

11th November 2024

Strong drill results support accelerated production growth strategy

Multiple opportunities to close the significant gap between 15.2Moz Resources and 3.3Moz Reserves; Upside to Five-year Plan

HIGHLIGHTS

- Results highlight the potential to grow Reserves¹ across the Five-Year Plan²; This will in turn help underpin increased mining and production rates while maintaining long mine lives
- Organic growth is at the centre of the "ASPIRE 400" accelerated growth strategy, aimed at achieving the 325,000oz pa target³ and reducing all-in sustaining costs ahead of the Five-year Plan
- Genesis has a strong pipeline of organic growth opportunities, some of which have potential to be brought forward in the schedule and others which currently remain outside it

Gwalia underground mine

- Consistent new high grade drill results include:
- 7.2m @ 60.0g/t 13.5m @ 9.0g/t 3.8m @ 23.2g/t 4.2m @ 37.8g/t 2.4m @ 43.4g/t 6.4m @ 13.0g/t 6.3m @ 22.6g/t 11.0m @ 9.2g/t 2.6m @ 34.0g/t

This drilling covers 300m down dip below the current stoping front, underpinning the next ~7 years of production; In addition, significant intersections including 2.2m @ 53.9g/t and 2.7m @ 25.7g/t will likely extend the mine to the north

Drilling continues with two diamond rigs infilling / "future-proofing" the long-term mine plan and testing extensional opportunities including in the upper levels

dmiral open pit mine

Recent drilling returned high grade, thick intercepts that feed into the immediate mine plan; Results include:

- 19m @ 8.0g/t 5m @ 20.9g/t 9m @ 9.2g/t 14m @ 5.2g/t
- 13m @ 6.2g/t 17m @ 2.7g/t

The results **confirm a significant increase in grade as mining progresses**, rising to 3g/t at the base of the planned pit (compared to 1.3g/t project to date)

- Drill results down plunge to the south of the main deposit include 5.3m @ 8.8g/t, 2.8m @ 6.9g/t and 3.3m @ 5.5g/t
- The elevated grades confirm potential for a future underground mine below the pit; Hub remains open down-dip of the main deposit and down-plunge to the south

Aphrodite project

- Genesis commenced its first work at Aphrodite, with a program to test gaps in the large open pit 1.7Moz Resource as well as possible extensions and new parallel structures; Results include 17m @ 1.4g/t and 9m @ 1.3g/t
- A result of 6m @ 6.6g/t was returned from a structure 450m to the east of the known mineralisation, clearly demonstrating Aphrodite is open for new discoveries to be targeted in future drilling

Westralia

- Re-evaluation progressing as a bulk open pit opportunity (not in Reserve) using the lean GMS mining model
- Potential to unlock significant value from this latent +1Moz gold deposit

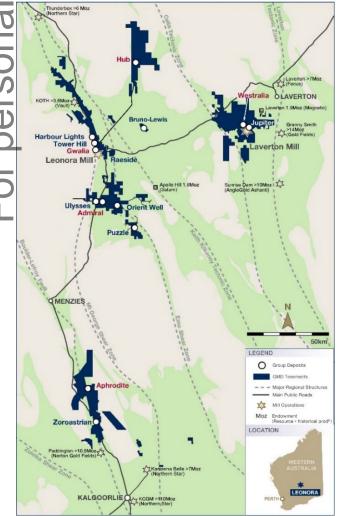
ASX:GMD

Genesis Managing Director Raleigh Finlayson said:

"Organic growth is at the centre of our strategy to maximise shareholder returns. These strong drilling results support that strategy because they demonstrate the scope to steadily convert Resources to Reserves over the five-vear growth plan.

"This will make our mine plans even more robust, paving the way for higher mined grades and increased mining rates, all of which will help accelerate the planned organic growth to 325,000oz and beyond.

"As a result, we not only deliver rapid growth in production and cashflow, but we also future-proof our operations in a way which reduces risk while increasing returns.


"Genesis has a pipeline of strong organic growth opportunities, some of which have potential to be realised in a timeframe which would accelerate our growth plan. Others, such as the Westralia deposit at Laverton, currently sit outside the growth schedule altogether.

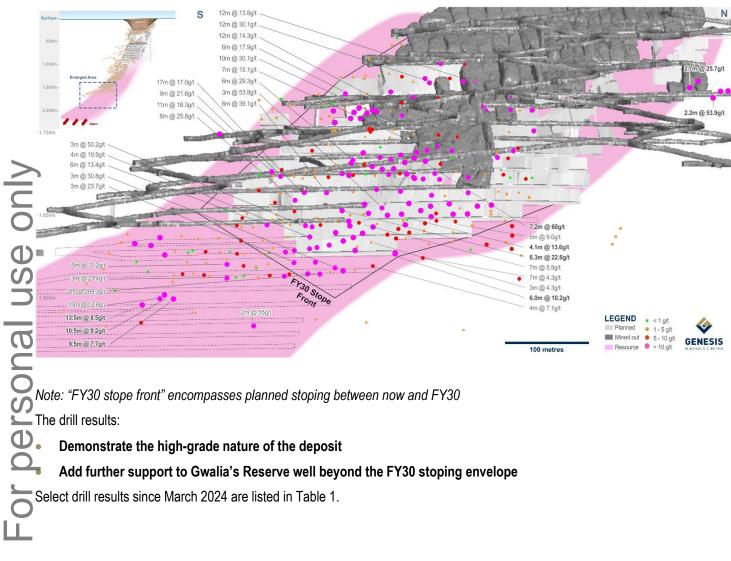
"Given the upside at Westralia, we are re-modelling the deposit and its potential to host an open pit operation, followed by plans for a close-spaced drilling program and more detailed economic assessment".

Drilling update

Genesis Minerals Limited (ASX: GMD) is pleased to report another round of strong drilling results from the prolific Leonora / Laverton District in Western Australia. Recent drilling has focused on the Gwalia underground mine, the new Admiral and Hub open pit mines, O and the latent Aphrodite deposit to the south.

Figure 1. Dominant position in the prolific Leonora / Laverton District

Deposits featured in this release are highlighted in shiraz


¹ For Resources and Reserves refer to GMD ASX announcement 21st March 2024 "Growth strategy underpinned by robust Reserves"

ASX announcement 21% March 2024 "First and a constrained by robust reserves" for the material assumptions relating to the production target; Genesis confirms that all Refer to the PRODUCTION OUTLOOK (pages 11-18) in the ASX announcement 21st March 2024 "Growth strategy underpinned by robust Reserves" for the material assumptions relating to the production target; Genesis confirms that all the material assumptions underprinning the production target in that announcement continue to apply and have not materially charged. There is a low level of geological confidence associated with Inferred Mineral Resources and there is no certainty that further exploration work will result in the determination of Indicated Mineral Resources or that the production target itself will be realised.

Gwalia

At the Gwalia underground mine, 3km south of Leonora, drilling has continued to infill the "Heart of Gold". Multiple high-grade intercepts were received, within and below the stoping envelope to FY30, and laterally.

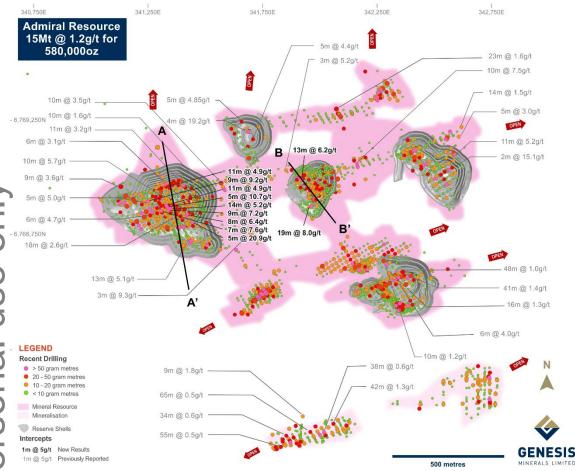
Figure 2. Gwalia long section highlighting drill results

Add further support to Gwalia's Reserve well beyond the FY30 stoping envelope

Table 1. Gwalia - Drill results >50 gram metres

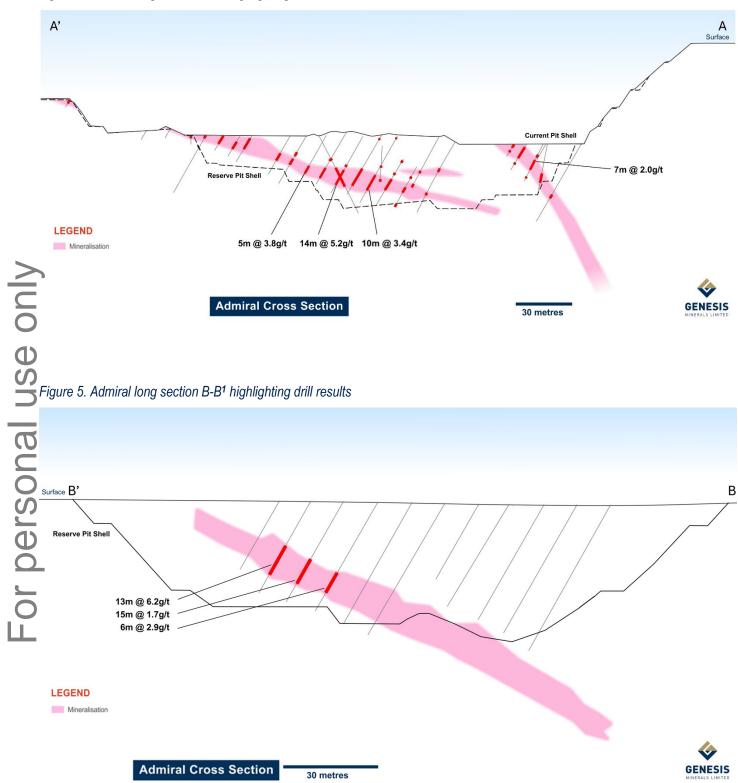
Significant drill result	s include:	
Hole ID	Length (m)	Grade (g/t)
UGD3601	7.2	60.0
UGD3037	4.2	37.8
UGD3036	6.3	22.6
UGD3553	13.5	9.0
UGD3591	2.2	53.9
UGD3438	2.4	43.5
UGD3551	11.0	9.2
UGD3036	2.7	34.0
UGD3607	3.8	23.2
UGD3375	6.4	13.0
UGD3391	13.4	5.8
UGD3608	4.5	16.8
UGD3374	7.6	10.1
UGD3552	9.5	7.7
UGD3376	6.5	11.0
UGD3589	2.7	25.7
UGD3187	2.0	34.6
UGD3400	14.0	4.9
UGD3402	6.0	10.2
UGD3389	14.0	4.4
UGD3398	13.2	4.6
U GD3386	4.6	12.8
O UGD3354	12.0	4.9
() UGD3409	4.1	13.6
UGD3408	15.0	3.7
UGD3391	2.1	26.4
UGD3601	2.0	27.1
UGD3395	3.7	14.6
O UGD3040	14.8	3.5
UGD3399	13.1	3.9

The results also include significant, high-grade intercepts that likely extend the orebody to the north. These extensional results include 2.2m @ 53.9g/t and 2.7m @ 25.7g/t.


Drilling continues with two rigs. Activities remain focused on infilling the known lodes, as well as starting to test for extensions both laterally as well as higher in the mine.

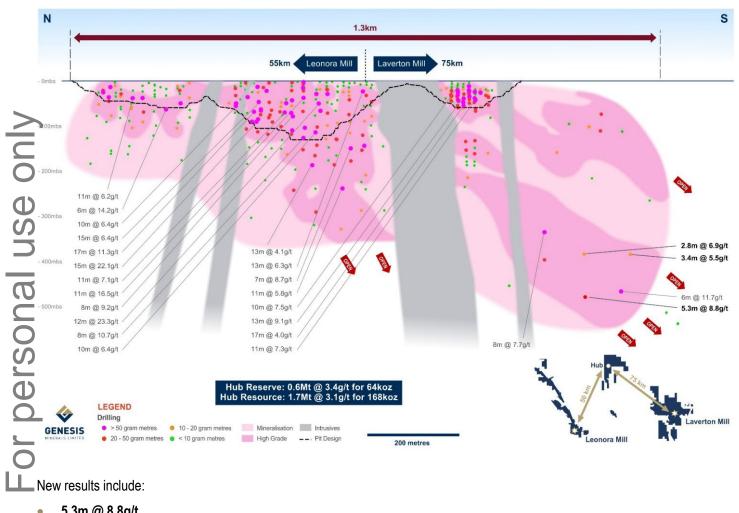
Admiral

Recent infill drilling at Admiral has returned high grade, thick intercepts that will feed into the immediate mine plan.


Table 2. Admiral - Drill results >50 gram metres

	•	
Significant drill results include:		
Hole ID	Length (m)	Grade (g/t)
CLGC_430_0142	19.0	8.0
ADGC_375_0053	5.0	20.9
ADGC_375_0155	9.0	9.2
CLGC_430_0025	13.0	6.2
ADGC_375_0094	14.0	5.2
ADGC_375_0106	9.0	7.2
ADGC_375_0059	11.0	4.9
ADGC_375_0104	11.0	4.9
ADGC_375_0134	5.0	10.7
ADGC_375_0136	7.0	7.6
ADGC_375_0050	8.0	6.4

This drilling underpins the next period of mining at the growing Admiral operation and **supports the grade getting better as the expansive mining area develops**.


Resource drilling will recommence at Admiral, testing for extensions to known mineralisation that can potentially be brought into the mine plan.

Hub

Genesis Mining Services' (GMS) second fleet recently started mining the Hub open pit project ahead of schedule, delivering first ore in September. Due to Hub's strategic location, ore will be able to flow east to Laverton or west to Leonora, adding significant flexibility to Genesis' production centre.

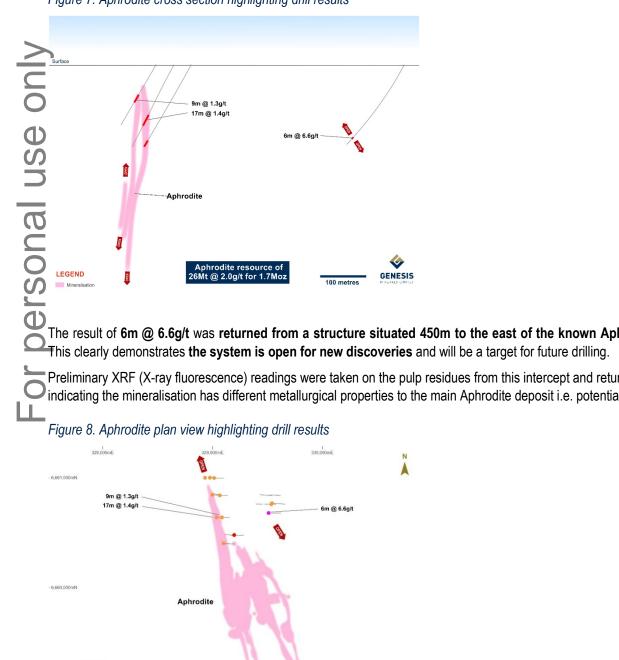
Diamond drilling has been undertaken at Hub to infill wide spaced existing intercepts down plunge to the south of the main deposit. Drilling has been successful in identifying the high-grade plunge over significant strike.

- 5.3m @ 8.8g/t •
- 2.8m @ 6.9g/t .
- 3.3m @ 5.5g/t

The drilling demonstrates the high-grade shoot is present to the south of Hub and is still open down plunge.

Future drilling will be undertaken to infill this area for Resource estimation purposes as well as testing the currently interpreted intrusives.

The intrusives have been shown to be narrower than currently modelled, potentially expanding the volume of ore available for mining.


Aphrodite

Aphrodite is a large, virgin gold deposit located 65km north of Kalgoorlie. Open pit Mineral Resources stand at 1.7Moz at an average grade of 2.0g/t, forming part of the broader 3Moz Bardoc project area. Specific to Aphrodite, metallurgical testwork by previous owners has concluded the fresh and transitional ore is refractory.

A phase of resource definition drilling was recently undertaken at Aphrodite, marking Genesis' first work at Bardoc since acquiring the project from St Barbara in June 2023. The drilling was successful, focusing on infilling existing gaps in the 1.7 Moz Aphrodite Resource as well as testing for possible extensions and new parallel structures. New results include:

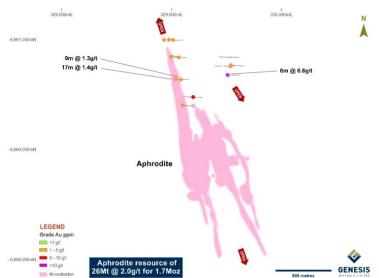
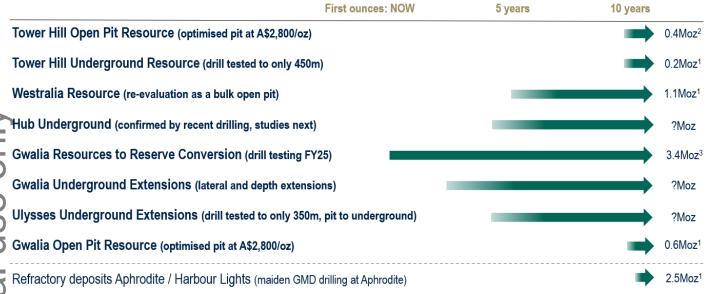

- 17m @ 1.4g/t •
- 9m @ 1.3g/t e
- 6m @ 6.6g/t

Figure 7. Aphrodite cross section highlighting drill results

The result of 6m @ 6.6g/t was returned from a structure situated 450m to the east of the known Aphrodite mineralisation.

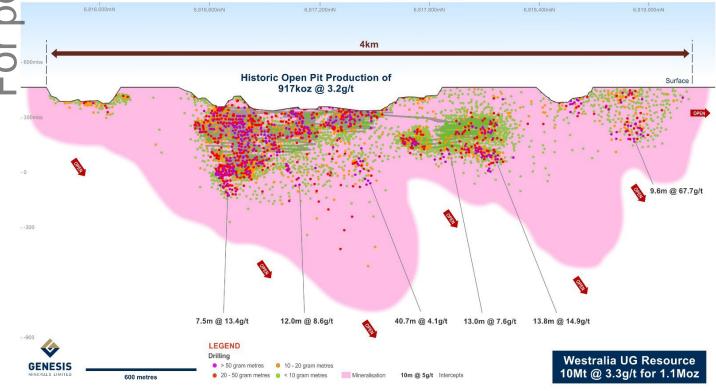
Preliminary XRF (X-ray fluorescence) readings were taken on the pulp residues from this intercept and returned low arsenic values, Indicating the mineralisation has different metallurgical properties to the main Aphrodite deposit i.e. potentially non-refractory.


"ASPIRE 400" learning journey

Starting with re-evaluation of Westralia

The significant gap between Mineral Resources of 15.2Moz and Ore Reserves of 3.3Moz presents significant upside potential to the base-case 10-year production outlook.

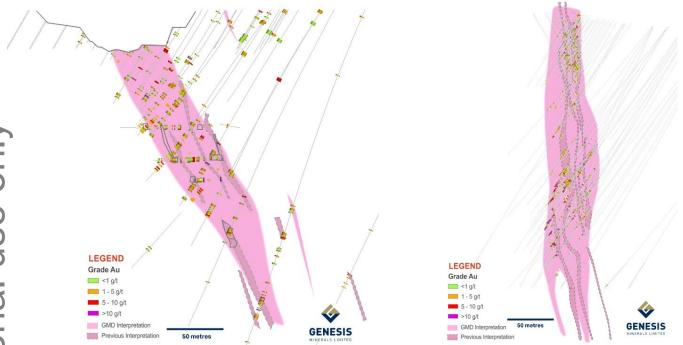
Multiple conversion opportunities have been identified to close this gap, applying Genesis' technical and operational rigour to the recently acquired asset base.


Figure 9. +8Moz upside NOT included in 10-year production outlook

T. For Resources and Reserves refer to Appendix B or GMD ASX announcement 21st March 2024 "Growth strategy underpinned by robust Reserves"; 2. Derived by subtracting Tower Hill Open Pit Ore
 Reserve from Tower Hill Open Pit Mineral Resources; 3. Derived by subtracting Gwalia Ore Reserves from Gwalia Mineral Resources.

One early initiative is the re-evaluation of the Westralia Resource, 15km from the Laverton mill.

Figure 10. Westralia long section


Exploration Results for Westralia were previously released by Dacian (DCN) to the ASX.

The previous owner based the existing Westralia Resource on selective underground mining using an external contractor. Alternatively, **Genesis is currently investigating a larger, bulk open pit mining opportunity** applying the leaner Genesis Mining Services mining model.

The change in approach from selective underground to bulk open pit mining, coupled with a higher gold price (increased +A\$1,300/oz since Westralia underground was last mined in September 2022) has the **potential to unlock significant value from this latent** +**1Moz gold deposit**. Genesis is applying open pit cut-off grades of ~0.5g/t compared to 2.0g/t under the previous owner.

Figure 11. Westralia cross sections - Examples highlighting GMD bulk approach v previous selective

The mine sequence is banded iron formation (BIF) and porphyry hosting the mineralisation with mafic hangingwall and footwalls. Genesis has interpreted the favourable host rocks as a package as opposed to trying to be selective. Drive scale deformation of the host rocks has been observed to be significant resulting in limited geological continuity between drillholes.

Let Interpreting the entire package and using the hangingwall and footwall contacts as known control points allows for a more holistic model suitable for larger scale mining.

Upcoming drilling - Other areas

Drilling is planned at Laverton with a near-term focus on:

- Jupiter open pit For mine planning purposes; Jupiter is located adjacent to the recently re-started Laverton mill
- Maritiema prospect Early stage RC drilling; Maritiema is located on the Chatterbox shear, a fertile regional structure known to host significant gold deposits

Drilling is ongoing at Gwalia, including plans to test the upper levels that have seen very limited exploration focus in recent years.

Corporate structure

Ordinary shares on issue: Unquoted securities: Market capitalisation: Cash, bullion and investments (30th September): Substantial shareholders:

1,128m 40m A\$2.5b (share price A\$2.24) A\$178m AustralianSuper Pty Ltd 17.6% Van Eck Associates Corporation 7.8% State Street Corporation 6.9% Paradice Investment Management 6.3% Vanguard Group 5.0%

This announcement is approved for release by Raleigh Finlayson, Managing Director, Genesis Minerals Limited.

For further information, please contact:

Investors and Media:	Media:
Troy Irvin	Paul Armstrong
Corporate Development Officer	Read Corporate
T: +61 8 6323 9050	T: +61 8 9388 1474
<u>investorrelations@genesisminerals.com.au</u>	info@readcorporate.com.au

Forward Looking Statements

Some statements in this announcement regarding estimates or future events are forward-looking statements. They include indications of, and guidance on, future matters. Forward-looking statements include, but are not limited to, statements preceded by words such as "planned", "expected", "projected", "estimated", "may", "scheduled", "intends", "anticipates", "believes", "potential", "could", "nominal", "conceptual" and similar expressions. Forward-looking statements, opinions and estimates included in this Announcement are based on assumptions and contingencies which are subject to change without notice, as are statements about market and industry trends, which are based on interpretations of current market conditions.

Forward-looking statements are provided as a general guide only and should not be relied on as a guarantee of future performance. Forward-looking statements may be affected by a range of variables and risks that could cause actual results to differ from estimated results and may cause Genesis' actual performance and financial results in future periods to malerially differ from any projections of future performance or results expressed or implied by such forward-looking statements. These risks and uncertainties include but are not limited to liabilities, permits and other do production, geological, mining and processing technical problems, the inability to obtain any additional mine licenses, permits and other regulatory approvals required in connection with mining and third party processing operations, competition for among other things, capital, acquisition of reserves, undeveloped lands and skilled personnel, incorrect assessments of the value of acquisitions, changes in commodity prices and exchange rate, currency and interest fluctuations, various events which could disrupt operations and/or the transportation of mineral products, including labour stoppages and severe weather conditions, the demand for and availability of transportation services, the ability to excure adequate financing and management's ability to anticipate and manage the foregoing factors and risks. These and other factors should be considered carefully and readers should not place undue reliance on such forward-looking information. There can be no assurance that forward-looking statements will prove to be correct.

Competent Person Statements

The information in this announcement that relates to:

Mineral Resource and Ore Reserve estimates for Genesis are extracted from Genesis' ASX announcement 21st March 2024 "Growth strategy underpinned by robust Reserves" available at www.genesisminerals.com.au and www.genesisminerals.com.au

Exploration Results is based on information compiled by Mr. Andrew Chirnside who is a full-time employee of Genesis Minerals Limited, a shareholder of Genesis Minerals Limited and is a member of The Australian Institute of Mining and Metallurgy. Mr Chirnside has sufficient experience that is relevant to the styles of mineralisation and type of deposits under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Chirnside consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

In each case above, Genesis confirms that it is not aware of any new information or data that materially affects the information included in the market announcements and Genesis confirms that it is not aware of any new information or data that materially affects the information included in the market announcements and Genesis confirms that all material assumptions and technical parameters underpinning the Mineral Resource and Ore Reserve estimates in the market announcements continue to apply and have not materially changed. Genesis confirms that the form and context in which the Competent Persons' findings are presented have not been materially modified.

No Liability

Genesis Minerals Limited has prepared this announcement based on information available to it. No representation or warranty, express or implied, is made as to the fairness, accuracy, completeness or correctness of the information, opinions or conclusions contained in this announcement. To the maximum extent permitted by law, none of Genesis Minerals Limited, its directors, officers, employees, associates, advisers and agents, nor any other person accepts any liability, including, without limitation, any liability rarising from fault or negligence on the part of any of them or any other person, for any loss arising from the use of this announcement or its contents or otherwise arising in connection with it.

This announcement is not an offer, invitation, solicitation, or other recommendation with respect to the subscription for, purchase or sale of any security, and neither this announcement nor anything in it shall form the basis of any contract or commitment whatsoever.

Appendix 1 - Drilling Results

	Gwalia drill	ing results +	20 gram met	res								
	Hole ID	Easting	Northing	RL	Dip (°)	Azimuth (°)	End of Hole (m)	From (m)	To (m)	Downhole Length (m)	Au (g/t)	Gram metres (g*m)
	UGD3036	339585	6798231	-1414	-15.0	286.5	255.23	144.25	146.90	2.65	34	91
	and							160.35	166.65	6.30	22.58	142.25
ľ	UGD3037	339585	6798232	-1414	-22.0	289.7	245	153.65	157.80	4.15	37.76	156.70
	UGD3038A	339585	6798232	-1414	-30.3	283.2	234.85	145.85	148.90	3.05	9.62	29.34
ľ	UGD3039	339585	6798232	-1414	-40.0	288.2	230.06	183.55	196.00	12.45	2.70	33.62
ľ	UGD3040	339585	6798232	-1415	-50.7	288.2	229.98	185.20	200.00	14.80	3.48	51.50
	UGD3041	339585	6798232	-1415	-58.3	288.2	235.04	146.45	151.25	4.80	7.11	34.13
	and							191.80	203.70	11.90	3.01	35.82
	UGD3187	339351	6798364	-1327	-31.0	239.9	119	29.95	31.95	2.00	34.59	69.18
	and							34.40	37.00	2.60	9.12	23.71
	UGD3293	339674	6798562	-1384	-34.5	288.7	305.04	176.18	190.28	14.1	1.71	24.11
	UGD3294	339674	6798561	-1384	-37.9	286.3	294.94					NSI
2	UGD3296	339674	6798561	-1384	-41.5	286.1	291.3	81	86.45	5.45	9.30	50.69
ר	UGD3348	339366	6798270	-1329	-28.6	282.6	70.14					NSI
	UGD3361	339366	6798270	-1328	-14.7	222.3	250.13					NSI
	UGD3364	339351	6798337	-1325	21.1	277.8	102.15					NSI
5	UGD3373	339351	6798337	-1327	-17.4	288.5	56.99	32.00	36.60	4.60	9.52	43.79
)	and							42.80	46.15	3.35	14.69	49.21
5	UGD3374	339351	6798337	-1327	-35.6	274.7	58.04	28.15	35.70	7.55	10.05	75.88
5	UGD3375	339351	6798337	-1327	-20.2	256.4	53	31.30	37.65	6.35	13.03	82.74
	UGD3376	339351	6798337	-1328	-47.6	249.3	56.95	30.55	37.00	6.45	10.99	70.89
5	UGD3377	339351	6798337	-1327	-30.3	237.7	55					NSI
	UGD3378	339351	6798337	-1327	-17.6	232.4	65					NSI
	UGD3379	339351	6798336	-1327	-16.1	222.9	74.97	50.10	55.00	4.90	4.12	20.19
	UGD3380	339351	6798337	-1328	-39.8	223.0	62.65	46.65	50.70	4.05	7.74	31.35
	UGD3383	339363	6798277	-1329	-24.6	289.6	65					NSI
	UGD3384	339363	6798277	-1330	-31.3	298.9	66	46.00	53.00	7.00	6.18	43.26
	UGD3385	339591	6798260	-1412	-14.0	285.0	290	158.65	162.70	4.05	6.71	27.18
	and							169.45	174.20	4.75	11.94	56.72
	UGD3386	339591	6798260	-1412	-18.7	283.4	274.96	158.73	163.35	4.62	12.76	58.95
_	UGD3387	339591	6798260	-1412	-18.6	289.3	279.93	161.35	164.73	3.38	12.10	40.90
	and							212.00	217.00	5.00	4.69	23.45
	UGD3388	339591	6798260	-1412	-28.0	276.8	260.21	142.35	145.60	3.25	12.13	39.42
	and							151.10	154.55	3.45	7.32	25.25
	and							191.05	196.00	4.95	5.98	29.60
	UGD3389	339591	6798260	-1412	-26.9	289.3	256	152.90	155.50	2.60	12.38	32.19

Gwalia drill	ling results +	20 gram met	res								
Hole ID	Easting	Northing	RL	Dip (°)	Azimuth (°)	End of Hole (m)	From (m)	To (m)	Downhole Length (m)	Au (g/t)	Gram metres (g*m)
and		Ŭ					196.70	210.70	14.00	4.35	60.90
UGD3390	339591	6798260	-1412	-34.4	278.7	250.73	187.78	200.00	12.22	2.84	34.70
UGD3391	339591	6798260	-1412	-31.9	286.5	255.36	148.67	150.74	2.07	26.43	54.71
and							190.59	204.00	13.41	5.84	78.31
UGD3392	339591	6798260	-1412	-44.9	279.5	245.44	186.90	199.90	13.00	2.90	37.70
UGD3393	339591	6798260	-1412	-44.5	290.6	249.91	141.80	149.75	7.95	8.11	64.47
and							190.00	198.40	8.40	4.28	35.95
and							201.00	206.60	5.60	3.60	20.16
UGD3394	339591	6798260	-1412	-52.2	287.4	249.76	192.95	198.95	6.00	6.20	37.20
UGD3395	339600	6798288	-1408	-14.4	281.0	295.18	171.32	175.00	3.68	14.61	53.76
UGD3396	339600	6798288	-1408	-18.9	285.6	285.02	209.95	220.00	10.05	3.92	39.40
UGD3397	339600	6798288	-1409	-23.0	289.8	274.96	206.85	216.60	9.75	4.83	47.09
UGD3398	339600	6798288	-1409	-28.8	287.6	270.13	199.89	213.08	13.19	4.56	60.15
UGD3399	339600	6798288	-1409	-33.4	281.5	260	194.65	207.75	13.10	3.88	50.83
UGD3400	339600	6798288	-1409	-36.0	288.1	260	196.00	210.00	14.00	4.92	68.88
UGD3401	339600	6798288	-1409	-43.3	284.2	254.97	129.60	132.50	2.90	7.53	21.84
and							195.35	201.00	5.65	4.58	25.88
UGD3402	339600	6798288	-1409	-48.4	292.6	260.06	126.00	130.85	4.85	5.27	25.56
and							144.00	150.00	6.00	10.20	61.20
and							201.11	209.30	8.19	3.09	25.31
UGD3403	339600	6798288	-1409	-50.4	281.2	254.98	140.60	147.45	6.85	4.78	32.74
and							197.10	209.00	11.90	3.74	44.51
UGD3404	339600	6798288	-1409	-54.9	288.9	260	203.85	212.00	8.15	3.10	25.27
UGD3405	339608	6798318	-1405	-14.5	283.1	299.92	180.05	182.30	2.25	20.23	45.52
and							224.55	235.00	10.45	3.77	39.40
UGD3406	339608	6798318	-1405	-18.0	288.1	294.8	160.80	166.11	5.31	8.30	44.07
and							220.39	233.00	12.61	2.22	27.99
UGD3407	339608	6798318	-1405	-19.1	280.4	285.03	213.00	221.00	8.00	4.10	32.80
UGD3408	339608	6798318	-1406	-26.3	290.8	280	212.00	227.00	15.00	3.65	54.75
UGD3409	339608	6798318	-1406	-26.9	281.9	270	156.35	160.45	4.10	13.64	55.92
and							205.90	220.75	14.85	2.77	41.13
UGD3410	339608	6798318	-1406	-31.8	286.9	266.5	204.73	217.00	12.27	3.90	47.85
UGD3417	339616	6798347	-1402	-17.3	282.6	280.9	227.35	235.75	8.40	2.67	22.43
UGD3418	339617	6798348	-1402	-23.5	281.3	290	161.60	169.30	7.70	4.18	32.19
and							219.00	230.00	11.00	4.24	46.64
UGD3419	339617	6798348	-1403	-32.4	282.2	275.02	210.78	224.00	13.22	3.30	43.63
UGD3425	339624	6798377	-1399	-17.4	285.1	310.03	236.26	248.32	12.06	2.36	28.46

Gwalia drilling results + 20 gram metres End of Downhole Length Hole ID Fasting Northing (a*m) UGD3426 6798377 339624 -1399 -17.3 279.7 305.14 175.90 178.50 2.60 9.32 24.23 240.10 21.30 and 234.15 5.95 3.58 UGD3427 339624 6798377 -1399 -21.7 288.3 300.05 170.00 179.50 9.50 3.05 28.98 233.00 248.00 15.00 2.51 37 65 and UGD3428 339624 6798377 -1399 -22.4 281.2 295 167.00 173.00 6.00 5.94 35.64 UGD3428 339624 6798377 -1399 -22.4 281.2 295 227.55 239.00 11.45 3.77 43.17 UGD3429 6798377 257.92 339624 -1399 -31.2 280.0 NSI -33.1 UGD3430 339624 6798377 -1399288.4 261.42 224.12 231.72 7.60 3.87 29.41 UGD3436 339633 6798407 -1395 -18.2 286.8 315 109.44 112.48 3.04 13.38 40.68 187.47 190.42 2 95 7.07 20.86 and 246.11 258.37 12.26 2.18 26.73 and UGD3437 339633 6798407 -1395 -17.7 281.1 310.52 174.75 184.50 9.75 2.57 25.06 and 240.75 249.60 8.85 5.14 45.49 2.35 UGD3438 339633 6798407 -1395 -22.1 283.5 294.46 105.65 108.00 43.45 102.11 237.90 249.55 11.65 2.87 33.44 and UGD3440 272.4 104.20 44.65 339633 6798407 -1396 -28 0 2794 101 70 2 50 17 86 231.20 240.35 9.15 2.72 24.89 and 270.90 UGD3444 339638 6798426 -1394-172 287 2 320 257.30 13.60 2 26 30 74 UGD3445 339638 6798426 -1394 -21.9 283.7 302.9 247.00 255.90 8.90 4.12 36.67 UGD3446 339638 6798426 -26.8 287.3 293.8 247.00 253.30 6.30 20.10 -1395 3.19 UGD3447 339638 6798426 -1394 -31.5 291.9 295 NSI UGD3448 339638 6798426 -1394-31.5 282.8 290.79 NSI UGD3449 339638 6798426 -1394 -40.3 291.7 290 NSI UGD3450 339638 6798426 -1394-43.5 283.0 285 04 NSI UGD3451A 339638 6798426 -1395 -48.2 288.5 285.57 155.83 158.52 2.69 8.18 22.00 UGD3480 339322 6798647 -1320 55.0 195.2 49.03 NSI UGD3482 339147 6798854 -1122 14.3 305.5 120.05 NSI UGD3483 130.08 339146 6798853 -1122 137 311.8 NSI UGD3484 339146 6798853 -1122 9.9 311.5 110.37 NSI UGD3485 305 7 100.06 NSI 339146 6798853 -1122 88 UGD3486 339146 6798853 -1122 6.5 299.2 74.8 61.25 71.55 10.30 4.02 41.41 UGD3487 6798853 -1123 -6.2 284.7 79.9 28.35 24.47 339146 30.45 2.10 11.65 and 41.75 48.40 6.65 6.43 42.76 UGD3488 339146 6798853 -1123 -8.0 312.3 90.15 NSI UGD3524 339226 6798630 -1200 3.5 297.8 47.8 NSI UGD3525 339226 295.9 6798630 -119912.2 59.4 NSI

339224

6798614

-1200

5.9

277.7

43.74

UGD3527

NSI

	Gwalia drill	ling results +	· 20 gram meti	res								
							End of			Downhole		
	Hole ID	Easting	Northing	RL	Dip (°)	Azimuth (°)	Hole (m)	From (m)	To (m)	Length (m)	Au (g/t)	Gram metres (g*m)
	UGD3529	339224	6798600	-1202	5.0	280.1	41.21	36.78	41.21	4.43	10.58	46.87
	UGD3530	339224	6798600	-1201	15.5	278.7	53.45					NSI
	UGD3531	339225	6798592	-1201	18.2	276.4	57.35	47.11	57.00	9.89	2.87	28.38
	UGD3532	339225	6798592	-1202	8.8	271.0	42.68					NSI
	UGD3533	339225	6798592	-1201	16.2	257.3	50.7	46.85	50.70	3.85	11.45	44.08
	UGD3535	339505	6797980	-1479	-12.2	280.0	200.1	119.70	124.00	4.30	11.35	48.81
	UGD3536	339505	6797980	-1480	-12.0	286.5	179.93					NSI
	UGD3537	339505	6797981	-1480	-11.5	304.6	200					NSI
	UGD3538	339505	6797981	-1480	-13.3	318.3	209.94	79.30	84.47	5.17	9.23	47.72
	UGD3541	339505	6797981	-1480	-22.6	294.9	108.8	66.28	72.35	6.07	8.02	48.68
5	UGD3541A	339505	6797981	-1480	-23.6	315.2	179.93	65.79	70.90	5.11	4.16	21.26
	UGD3543	339511	6797989	-1481	-31.7	323.5	170					NSI
D	UGD3551	339511	6797989	-1481	-59.5	331.5	175	101.85	112.80	10.95	9.22	100.96
2	and							123.00	130.50	7.50	3.09	23.18
	UGD3552	339512	6797990	-1481	-54.2	351.2	200.07	148.70	158.20	9.50	7.67	72.87
	UGD3553	339511	6797988	-1481	-73.6	307.7	169.92	99.50	113.00	13.50	8.95	120.83
	UGD3554	339512	6797989	-1481	-61.1	5.7	214.92	106.95	110.00	3.05	12.86	39.22
5	and							164.50	176.50	12.00	4.89	58.68
Ŋ	UGD3589	339444	6798643	-1189	-44.0	324.5	240.22	172.45	175.15	2.70	25.65	69.26
5	UGD3590	339444	6798643	-1189	-39.1	324.5	254	179.50	182.00	2.50	9.51	23.78
5	UGD3591	339444	6798643	-1189	-41.7	335.0	245.18	194.80	197.00	2.20	53.87	118.52
	UGD3592	339444	6798643	-1190	-36.3	330.2	245					NSI
5	UGD3593	339444	6798643	-1190	-33.8	336.1	265.09					NSI
	UGD3594	339464	6798311	-1333	-39.7	264.6	210	95.10	102.00	6.90	5.35	36.92
	and							112.95	118.00	5.05	4.77	24.09
	UGD3601	339464	6798311	-1333	-33.2	322.2	179.93	123.00	130.16	7.16	60.01	429.67
	and							133.00	135.00	2.00	27.08	54.16
	UGD3602	339464	6798311	-1333	-52.0	256.5	155					NSI
ĺ	UGD3604	339464	6798311	-1333	-55.8	282.1	150.06	94.05	100.75	6.70	4.94	33.10
	UGD3606	339464	6798311	-1333	-51.8	308.4	225.4	114.05	119.50	5.45	8.56	46.65
	and							159.55	167.10	7.55	3.91	29.52
	UGD3607	339464	6798311	-1333	-50.0	318.6	160	112.38	116.15	3.77	23.23	87.58
	and							119.32	123.50	4.18	7.23	30.22
	UGD3608	339464	6798311	-1333	-47.2	323.1	169.97	122.96	127.50	4.54	16.75	76.05

Aphrodite drill	ling results	+ 10 gram n	netres								
Hole ID	Easting	Northing	RL	Dip (°)	Azimuth (°)	End of Hole (m)	From (m)	To (m)	Downhole Length (m)	Au (g/t)	Gram metres (g*m)
24APRC0013	329082	6660640	394	-59.6	271.3	150	85.00	94.00	9.00	1.33	11.97
24APRC0014	329122	6660640	394	-61.0	269.7	200	132.00	149.00	17.00	1.42	24.14
24APRC0015	329161	6660640	393	-60.2	270.0	204					NSI
24APRC0016	329202	6660479	391	-59.9	269.2	200					NSI
24APRC0017	329240	6660480	391	-59.5	268.8	174					NSI
24APRC0018	329281	6660480	390	-60.2	270.6	210					NSI
24APRC0019	329200	6660400	391	-60.1	270.4	200					NSI
24APRC0020	329058	6660841	394	-59.9	272.2	171					NSI
24APRC0021	329099	6660840	393	-60.4	275.1	200					NSI
24APRC0022	329139	6660840	393	-60.5	269.9	180					NSI
24APRC0023	329021	6660999	397	-60.0	270.9	186					NSI
24APRC0024	329061	6660999	396	-59.7	270.5	198					NSI
24APRC0025	329100	6660998	395	-59.8	273.5	198					NSI
24APRC0026	329539	6660841	393	-60.0	271.5	198					NSI
24APRC0027	329620	6660841	393	-60.6	272.4	198					NSI
24APRC0028	329460	6660761	391	-60.1	272.1	126					NSI
24APRC0029	329580	6660760	392	-59.6	272.0	198					NSI
24APRC0030	329541	6660680	389	-60.0	269.6	84					NSI
24APRC0031	329662	6660760	391	-60.1	276.3	225					NSI
24APRC0032	329622	6660680	390	-59.8	273.7	210	187.00	193.00	6.00	6.55	39.30

Hub drilling results + 10 gram metres

Hole ID	Easting	Northing	RL	Dip (°)	Azimuth (°)	End of Hole (m)	From (m)	To (m)	Downhole Length (m)	Au (g/t)	Gram metres (g*m)		
24HURC0001	359399	6850411	495	-63.9	269.0	162.0	87.00	99.00	12.00	1.37	16.44		
24HURC0002	359390	6850367	495	-61.0	266.4	126.0					NSI		
24HURC0003	359407	6850331	495	-63.3	268.6	150.0					NSI		
24HURD0001	359083	6850225	496	-58.7	84.6	600.8					NSI		
24HUDD0002A	359113	6850550	496	-60.0	90.0	505.7					NSI		
24HUDD0003	359143	6850299	496	-60.6	89.7	539.9	445.66	449.00	3.34	5.52	18.44		
24HURD0004	359182	6850400	495	-59.5	83.9	414.0					NSI		
24HURD0005	359122	6850400	496	-58.7	85.5	575.7	461.34	464.13	2.79	6.93	19.33		
24HURD0007	359247	6850489	496	-55.0	39.0	150.0					NSI		
24HUDD0008	359025	6850225	496	-59.7	91.3	681.2					NSI		
24HUDD0009	359056	6850402	496	-62.7	90.8	635.2	588.26	595.06	6.80	6.90	46.92		

ABCDK drilling	g results +	10 gram me	etres								
Hole ID	Easting	Northing	RL	Dip (°)	Azimuth (°)	End of Hole (m)	From (m)	To (m)	Downhole Length (m)	Au (g/t)	Gram metres
ADGC_375_0002	341450	6768953	375	-89.4	327.4	22.0					NSI
ADGC_375_0003	341455	6768945	375	-89.7	267.9	23.0					NSI
ADGC_375_0004	341465	6768927	375	-89.0	265.6	22.0					NSI
ADGC_375_0005	341470	6768919	375	-89.4	285.7	22.0					NSI
ADGC_375_0006	341475	6768910	375	-89.7	179.4	22.0					NSI
ADGC_375_0007	341480	6768901	375	-89.6	282.6	22.0					NSI
ADGC_375_0008	341485	6768893	375	-89.3	110.6	22.0					NSI
ADGC_375_0009	341490	6768883	374	-89.2	3.1	20.0					NSI
ADGC_375_0010	341495	6768876	375	-90.0	0.0	18.0					NSI
ADGC_375_0011	341444	6768944	375	-88.4	211.9	24.0					NSI
ADGC_375_0012	341454	6768927	375	-89.6	297.7	28.0					NSI
ADGC_375_0013	341463	6768910	375	-89.2	158.6	26.0					NSI
ADGC_375_0014	341474	6768892	375	-89.9	230.3	20.0					NSI
ADGC_375_0015	341484	6768875	375	-90.0	359.6	18.0					NSI
ADGC_375_0016	341486	6768866	375	-90.0	0.0	18.0					NSI
ADGC_375_0017	341428	6768952	375	-89.2	293.3	22.0					NSI
ADGC_375_0018	341433	6768943	375	-87.7	109.1	22.0					NSI
ADGC_375_0019	341438	6768935	375	-89.8	213.7	22.0					NSI
ADGC_375_0020	341443	6768926	375	-89.9	204.1	24.0					NSI
ADGC_375_0021	341448	6768917	375	-89.8	114.6	25.0					NSI
ADGC_375_0022	341452	6768909	375	-89.9	241.7	25.0					NSI
ADGC_375_0023	341457	6768900	375	-88.5	24.7	22.0					NSI
ADGC_375_0024	341463	6768892	375	-90.0	359.6	18					NSI
ADGC_375_0025	341467	6768881	374	-90.0	0.0	18					NSI
ADGC_375_0026	341473	6768874	375	-90.0	359.6	16					NSI
ADGC 375 0027	341478	6768865	375	-90.0	359.6	16					NSI
ADGC 375 0028	341382	6768990	375	-68.8	152.6	36	19.00	26.00	7.00	2.93	20.51
ADGC_375_0029	341387	6768981	375	-67.3	153.3	28	10.00	22.00	12.00	1.36	16.32
ADGC_375_0029	341369	6768993	375	-60.0	148.1	40	22.00	34.00	12.00	1.63	19.56
ADGC_375_0030	341379	6768976	375	-60.4	154.4	24	4.00	19.00	15.00	2.30	34.50
ADGC_375_0031	341379	6768855	375	-60.4	154.4	42	4.00	19.00	10.00	2.00	54.50 NSI
							26.00	37.00	11.00	4.05	
ADGC_375_0033	341360	6768988	375	-74.7	149.5	40	26.00	37.00	11.00	1.95	21.45
ADGC_375_0034	341361	6768986	375	-59.8	149.5	36	21.00	32.00	11.00	1.91	21.01
ADGC_375_0035	341366	6768978	375	-59.7	151.2	30	13.00	21.00	8.00	1.48	11.84
ADGC_375_0036	341432	6768863	375	-59.4	150.0	30					NSI
ADGC_375_0037	341436	6768857	375	-60.6	148.1	52	35.00	38.00	3.00	7.48	22.44
ADGC_375_0038	341446	6768841	375	-59.8	149.5	36					NSI

	ABCDK drilling	ı results +	10 gram me	tres								
					Dia	A = ' ();	End of	From	.	Downhole		0
	Hole ID	Easting	Northing	RL	Dip (°)	Azimuth (°)	Hole (m)	From (m)	To (m)	Length (m)	Au (g/t)	Gram metres (g*m)
	ADGC_375_0039	341352	6768982	375	-59.9	154.6	34	18.00	27.00	9.00	3.45	31.05
	ADGC_375_0040	341412	6768878	375	-58.8	151.8	30					NSI
	ADGC_375_0041	341422	6768861	375	-59.6	152.5	42	32.00	37.00	5.00	4.81	24.05
	ADGC_375_0042	341429	6768849	380	-60.0	149.6	45	35.00	38.00	3.00	4.20	12.60
	ADGC_375_0042A	341429	6768849	375	-60.0	149.6	45	29.00	32.00	3.00	5.26	15.78
	ADGC_375_0043	341435	6768839	375	-59.3	150.4	36					NSI
	ADGC_375_0044	341440	6768830	375	-59.1	154.0	33					NSI
	ADGC_375_0045	341342	6768981	375	-70.6	157.1	36					NSI
	ADGC_375_0046	341344	6768978	375	-60.1	154.8	30	17.00	24.00	7.00	2.55	17.85
	ADGC_375_0047	341349	6768969	375	-60.1	150.3	22	8.00	14.00	6.00	3.47	20.82
	ADGC_375_0048	341401	6768879	375	-59.8	150.5	44	35.00	42.00	7.00	4.39	30.73
	ADGC_375_0049	341404	6768872	375	-59.6	147.1	42					NSI
2	ADGC_375_0050	341414	6768854	380	-57.1	149.5	42	30.00	38.00	8.00	6.41	51.28
2	ADGC_375_0051	341428	6768832	375	-58.0	151.0	32					NSI
	ADGC_375_0052	341431	6768825	380	-59.2	153.0	35					NSI
	ADGC_375_0053	341436	6768817	380	-57.4	151.5	30	23.00	28.00	5.00	20.90	104.50
	ADGC_375_0054	341442	6768807	380	-58.9	155.2	35					NSI
5	ADGC_375_0055	341336	6768970	375	-89.4	88.5	36	17.00	28.00	11.00	1.73	19.03
0	ADGC_375_0056	341340	6768964	375	-59.8	155.5	20	5.00	12.00	7.00	4.53	31.71
5	ADGC_375_0057	341390	6768877	375	-90.0	0.0	40	30.00	36.00	6.00	2.60	15.60
5	ADGC_375_0058	341399	6768861	380	-57.1	156.3	40	33.00	36.00	3.00	4.45	13.35
	ADGC_375_0059	341323	6768974	375	-78.5	156.9	36	22.00	33.00	11.00	4.94	54.34
5	ADGC_375_0060	341325	6768970	375	-67.6	158.4	30	14.00	23.00	9.00	1.53	13.77
	ADGC_375_0061	341329	6768963	375	-59.7	155.6	22	8.00	16.00	8.00	3.70	29.60
	ADGC_375_0062	341367	6768897	375	-59.9	154.7	45	34.00	39.00	5.00	3.95	19.75
	ADGC_375_0063	341371	6768889	375	-59.7	154.1	43	30.00	38.00	8.00	2.90	23.20
	ADGC_375_0064	341376	6768880	375	-59.2	153.2	40	29.00	36.00	7.00	1.51	10.57
	ADGC_375_0065	341381	6768872	375	-60.0	155.1	38	27.00	33.00	6.00	3.59	21.54
	ADGC_375_0066	341390	6768857	380	-58.1	149.4	35					NSI
	ADGC_375_0067	341400	6768840	380	-58.6	153.1	35	18.00	27.00	9.00	1.82	16.38
	ADGC_375_0068	341405	6768830	380	-61.3	154.7	30	1.00	10.00	9.00	1.58	14.22
	ADGC_375_0069	341411	6768821	380	-59.2	150.8	30	22.00	24.00	2.00	5.18	10.36
	ADGC_375_0070	341416	6768811	380	-60.4	152.0	25	19.00	21.00	2.00	6.14	12.28
	ADGC_375_0071	341422	6768802	380	-59.8	150.0	25	13.00	18.00	5.00	2.41	12.05
	ADGC_375_0072	341312	6768971	375	-76.8	161.0	36	22.00	34.00	12.00	1.63	19.56
	ADGC_375_0073	341318	6768961	375	-75.0	155.0	22	7.00	15.00	8.00	2.38	19.04
	ADGC_375_0074	341357	6768894	375	-89.3	22.7	40	29.00	39.00	10.00	1.43	14.30

	ABCDK drilling	g results +	10 gram me	tres								
		Forfas	Marilla		Dip	Azimuth	End of Hole	From	То	Downhole Length	Au	Gram metres
	Hole ID ADGC_375_0075	Easting 341357	Northing 6768893	RL 375	(°) -60.1	(°) 151.9	(m) 44	(m) 28.00	(m) 36.00	(m) 8.00	(g/t) 3.55	(g*m) 28.40
	ADGC_375_0076	341368	6768874	375	-59.6	156.6	38	30.00	32.00	2.00	12.99	25.98
	ADGC_375_0077	341387	6768843	380	-57.4	153.1	30	23.00	27.00	4.00	6.25	25.00
	ADGC_375_0078	341396	6768826	380	-59.8	152.2	25	11.00	14.00	3.00	4.00	12.00
	ADGC_375_0079	341407	6768808	380	-58.0	149.5	30					NSI
	ADGC_375_0080	341304	6768966	375	-78.9	142.1	32					NSI
	ADGC_375_0081	341305	6768965	375	-63.0	149.6	28	16.00	21.00	5.00	2.64	13.20
	ADGC_375_0082	341309	6768957	375	-58.6	152.8	22	7.00	18.00	11.00	2.04	22.44
	ADGC_375_0083	341326	6768921	375	-59.6	154.4	48	21.00	24.00	3.00	3.93	11.79
	ADGC_375_0084	341331	6768912	375	-60.5	139.4	45	31.00	33.00	2.00	6.48	12.96
	ADGC_375_0085	341349	6768891	375	-88.8	150.1	40	15.00	18.00	3.00	3.72	11.16
	and							23.00	33.00	10.00	1.87	18.70
2	ADGC_375_0086	341345	6768894	375	-59.2	152.6	42	27.00	37.00	10.00	1.77	17.70
2	ADGC_375_0087	341352	6768883	375	-59.6	153.0	40					NSI
)	ADGC_375_0088	341357	6768874	375	-59.8	147.6	38	18.00	27.00	9.00	1.30	11.70
R	and							30.00	32.00	2.00	5.19	10.38
	ADGC_375_0089	341368	6768855	375	-89.0	190.5	32	19.00	26.00	7.00	1.98	13.86
5	ADGC_375_0090	341372	6768849	375	-60.2	149.2	28	17.00	22.00	5.00	5.25	26.25
5	ADGC_375_0091	341380	6768834	375	-57.5	148.7	22	11.00	17.00	6.00	1.91	11.46
	ADGC_375_0092	341326	6768907	375	-59.3	152.5	44	32.00	35.00	3.00	4.16	12.48
く	ADGC_375_0093	341337	6768890	375	-60.9	153.9	42	24.00	34.00	10.00	3.43	34.30
	ADGC_375_0094	341346	6768873	375	-59.6	153.4	36	17.00	31.00	14.00	5.20	72.80
5	ADGC_375_0095	341356	6768856	375	-59.9	148.9	30	20.00	25.00	5.00	3.78	18.90
	ADGC_375_0096	341281	6768966	375	-69.6	154.2	36	26.00	30.00	4.00	4.53	18.12
	ADGC_375_0097	341282	6768964	375	-58.3	150.2	30	19.00	24.00	5.00	2.35	11.75
	ADGC_375_0098	341287	6768956	375	-60.0	149.6	18					NSI
	ADGC_375_0099	341300	6768933	376	-59.6	156.3	48	34.00	41.00	7.00	4.66	32.62
	ADGC_375_0101	341310	6768915	375	-60.0	155.0	42	32.00	35.00	3.00	3.65	10.95
	ADGC_375_0102	341315	6768907	375	-60.0	155.0	42	24.00	33.00	9.00	3.52	31.68
	and							38.00	40.00	2.00	6.77	13.54
	ADGC_375_0103	341320	6768898	375	-58.7	153.2	44	26.00	39.00	13.00	1.41	18.33
	ADGC_375_0104	341325	6768890	375	-59.1	148.9	42	25.00	36.00	11.00	4.91	54.01
	ADGC_375_0105	341330	6768881	375	-59.2	149.0	38	22.00	33.00	11.00	3.27	35.97
	ADGC_375_0106	341335	6768872	375	-58.9	149.8	36	21.00	30.00	9.00	7.18	64.62
	ADGC_375_0107	341346	6768854	375	-89.2	120.0	30	15.00	24.00	9.00	1.24	11.16
	ADGC_375_0108	341345	6768855	375	-61.0	151.1	30	17.00	23.00	6.00	8.17	49.02
	ADGC_375_0109	341349	6768847	375	-59.5	153.1	26					NSI

						End of			Downhole		
Hole ID	Easting	Northing	RL	Dip (°)	Azimuth	Hole (m)	From (m)	To (m)	Length (m)	Au (g/t)	Gram metres
ADGC_375_0110	341274	6768958	375	-60.2	152.0	28		(11)	(11)	(g/t)	NSI
ADGC_375_0110A	341274	6768958	375	-61.5	153.0	28	18.00	24.00	6.00	7.56	45.36
ADGC_375_0111	341294	6768923	376	-59.0	153.1	42	32.00	42.00	10.00	2.82	28.20
ADGC_375_0112	341304	6768905	375	-59.4	152.3	38	26.00	29.00	3.00	3.83	11.49
ADGC_375_0113	341314	6768888	375	-60.4	150.8	36	23.00	35.00	12.00	3.49	41.88
ADGC_375_0114	341327	6768870	375	-58.9	151.1	40	20.00	25.00	5.00	2.89	14.45
ADGC_375_0115	341334	6768854	375	-59.9	148.2	28	15.00	21.00	6.00	2.74	16.44
ADGC_375_0116	341344	6768836	375	-59.6	155.1	22	10.00	15.00	5.00	2.42	12.10
ADGC_375_0117	341262	6768957	375	-83.8	151.3	40	38.00	40.00	2.00	11.99	23.98
ADGC_375_0118	341264	6768954	375	-71.1	147.8	30					NSI
ADGC_375_0119	341267	6768950	376	-60.4	150.1	22					NSI
ADGC_375_0120	341280	6768927	376	-59.4	153.0	42	24.00	41.00	17.00	1.35	22.95
ADGC_375_0121	341285	6768919	375	-60.1	146.7	40	29.00	37.00	8.00	2.16	17.28
ADGC_375_0122	341290	6768910	376	-60.2	146.8	38					NSI
ADGC_375_0123	341295	6768902	375	-60.0	154.9	36	23.00	28.00	5.00	6.21	31.05
ADGC_375_0124	341300	6768893	375	-60.2	151.4	32	17.00	26.00	9.00	2.97	26.73
ADGC_375_0125	341305	6768884	375	-59.6	149.0	30	18.00	23.00	5.00	4.50	22.50
ADGC_375_0126	341310	6768876	375	-59.0	152.6	30	20.00	28.00	8.00	2.09	16.72
ADGC_375_0127	341314	6768869	380	-59.8	149.7	40	23.00	26.00	3.00	4.13	12.39
ADGC_375_0128	341319	6768860	380	-60.1	150.9	36					NSI
ADGC_375_0129	341323	6768852	380	-58.9	151.7	36	19.00	27.00	8.00	2.14	17.12
ADGC_375_0130	341329	6768841	375	-59.5	152.3	36	7.00	16.00	9.00	1.19	10.71
ADGC_375_0131	341257	6768947	375	-58.9	149.4	20					NSI
ADGC_375_0132	341268	6768929	375	-59.8	152.7	40	24.00	26.00	2.00	19.73	39.46
ADGC_375_0133	341278	6768911	375	-59.5	144.8	36	23.00	29.00	6.00	8.25	49.50
ADGC_375_0134	341286	6768895	375	-60.0	149.6	32	16.00	17.00	1.00	15.70	15.70
and							20.00	25.00	5.00	10.74	53.70
ADGC_375_0135	341297	6768877	375	-58.7	138.6	30	18.00	30.00	12.00	1.01	12.12
ADGC_375_0136	341305	6768863	380	-59.3	153.3	36	18.00	25.00	7.00	7.56	52.92
and							28.00	31.00	3.00	3.40	10.20
ADGC_375_0137	341311	6768855	380	-60.5	154.6	32	13.00	27.00	14.00	1.46	20.44
ADGC_375_0138	341259	6768924	375	-59.3	155.6	34					NSI
ADGC_375_0139	341264	6768915	375	-60.2	150.4	32					NSI
ADGC_375_0140	341269	6768907	375	-60.6	152.0	32					NSI
ADGC_375_0141	341274	6768898	375	-58.9	153.6	30	16.00	25.00	9.00	1.86	16.74
ADGC_375_0142	341279	6768889	375	-60.1	152.6	30	17.00	22.00	5.00	3.85	19.25
ADGC_375_0143	341284	6768880	375	-60.8	151.6	26	16.00	23.00	7.00	3.63	25.41

ABCDK drilling	g results +	10 gram me	tres								
				Dip	Azimuth	End of Hole	From	То	Downhole Length	Au	Gram metres
Hole ID ADGC_375_0144	Easting 341289	Northing 6768872	RL 375	(°) -59.4	(°) 151.6	(m) 28	(m) 12.00	(m) 19.00	(m) 7.00	(g/t) 5.65	(g*m) 39.55
ADGC_375_0144	341293	6768865	380	-59.3	151.1	40	1.00	9.00	8.00	1.38	11.04
and	041200	0700000	000	-00.0	101.1		14.00	32.00	18.00	1.11	19.98
ADGC_375_0146	341298	6768857	380	-61.3	148.3	26	0.00	4.00	4.00	3.18	12.72
and	541250	0700037	500	-01.5	140.5	20	21.00	26.00	5.00	2.14	10.70
	341303	6768848	380	-59.5	151.7	26	11.00	16.00	5.00	2.14	14.35
ADGC_375_0147 and	341303	0700040	300	-59.5	131.7	20					
	341312	6768831	380	50.6	150.6	24	22.00	26.00	4.00	2.79	11.16 NSI
ADGC_375_0148				-59.6							
ADGC_375_0149	341270	6768884	375	-60.0	149.6	12					NSI
ADGC_375_0150	341251	6768918	375	-60.3	151.3	28	0.00	7.00	5.00	0.75	NSI
ADGC_375_0151	341260	6768902	375	-60.1	154.6	28	2.00	7.00	5.00	2.75	13.75
ADGC_375_0152	341280	6768866	375	-60.0	149.6	30	7.00	18.00	11.00	1.61	17.71
ADGC_375_0153	341289	6768852	380	-59.3	151.1	40	15.00	23.00	8.00	3.78	30.24
ADGC_375_0154	341241	6768916	375	-59.7	152.1	22					NSI
ADGC_375_0155	341251	6768898	375	-60.8	160.1	20	5.00	14.00	9.00	9.16	82.44
ADGC_375_0156	341260	6768892	375	-58.6	165.6	30	8.00	16.00	8.00	2.33	18.64
ADGC_375_0162	341286	6768836	380	-90.0	359.6	18	4.00	14.00	10.00	1.72	17.20
ADGC_375_0163	341295	6768820	380	-90.0	359.6	18	1.00	4.00	3.00	5.30	15.90
ADGC_375_0164	341305	6768804	380	-90.0	359.6	18					NSI
ADGC_375_0170	341263	6768836	380	-90.0	359.6	18	7.00	14.00	7.00	2.92	20.44
ADGC_375_0171	341269	6768828	380	-90.0	359.6	14					NSI
ADGC_375_0172	341251	6768838	380	-90.0	359.6	18					NSI
CLGC_430_0001	341943	6769047	426	-61.1	236.6	40					NSI
CLGC_430_0002	341927	6769036	426	-60.1	237.1	30					NSI
CLGC_430_0003	341909	6769025	427	-60.6	237.1	36					NSI
CLGC_430_0004	341892	6769015	427	-60.0	240.1	24					NSI
CLGC_430_0005	341883	6769010	427	-60.1	234.2	20					NSI
CLGC_430_0006	341949	6769038	426	-89.4	261.3	36					NSI
CLGC_430_0007	341923	6769022	427	-89.7	269.8	27					NSI
CLGC_430_0008	341906	6769011	427	-89.2	250.8	35	23.00	27.00	4.00	3.32	13.28
CLGC_430_0009	341889	6769000	427	-89.5	243.1	21					NSI
CLGC_430_0010	341964	6769034	426	-60.4	236.3	40					NSI
CLGC_430_0011	341947	6769023	426	-59.6	239.4	48	23.00	34.00	11.00	1.31	14.41
and							37.00	42.00	5.00	2.00	10.00
CLGC_430_0012	341930	6769013	427	-60.3	236.5	36	11.00	12.00	1.00	28.30	28.30
and					1		20.00	32.00	12.00	2.33	27.96
CLGC_430_0013	341912	6769002	427	-59.1	240.3	30					NSI

	ABCDK drilling	g results +	10 gram me	tres								
	Hole ID	Easting	Northing	RL	Dip (°)	Azimuth	End of Hole	From	To (m)	Downhole Length	Au (~/t)	Gram metres
	CLGC_430_0014	241896	6768992	RL 427	-59.6	241.3	(m) 20	(m) 9.00	(m) 19.00	(m) 10.00	(g/t) 2.14	(g*m) 21.40
	CLGC_430_0015	341887	6768986	427	-60.0	240.0	16	4.00	8.00	4.00	3.28	13.12
	CLGC_430_0016	341996	6769042	426	-60.0	236.1	50					NSI
	CLGC_430_0017	341987	6769037	426	-59.8	238.3	44					NSI
	CLGC_430_0018	341979	6769032	426	-60.4	242.1	40					NSI
	CLGC_430_0019	341970	6769026	426	-59.6	239.1	36					NSI
	CLGC_430_0020	341962	6769021	426	-59.8	240.6	26					NSI
	CLGC_430_0021	341954	6769016	426	-59.4	239.9	46					NSI
	CLGC_430_0022	341945	6769011	426	-60.1	237.1	42					NSI
	CLGC_430_0023	341937	6769005	427	-60.0	240.5	38	27.00	33.00	6.00	2.94	17.64
-	CLGC_430_0024	341928	6769000	427	-60.2	239.7	35	20.00	35.00	15.00	1.69	25.35
	CLGC_430_0025	341920	6768995	427	-60.3	238.0	32	19.00	32.00	13.00	6.24	81.12
	CLGC_430_0026	341911	6768990	427	-60.0	239.3	24					NSI
	CLGC_430_0027	341903	6768984	427	-60.0	237.6	20					NSI
	CLGC_430_0028	341894	6768979	427	-60.0	237.6	16	5.00	11.00	6.00	1.69	10.14
<	CLGC_430_0029	342019	6769045	426	-59.3	237.5	50					NSI
	CLGC_430_0030	342010	6769040	426	-59.5	236.8	46					NSI
)	CLGC_430_0031	341993	6769029	426	-59.8	238.3	38					NSI
)	CLGC_430_0032	341966	6769012	426	-60.0	238.0	10					NSI
	CLGC_430_0033	341950	6769002	426	-59.3	243.4	40	28.00	37.00	9.00	1.14	10.26
ノ	CLGC_430_0034	341904	6768973	427	-89.2	274.2	36	7.00	13.00	6.00	1.68	10.08
_	CLGC_430_0035	342021	6769036	427	-89.1	358.9	42					NSI
)	CLGC_430_0036	342013	6769031	427	-89.2	232.6	42					NSI
	CLGC_430_0037	342004	6769025	426	-89.9	85.3	40					NSI
	CLGC_430_0038	341995	6769020	426	-89.9	154.4	34					NSI
	CLGC_430_0039	341944	6768988	427	-87.8	333.6	36	25.00	33.00	8.00	2.60	20.80
	CLGC_430_0040	341908	6768966	427	-89.2	90.5	36					NSI
	CLGC_430_0041	342037	6769035	427	-59.8	237.3	42					NSI
	CLGC_430_0042	342028	6769030	427	-60.0	236.8	42					NSI
	CLGC_430_0043	342013	6769020	427	-60.3	239.5	30					NSI
	CLGC_430_0044	341998	6769011	426	-60.1	234.9	30					NSI
	CLGC_430_0045	341980	6769000	427	-59.3	239.9	54					NSI
	CLGC_430_0046	341963	6768989	426	-60.4	237.7	54					NSI
	CLGC_430_0047	341914	6768958	427	-59.5	238.3	36	9.00	18.00	9.00	3.99	35.91
	CLGC_430_0048	342043	6769028	428	-60.0	240.5	42					NSI
	CLGC_430_0049	342035	6769023	428	-60.6	236.1	42	19.00	20.00	1.00	10.90	10.90
	CLGC_430_0050	342026	6769018	428	-59.7	236.0	30					NSI

ABCDK drilling						End of			Downhole		
Hole ID	Easting	Northing	RL	Dip (°)	Azimuth (°)	Hole (m)	From (m)	To (m)	Downhole Length (m)	Au (g/t)	Gram metres
CLGC_430_0051	342018	6769013	427	-60.2	235.3	30					NSI
CLGC_430_0052	342010	6769007	427	-60.5	237.8	30					NSI
CLGC_430_0053	341992	6768996	427	-60.4	238.5	50					NSI
CLGC_430_0054	341975	6768986	426	-59.8	238.1	44	35.00	40.00	5.00	2.17	10.85
CLGC_430_0055	341905	6768952	428	-58.8	238.3	30	0.00	5.00	5.00	2.49	12.45
CLGC_430_0056	341967	6768981	426	-59.6	235.9	36					NSI
CLGC_430_0057	341958	6768975	427	-60.8	237.8	30					NSI
CLGC_430_0058	341949	6768970	427	-59.9	238.9	26	15.00	22.00	7.00	2.16	15.12
CLGC_430_0059	341941	6768965	427	-60.1	239.0	26	9.00	19.00	10.00	1.00	10.00
CLGC_430_0060	341933	6768959	427	-59.7	239.3	24					NSI
CLGC_430_0061	341925	6768954	427	-60.0	237.6	18					NSI
CLGC_430_0062	341916	6768949	427	-60.0	237.6	14					NSI
CLGC_430_0063	341908	6768944	428	-60.0	237.6	10					NSI
CLGC_430_0064	342034	6769012	428	-60.0	237.5	40					NSI
CLGC_430_0065	342003	6768992	427	-59.2	233.9	36					NSI
CLGC_430_0066	341985	6768981	427	-60.3	240.2	54	33.00	43.00	10.00	4.52	45.20
CLGC_430_0067	341969	6768970	427	-59.7	237.7	54	34.00	40.00	6.00	2.70	16.20
CLGC_430_0068	341952	6768961	427	-59.9	240.1	46	30.00	45.00	15.00	1.44	21.60
CLGC_430_0069	341933	6768948	427	-59.5	237.3	40					NSI
CLGC_430_0070	341910	6768934	427	-60.0	238.0	10					NSI
CLGC_430_0071	342000	6768976	427	-89.9	180.3	30					NSI
CLGC_430_0072	341991	6768970	427	-89.8	192.5	30					NSI
CLGC_430_0073	341982	6768965	427	-89.6	263.4	54	25.00	42.00	17.00	2.69	45.73
and							45.00	54.00	9.00	1.23	11.07
CLGC_430_0074	341965	6768956	427	-89.8	72.2	54	11.00	18.00	7.00	1.71	11.97
and							24.00	34.00	10.00	4.49	44.90
CLGC_430_0075	341949	6768944	427	-89.8	305.0	42	10.00	18.00	8.00	3.47	27.76
CLGC_430_0079	342004	6768968	427	-59.8	237.3	36	34.00	36.00	2.00	6.02	12.04
CLGC_430_0080	341989	6768958	427	-60.9	239.0	54	28.00	37.00	9.00	2.41	21.69
CLGC_430_0081	341972	6768947	427	-59.9	234.5	46	24.00	32.00	8.00	1.31	10.48
CLGC_430_0082	341955	6768936	427	-60.0	236.3	38	2.00	9.00	7.00	1.71	11.97
CLGC_430_0083	341944	6768930	427	-60.1	240.7	36	0.00	15.00	15.00	0.85	12.75
CLGC_430_0087	342019	6768965	428	-60.9	238.0	54	38.00	48.00	10.00	1.94	19.40
CLGC_430_0088	342011	6768960	428	-60.2	234.2	50	27.00	46.00	19.00	2.24	42.56
CLGC_430_0089	342002	6768954	427	-62.5	239.4	44	29.00	36.00	7.00	4.41	30.87
CLGC_430_0090	341994	6768949	427	-60.7	235.4	40	22.00	30.00	8.00	1.30	10.40
CLGC_430_0091	341985	6768944	427	-60.5	236.8	48	16.00	27.00	11.00	1.62	17.82

	ABCDK drilling	g results +	10 gram me	tres								
	Hole ID	Easting	Northing	RL	Dip (°)	Azimuth	End of Hole (m)	From (m)	To (m)	Downhole Length (m)	Au (g/t)	Gram metres (g*m)
	CLGC_430_0092	341977	6768938	427	-61.2	239.6	42	21.00	32.00	11.00	1.79	19.69
	CLGC_430_0092	341977	6768938	427	-61.2	239.6	42					NSI
	CLGC_430_0092	341977	6768938	427	-61.2	239.6	42					NSI
	CLGC_430_0093	341969	6768933	427	-59.7	239.1	36	12.00	15.00	3.00	6.65	19.95
	CLGC_430_0094	341965	6768922	427	-58.5	238.5	36					NSI
	CLGC_430_0095	341955	6768916	427	-59.7	247.7	36	21.00	28.00	7.00	2.18	15.26
	CLGC_430_0099	341917	6768901	427	-60.0	238.0	16					NSI
	CLGC_430_0100	341909	6768896	427	-60.0	237.6	12					NSI
	CLGC_430_0101	342052	6768974	428	-60.1	238.8	40					NSI
	CLGC_430_0102	342021	6768956	428	-60.8	237.7	36					NSI
	CLGC_430_0103	342004	6768945	428	-60.0	237.3	42	32.00	35.00	3.00	5.91	17.73
	CLGC_430_0104	341988	6768934	427	-59.8	259.3	34	19.00	27.00	8.00	2.07	16.56
	CLGC_430_0105	341974	6768927	427	-60.4	234.6	38					NSI
)	CLGC_430_0106	341944	6768909	428	-60.1	234.3	30					NSI
	CLGC_430_0107	341924	6768895	428	-89.0	265.2	22					NSI
	CLGC_430_0108	341910	6768886	428	-90.0	0.0	12					NSI
	CLGC_430_0109	341901	6768880	428	-90.0	359.6	10					NSI
)	CLGC_430_0110	342044	6768959	428	-60.9	237.4	36					NSI
)	CLGC_430_0111	342036	6768954	428	-60.0	235.8	54					NSI
5	CLGC_430_0112	342028	6768949	428	-58.9	237.6	24					NSI
く	CLGC_430_0113	342019	6768943	428	-60.4	239.1	48					NSI
4	CLGC_430_0114	342010	6768938	428	-59.8	236.0	42	31.00	40.00	9.00	1.18	10.62
)	CLGC_430_0115	342002	6768933	428	-60.3	235.6	54					NSI
	CLGC_430_0116	341993	6768928	428	-59.5	236.6	38					NSI
	CLGC_430_0117	341984	6768922	428	-59.9	235.2	42					NSI
	CLGC_430_0118	341977	6768917	427	-59.9	236.2	40	9.00	22.00	13.00	1.22	15.86
	CLGC_430_0119	341968	6768911	427	-59.0	235.6	40					NSI
	CLGC_430_0120	341960	6768906	428	-61.1	238.6	36	15.00	26.00	11.00	2.84	31.24
	CLGC_430_0121	341952	6768901	428	-60.0	237.6	16					NSI
	CLGC_430_0122	341942	6768895	428	-59.5	237.6	26					NSI
	CLGC_430_0123	341934	6768890	428	-58.6	236.6	22					NSI
	CLGC_430_0124	341924	6768884	428	-60.0	237.6	18					NSI
	CLGC_430_0125	341917	6768880	428	-60.0	237.6	14					NSI
	CLGC_430_0126	341909	6768874	428	-60.0	238.0	10					NSI
	CLGC_430_0127	342041	6768946	428	-59.7	236.7	34					NSI
	CLGC_430_0128	342025	6768936	428	-59.4	236.9	24					NSI
	CLGC_430_0129	342007	6768924	428	-89.8	33.7	40					NSI

						End of			Downhole		
Hole ID	Easting	Northing	RL	Dip (°)	Azimuth (°)	Hole (m)	From (m)	To (m)	Length (m)	Au (g/t)	Gram metres (g*m)
CLGC_430_0130	341980	6768907	428	-58.3	235.8	42	12.00	22.00	10.00	2.04	20.40
CLGC_430_0131	341956	6768893	428	-89.9	62.7	36					NSI
CLGC_430_0132	341938	6768882	428	-58.4	235.0	24					NSI
CLGC_430_0133	342032	6768925	428	-73.2	229.4	30					NSI
CLGC_430_0134	342024	6768921	429	-59.5	238.6	54					NSI
CLGC_430_0135	342015	6768915	428	-60.1	238.8	54					NSI
CLGC_430_0136	342007	6768910	428	-60.1	229.1	54	10.00	13.00	3.00	4.64	13.92
CLGC_430_0137	341998	6768905	428	-59.4	243.5	46					NSI
CLGC_430_0138	341990	6768899	428	-60.3	239.6	42					NSI
CLGC_430_0139	341982	6768894	428	-60.9	237.6	38					NSI
CLGC_430_0140	341973	6768888	428	-58.3	235.8	36	28.00	35.00	7.00	2.62	18.34
CLGC_430_0141	341964	6768883	428	-58.0	240.5	32	18.00	26.00	8.00	1.72	13.76
CLGC_430_0142	341956	6768878	428	-60.6	237.6	28	5.00	24.00	19.00	7.95	151.05
CLGC_430_0143	341947	6768873	428	-58.4	242.0	22	5.00	14.00	9.00	1.80	16.20
CLGC_430_0144	341939	6768867	428	-60.0	237.6	18					NSI
CLGC_430_0145	341931	6768862	429	-60.0	237.6	14			1		NSI
CLGC_430_0146	341922	6768857	429	-60.0	238.0	10					NSI
CLGC_430_0147	342026	6768910	429	-60.6	234.3	24					NSI
CLGC_430_0148	342009	6768899	429	-60.0	237.6	16					NSI
CLGC_430_0149	341992	6768888	428	-59.9	239.0	40	30.00	34.00	4.00	3.03	12.12
CLGC_430_0150	341975	6768878	428	-59.8	237.4	34					NSI
CLGC_430_0151	341958	6768868	428	-60.6	236.6	40					NSI
CLGC_430_0152	341938	6768855	429	-60.0	238.0	16			Ì		NSI
CLGC_430_0153	342008	6768884	429	-90.0	359.6	16					NSI
CLGC_430_0154	341991	6768874	428	-89.1	260.0	40					NSI
CLGC_430_0155	341974	6768863	428	-88.4	165.2	32					NSI
CLGC_430_0156	341957	6768853	428	-90.0	359.6	18					NSI
CLGC_430_0157	341940	6768843	429	-90.0	359.6	10					NSI
CLGC_430_0158	341990	6768865	429	-88.9	276.8	38			Ì		NSI
CLGC_430_0159	341982	6768859	429	-89.0	269.4	34	25.00	27.00	2.00	5.09	10.18
CLGC_430_0160	341965	6768850	428	-87.9	291.3	20					NSI
CLGC_430_0161	341948	6768839	429	-90.0	359.6	10					NSI
CLGC_430_0162	341996	6768857	429	-89.1	205.5	42					NSI
CLGC_430_0163	341988	6768852	429	-89.5	274.4	36	26.00	28.00	2.00	5.79	11.58
CLGC_430_0164	341980	6768847	429	-89.1	153.6	30					NSI
CLGC_430_0165	341971	6768841	429	-87.7	144.6	24					NSI
CLGC_430_0166	341962	6768836	429	-90.0	359.6	18					NSI

ABCDK drilling	g results +	10 gram me	tres								
Hole ID	Easting	Northing	RL	Dip (°)	Azimuth (°)	End of Hole (m)	From (m)	To (m)	Downhole Length (m)	Au (g/t)	Gram metres (g*m)
CLGC_430_0167	341954	6768831	429	-90.0	359.6	14					NSI
CLGC_430_0168	341989	6768840	429	-59.1	237.0	34					NSI
CLGC_430_0169	341972	6768828	429	-59.8	237.0	22					NSI
CLGC_430_0170	341963	6768823	429	-60.0	237.6	16	11.00	16.00	5.00	2.25	11.25
CLGC_430_0171	341978	6769010	426	-90.0	0.0	10					NSI
CLGC_430_0172	341970	6769004	426	-90.0	359.6	10					NSI
CLGC_430_0173	341961	6768999	426	-90.0	0.0	10					NSI
CLGC_430_0174	342025	6768895	429	-88.9	151.4	24					NSI
CLGC_430_0175	341999	6768870	429	-88.6	269.4	44					NSI
CLGC_430_0176	341927	6768977	427	-89.6	285.0	27					NSI
CLGC_430_0177	341933	6768991	427	-59.1	243.7	32					NSI
CLGC_430_0178	341886	6768964	427	-89.1	101.6	30					NSI
CLGC_430_0179	341894	6768957	427	-89.7	83.9	30					NSI
CLGC_430_0180	341885	6768951	427	-88.1	246.9	30					NSI
CLGC_430_0181	341896	6768946	428	-58.2	236.5	25					NSI
CLGC_430_0182	341932	6768969	427	-60.2	239.6	45					NSI
CLGC_430_0183	341946	6768978	426	-60.4	234.7	45					NSI
CLGC_430_0184	342053	6768938	429	-59.1	236.7	40					NSI
CLGC_430_0185	342061	6768943	429	-58.0	236.3	40					NSI

Appendix 2 - JORC TABLE 1s

JORC Table 1 Checklist of Assessment and Reporting Criteria - GWALIA

Section 1 Sampling Techniques and Data - Gwalia

Criteria	JORC Code explanation	Commentary
Sampling Techniques	Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information.	 Surface and underground diamond core is NQ (50.6mm) sized core, sampled to 1m intervals or geological boundaries where necessary and cut into half core. The upper or right-hand side of the core is routinely submitted for sample analysis, with each one metre of half core providing between 2.5 – 3 kg of material as an assay sample. Minimum sample length is 0.30 m for DD core. All sampling methods are used to produce representative sample of less than 3 kg. Samples are selected to weigh less than 3 kg to ensure total sample inclusion at the pulverisation stage. Genesis core and chip samples are crushed, dried and pulverised to a nominal 90% passing 75µm to produce a 40g or 50 g sub sample for analysis by FA/AAS. Visible gold is sometimes encountered in underground drill core. Historical AC, RAB, RC and diamond sampling was carried out to industry standard at that time. Analysis methods include fire assay
Drilling Techniques	Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Drilling results reported are from diamond core results only produced by a jumbo mounted diamond coring drill using standard tube configuration.
Drill Sample Recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 Diamond core recovery percentages calculated from measured core versus drilled intervals are logged and recorded in the database. Recoveries average >90%. Diamond drilling has high recoveries due to the competent nature of the ground meaning loss of material is minimal.
	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	 Geotechnical and structural logging is carried out on all diamond holes to record recovery, RQD, defect number, type, fill material, shape and roughness and alpha and beta angles. Core is photographed in wet state. All diamond drillholes are logged in full.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality, and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	 All drill core is cut in half onsite using an automatic core saw. Samples are always collected from the same side. The sample preparation of diamond core and RC chips adhere to industry best practice. It is conducted by a commercial laboratory and involves oven drying, coarse crushing then total grinding to a size of 90% passing 75 microns. All subsampling activities are carried out by commercial laboratory and are satisfactory.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	 Diamond core are analysed by external laboratories using a 40g or 50g fire assay with AAS finish. These methods are considered suitable for determining gold concentrations in rock and are total digest methods. Certified reference material (standards and blanks) with a wide range of values are inserted into every drillhole at a rate of 1:20 for diamond drilling. These are not identifiable to the laboratory. QAQC data returned are checked against pass/fail limits and are passed or failed prior to import to SQL database. A report is generated and reviewed by the geologist as necessary upon failure to determine further action. Sample preparation checks for fineness are carried out to ensure a grindsize of 90% passing 75 microns. The laboratory performs a number of internal processes including standards, blanks, repeats and checks. QAQC data analysis demonstrates sufficient accuracy and precision.

Criteria	JORC Code explanation	Commentary
		Industry best practice is assumed for previous holders.
Verification of sampling and assay	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	 Significant intercepts are verified by the Geology Manager and corporate personnel. Primary data is collated in Log Chief logging software. This data is forwarded to the Database Administrator for entry into a secure Datashed database with inbuilt validation functions. No adjustments have been made to assay data. First gold assay is utilised for resource estimation. Non positive values have been set to half lower detection limit (0.005 ppm).
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	 All underground drillhole collars are picked up by company surveyors using a Leica TS15i (total station) with an expected accuracy of +/-2mm. Downhole surveys are carried out using the DeviFlex RAPID continuous inrod survey instrument taking readings every 5 seconds, In and Out runs and reported in 3m intervals, survey accuracy +-3:1000.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	 The nominal spacing for the drilling reported is 25m x 25m Data spacing and distribution are sufficient to establish the degree of geological and grade continuity appropriate for JORC classifications applied. Sample compositing has been applied for reporting of significant intercepts.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 Drill holes are positioned to achieve optimum intersection angles to the ore zone as are practicable. No significant sampling bias is occurring due to orientation of drilling in regards to mineralised structures.
Sample security	The measures taken to ensure sample security.	 Samples are prepared on site under supervision of Genesis geological staff. Samples are selected, bagged into tied numbered calico bags then grouped into secured cages and collected by the laboratory personnel. Sample submissions are documented via laboratory tracking systems and assays are returned via email.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 An internal review of companywide sampling methodologies was conducted to create the current sampling and QAQC procedures.

Section 2 Reporting of Exploration Results - Gwalia

Criteria	JORC Code explanation	Commentary
Mineral Tenement and Land Tenure Status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 The Gwalia deposit is located on tenements M37/137 and M37/25 and is 100% owned by Genesis Minerals Limited. Genesis pays a 1.5% royalty on all minerals produced from the tenements to the International Royalty Corporation. Native title interests over the tenements are by the Darlot group. The historical Darlot townsite is located to the north of the existing Gwalia open pit.
Exploration Done by Other Parties	Acknowledgment and appraisal of exploration by other parties.	 Discovered in 1896, the Sons of Gwalia ore body was mined by underground methods until 1963, when the mine had reached a vertical depth of 1,075m at the 32 level. In 1983 Sons of Gwalia Ltd, (SGW) acquired the leases over the mine, and commenced open pit mining soon after in 1984. Mining by open pit methods continued until January 1999 with the pit extending to 280m vertical depth. Underground mining, largely of remnant ore, commenced at the completion of open cut mining and ceased in September 2003 at a vertical depth of 375m. Initial exploratory drilling of the Gwalia Deeps ore body was subsequently undertaken between March 1986 and May 1989 as a jointly funded project by WMC and SGW. Four deep diamond drill holes and two wedge holes were drilled between 1,200m – 1,400m vertical depth. Western Mining Corporation, (WMC) first investigated the possibility of testing resource extensions below 1,075mbs in 1965, (Parbo, 1965), however the economics did not support the exploration proposal.

	Criteria	JORC Code explanation	Commentary
	у п 1		 In 1998, SGW began phase I of the Gwalia Deeps drilling program, (Quinney & Culpan, 1998). This consisted of two parent holes (GWDD5 and GWDD6) and 5 daughter holes (GWDD6A – E), targeting mineralisation between 1,200m – 1,300m vertical depth. SGW commenced a phase II program in 2000, completing a further four parent holes GWDD7 – GWDD10 and a further 5 daughter holes. The mine was acquired by SBM in March 2005 with further deep drilling, targeting resource extensions below 1,075mbs, commencing later the same year and continuing through until early 2007. Drilling targeting resource extensions below 1,600mbs to 2,000mbs commenced in August 2010 and was completed in July 2011. Due to the success of these programs further drilling was completed between November 2011 and March 2012 aimed at infilling and extending the South Gwalia Series (SGS) and South West Branch (SWB) resources below 1600mbs (Evans, 2012).
reonal lise o	Geology	Deposit type, geological setting and style of mineralisation.	 The Sons of Gwalia deposit lies in the central portion of the Norseman-Wiluna Archaean Greenstone Belt. The greenstone belt here comprises an arcuate, low strain mafic-ultramafic succession folded around the eastern and northern margin of the Raeside Batholith. Locally, the deposit lies in the Gwalia Domain which Witt, (1997) defines as bound by the Mount George Shear Zone to the east, the Sons of Gwalia Shear Zone to the west and south and the Clifford Fault to the north. The Sons of Gwalia mineralised zone strikes 15 degrees east of true north over a distance of 500m and plunges 45 degrees to the southeast. The mineralised zone consists of several stepped or en echelon style foliation parallel lodes disposed in plan in a "horse-shoe" shape with the limbs converging at the southern end. The mineralised zone and individual lodes dip east at 35 to 45 degrees and are conformable with the foliation of the Mine Sequence mafic schists. The individual lodes are a few metres to tens of metres thick defined by simple planar envelopes extensive along strike and down plunge. Gold mineralisation at Gwalia is associated with a proximal pyrite-rich potassic alteration assemblage and pyritic, quartz-rich, laminated veins. The most consistent and clearest correlation of gold grade at all levels and in all lodes is with sulphide abundance. Lodes are typically characterised by 1-8% disseminated sulphides. Trace disseminated sulphides (mainly pyrite) occur outside the lodes as a component of more distal alteration assemblages.
Eor no	Drill Hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	 A full table of results is included within this document for all holes drilled into the Gwalia deposit for this release. The table includes all drill hole details as per downhole intercept length.
	Data Aggregation Methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	 All significant intercepts have been length weighted with a minimum Au grade of 20gm. No high grade cut off has been applied. Intercepts are aggregated with minimum width of 0.5m and maximum width of 3m for internal dilution. There are no metal equivalents reported in this release.
	Relationship Between Mineralisation Widths and Intercept Lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known').	All results are reported as downhole lengths. Drilling is designed to be as perpendicular to the ore body as possible.

Criteria	JORC Code explanation	Commentary
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Diagrams are included in the announcement to demonstrate location and widths of intercepts.
Balanced Reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced avoiding misleading reporting of Exploration Results.	All results from previous campaigns have been reported, irrespective of success or not.
Other Substantive Exploration Data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 No work other than the released drill holes has been completed.
Further Work	The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Gwalia is currently in production and extensional exploration at this time is under review.

ORC Table 1 Checklist of Assessment and Reporting Criteria – ADMIRAL GROUP

Section 1 Sampling Techniques and Data – Admiral Group

Criteria	JORC Code explanation	Commentary		
Sampling Techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information.	 Reverse circulation drilling was done using a track mounted RC rig to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay 		
Drilling Techniques	Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	All drilling reported was completed using reverse circulation with a hammer bit.		
Drill Sample Recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 Limited records of sample recovery in historical drilling were located for RC drill samples; There is no indication of a relationship between sample recovery and grade. 		
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	 Company geologists logged in detail each hole at the time of drilling; All drill holes were logged in full; RC chips have been photographed. Logging has been completed to a standard to enable mineral resource estimates to be completed. 		
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality, and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	 RC samples were collected from a rig mounted cyclone and cone splitter in one metre intervals; Genesis drilling included extensive QAQC protocols including blanks, standards and duplicates. Results were satisfactory and supported the use of the data in resource estimation; 		

Criteria	JORC Code explanation	Commentary
	Whether sample sizes are appropriate to the grain size of the material being sampled.	 Sample sizes are considered appropriate to correctly represent the gold mineralisation based on: the style of mineralisation, the thickness and consistency of the intersections, the sampling methodology and assay value ranges for Au.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established.	 Each sample was dried, crushed and pulverised; Au was analysed by 30g Fire assay fusion technique with AAS finish. The techniques are considered quantitative in nature; The analytical technique used approaches total dissolution of gold in most circumstances; Genesis drilling included extensive QAQC protocols including blanks, standards and duplicates. Results were satisfactory and supported the use of the data in resource estimation.
Verification of sampling and assay	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	 Verification of significant intersections was done by company personnel including corporate and manager levels. Multiple phases of drilling have confirmed the overall grade and distribution of mineralisation, twinned holes were not used given the close spaced drilling. Primary data documentation is electronic with appropriate verification and validation; Data is well organized and securely stored in a relational database. No adjustments are made to assay data.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	 Downhole surveys are conducted to record hole deviation. Detailed topographic surveys have been carried out to show the extent of open pit mining. End of Mine surveys support the recent topographic surveys. All hole collars are picked up using DGPS by surveyors when requested
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	 Drilling has been completed on 10m x 10m spaced centres for grade control purposes prior to mining. Sample compositing for reporting purposes has been completed.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 The drilling is approximately perpendicular to the strike and dip of mineralisation and therefore the sampling is considered representative of the mineralised zones; The majority of deposits are aligned with well defined structural orientations and drilling is oriented to generally intersect at a high angle to the mineralisation; No orientation based sampling bias has been identified in the data.
Sample security	The measures taken to ensure sample security.	Genesis samples were carefully identified and bagged on site for collection and transport by commercial or laboratory transport.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 All work was carried out by reputable companies using industry standard methods. No external audits of sampling techniques have been completed for the reported results.

Section 2 Reporting of Exploration Results - Admiral Group

Criteria	JORC Code explanation	Commentary
Mineral Tenement and Land Tenure Status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 The Leonora South Gold Project is located over a 60km strike length of the Melita Greenstones on granted mining and exploration licenses with associated miscellaneous licenses; The Admiral Group of deposits are located on Mining lease M40/110, M40/101, M40/288 and M40/003. Mining Lease M40/110 expires 25 July 2032 Mining Lease M40/101 expires 3 Dec 2031 Mining Lease M40/003 expires 19 April 2025 Mining Lease M40/288 expires 9 Aug 2025

Criteria	JORC Code explanation	Commentary
		 The tenements are in good standing. Kookynie Project tenements are listed below. E40/229 M40/101 P40/1272 E40/263 M40/107 P40/1300 E40/281 M40/110 P40/1301 E40/291 M40/117 P40/1302 E40/292 M40/120 P40/1303 E40/306 M40/136 P40/1427 E40/316 M40/137 P40/1428 E40/346 M40/148 P40/1433 E40/347 M40/151 P40/1434 E40/368 M40/163 P40/1435 E40/375 M40/164 P40/1436 E40/385 M40/174 P40/1437 E40/386 M40/192 P40/1438 G40/4 M40/196 P40/1439 G40/5 M40/2 P40/1440 G40/6 M40/20 P40/1441 G40/7 M40/209 P40/1442 L40/10 M40/26 P40/1444 L40/11 M40/288 P40/1445 L40/12 M40/289 P40/1444 L40/15 M40/290 P40/1447 L40/17 M40/291 P40/1454 L40/18 M40/292 M40/344 L40/19 M40/293 M40/345 L40/20 M40/3 M40/348 L40/21 M40/339 M40/56 L40/22 M40/340 M40/8 L40/27 M40/342 M40/94 L40/7 M40/343
Exploration Dor Parties	e by Other Acknowledgment and appraisal of exploration by other parties.	 The majority of drilling was carried out by previous operators including A&C, Kookynie Resources, Consolidated Gold Mines, Melita Mining, Diamond Ventures, Dominion Mining and Forrest Gold; Exploration has been ongoing since the 1980's across the Leonora Gold Project. Several phases of mining and processing operations have been conducted.
Geology	Deposit type, geological setting, and style of mineralisation.	 The Leonora Gold Project is located in the central part of the Norseman-Wiluna belt of the Eastem Goldfields terrane. Host rocks in the region are primarily metasedimentary and metavolcanic lithologies of the Melita greenstones; Gold mineralisation is developed within structures encompassing a range of orientations and deformation styles; The Admiral, Butterfly, Clark, Danluce and King mineralisation is mainly hosted within multiple shallowly (30°) east dipping zones which strikes broadly north/south over a distance of 400m, with higher grades restricted to the magnetic dolerite sill (Main Zone). Mineralisation is also well developed in a steep north dipping shear zone which is part of the more extensive East/West striking Hercules shear, with mineralisation identified over 2km of strike; Mineralisation within the dolerite is related to quartz albite- biotite alteration haloes surrounding narrow vein sets broadly parallel to the shallow ENE dipping Admiral, Butterfly and Clark shear zones. Mineralisation is typically 3 to 10m wide with gold grades ranging between 2.0 and 5.0g/t Au; Mineralisation within the Basalt or Hercules Shear is hosted within highly foliated basalt with intense quartz/carbonate/sericite alteration and associated sulphides. Mineralisation is typically 5 to 12m wide with gold grades ranging between 1.0 and 5.0g/t Au. Mineralisation at Butterfly North is related to a quartz/pyrite stockwork within a granite host where the Butterfly shear intersects the granite.
	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	• A full table of drillholes has been included in this release with all relevant data.
Data Aggregatio	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncation (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grad results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	g/t Au was applied with up to 2m of internal dilution allowed; • The Intervals reported are used in the Mineral Resource Estimate:

Criteria	JORC Code explanation	Commentary
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship Between Mineralisation Widths and Intercept Lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known').	 The drill holes are interpreted to be approximately perpendicular to the strike and dip of mineralisation; Due to the multiple orientation of structures, drilling is not always perpendicular to the dip of mineralisation and in those cases true widths are less than downhole widths.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Cross sections and plan views have been included in this announcement to demonstrate hole hole locations.
Balanced Reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced avoiding misleading reporting of Exploration Results.	• Significant results have been demonstrated both on the images and in table form, a full list of holes has been included for balanced reporting
Other Substantive Exploration Data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 No other exploration data has been reported as part of this release however mining is currently being undertaken at Admiral allowing for validation of mineral resources.
Further Work	The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Exploration and resource extension programs are under review by Genesis to increase confidence in the defined Mineral Resources and to discover additional deposits of gold mineralisation.

GORC Table 1 Checklist of Assessment and Reporting Criteria - HUB

Section 1 Sampling Techniques and Data - Hub

Criteria	JORC Code explanation	Commentary
Sampling Techniques	Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information.	 Procedures were carried out under Company protocols which are aligned with current industry practice. RC holes were drilled with a 5.25 inch face-sampling bit, 1 m samples collected through a cyclone and cone splitter, to form a 2 – 3 kg single metre sample and a bulk 25 – 40 kg reject sample. DD samples were collected from NQ2 and HQ diamond core. Core was measured, oriented (where possible), photographed and then cut in half. Samples of ½ core were selected based on geological observations and were between 0.3 m and 1 m in length. The samples were dispatched to Bureau Veritas (BV) Kalgoorlie. These samples were sorted and dried by the assay laboratory, pulverised to form a 40g (BV)
Drilling Techniques	Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Reverse Circulation (RC) drilling and Diamond Drilling (DD) were used.
Drill Sample Recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 RC recoveries and quality were visually estimated, and any low recoveries recorded in the database. All core was measured, with recovery calculated against the drill run, which is recorded in the database. Core recovery within the total transition and fresh material was high, with most runs recovering 100%. Lower recoveries were experienced in oxide material No apparent relationship exists between grade and recovery.

Criteria	JORC Code explanation	Commentary
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	 The RC chips were geologically logged using standard company standard logging codes into Log Chief All DD core was geologically and structurally logged. Logging of DD core recorded lithology, mineralisation, weathering, recovery, structures and RQD. Structural measurements were taken using a kenometer to record alpha and beta angles relative to a bottom of hole line marked on the oriented core. These trays were photographed and then stored off site for future reference.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality, and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	 DD core was sawn using a diamond blades and ½ core collected for assay on a 0.3 m to 1 m basis, generally to geological contacts. Assay samples were collected from the same side of the core. For RC drilling 1 m drill samples are passed through a cone splitter installed directly below a rig mounted cyclone. A 2 – 3 kg sub-sample is collected in a calico bag (primary sample) and the balance in a plastic bag. The calico bag is placed within the corresponding plastic bag for later collection if required. Samples were dried, and the entire sample pulverised to 90% passing 75 µm, and a reference sub-sample of approximately 200 g retained. A nominal 40 g was used for the analysis (FA/AAS). The procedure is industry standard for this type of sample. Certified Reference Materials (CRM's), blanks and duplicates were inserted within each batch of samples. Selected samples are also re-analysed to confirm anomalous results. DD drilling, sampling of the remaining half core was not undertaken. Sample sizes are considered appropriate to give an indication of mineralisation given the particle sizes and the practical requirement to maintain manageable sample weights.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	 Samples were analysed for Au via a 40 g fire assay / AAS finish which gives total digestion and is appropriate for high-grade samples. No geophysical tools have been used. The overall performance of the QA/QC data is at an acceptable level,.
Verification of sampling and assay	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	 Significant intersections from drilling has been confirmed by the Exploration Manager and Geology Manager. The Competent Person also has visually reviewed significant intersections in several holes an verified their database records. All field logging was carried out via the LogChief software on a tablet. Logchief has internal data validation. Assay files are received electronically from the laboratory. All the data is imported into DataShed drillhole database which is managed by Genesis personell. All data is stored in a Company database system and maintained by the Database Manager (MaxGeo). No adjustment to assay data is undertaken.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	 All drillhole collars are picked up by DGPS in MGA94 coordinates. Downhole surveys are conducted using gyroscopic survey tools to create accurate hole traces.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	 Data reported in this report is spaced at 100x100m centres and as such no mineral resource will be estimated based on this. Sample compositing has been applied for reporting purposes.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 The vast majority the drilling is orientated perpendicular to the strike of the individual deposits. Also, the majority of the drilling intersects the mineralisation at high angles resulting in close to true widths being generated. The drill hole azimuths and dips are generally perpendicular to the mineralisation and hence should not introduce any sampling bias.

Criteria	JORC Code explanation	Commentary
Sample security	The measures taken to ensure sample security.	 The chain of custody for Genesis was managed by Genesis. Samples are stored on-site until collected for transport to the respective laboratories. Personnel have no contact with the samples once they leave site. Tracking sheets are used to record the progress of the samples.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits have been undertaken on these results.

Section 2 Reporting of Exploration Results - Hub

Criteria	JORC Code explanation	Commentary
Mineral Tenement and Land Tenure Status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 The RC & DD drilling occurred within tenement M37/1348 which is held 100% by Genesis Minerals Ltd. The Project is located 55km NE of Leonora in the Eastern Goldfields of Western Australia. The tenement subject to this report is in good standing with the Western Australian DMIRS.
Exploration Done by Other	Acknowledgment and appraisal of exploration by other parties.	 Previous exploration at the Project has been completed by Ashton, Dominion Mining, Sons of Gwalia and CRAE in the 1990's. Pacrim Energy Ltd/Redcliffe Resources Ltd completed exploration in the area from in 2007-2016.
Geology	Deposit type, geological setting and style of mineralisation.	 At Hub, the majority of the mineralisation is hosted in a narrow (~ 4 m wide) vertical to steep west dipping lode. Several minor subsidiary hanging and footwall lodes are present. The main lode has been cut by late dolerite and lamprophyre dykes which offset and disrupt the mineralisation in places. The depth of complete oxidation varies from between 50 and 100 m below surface which is underlain by a transitional horizon typically 25 m thick to the top of fresh horizon. A thin laterite cap covers the deposit.
Drill Hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	A full table of drillhole details has been included in this report.
Data Aggregation Methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	 Grades are reported as down-hole length-weighted averages of grades. No top cuts have been applied to the reporting of the assay results. No metal equivalent values are used.
Relationship Between Mineralisation Widths and Intercept Lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known').	 The geometry of the mineralisation at depth is interpreted to vary from steeply west dipping to sub- vertical. (80° to 90°). All assay results are based on down-hole lengths, and true width of mineralisation is not known.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Section maps have been included and a table of results.

Criteria	JORC Code explanation	Commentary
Balanced Reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced avoiding misleading reporting of Exploration Results.	All results have been reported.
Other Substantive Exploration Data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other exploration data has been identified.
Further Work	The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Infill drilling, mining studies testwork is planned to increase the understanding of the Hub deposit.

JORC Table 1 Checklist of Assessment and Reporting Criteria - APHRODITE

Section 1 Sampling Techniques and Data - Aphrodite

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	 Reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay XRF readings were taken on select samples to determine Arsenic values of mineralization as this is an indicator of refractory mineralization. XRF readings are not suitable replacements for certified assays and therefore are indicative in nature only.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	For Aphrodite drilling, the RC drilling system employed the use of a face sampling hammer and a nominal 146mm diameter drill bit.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed Measures taken to maximise sample recovery and ensure representative nature of the samples Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 The RC drill system utilises a face sampling hammer which is industry best practice and the contractor aims to maximise recovery at all times. RC holes are drilled dry whenever practicable to maximise recovery of sample. Study of sample recovery vs gold grade does not show any bias towards differing sample recoveries or gold grade. The drilling contractor uses standard industry drilling techniques to ensure minimal loss of any size fraction.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	• The entire lengths of BDC RC holes are logged on a 1m interval basis, i.e. 100% of the drilling is logged, and where no sample is returned due to voids (or potentially lost sample) it is logged and recorded as such. Logging data is quantitative and is suitable for use in mineral resource estimation.
	The total length and percentage of the relevant intersections logged.	
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	 All RC samples are put through a cone splitter and the sample is collected in a unique pre-numbered calico sample bag.

Criteria	JORC Code explanation	Commentary
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	 The RC samples are sorted, oven dried, the entire sample is pulverised in a one stage process to 85% passing 75 µm. The bulk pulverised sample is then bagged and approximately 200g extracted by spatula to a numbered paper bag that is used for the 40g fire assay charge. RC samples submitted to the laboratory are sorted and reconciled against the submission documents. BDC inserts blanks and standards with blanks submitted in sample number sequence. The sample sizes are considered to be appropriate for the type, style, thickness and consistency of mineralisation located at this project. The sample size is also appropriate for the sampling methodology employed and the gold grade ranges returned.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	 Samples were analysed for Au via a 40 g fire assay / AAS finish which gives total digestion and is appropriate for high-grade samples. The QC procedures are industry best practice. The laboratories are accredited and use their own certified reference materials. XRF analysis was undertaken using a Olympus Vanta handheld XRF to determine Arsenic levels in the returned pulp residues.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	 Assay results are reviewed and confirmed by the Exploration Manager and other company personell. No twinning of holes was undertaken as part of this drill program. Data is stored electronically in a Datashed database that is managed by company personnel. Assay results are received electronically and imported directly to the database. No adjustments or calibrations were made to any assay data used in this report.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation Specification of the grid system used Quality and adequacy of topographic control.	 All drill holes have their collar location recorded by a company person using DGPS in MGA94. Downhole surveys are completed using a gyroscopic survey tool to generate accurate hole traces.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	 The nominal exploration drill spacing is 50m x 50m. This drilling will be used to update the mineral resource. Any results reported are length weighted averages.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 The current drilling is oriented towards the west as this is the optimal drill angle to intersect the modelled mineralization. There is no sampling bias recognised from the intersection angle of the drilling and the lode orientation.
Sample security	The measures taken to ensure sample security.	 RC samples are delivered directly from the field to the Kalgoorlie laboratory by GMD personnel, the laboratory then checks the physically received samples against an Genesis generated sample submission list and reports back any discrepancies.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits have been undertaken on these assays.

Section 2 Reporting of Exploration Results - Aphrodite

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to	Pty Ltd, a wholly owned subsidiary of Bardoc Gold Limited. A 2.5% State Royalty and 2.5% Franco Nevada Royalty exist on gold ores mined from the Aphrodite Deposit.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Tenement Holder Area (Ha) Expiry Date

Criteria	JORC Code explanation	Commentary
		M24/662 Aphrodite Gold Pty Ltd 363.3 27/06/2028 M24/720 Aphrodite Gold Pty Ltd 995.4 20/08/2028 M24/681 Aphrodite Gold Pty Ltd 446.3 09/08/2030
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Project has had many owners over more than 20 years and has been reviewed multiple times. Histo documents are not always available. Drilling, geological, sampling and assay protocols and methods were to industry standard and adequ for inclusion in Mineral Resource Estimation.
Geology	Deposit type, geological setting and style of mineralisation.	Discontinuous shoots of low to moderate tenor gold mineralisation within two broader sub-parallel mineralised structural zones. Mineralisation is beneath a substantial thickness of leached overburde Free milling in upper oxidised and partially oxidised zones but mostly refractory in the primary zone.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	A full table of included results from all drilling is within this report.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	Drill results are reported above a nominal 10 gram metre intercept. A maximum of 2m of internal dilu is included.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	 No known relationship exists between mineralisation widths and intercept lengths. Drilling is oriented best as possible to reflect the true width. All results are reported in downhole length.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate sections and maps are included in this release.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	A full table of results is included in this release.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other substantive exploration data is included in this release.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 Future work will focus on additional drilling for metallurgical testwork and resource infill as well as te for extensions of mineralisation trends.