	526.2399	M16/0262	1/05/1995
LAC032T	DDH	213	275546.934	6624144.355	526.7399	M16/0262	1/09/1995
LAC033T	DDH	200	275496.432	6624143.593	525.64	M16/0262	1/02/1997
LAC034	RC	100	275801.569	6623947.436	516.14	M16/0262	1/05/1995
LAC035	RC	100	275750.769	6623946.568	517.84	M16/0262	1/05/1995
LAC036	RC	100	275700.576	6623945.313	520.0399	M16/0262	1/05/1995
LAC037	RC	150	275651.477	6623944.38	520.84	M16/0262	1/05/1995
LAC038	RC	200	275603.211	6623941.964	522.14	M16/0262	1/05/1995
LAC039	RC	100	275904.979	6623749.037	515.34	M16/0262	1/05/1995
LAC040	RC	100	275855.208	6623746.79	516.44	M16/0262	1/05/1995
LAC041	RC	100	275804.86	6623752.934	517.14	M16/0262	1/05/1995
LAC042T	DDH	201.4	275754.671	6623746.777	518.14	M16/0262	1/02/1997
LAC043	RC	118	275917.508	6623643.263	516.2399	M16/0262	1/05/1995
LAC044T	DDH	228	275868.711	6623642.236	517.44	M16/0262	1/09/1995
LAC045	RC	180	275818.435	6623640.179	518.84	M16/0262	1/05/1995
LAC046	RC	80	275430.753	6624341.184	524.7399	M16/0262	1/05/1995
LAC047	RC	150	275379.529	6624341.407	525.5399	M16/0262	1/05/1995
LAC048	RC	200	275443.129	6624237.906	525.7399	M16/0262	1/05/1995
LAC049	RC	200	275782.737	6623844.003	518.0399	M16/0262	1/05/1995
LAC050T	DDH	250	275702.224	6623843.209	519.94	M16/0262	1/02/1997
LAC051	RC	200	275704.245	6623747.117	518.94	M16/0262	1/05/1995
LAC052	RC	150	276005.302	6623749.747	513.34	M16/0262	1/05/1995
LAC053	RC	150	275769.095	6623641.242	519.2399	M16/0262	1/05/1995
LAC054	RC	120	275617.341	6623993.08	522.44	M16/0262	1/05/1995
LAC055	RC	180	275592.228	6623993.252	523.7399	M16/0262	1/05/1995
LAC056T	DDH	246	275567.492	6623994.532	524.7399	M16/0262	1/09/1995
LAC057	RC	150	275555.181	6624042.391	524.64	M16/0262	1/05/1995
LAC058	RC	150	275596.376	6624043.357	523.34	M16/0262	1/05/1995
LAC059	RC	120	275601.118	6624093.775	524.2399	M16/0262	1/05/1995
LAC060	RC	150	275626.429	6624093.707	523.14	M16/0262	1/05/1995

SNOWDEN Optico

BHID	Hole type	Maximum depth	X collar	Y collar	Z collar	Lease ID	Date completed
LAC061	RC	150	275651.425	6624094.333	521.84	M16/0262	1/05/1995
LAC062	RC	120	275710.969	6623893.511	519.2399	M16/0262	1/05/1995
LAC063	RC	148	275736.841	6623895.356	518.7399	M16/0262	1/05/1995
LAC064	RC	150	275762.572	6623894.297	517.94	M16/0262	1/05/1995
LAC065	RC	250	275834.206	6623847.256	516.59	M16/0262	1/02/1996
LAC066	RC	250	275803.305	6623896.256	516.89	M16/0262	1/02/1996
LAC067	RC	250	275783.005	6623945.256	516.7299	M16/0262	1/02/1996
LAC068	RC	250	275731.305	6623994.257	518.3699	M16/0262	1/02/1996
LAC069	RC	120	275706.78	6623552.389	522.07	M16/0262	1/02/1996
LAC070	RC	120	275770.094	6623553.741	521.1599	M16/0262	1/02/1996
LAC071	RC	120	275843.392	6623556.092	520.1599	M16/0262	1/02/1996
LAC072	RC	150	275740.17	6623456.386	522.1699	M16/0262	1/02/1996
LAC084	RC	200	275681.482	6623842.965	518.249	M16/0262	1/02/1996
LAC085	RC	100	275717.957	6623844.396	517.2769	M16/0262	1/02/1996
LAC086	RC	180	275797.025	6623872.346	514.8629	M16/0262	1/02/1996
LAC087	RC	78	275725.639	6623895.17	516.991	M16/0262	1/02/1996
LAC088	RC	93	275747.96	6623895.426	516.348	M16/0262	1/02/1996
LAC089	RC	180	275779.047	6623895.898	515.411	M16/0262	1/02/1996
LAC090	RC	180	275768.587	6623918.1	515.387	M16/0262	1/02/1996
LAC090A	RC	115	275762.365	6623918.006	515.5479	M16/0262	1/02/1996
LAC091	RC	180	275614.103	6623944.257	521.7299	M16/0262	1/02/1996
LAC092T	DDH	280	275626.603	6623944.257	521.39	M16/0262	1/02/1997
LAC105	RC	120	275954.807	6623848.256	514.0399	M16/0262	1/02/1996
LAC106	RC	150	276005.108	6623852.256	513.0599	M16/0262	1/02/1996
LAC107	RC	182	275892.507	6623898.256	515.0499	M16/0262	1/02/1996
LAC108	RC	160	275962.907	6623801.256	514.01	M16/0262	1/02/1996
LAC109	RC	160	275842.406	6624002.257	515.0499	M16/0262	1/02/1996
LAC110	RC	250	275448.531	6624138.468	526.6699	M16/0262	1/02/1997
LAC111	RC	150	275623.893	6624142.598	524.7299	M16/0262	1/02/1997
LAC112	RC	150	275624.153	6624092.357	523.26	M16/0262	1/02/1997
LAC113	RC	150	275674.564	6624093.297	520.7399	M16/0262	1/02/1997
LAC114	RC	195	275639.383	6624044.827	521.8099	M16/0262	1/02/1997
LAC115	RC	180	275665.924	6623993.087	521.2	M16/0262	1/02/1997
LAC116	RC	123	275717.134	6623994.237	518.9799	M16/0262	1/02/1997
LAC117	RC	250	275577.473	6623941.027	523.1799	M16/0262	1/02/1997
LAC118	RC	200	275677.374	6623943.227	520.58	M16/0262	1/02/1997
LAC119	RC	148	275728.634	6623944.937	518.8699	M16/0262	1/02/1997
LAC120	RC	150	275776.715	6623893.686	517.7299	M16/0262	1/02/1997
LAC121	RC	200	275727.244	6623868.466	519.32	M16/0262	1/02/1997
LAC122	RC	180	275779.965	6623868.176	517.95	M16/0262	1/02/1997
LAC123	RC	150	275832.656	6623868.596	516.5	M16/0262	1/02/1997
LAC124	RC	250	275638.533	6623842.376	520.2999	M16/0262	1/02/1997
LAC125	RC	200	275754.475	6623795.046	518.3599	M16/0262	1/02/1997
LAC126	RC	153	275804.185	6623796.216	517.4099	M16/0262	1/02/1997
LAC127	RC	100	275828.766	6623754.215	516.83	M16/0262	1/02/1997
LAC128	RC	200	275777.985	6623701.955	518.28	M16/0262	1/02/1997
LAC129	RC	200	275829.605	6623702.115	517.2899	M16/0262	1/02/1997
LAC130	RC	220	275723.744	6623894.296	519.14	M16/0262	1/02/1997
LAC131	RC	200	275395.581	6624237.258	526.9799	M16/0262	1/02/1997
LAC132	RC	150	275446.721	6624188.758	526.52	M16/0262	1/02/1997
LAC133	RC	208	275496.482	6624189.868	525.7	M16/0262	1/02/1997
LAC134	RC	196	275546.772	6624190.728	526.5599	M16/0262	1/02/1997

BHID	Hole type	Maximum depth	X collar	Y collar	Z collar	Lease ID	Date completed
LAC135	RC	210	275398.28	6624138.338	527.9199	M16/0262	1/02/1997
LAC136	RC	145	275574.223	6624090.877	525.0999	M16/0262	1/02/1997
LAC137	RC	200	275697.384	6624047.167	519.69	M16/0262	1/02/1997
LAC138	RC	150	275344.11	6624288.529	527.1699	M16/0262	1/02/1997
LAC139	RC	200	275394.621	6624291.199	526.3099	M16/0262	1/02/1997
LAC140	RC	250	275553.932	6623890.717	522.03	M16/0262	1/02/1997
LAC141	RC	150	275705.154	6623794.086	519.0499	M16/0262	1/02/1997
LAC150	RC	76	275522.003	6623940.329	524.7109	M16/0262	1/02/1997
LAC151	RC	148	275577.603	6624191.198	525.7999	M16/0262	1/02/1997
LAC152	RC	118	275608.133	6624191.918	524.2999	M16/0262	1/02/1997
LAC153	RC	88	275638.054	6624191.808	522.6599	M16/0262	1/02/1997
LAC154	RC	70	275767.655	6623995.077	516.95	M16/0262	1/02/1997
LAC155	RC	100	275742.905	6623994.607	517.7899	M16/0262	1/02/1997
LAC156	RC	148	275692.254	6623993.807	520.1099	M16/0262	1/02/1997
LAC157	RC	154	275642.733	6623992.977	521.83	M16/0262	1/02/1997
LAC158	RC	52	275700.264	6624094.297	519.4299	M16/0262	1/02/1997
LAC159	RC	118	275647.184	6624093.257	522.1699	M16/0262	1/02/1997
LAC160	RC	160	275595.983	6624092.127	524.4099	M16/0262	1/02/1997
LAC161	RC	80	275653.214	6624142.418	522.4	M16/0262	1/02/1997
LAC162	RC	70	275616.683	6624242.348	522.71	M16/0262	1/02/1997
LAC162 LAC163	RC	88	275591.323	6624241.278	523.7899	M16/0262	1/02/1997
	RC	100					
LAC164 LAC165	RC RC	124	275536.212 275510.282	6624240.298 6624239.658	525.2199 525.1699	M16/0262 M16/0262	1/02/1997 1/02/1997
LAC166	RC RC	184 160	275572.723	6624140.878	526.94 526.21	M16/0262	1/02/1997
LAC167 LAC168	RC RC	120	275523.402	6624140.748		M16/0262	1/02/1997
			275604.773	6624296.568	522.4899	M16/0262	1/02/1997
LAC169	RC	120	275554.863	6624296.559	524.1199	M16/0262	1/02/1997
LAC170	RC	120	275504.712	6624296.459 6624341.539	524.45	M16/0262	1/02/1997
LAC171	RC	80	275582.133		523.39	M16/0262	1/02/1997
LAC172	RC	100	275558.363	6624342.039	523.63	M16/0262	1/02/1997
LAC173	RC	50	275690.62	6624116.797	519.7719	M16/0262	1/02/1999
LAC174	RC	99	275664.816	6624116.65	521.538	M16/0262	1/02/1999
LAC175	RC	60	275637.205	6624117.614	523.4849	M16/0262	1/02/1999
LAC176	RC	60	275612.983	6624116.568	524.796	M16/0262	1/02/1999
LAC177	RC	60	275588.744	6624115.78	525.6619	M16/0262	1/02/1999
LAC178	RC	60	275562.043	6624114.818	526.0469	M16/0262	1/02/1999
LAC179	RC	60	275536.45	6624117.291	526.0949	M16/0262	1/02/1999
LAC180	RC	50	275712.531	6624067.398	519.0529	M16/0262	1/02/1999
LAC181	RC	70	275687.862	6624067.395	519.9869	M16/0262	1/02/1999
LAC182	RC	70	275663.563	6624067.412	520.9949	M16/0262	1/02/1999
LAC183	RC	80	275638.796	6624067.14	522.0089	M16/0262	1/02/1999
LAC184	RC	90	275613.702	6624067.792	522.9329	M16/0262	1/02/1999
LAC185	RC	90	275587.506	6624067.102	523.953	M16/0262	1/02/1999
LAC186	RC	90	275564.91	6624067.011	524.6329	M16/0262	1/02/1999
LAC187	RC	90	275536.962	6624065.812	525.052	M16/0262	1/02/1999
LAC188	RC	50	275761.96	6624018.943	517.294	M16/0262	1/02/1999
LAC189	RC	70	275737.703	6624019.157	518.056	M16/0262	1/02/1999
LAC190	RC	70	275710.623	6624016.488	519.0089	M16/0262	1/02/1999
LAC191	RC	70	275687.738	6624016.594	520.1439	M16/0262	1/02/1999
LAC192	RC	70	275662.198	6624017.5	521.03	M16/0262	1/02/1999
LAC193	RC	90	275636.457	6624018.444	521.924	M16/0262	1/02/1999
LAC194	RC	90	275612.905	6624017.866	522.887	M16/0262	1/02/1999

BHID	Hole type	Maximum depth	X collar	Y collar	Z collar	Lease ID	Date completed
LAC195	RC	90	275587.99	6624018.904	523.7919	M16/0262	1/02/1999
LAC196	RC	90	275563.624	6624019.554	524.6459	M16/0262	1/02/1999
LAC197	RC	70	275786.112	6623995.419	516.463	M16/0262	1/02/1999
LAC198	RC	60	275689.974	6623968.996	520.3889	M16/0262	1/02/1999
LAC199	RC	60	275663.202	6623968.87	521.4069	M16/0262	1/02/1999
LAC200	RC	60	275637.538	6623968.233	521.731	M16/0262	1/02/1999
LAC201	RC	60	275612.578	6623967.318	522.4769	M16/0262	1/02/1999
LAC202	RC	60	275588.341	6623967.159	523.5709	M16/0262	1/02/1999
LAC203	RC	60	275560.628	6623966.763	524.565	M16/0262	1/02/1999
LAC204	RC	100	275788.236	6623918.816	516.994	M16/0262	1/02/1999
LAC205	RC	70	275764.932	6623918.778	517.726	M16/0262	1/02/1999
LAC206	RC	70	275739.575	6623918.983	518.5349	M16/0262	1/02/1999
LAC207	RC	70	275714.571	6623919.319	519.3029	M16/0262	1/02/1999
LAC208	RC	70	275688.795	6623918.861	519.8969	M16/0262	1/02/1999
LAC209	RC	70	275663.27	6623919.227	520.1959	M16/0262	1/02/1999
LAC210	RC	70	275638.157	6623918.822	520.564	M16/0262	1/02/1999
LAC211	RC	88	275614.278	6623919.062	521.192	M16/0262	1/02/1999
LAC212	RC	60	275798.421	6623894.051	517.0549	M16/0262	1/02/1999
LAC213	RC	50	275818.03	6623894.055	516.406	M16/0262	1/02/1999
LAC214	RC	50	275837.563	6623894.681	516.023	M16/0262	1/02/1999
LAC215	RC	30	275857.691	6623894.571	515.588	M16/0262	1/02/1999
LAC216	RC	80	275688.38	6623893.184	519.6859	M16/0262	1/02/1999
LAC217	RC	80	275712.541	6623893.515	519.359	M16/0262	1/02/1999
LAC218	RC	50	275872.916	6623868.111	515.536	M16/0262	1/02/1999
LAC219	RC	70	275851.499	6623868.189	515.9219	M16/0262	1/02/1999
LAC220	RC	80	275812.162	6623868.29	517.052	M16/0262	1/02/1999
LAC221	RC	60	275751.971	6623868.188	518.703	M16/0262	1/02/1999
LAC222	RC	90	275702.028	6623868.135	519.7689	M16/0262	1/02/1999
LAC223	RC	50	275902.808	6623844.304	515.064	M16/0262	1/02/1999
LAC224	RC	60	275876.917	6623844.031	515.585	M16/0262	1/02/1999
LAC225	RC	70	275853.231	6623843.928	516.062	M16/0262	1/02/1999
LAC226	RC	75	275763.344	6623842.804	518.504	M16/0262	1/02/1999
LAC227	RC	60	275912.415	6623817.97	514.9429	M16/0262	1/02/1999
LAC228	RC	60	275886.75	6623818.139	515.4439	M16/0262	1/02/1999
LAC229	RC	70	275862.175	6623817.253	516.0859	M16/0262	1/02/1999
LAC230	RC	80	275837.325	6623817.559	516.7479	M16/0262	1/02/1999
LAC231	RC	70	275811.288	6623817.37	517.328	M16/0262	1/02/1999
LAC232	RC	80	275787.116	6623817.535	517.734	M16/0262	1/02/1999
LAC233	RC	80	275762.846	6623819.03	518.361	M16/0262	1/02/1999
LAC234	RC	84	275737.371	6623817.878	518.8449	M16/0262	1/02/1999
LAC235	RC	80	275712.789	6623817.913	519.301	M16/0262	1/02/1999
LAC236	RC	80	275687.037	6623817.925	519.5939	M16/0262	1/02/1999
LAC237	RC	70	275882.459	6623794.116	515.609	M16/0262	1/02/1999
LAC238	RC	70	275858.393	6623791.264	516.1339	M16/0262	1/02/1999
LAC239	RC	70	275832.426	6623791.301	516.692	M16/0262	1/02/1999
LAC240	RC	96	275783.268	6623791.323	517.778	M16/0262	1/02/1999
LAC241	RC	70	275732.006	6623791.903	518.577	M16/0262	1/02/1999
LAC242	RC	70	275682.425	6623792.707	519.312	M16/0262	1/02/1999
LAC243	RC	30	275836.427	6623768.149	516.5	M16/0262	1/02/1999
LAC244	RC	50	275812.378	6623766.926	516.9619	M16/0262	1/02/1999
LAC245	RC	70	275787.724	6623767.84	517.4619	M16/0262	1/02/1999
LAC246	RC	60	275496.663	6624317.12	524.2119	M16/0262	1/02/1999

SNOWDEN Optiro

BHID	Hole type	Maximum depth	X collar	Y collar	Z collar	Lease ID	Date completed
LAC247	RC	60	275461.893	6624317.167	524.4959	M16/0262	1/02/1999
LAC248	RC	70	275437.448	6624317.206	524.8469	M16/0262	1/02/1999
LAC249	RC	90	275488.282	6624292.354	524.484	M16/0262	1/02/1999
LAC250	RC	100	275461.481	6624292.757	524.6749	M16/0262	1/02/1999
LAC251	RC	60	275537.118	6624266.599	524.8259	M16/0262	1/02/1999
LAC252	RC	60	275511.13	6624266.975	524.906	M16/0262	1/02/1999
LAC253	RC	60	275486.459	6624267.102	524.827	M16/0262	1/02/1999
LAC254	RC	60	275462.209	6624267.504	525.098	M16/0262	1/02/1999
LAC255	RC	50	275586.411	6624215.359	524.6719	M16/0262	1/02/1999
LAC256	RC	80	275562.861	6624215.764	525.4959	M16/0262	1/02/1999
LAC257	RC	80	275536.468	6624216.226	525.848	M16/0262	1/02/1999
LAC258	RC	60	275512.567	6624216.543	525.4489	M16/0262	1/02/1999
LAC259	RC	50	275662.378	6624166.873	521.497	M16/0262	1/02/1999
LAC260	RC	60	275638.24	6624167.004	523.1259	M16/0262	1/02/1999
LAC261	RC	70	275612.67	6624167.421	524.89	M16/0262	1/02/1999
LAC262	RC	80	275588.074	6624167.806	526.205	M16/0262	1/02/1999
LAC263	RC	80	275561.633	6624168.119	526.7139	M16/0262	1/02/1999
LAC264	RC	80	275537.372	6624168.782	526.843	M16/0262	1/02/1999
LAC265	RC	60	275637.945	6624143.157	523.546	M16/0262	1/02/1999
LAC266	RC	40	275668.857	6624143.137	521.176	M16/0262	1/02/1999
LAD001	DDH	349	275593.203	6623891.256	521	M16/0262	1/02/1996
LAD002	DDH	132.4	275628.784	6623893.107	520.518	M16/0262	1/02/1997
LAD003	DDH	129.9	275728.817	6623894.105	518.9439	M16/0262	1/02/1997
LAD004	DDH	201.4	275680.434	6623868.666	520.08	M16/0262	1/02/1997
LAD005T	DDH	319.32	275622.513	6623892.426	520.58	M16/0262	1/02/1997
LAD006	DDH	350	275517.286	6623940.2	524.7009	M16/0262	1/02/1997
LAD007	DDH	369.1	275541.682	6623990.751	525.0449	M16/0262	1/02/1997
LAD008	DDH	384.5	275412.281	6624188.498	527.6099	M16/0262	1/01/1998
LAD009	DDH	320	275465.121	6624090.348	525.39	M16/0262	1/01/1998
LAD010	DDH	400.4	275431.601	6623988.037	524.9299	M16/0262	1/01/1998
LAD011	DDH	399.2	275495.191	6623888.957	523.21	M16/0262	1/01/1998
LAD012	DDH	271.5	275647.653	6623793.176	519.7299	M16/0262	1/01/1998
LAD013	DDH	88	275580.801	6624191.137	525.598	M16/0262	1/02/1999
LAD014	DDH	70	275780.137	6623893.474	517.539	M16/0262	1/02/1999
LAD015	DDH	62.7	275648.855	6623943.792	520.8699	M16/0262	1/02/1999

APPENDIX 3: JORC TABLES

Section 1: Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representativity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	 Aberfoyle: Reverse circulation (RC), rotary air blast (RAB) and aircore (AC) drilling with 1 m sampling from cyclone (BDRB prefix holes RAB drilling with 2 m sampling). Samples sent to accredited laboratories for drying, crushing and pulverising. Composite samples assayed by aqua regia/atomic absorption spectroscopy (AAS) (except in areas of elevated graphite – fire assay (FA)) and those returning greater that 0.2–0.3 g/t were re-assayed as individual metres by FA to ALS Kalgoorlie for 50 g charge FA with 0.01 ppm detection limit. HQ triple diamond (DD) drilling was halved, 50 g charge FA with 0.01 ppm detection limit. EGL: RC samples collected from the riffle or cone splitter directly off rig into calico bags. Splitter maintained on level site to ensure sample representativity. 1 m samples are dried, crushed, pulverised and a 40 g charge is analysed by FA. Roper River Resources: RAB 1 m sampling with blade or hammer. Dried, crushed and pulverised samples analysed by aqua regia/AAS finish with 25 g charge. Monarch: AC, RAB and RC drilling on 1 m sampling basis with RAB samples being composited to 4 m for initial analysis by aqua regia/AAS. Individual AC and RC metres collected from cyclone, riffle split and dispatched for aqua regia/AAS and FA/AAS respectively. Siberia Mining Corporation (SMC): 1 m sampling of AC, RAB and RC drilling composites and individual re-assays dispatched for FA. Perilya:

Criteria	JORC Code explanation	Commentary
		5 m composite RAB and AC assayed at Analabs Perth by method P649, 50 g aqua regia, DIBK, Carbon Rod.
		Croesus:
		 RC 1 m samples collected under cyclone. RAB drilling on a 1 m basis. 3.5 kg samples were pulverised to make 50 g charge for analysis by FA/inductively coupled plasma-optical spectrometry (ICP-OS).
		Delta:
		 1 m sampling of AC, RAB and RC. 5 m composites dispatched to Genalysis and/or ALS laboratories Kalgoorlie for preparation, followed by aqua regia with 50 g charge with 0.01 ppm detection limit. Composite assays returning values >= 0.1 ppm Au, corresponding single metre samples were collected and despatched.
		Ora Banda Mining Ltd (OBM):
		1 m RC samples using face sampling hammer with samples collected under cone splitter.
		 4 m composite RC samples collected using a PVC spear from the sample piles at the drill site. For drilling up to April 2020, RC samples were dispatched for pulverising and 50 g charge FA. 4 m composite samples with gold values greater than 0.2 g/t Au were re-sampled as 1 m split samples and submitted to the lab for further analysis. Half-core samples, cut by automated core saw. Core sample intervals selected by geologist and defined by geological boundaries. Samples are crushed, pulverised and a 40 g charge is analysed by FA.
		 A total of 56 holes were drilled by OBM, including three RCDD holes and 53 RC holes.
		The information presented above has been derived from OBM's JORC Table 1 for its 2022 Iguana Mineral Resource estimate (MRE). Snowden Optiro acknowledges that it cannot independently validate the provided information and relies on it for decision-making during the 2024 MRE update.

Criteria	JORC Code explanation	Commentary
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Aberfoyle: No details for early RAB drilling. Later drilling involved RAB drilling using 4—4.25-inch blade or hammer to blade refusal. AC using 3.5-inch blade. RC 5.25–5.5-inch diameter face sampling hammer. Croesus: Undocumented details. Presumably industry standard at the time being 5.5-inch face sampling hammers for RC and 4-inch diameter RAB holes. Delta: RC 5.5-inch face sampling hammers. At times, a stepped AC bit was used to drill through sand at beginning of hole which changed to face-sampling hammer when laterite encountered. HQ triple twin DD holes at Lizard. LZD1-3 was oriented. EGL: RC 5.25-inch diameter. Roper River Resources: RAB with blade and/or hammer bit. RC drilling with 5.25-inch diameter face sampling hammer. Monarch: RC drilling 5.5-inch diameter with face sampling hammer. RAB 4-inch diameter blade with occasional hammer bit usage. AC details undocumented. SMC: AC, RAB, RC details undocumented. Presumably industry standard at the time being 5.5-inch face sampling hammers for RC and 4-inch diameter RAB holes.

Criteria	JORC Code explanation	Commentary
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 OBM: 5.25–5.5-inch diameter RC holes using face sampling hammer with samples collected under cone splitter. HQ and HQ3 coring to approx. 40 m, then NQ2 to bottom of hole. Metallurgical and geotechnical core holes drilled using HQ3 exclusively. All core oriented by reflex instrument. The information presented above is derived from OBM's JORC table for its 2022 Iguana MRE. Snowden Optiro acknowledges that it cannot independently validate the provided information and relies on it for decision-making during the 2024 MRE update. Delta: Recoveries for resource RC drilling made as a subjective estimate. Recoveries in resource drilling were generally in excess of 70% (Iguana laterite), 60% (Lizard). Poor recoveries occurred outside mineralised zones. OBM: DD drill recoveries are recorded as a percentage calculated from measured core against downhole drilled intervals (core blocks). RC samples are weighed at the laboratory to monitor recoveries. Other operators have not captured recovery data. There is no known relationship between sample recovery and grade. The information presented above is derived from OBM's JORC table for its 2022 Iguana MRE. Snowden Optiro acknowledges that it cannot independently validate the provided information and relies on it for decision-making during the
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	2024 MRE update Aberfoyle: Logging on 1 m basis. Qualitative – lithology, oxidation, grain size. Quantitative – quartz.

Criteria	JORC Code explanation	Commentary
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged.	 Qualitative – lithology, colour, grain size, alteration, oxidation, texture, structures, regolith. Quantitative – estimates are made of quartz veining. Delta: Qualitative – lithology, colour, oxidation, structure, texture, alteration. Quantitative – estimates are made of quartz veining and minerals. EGL: Qualitative – alteration, colour, grain size, lithology, oxidation, mineralogy, structure, texture, vein style, vein assemblage, remarks. Quantitative – mineralisation intensity, vein percent. Roper River Resources: Qualitative – colour, lithology, oxidation, BOCO, texture, alteration, minerals, sulphides. Quantitative – quartz. Monarch: Qualitative – lithology, colour, oxidation, grain size, texture, structure, hardness, regolith. Quantitative – estimates are made of quartz veining, sulphide percentages. SMC: Qualitative – lithology, colour, oxidation, alteration. Quantitative – estimates are made of quartz veining. OBM: Field logging was conducted using Geobank Mobile™ software on Panasonic Toughbook CF-31 ruggedised laptop computers. Qualitative logging – lithology, colour, oxidation, grain size, texture, structure, hardness, regolith.

Criteria	JORC Code explanation	Commentary
		 Quantitative – estimates are made of quartz veining, sulphide and alteration percentages. Core photographed both wet and dry. Magnetic susceptibility and rock quality designation (RQD) were also recorded for core holes. All holes were geologically logged in their entirety to a level of detail to support Mineral Resource estimation.
Subsampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representativity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	 Aberfoyle: Early (~1990) drilling – 2 m samples composited to 6m by undocumented method. Results returning >0.2 g/t re-sampled on a 2 m basis. Subsequent drilling – RAB/AC 2 m surface composites and 4 m composites thereafter. RC 1 m samples riffle split and composited to 4 m samples. Composites assays returning greater than 0.2 g/t re-sampled on a metre basis. Croesus: RAB drill samples were collected in buckets below a freestanding cyclone and laid out at 1 m intervals in rows of tens adjacent to the drill collar. Composite analytical samples (~3.5 kg) were initially collected over 5 m intervals for each hole and a 1 m bottom of hole analytical sample. Analytical composite samples were formed by taking a representative scoop through each 1 m drill sample. Composite assays returning greater than 100 ppb Au were resampled on an individual basis by an undocumented method. RC drill samples were riffle split at 1 m intervals off the rig into calico bags whilst excess material was placed on the ground in 1 m piles for logging. The analytical samples were dried, crushed and split to obtain a sample less than 3.5 kg, and then fine pulverised prior to a 50 g sample being taken for analysis. Delta: RC: Samples collected on 1 m intervals via a cyclone into green plastic bags. Each bag was riffle split if dry to a 2–3 kg sample and retained on site. A PVC spear sample was taken from residues to create a 5 m composite. If

Criteria	JORC Code explanation	Commentary
		composites returned values >= 0.1 g/t, geologically interesting or had elevated arsenic levels, the original 1 m splits were collected and submitted. Original wet samples were split at this stage using wet triple riffle splitter, washed between samples. Wet samples were rare and usually outside of main mineralisation.
		 RAB: Typically 1 m samples were composited to 5 m (occasionally 10 m) by PVC spear. Significant assay results were re-submitted on a single metre basis.
		DD: Core was halved. Sample length typically 1 m.
		EGL:
		 RC samples riffle split into calico bags. Wet or moist samples are noted during sampling. Core was cut with diamond saw and half core sampled. All mineralised zones are sampled, including portions of visibly unmineralised hangingwall and footwall zones. Sample weights range from >1.0 kg to 3.5 kg. Samples weighed by laboratory, dried and split to <3 kg if necessary and pulverised by LM-5. Field duplicates, blanks and standards were submitted for QAQC analysis.
		Roper River Resources:
		 RAB and RC holes were composited to 6 m and 4 m respectively with anomalous zones of nickel or gold being resubmitted on a metre basis.
		Monarch:
		• RAB: 2 – 4 m composites scoop sampled.
		AC and RC 1 m splits via riffle splitter.
		 RAB samples were composited to 4 m by scoop for initial analysis. Samples were riffle split and prepared with single stage mix and grinding.
		SMC:
		 RAB samples were collected at 1 m intervals from the drillhole collar using a plastic bucket and laid on the ground. A scoop sample was taken from each sample to form 4 m or 5 m composite.
		AC: Predominantly 4 m composite samples. Methods unknown.

Criteria	JORC Code explanation	Commentary
		 RAB samples were collected at 1 m intervals from the drillhole collar using a plastic bucket and laid on the ground. A scoop sample was taken from each sample to form a 5 m composite. AC: Predominantly 4 m composite samples.
		RAB: Predominantly 5 m composite samples.
		OBM:
		 RC samples were submitted either as individual 1 m samples taken onsite from cone splitter or as 4 m composite samples speared from the onsite drill sample piles. Half-core samples, cut by saw. Core sample intervals selected by geologist and defined by geological boundaries.
		 For drilling up to April 2020, RC samples were dried, crushed, split, pulverised and a 50 g charge taken. 4 m composite samples with gold values greater than 0.2 g/t Au were re-sampled as 1 m split samples and submitted to the lab for further analysis.
		 Field duplicates, blanks and standards were submitted for quality assurance and quality control (QAQC) analysis. Repeat assays were undertaken on pulp samples at the discretion of the laboratory.
		The information presented above is derived from OBM's JORC table for its 2022 Iguana MRE. Snowden Optiro acknowledges that it cannot independently validate the provided information and relies on it for decision-making during the 2024 MRE update
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	 Aberfoyle: RC/RAB: composites assayed by aqua regia AAS. Composites returning >0.2–0.3g/t Au re-submitted as 1 m samples by 50 g charge FA.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	 AC: Composites by 50 g charge FA. Composites returning >0.2–0.3g/t Au resubmitted as 1 m samples for FA again.
		 In areas of elevated graphite (Burke Dam), RC composites were assayed by 50 g FA. Assayed at Genalysis.
		Croesus:

Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision habeen established.	 RC and RAB: 5 m composites dispatched to Genalysis and/or ALS laboratories Kalgoorlie for aqua regia with 50 g charge with 0.01 ppm detection limit. Composite assays returning values >= 0.1 ppm Au, corresponding single metre samples were collected and despatched to ALS Kalgoorlie for 50 g charge FA with 0.01 ppm detection limit. Core despatched to Genalysis
	 Kalgoorlie for 50 g charge FA with 0.01ppm detection limit. Standards of an undocumented provenance and locally (uncertified) sourced blanks inserted but frequency undocumented. One in 20 pulp duplicate frequency. Blind pulp re-assays performed. EGL: Samples were sent to Kalgoorlie Assay Laboratories to be analysed for gold by 40 g FA. Samples were also analysed at Genalysis. Certified reference material (CRM) standards were submitted. Field duplicate samples taken at rate of 1:40. Roper River Resources: 25 g sample by aqua regia/AAS finish at MiniLab Kalgoorlie. Lab repeats at discretion of laboratory. Monarch: RAB and AC: Assayed by aqua regia/AAS with 10 ppb detection limit. RC: 50 g charge FA/AAS at SGS Kalgoorlie. SMC:
	FA, undocumented charge and laboratory.

Criteria	JORC Code explanation	Commentary
		• Up to April 2020, all samples were sent to an accredited laboratory (Nagrom Laboratories in Perth, Intertek-Genalysis in Kalgoorlie or SGS in Kalgoorlie). The samples have been analysed by firing a 50 g portion of the sample. This is the classical fire assay process and will give total separation of gold. An ICP-OES finish is used. Commercially prepared standard samples and blanks are inserted in the sample stream at a rate of 1:12. Sizing results (percentage of pulverised sample passing a 75 μm mesh) are undertaken on approximately 1 in 40 samples. The accuracy (standards) and precision (repeats) of assaying are acceptable. Standards and blanks were inserted into the sample stream at a rate of approximately 1:12. Duplicates were submitted at a rate of approximately 1:30.
		FA is considered a total technique, aqua regia is considered partial. This is sourced from the OBM JORC table. Snowden Optiro cannot validate the above information except for the Nagrom laboratory. Snowden Optiro carried out a lab audit at Nagrom laboratory in May 2024. The audit shows no hygiene issue or fatal flaw for the gold FA procedure. Snowden Optiro has the access to the field duplicate data for most drilling campaigns, CRMs and blank data for OBM drilling campaign. Snowden Optiro conducted the independent checks for the available QC data. No material issue was identified, and Snowden Optiro considers that the data is of sufficient quality for the MRE work.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	Holes are not deliberately twinned in Iguana area. Monarch: Geological and sample data was logged digitally and .csv or .xls files imported into Datashed SQL database with in-built validation. Samples bags were put into numbered plastic bags and then cable tied. Samples collected daily from site by laboratory. EGL:

Criteria	JORC Code explanation	Commentary
		 Geological and sample data logged directly into field computer at the core yard using Field Marshall. Data is transferred to Perth via email and imported into Geobank SQL database by the database administrator (DBA). Assay files are received in .csv format and loaded directly into the database by the DBA. Hardcopy and/or digital copies of data are kept for reference if necessary.
		OBM:
		 Geological and sample data logged directly into field computer at the drill rig or core yard using Field Marshall or Geobank Mobile. Data is transferred to Perth via email and imported into Geobank SQL database by the DBA. Assay files are received in .csv format and loaded directly into the database by the DBA. Hardcopy and/or digital copies of data are kept for reference if necessary.
		Data entry, verification and storage protocols for remaining operators is unknown.
		This is sourced from OBM JORC table. Snowden Optiro cannot validate the above information.

Criteria	JORC Code explanation	Commentary
Location of data points	Accuracy and quality of surveys used to locate drillholes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	 Aberfoyle: All drilling is un-surveyed. Collars located on AMG Zone 51 Grid utilised. Croesus: TGRC holes were collar surveyed in AMG Zone 51 Grid. No downhole surveys. Delta: All drillholes used for resource definition surveyed by Minecomp. All post-1993 RC and DD holes downhole surveyed using EMS or Eastman single shot where possible. Where not possible, data from proximal holes was used. LAD and LZC, LZD, LAC, and selected G prefixed holes downhole surveyed by undocumented method approximately every 10 m. Many RAB holes appear to be collar surveyed. AMG Zone 51 Grid utilised except for holes in the Nyborgs region were a local grid (Lady Ida) was utilised. EGL: Collars were surveyed by differential global positioning system (GPS) in MGA Zone 51. No downhole surveying performed. Roper River Resources: No surveys post drilling. AMG Zone 51 Grid utilised. Monarch: RC and some AC collars surveyed by differential GPS. All remaining holes surveyed by GPS. MGA Zone 51 Grid utilised. IGRC holes were downhole surveyed by EMS every 5 m. RC drilling was surveyed by Electronic Multi-shot on selected holes. SMC: No evidence of post drilling surveys, MGA Zone 51 Grid utilised. OBM: (RC, DD) MGA94, Zone 51. Drillhole collar positions were picked up by a contract surveyor using RTK GPS subsequent to drilling.

Criteria	JORC Code explanation	Commentary
		 Drillhole, downhole surveys are recorded every 30 m using a reflex digital downhole camera. Some RC holes not surveyed if holes short and/or drilling an early-stage exploration project. DD drillholes completed in 2019 and 2020 by OBM were surveyed using a Gyro tool.
		This is sourced from OBM JORC table. Snowden Optiro cannot validate the above information.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish	Exploration results are reported for single holes only. Data spacing highly variable from wide spaced ~800 m x ~80 m regional RAB to
	the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	close spaced resource drilling ~10 m x ~10 m and grade control drilling at ~5 m x ~5 m. Drillhole spacing is adequate to establish geological and grade continuity for the Iguana deposit. Drill composites have been length weighted, 0.5 g/t lower cut-off, not top cut, maximum 2 m internal dilution.

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Deposits in the Lady Ida zone are generally oriented on north-northwest to northwest trends. Once the orientation of mineralisation was established, drilling was mostly oriented towards 90° with Iguana grade control oriented towards 45°. Drilling of laterite mineralisation is almost exclusively vertical in nature. The current drilling of bedrock mineralisation is mostly orientated towards east and inclined between -50° to -60°. Considering the bedrock mineralisation is interpreted to be dipping both steeply west and shallowly east, the current orientation of sampling is not optimal. However, this needs to be verified with more diamond drilling to confirm the two groups of mineralisation and then the sampling orientation can be optimised.
Sample security	The measures taken to ensure sample security.	 Unknown for all drilling except for the following: Monarch: Sample calicos were put into numbered plastic bags and cable tied. Any samples that going to SGS were collected daily by the lab. Samples sent to ALS were placed into sample crates and sent via courier on a weekly basis. EGL: Samples were bagged, tied and in a secure yard. Once submitted to the laboratories they are stored in cages within a secure fenced compound. Samples are tracked through the laboratory via their LIMS. OBM: Samples were bagged, tied and stored in a secure yard on site. Once submitted to the laboratories they were stored in cages within a secure fenced compound. Samples are tracked through the laboratory via their LIMS. Snowden Optiro does not have access to the information related to the above comments from OBM. Therefore, Snowden Optiro cannot verify these comments from OBM.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	OBM has reviewed historical digital data, particularly from the Iguana deposit, and compared it to hardcopy and digital (including WAMEX) records. Snowden Optiro does not have access to the historical digital data, except for the OBM drilling. Therefore, Snowden Optiro cannot verify this comment from OBM.

Section 2: Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	Iguana deposit is on a single mining tenement, M16/272.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Drilling, sampling and assay procedures and methods as stated in the database and confirmed from WAMEX reports and hardcopy records are considered acceptable and to industry standards of the time. There is sufficient understanding of drilling, sampling and assay methodologies for the majority of drilling in the Lady Ida area. BCN is confident that previous operators completed work to standards considered acceptable for the time.
Geology	Deposit type, geological setting and style of mineralisation.	The project is located along the inferred trace of the Ida Fault, a north-south trending deep-seated crustal structure juxtaposing batholithic granites and subordinate basalt and banded iron formation of the Southern Cross Province against greenstones of the Eastern Goldfields Province.
		The Eastern Goldfields Province sequences are metamorphosed to amphibolite facies and dominated by tholeiitic to komatiitic basalts, tremolite-chlorite rich ultramafics and psammitic to pelitic sediments. The regional stratigraphy trends north-northwest, sub-parallel to the Ida Fault, and the regional dip is sub-vertical. The structural complexity of the area, including inferred thrusts, fault splays and crosscutting shears, presents good potential for additional trap sites.

Criteria	JORC Code explanation	Commentary
		The resource at Iguana is dominantly hosted in a highly sheared, silica-muscovite-carbonate altered, tholeiitic metabasalt and sediments of lower to mid amphibolite facies. It is interpreted as being controlled by imbricate thrusts contained between two north-south trending faults. Ultramafic units lie to the west and the mafic-sedimentary package lies to the east. Post-mineralisation pegmatite dykes attain considerable thickness in places and stope out mineralisation.
Drillhole information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes: • easting and northing of the drillhole collar • elevation or RL (Reduced Level – elevation above sea level in metres) of the drillhole collar • dip and azimuth of the hole • downhole length and interception depth • hole length.	Refer to the list of collars attached to this ASX announcement. Since a MRE is being declared (see Section 3), a list of mineralised intercepts is not required.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	Mineralised intercepts have not been reported in this release as a Mineral Resource is being declared. Metal equivalent calculations are not required as the Iguana project is gold only.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported.	Mineralised intercepts have not been reported in this release as a Mineral Resource is being declared; however, the drillholes have a variable angle to the two main directions of interpreted mineralisation.

Criteria	JORC Code explanation	Commentary
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'downhole length, true width not known').	The geometry of the mineralisation at Iguana is approximately northwest-southeast and steep south-westerly dipping or shallow northeasterly dipping. Drilling is dominantly orientated east-west, which is not optimal, though adequate for testing the strike of the mineralisation.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drillhole collar locations and appropriate sectional views.	See plan and cross-section views in the associated Market Release.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The location of drillhole intersections is shown on the plans and 2D/3D diagrams and are coloured according to grade to provide context for the mineralisation interpretation.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Iguana has no known reported metallurgical issues. Primary ore was previously mined by Delta in the early 2000s with ore treated at the Greenfields processing plan in Coolgardie. Recovery and reconciliation figures are unknown.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Further resource definition drilling and metallurgical drilling by BCN are planned for second half of 2024. This will confirm the mineralisation orientation uncertainty and also provide metallurgical samples.

Section 3: Estimation and Reporting of Mineral Resources

Criteria	JORC Code explanation	Commentary
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.	Data used in the MRE were originally sourced from a Microsoft Access database supplied by BCN. Snowden Optiro understands the data used in this Mineral Resource is the same as that used by OBM to generate the previous resource estimate in January 2022.
	Data validation procedures used.	Basic data checks were applied to the drillhole data exported from the supplied Microsoft Access database.
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case.	A one-day site visit was undertaken by Snowden Optiro on 12 March 2024. Gregory Zhang, Senior Consultant for Snowden Optiro, visited the Iguana area in March 2024 at the request of BCN. The purpose of the visit was to review the geology exposed in the Jamaican Rock trial pit and RC core chips available at the BCN site office. Because there is no current drilling activity, Snowden Optiro has relied upon the QA documentation and QC checks in OBM report.
Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	Weathering and oxidation surfaces from OBM were used to guide the boundary between laterite and bedrock mineralisation. Pegmatite was remodelled during the 2024 MRE based on the structural orientations observed in the pit during the 2024 site visit and texture logging in the provided Microsoft Access database.
		The 2024 MRE uses the BCN laterite mineralisation interpretation, which is based upon the AC, RC and DD drillhole sample grade data and lithological logging.

Criteria	JORC Code explanation	Commentary
		For bedrock mineralisation, lithology and alteration coding was reviewed; the mineralisation seems to be closely related to the hydrothermal alteration, particularly biotite and silica alteration. However, no consistent mineralisationalteration trends were able to be modelled. Therefore, RC and DD grades were used, together with the structural orientations observed in the Jamaican Rock pit. Snowden Optiro generated a sequential categorical indicator kriging (SCIK) to reflect the observed steep northwest-dipping and shallow southeast-dipping veins using Datamine Studio RM software.
	Nature of the data used and of any assumptions made.	The bedrock mineralisation interpretation process was largely based upon the gold grade data. Rather than the host rock lithology controlling the mineralisation distribution, the hydrothermal alteration and structures are assumed to be main factors. Therefore, mineralisation models for MRE 2024 used the two structural orientations observed in the Jamaican Rock trial pit as the guidance to model the bedrock mineralisation.
	The effect, if any, of alternative interpretations on Mineral Resource estimation.	Snowden Optiro notes that there are possible alternative interpretations for the bedrock mineralisation. This interpretation can only be consolidated by collecting more structural and grade information from the DD drilling, which has been planned in the next phase by BCN.
	The use of geology in guiding and controlling Mineral Resource estimation.	The weathering and oxidation surfaces were used to constrain the laterite mineralisation estimation of gold grade and the density assignment. Lithology and alteration coding in the drillhole database, and structural orientations in the trial pit, were also considered during the bedrock mineralisation interpretation.
	The factors affecting continuity both of grade and geology.	The hydrothermal alterations and structures provide the prime controls on the spatial distribution of bedrock mineralisation, given the area has a complex structural history driving ore-bearing fluid movement, resulting in the possibilities for multiple orientations of the mineralisation precipitation.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	The resource is approximately 1,100 m from north to south, and 750 m from east to west. The model extends from surface to 300 m below surface at its deepest point.

Criteria	JORC Code explanation	Commentary
Estimation and modelling techniques	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	Grade estimation for the laterite mineralisation used 1 m downhole composites controlled by BCN mineralisation interpretations. Block grade estimation used Ordinary Kriging (OK) techniques in Datamine software. Grade estimation by OK is considered appropriate due to the moderate variability exhibited by the gold being estimated into the controlling domains. No top cut was applied. Estimation was completed in three passes, each with a less restrictive search. The initial interpolation pass was used with a range of 100 m (0->300°), 50 m (0->60°) and 10 m (90°->0°) for major, semi-major and minor directions, with a minimum of 15 and a maximum of 30 samples used. Both the directions and ranges were set to match the grade variogram models. For the second pass, search distances were doubled, and the number of samples was kept the same. For the third pass, the search distances were increased to 10 times the first search, with the minimum and maximum samples being reduced to 5 and 15 respectively. Over 90% of the blocks were estimated during the first pass, and only 0.5% volume was estimated during the third pass. A SCIK approach was used for the bedrock mineralisation modelling. Based on the assumption that mineralisation is mostly controlled by the two structures and certain hydrothermal alterations, after several trials Snowden Optiro decided to use the SCIK approach to capture all of the mineralised samples in bedrock. In this approach, two sets of categorical indicator kriging were conducted on the 2 m x 2 m x 1 m block support. After the probability estimation, using a 0.5 g/t grade threshold as the indicator, and with certain criteria applied, the mineralisation volume model was created. After that stage, gold grades were interpolated into 10 m x 10 m x 5 m parent blocks using three passes. For west-dipping lodes, the initial interpolation pass was used with a range of 70 m (-60°->240°), 10 m (0->150°) and 8 m (30°->240°), 10 m (0->150°) and 8 m (30°->240°) for major, semi-major and minor directions respectiv
		directions and ranges were set to match the grade variogram models. For the second pass, search distances were doubled, and number of samples were kept the same. For the third pass, the search distances were increased to 10 times the first,

Criteria	JORC Code explanation	Commentary
		with the minimum and maximum samples being reduced 6 and 13 respectively. A maximum limit of three samples per drillhole was applied. 89% of the volume was estimated after the first and second passes. All the blocks were populated with the estimated grade after the third pass.
		For east-dipping lodes, the initial interpolation pass was used with a range of 100 m (-30°->60°), 20 m (0->150°) and 6 m (-60°->240°) for major, semi-major and minor directions respectively, with a minimum of 12 and a maximum of 26 samples used. Both the directions and ranges were set to match the grade variogram models. For the second pass, search distances were doubled, and the number of samples was kept the same. For the third pass, the search distances were increased to 10 times the first, with the minimum and maximum samples being reduced to 6 and 13 respectively. A maximum constraint of three samples per drillhole was applied. 93% of the blocks were estimated after the first and second passes. All the blocks were populated with estimated grades after the third pass.
		Supervisor 8.15.1.2 was used for various geostatistical analyses, including variogram modelling.
		Datamine Studio RM 1.13.202.0 was used for both laterite and bedrock mineralisation grade estimation.
	The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.	Previous MREs were completed by Delta Gold NL in 1995, 1999 and 2000, Placer Dome in 2003, Monarch Gold in 2007 and OBM in 2022. Mining took place during 2000–2001, targeting Iguana laterite mineralisation. Production records were not available for this period. The Jamaican Rock trial pit was made after identifying the bedrock mineralisation. Most grade control drillholes by Delta were either entirely inside the trial pit or extended a small distance below the bottom of pit. Therefore, the grade control data was not used during the 2024 MRE grade estimation. Only the previous OBM model was available to Snowden Optiro for comparison. The mineralisation was interpreted by OBM to be steeply northwest to sub-vertical dipping, and only one direction was modelled.
	The assumptions made regarding recovery of by-products.	There was no by-product considered in this case.

Criteria	JORC Code explanation	Commentary
	Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation).	Only gold grade was interpolated. No other element was considered or estimated.
	In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.	Drillhole spacing is mostly 20–25 m, both on section and between section. It has been partially infilled to 5 m(E) x 10 m(N) and can extend to 50 m(E) x 50 m(N) towards the boundaries. The parent estimation block size was set to 10 m(E) x 10 m(N) x 5 m(RL).
	Any assumptions behind modelling of selective mining units.	No selective mining unit modelling was undertaken, although the parent cell size of $10 \times 10 \times 5$ would reflect a selective mining unit parcel.
	Any assumptions about correlation between variables.	Only gold was estimated.
	Description of how the geological interpretation was used to control the resource estimates.	Oxidation and weathering surfaces were used to guide the boundary between laterite and bedrock mineralisation, and density assignment. Structural orientations were also used for the mineralisation modelling. Lithology and alteration coding was considered as well for the purpose of recognising the mineralisation trend.
	Discussion of basis for using or not using grade cutting or capping.	A top cut of 35 g/t was applied to gold data across all zones. The grade variability was considered to be moderate and appropriate for OK estimation after capping.
	The process of validation, the checking process used, the comparison of model data to drillhole data, and use of reconciliation data if available.	The grade estimate was validated against the drillhole data using visual appraisal, whole of domain average grade comparisons and trend plots – good conformance was noted.
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	The tonnages have been estimated on a dry basis.
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied	Estimation of gold grade was threshold of 0.5 g/t. This value was selected based on inflection point in the gold grade distribution.

Criteria	JORC Code explanation	Commentary
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	There are two Komatsu PC 1250 excavators, nine Komatsu HD785 dump trucks and various other BCN ancillary fleet available on site. Although this equipment has not been considered during the pit optimisation, they are available for future mining in Iguana. Mining equipment was assumed to be able to achieve the mining costs, dilution and recoveries used in pit optimisation. BCN provided various parameters for Snowden Optiro to run the pit optimisation, including slope angles and mining costs by various material types. Mining dilution and mining recovery are assumed to be 15% and 95% respectively. These parameters are sourced from the preliminary assessment report conducted by MINECOMP in January 2024. An A\$3,000 gold price was used for pit optimisation.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	The metallurgical recovery used for the optimisation was assumed to be 90% regardless of ore regolith. This figure was supplied by BCN personnel. The processing method was assumed to achieve the processing costs and recovery used for pit optimisation.
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made	The area is not located in an environmentally sensitive area so there is no reason to believe that environmental approvals would restrict the development of the project. Environmental impact will be kept to a minimum with waste dumps being rehabilitated after mining. Backfilling of staged pits with waste may occur depending on whether there is potential for underground mining later. Processing will be done at the pre-existing Jaurdi Mill which has existing tailings facilities. The haulage roads are already in place from the proposed mine to the treatment facilities so limited clearing will be required.

Criteria	JORC Code explanation	Commentary
Bulk density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples.	Density measurements were taken by Delta Gold NL using downhole gamma readings (377 in total). All these drillholes are in the Iguana deposit area. The original records were not available to Snowden Optiro.
	The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc.), moisture and differences between rock and alteration zones within the deposit,	The probe-based density readings are considered appropriate to provide an estimation of bulk density.
	Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	Average density values were assigned based on different material types defined by weathering and oxidation surfaces, and pegmatite wireframes. Backfill material was identified by the difference between 2009 and 2023 topography surfaces.
Classification	The basis for the classification of the Mineral Resources into varying confidence categories	The Mineral Resource classification is based on the robustness of the input data, local drillhole spacing and depth coverage, confidence in the geological interpretation and the continuity demonstrated by the gold mineralisation.
		A Measured classification was applied only for the laterite mineralisation. The drillhole coverage was generally on a 20 m x 20 m grid decreasing to 50 m x 50 m towards the edge.
		The Indicated classification was applied where drillhole coverage was on no larger than a 25 m equal drillhole distance among the average of the closest three holes. No Measured Resources were denoted for the bedrock mineralisation.
		Any mineralisation that did not satisfy the criteria for a Measured or Indicated classification was assigned an Inferred classification. In general, Inferred mineralisation is supported by drillhole sampling up to 50 m x 50 m grid.
	Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).	The above classification process is considered to appropriately account for all relevant factors.
	Whether the result appropriately reflects the Competent Person's view of the deposit.	The classification outcome appropriately reflects the Competent Person's view of the deposit.

Criteria	JORC Code explanation	Commentary
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	No audits of the 2024 MRE have been undertaken at this time. Snowden Optiro has a policy of internal peer review.
Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate	The relative accuracy of the MRE is largely dependent on local drillhole density. All the laterite mineralisation was classified as Measured Resources, considering the historical production and enough grade data support. For the bedrock mineralisation, the equal drillhole distance was estimated and calculated. 25 m average equal drillhole distance for three closest drillholes was used to differentiate the Indicated Resource from Inferred Resources. There is no Measured Resources in the bedrock mineralisation for 2024 MRE. As such, the resource classification process provides a proxy for the expected relative accuracy, with the higher confidence categories reflecting greater local accuracy. However, no direct testing of relative accuracy and associated confidence limits has been undertaken. No calculations of relative accuracy or confidence have been undertaken.
	The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used	The statement refers to global estimation of tonnes and grade.
	These statements of relative accuracy and confidence of the estimate should be compared with production data, where available	The production data is not available for the comparison or validation.

Section 3: Estimation and Reporting of Mineral Resources

Criteria	JORC Code explanation	Commentary
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.	Data used in the MRE were originally sourced from a Microsoft Access database supplied by Beacon Minerals Ltd (BCN). Snowden Optiro understands that the data used in this Mineral Resource is the same as that used by Ora Banda Mining (OBM) to generate the previous resource estimate in January 2022.
	Data validation procedures used.	Basic data checks were applied to the drillhole data exported from the supplied Microsoft Access database.
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	A one-day site visit was undertaken by Snowden Optiro on 12 March 2024.
	If no site visits have been undertaken indicate why this is the case.	Gregory Zhang, Senior Consultant for Snowden Optiro, visited the Iguana area in March 2024 at the request of BCN. The purpose of the visit was to review the geology exposed in the Jamaican Rock trial pit and RC chips available at the BCN site office. Core samples were not available. Because there is no current drilling activity, Snowden Optiro has relied upon the QA documentation and QC checks in OBM report.
Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	Weathering and oxidation surfaces from OBM were used to guide the boundary between laterite and bedrock mineralisation.
		Pegmatite was remodelled during the 2024 MRE based up on the structural orientations observed in the pit during the 2024 site visit and texture logging in the provided Microsoft Access database.
		The 2024 MRE uses the BCN laterite mineralisation interpretation, which is based upon the AC, RC and DD drillhole sample grade data and lithological logging.
		For bedrock mineralisation, lithology and alteration coding was reviewed; the mineralisation seems to be closely related to the hydrothermal alteration, particularly biotite and silica alteration. However, no consistent mineralisation-alteration trends were able to be modelled.

Criteria	JORC Code explanation	Commentary
		Based on the observation from nearby gold deposits with similar geological settings, Jonathan Sharp, Geology Manager of BCN, provided a set of individual anticlinal wireframes for the Dynamic Anisotropy estimation. The estimation results provide local rotation angles for further grade estimation. Mr Sharp also provided one bulk anticlinal wireframe to constrain the area of grade estimation. Localised multiple indicator kriging (LMIK) was applied for gold grade estimation using Datamine Studio RM and Snowden Optiro inhouse software
	Nature of the data used and of any assumptions made.	The bedrock mineralisation interpretation process was largely based upon the gold grade data. Rather than the host rock lithology controlling the mineralisation distribution, the hydrothermal alteration and structures are assumed to be the main factors in the distribution of the mineralisation. However, it was not feasible to build any wireframes based on the lithology or alteration logging. Two structural orientations observed in the Jamaican Rock trial pit were used as the guidance to model the pegmatite intrusions, which cut out the mineralisation. A set of anticlinal wireframes were used to inform the local orientations for the later grade estimation.
	The effect, if any, of alternative interpretations on Mineral Resource estimation.	Snowden Optiro notes that there are possible alternative interpretations for the bedrock mineralisation. This interpretation can only be consolidated by collecting more structural and grade information from diamond drilling, which has been planned in the next phase by BCN.
	The use of geology in guiding and controlling Mineral Resource estimation.	The weathering and oxidation surfaces were used to constrain the laterite mineralisation estimation of gold grade and the density assignment. Lithology and alteration coding in the drillhole database, and structural orientations in the trial pit, were also considered during the pegmatite interpretation. A set of anticlinal wireframes were used for local rotation angle estimation, and one bulk anticline was used to constrain the area for grade estimation. These anticline wireframes were provided by Jonathan Sharp and were based on the understanding and observation of similar deposits nearby. Snowden Optiro agrees with the geological interpretation at the deposit scale.

Criteria	JORC Code explanation	Commentary
	The factors affecting continuity both of grade and geology.	The hydrothermal alteration and structures provide the prime controls on the spatial distribution of bedrock mineralisation, given the area has a complex structural history driving orebearing fluid movement, resulting in the possibilities for multiple orientations of the mineralisation precipitation.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	The resource is approximately 1,100 m from north to south, and 750 m from east to west. The model extends from surface to 300 m below surface at its deepest point.
Estimation and modelling techniques	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	Grade estimation for the laterite mineralisation used 1 m downhole composites controlled by BCN mineralisation interpretations. Block grade estimation used Ordinary Kriging (OK) techniques in Datamine software. Grade estimation by OK is considered appropriate due to the moderate variability exhibited by the gold being estimated into the controlling domains. No top cut was applied.
		The Laterite estimation was completed in three passes, each with a successively less restrictive search. The initial interpolation pass was used with a range of 100 m
		(0->300°), 50 m (0->60°) and 10 m (90°->0°) for major, semimajor and minor directions respectively, with a minimum of 15 and a maximum of 30 samples used. Both the directions and ranges were set to match the grade variogram models. For the second pass, search distances were doubled, and the number of samples was kept the same. For the third pass, the search distances were increased to 10 times the first search, with the minimum and maximum samples being reduced to 5 and 15 respectively. Over 90% of the blocks were estimated during the first pass, and only 0.5% of the volume was estimated during the third pass.

Criteria	JORC Code explanation	Commentary
Criteria	JORC Code explanation	Localised multiple indicator kriging (LMIK) was applied for gold grade estimation in bedrock mineralisation. Two estimates were conducted in sequence. First was the point estimate. A total of 11 grade thresholds were selected and 11 corresponding indicator variogram models were created to separate the different populations and rebuild the gold data distribution in the block model. The variogram modelling shows very consistent orientations for major/semi-major/minor directions for most indicator variogram models. The differences are in the structures and ranges. Grade thresholds are in the range from 0.1 g/t to 60 g/t. The same search parameters were used for all the indicator probabilities estimations. The point estimate resulted in the probabilities of the grade thresholds. After interpolation and extrapolation of the discrete cumulative distribution function (CDF) and change of support for each block, a continuous CDF was created at the panel support (10 m(X) by 10 m(Y) by 5 m(Z)). Indirect log-normal transformation was applied for the point to panel change of support. The ranking estimate was later created for the localisation step. Various values were discretised from the panel CDF and allocated to the SMUs, which is 5 m(X) by 5 m(Y) by 2.5 m(Z). The panels were estimated in the first pass with searches of 50 m (major direction) 30 m (semi-major direction) and 30 m (minor direction) with a minimum of 20 samples and a maximum of 30 samples used, and validated well compared to the input data. This was regarded as a high confidence area. A second search pass was used, with the search distances doubled in all three directions. The number of samples used were kept the same. Under-estimation was observed when compared with the sample data. However, this reflected the low
		confidence of estimation in this area, and all the material estimated in the second search pass was classified as Inferred. This is considered to be a conservative approach.
		Supervisor 8.15.1.2 was used for various geostatistical analyses, including variogram modelling.
		Datamine Studio RM 1.13.202.0 was used for both laterite and bedrock mineralisation grade estimation.

Criteria	JORC Code explanation	Commentary
		Snowden Optiro's inhouse software was used for LMIK post-processing.
	The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.	Previous MREs were completed by Delta Gold NL in 1995, 1999 and 2000, Placer Dome in 2003, Monarch Gold in 2007 and OBM in 2022. Mining took place during 2000–2001, targeting Iguana laterite mineralisation. Production records were not available for this period. The Jamaican Rock trial pit was excavated after identifying the bedrock mineralisation. Most grade control drillholes by Delta were either entirely inside the trial pit or extended a small distance below the bottom of the pit. Therefore, the grade control data was not used during the 2024 MRE estimation. Only the previous OBM model was available to Snowden Optiro for comparison. The mineralisation was interpreted by OBM to be steeply northwest to sub-vertical dipping, and only one mineralisation direction was modelled.
		A Sequential Categorical Indicator Kriging (SCIK) approach was used for a check estimate of the bedrock mineralisation. Based on the alternative assumption that mineralisation is mostly controlled by the two structures and certain hydrothermal alteration, after several trials Snowden Optiro decided to use the SCIK approach to capture all of the mineralised samples in bedrock. In this approach, two sets of categorical indicator kriging were conducted on 2 m x 2 m x 1 m block support, and the 1 m composite support. After the probability estimation, using a 0.5 g/t grade threshold as the indicator, and with certain probability criteria applied, the mineralisation volume model was created.
		After that stage, gold grades were interpolated into 10 m x 10 m x 5 m parent blocks using three passes. For west-dipping lodes, the initial interpolation pass was used with a range of 70 m (-60°->240°), 10 m (0->150°) and 8 m (30°->240°) for major, semi-major and minor directions respectively, with a minimum of 12 and a maximum of 26 samples used. Both the directions and ranges were set to match the grade variogram models. For the second pass, search distances were doubled, and number of samples were kept the

Criteria	JORC Code explanation	Commentary
		same. For the third pass, the search distances were increased to 10 times the first, with the minimum and maximum samples being reduced 6 and 13 respectively. A maximum limit of three samples per drillhole was applied. 89% of the volume was estimated after the first and second passes. All the blocks were populated with the estimated grade after the third pass.
		For east-dipping lodes, the initial interpolation pass was used with a range of 100 m (-30°->60°), 20 m (0->150°) and 6 m (-60°->240°) for major, semi-major and minor directions respectively, with a minimum of 12 and a maximum of 26 samples used. Both the directions and ranges were set to match the grade variogram models. For the second pass, search distances were doubled, and the number of samples was kept the same. For the third pass, the search distances were increased to 10 times the first, with the minimum and maximum samples being reduced to 6 and 13 respectively. A maximum constraint of three samples per drillhole was applied. 93% of the blocks were estimated after the first and second passes. All the blocks were populated with estimated grades after the third pass.
	The assumptions made regarding recovery of by-products.	There were no by-products considered in this case.
	Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation).	Only gold grade was interpolated. No other element was considered or estimated.
	In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.	Drillhole spacing is mostly in the range 20–25 m, both on section and between section. It has been partially infilled to 5 m(E) x 10 m(N) but can be as wide as 50 m(E) x 50 m(N) towards the deposit boundaries. The parent estimation block size was set to 10 m(E) x 10 m(N) x 5 m(RL). 50 m(major direction) x 30 m(semi-major direction) x 30 m(minor direction) searches were used with local rotation angles considered.
	Any assumptions behind modelling of selective mining units.	The selective mining unit size used in the LMIK estimate was set to 5 m(E) x 5 m(N) x 2.5 m(RL), which was used for mine planning by BCN.

Criteria	JORC Code explanation	Commentary
	Any assumptions about correlation between variables.	Only gold was estimated.
	Description of how the geological interpretation was used to control the resource estimates.	Oxidation and weathering surfaces were used to guide the boundary between laterite and bedrock mineralisation, and density assignment. Lithology and alteration coding were also considered for the purpose of recognising the mineralisation trend. Structural orientations observed in the trial pit were also considered in guiding the pegmatite interpretation. A set of anticlinal wireframes were used for local rotation angles estimation and one bulk anticline was used to constrain the area for grade estimation. These anticline wireframes were provided by Jonathan Sharp and were based on the understanding and observation of similar deposits nearby.
	Discussion of basis for using or not using grade cutting or capping.	No capping was applied as LMIK does not require the data modification to fit the method.
	The process of validation, the checking process used, the comparison of model data to drillhole data, and use of reconciliation data if available.	The grade estimate was validated against the drillhole data using visual appraisal, whole of domain average grade comparisons and trend plots – good conformance was noted overall for the laterite mineralisation, and within the first pass for bedrock mineralisation. Under-estimation was noticed in the second pass in the bedrock mineralisation due to insufficient drilling and the drillhole orientation being parallel to the interpreted anticline. The material in this part of bedrock mineralisation was all classified as Inferred to reflect the low confidence of estimation.
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	The tonnages have been estimated on a dry basis.
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied	A 0.5 g/t cut-off grade was used for laterite mineralisation wireframing.
		Since the recoverable resources were estimated it was possible to report the Mineral Resources at any cut-off. 0.5 g/t is currently used for resource reporting.

Criteria	JORC Code explanation	Commentary
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	There are two Komatsu PC 1250 excavators, nine Komatsu HD785 dump trucks and various other BCN ancillary fleet available on site. Although these equipment items have not been considered during the pit optimisation, they are available for future mining at Iguana. Mining dilution varies from 10% to 20% according to weathering state. Mining recovery is assumed to be 95%. These parameters are provided by BCN. Mining equipment was assumed to be able to achieve the mining costs, dilution and recoveries used in pit optimisation or Reasonable Prospects for Eventual Economic Extraction (RPEEE) pit shell creation. An A\$4,000 gold price pit shell was provided to Snowden Optiro and 0.5 g/t cut-off were used for Mineral Resource reporting.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	The metallurgical recovery used for the optimisation was assumed to be 95% regardless of weathering state. This figure was supplied by BCN personnel. The processing method was assumed to be able to achieve the processing costs and assumed recovery for pit optimisation.
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made	The area is not located in an environmentally sensitive area so there is no reason to believe that environmental approvals would restrict the development of the project. Environmental impact will be kept to a minimum with waste dumps being rehabilitated after mining. Backfilling of staged pits with waste may occur, depending on whether there is potential for underground mining later. Processing will be done at the pre-existing Jaurdi Mill which has existing tailings facilities. The haulage roads are already in place from the proposed mine to the treatment facilities, so limited clearing will be required.

Criteria	JORC Code explanation	Commentary
Bulk density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples.	Density measurements were taken by Delta Gold NL using downhole gamma readings (377 in total). All of these drillholes are in the Iguana deposit area. The original records were not available to Snowden Optiro.
	The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc.), moisture and differences between rock and alteration zones within the deposit,	The probe-based density readings are considered appropriate to provide an estimation of bulk density.
	Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	Average density values were assigned based on different material types defined by weathering and oxidation surfaces, and pegmatite wireframes, using the probe density data. Backfill material was identified by the difference between 2009 and 2023 topography surfaces.
Classification	The basis for the classification of the Mineral Resources into varying confidence categories	The Mineral Resource classification is based on the robustness of the input data, local drillhole spacing and depth coverage, confidence in the geological interpretation and the continuity demonstrated by the gold mineralisation.
		A Measured classification was applied only for the laterite mineralisation, which has been partially mined. The drillhole coverage was generally on a 20 m x 20 m grid, decreasing to 50 m x 50 m towards the edge.
		The Indicated classification was applied where average drillhole spacing was no larger than a 25 m distance and different angles drillings were used. No Measured Resources were declared for the bedrock mineralisation.
		Any mineralisation that did not satisfy the criteria for a Measured or Indicated classification was assigned an Inferred classification. In general, Inferred mineralisation is supported by drillhole spacings from 20 m x 25 m up to 50 m x 50 m grid.
	Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).	The above classification process is considered to appropriately account for all relevant factors.

Criteria	JORC Code explanation	Commentary
	Whether the result appropriately reflects the Competent Person's view of the deposit.	The classification outcome appropriately reflects the Competent Person's view of the deposit.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	No audits of the 2024 MRE have been undertaken at this time. Snowden Optiro has a policy of internal peer review.
Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate	The relative accuracy of the MRE is largely dependent on local drillhole density. All the laterite mineralisation was classified as Measured Resources, considering the historical production and enough grade data support. For the bedrock mineralisation, only the area where drillhole coverage was on no larger than a 25 m drillhole distance and different angles drillings existed was used to differentiate the Indicated Resource from Inferred Resources. There are no Measured Resources in the bedrock mineralisation for 2024 MRE. As such, the resource classification process provides a proxy for the expected relative accuracy, with the higher confidence categories reflecting greater local accuracy. However, no direct testing of relative accuracy and associated confidence limits has been undertaken. No calculations of relative accuracy or confidence have been undertaken.
	The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used	The statement refers to global estimation of tonnes and grade.
	These statements of relative accuracy and confidence of the estimate should be compared with production data, where available	The production data is not available for the comparison or validation.