persona use on



6 November 2024

# CODA NORTH DRILLING RESULTS EXCEED INITIAL EXPECTATIONS MULTIPLE HIGH-GRADE RUNS ABOVE 5,000 PPM TREO THICK INTERSECTION UP TO 45m @ 2,430 PPM TREO HIGH GRADE INTERCEPTS UP TO 10m @ 5,208 PPM TREO ENOVA COMMENCES DRILLING AT CODA CENTRAL PROJECT

Enova Mining (ASX: ENV) reports further high-grade drill results from CODA North which solidify the project's position as a major emerging resource

- 3,101m drilling completed at the CODA North project site,
- 6 reverse circulation drillholes, totalling 297m in a new area, continuing the drilling campaign in the Coda Central project site,
- Over 1,000 samples from CODA North are still undergoing assay at the SGS Geosol laboratory in Minas Gerais,
- Significant TREO (maximum mineralised intercepts and high-grade runs) results<sup>1</sup> from 12 drillholes (the third batch of Coda North samples) are as follows,

| Hole ID     | From (m) | To (m) | Intercept(m) | TREO (ppm) | NdPr % |
|-------------|----------|--------|--------------|------------|--------|
| CDN-DD-0010 | 37       | 68.21  | 31.2         | 3,235      | 20.2   |
| including   | 43       | 52     | 10           | 4,482      | 24.1   |
| CDN-DD-0011 | 9        | 26     | 17           | 1,346      | 20.5   |
| CDN-DD-0012 | 8        | 42.7   | 34.7         | 2,031      | 21.7   |
| including   | 30.16    | 42.7   | 12.6         | 3,718      | 23.4   |
| CDN-DD-0013 | 14       | 44     | 30           | 1,422      | 17.7   |
| CDN-DD-0014 | 6        | 35.2   | 29.2         | 2,725      | 21.6   |
| including   | 22       | 35.2   | 13.2         | 4,540      | 23.8   |
| CDN-RC-0012 | 16       | 57     | 42           | 2,677      | 20.7   |
| including   | 20       | 41     | 21           | 3,701      | 20.9   |
| CDN-RC-0013 | 37       | 59     | 22           | 4,034      | 23.0   |
| CDN-RC-0014 | 3        | 31     | 28           | 2,946      | 20.2   |
| including   | 3        | 30     | 27           | 3,009      | 20.2   |
| CDN-RC-0015 | 9        | 54     | 45           | 2,430      | 22.2   |
| including   | 33       | 53     | 20           | 4,004      | 23.6   |
| CDN-RC-0016 | 9        | 23     | 14           | 3,171      | 21.2   |
| including   | 12       | 23     | 11           | 3,587      | 21.8   |
| CDN-RC-0017 | 14       | 24     | 10           | 3,309      | 22.9   |
|             |          |        |              |            |        |

<sup>&</sup>lt;sup>1</sup> Significant TREO results have been calculated at nominal cut-off 1,000 ppm, 2,000ppm and 3,000 ppm



| including   | 19 | 24 | 5  | 4,076 | 21.8 |  |
|-------------|----|----|----|-------|------|--|
| CDN-RC-0018 | 12 | 41 | 29 | 1,940 | 20.9 |  |
| including   | 28 | 39 | 11 | 3,254 | 20.6 |  |

• Notable high-grade REE assays<sup>2</sup> in this release include:

| Hole ID     | From (m) | To (m) | Intercept | TREO (ppm) |
|-------------|----------|--------|-----------|------------|
| CDN-DD-0010 | 43       | 53     | 10        | 4,482      |
| CDN-DD-0012 | 35       | 42.7   | 7.7       | 4,472      |
| CDN-DD-0014 | 23       | 33     | 10        | 5,208      |
| CDN-RC-0012 | 23       | 32     | 9         | 4,961      |
| CDN-RC-0013 | 37       | 57     | 20        | 4,155      |
| CDN-RC-0014 | 9        | 30     | 21        | 3159       |
| CDN-RC-0015 | 39       | 53     | 14        | 4,464      |
| CDN-RC-0016 | 13       | 23     | 10        | 3,696      |

- ✓ Drilling results verify strike extension of mineralisation across the tenement
- Enova advances metallurgical work with composite samples dispatched to specialised laboratories in Minas Gerais, for comprehensive mineral characterisation and sighter leach tests, a critical step in unlocking CODA North's full resource potential,
- The broad footprint of high-grade mineralisation in the extensive volcanoclastic Patos Formation is a testament to the project's immense potential. Recent drilling assisted to delineate mineralisation under approximately 11 sq.km of the 20 sq.km CODA North area. Mineralisation is open along strike in the remaining area,
- Exploration commences in the CODA Central tenement, a new region and significant growth opportunity for Enova,
- Enova's Competitive Advantage:
  - Extensive flat, accessible pasture and farmlands available for drilling,
  - About 5km E-W strike extension of REE mineralisation delineated in CODA North while other five project sites (CODA Central, East, XS, XN and South) are still awaiting drilling,
  - Successful stakeholder management with commitment to ESG,
  - Over 20% NdPr/TREO ratio.

<sup>&</sup>lt;sup>2</sup> Notable high-grade REE assays have been calculated at nominal cut-off 3,000ppm



# Enova CEO Eric Vesel commented,

# **CODA North Consistently Yields Exceptional Results**

"Recent drill results further reinforce our confidence in a significant, high-grade REE deposit at CODA North, supplying crucial data that will be used to develop a comprehensive resource model. Our team has strategically advanced exploration across CODA North, using both wide-spaced and infill drilling to ensure thorough coverage. We will continue to update the market as assay results come in and are actively engaging expert service providers to begin metallurgical testing on our mineralisation samples. The progress to date has exceeded our initial expectations, and we're keen to maintain this momentum."

# CODA North Demonstrates Strike Extension of High-Grade REE Mineralisation Drilling Results Validate Mineralisation Continuity in CODA North

Enova Mining Limited is pleased to release results from twelve new high-grade drill hole assays at the CODA North project, further underscoring its resource potential across a vast, unencumbered area (Figure 2, Table 4). These assays reveal substantial mineralised thickness and confirm extensive, high-grade mineralisation over substantial area of the CODA North tenement. This fresh data significantly strengthens the understanding of the resource's scale, continuity, and grade, aligning with Enova's commitment to ongoing exploration and reinforcing a strong growth outlook for CODA North Project.

# **Enova Unveils New Exploration Frontier at Coda Central Project Site**

Reverse circulation (RC) drilling has commenced at CODA Central project site (Figure 1, Figure 11 Table 1), marking a new phase of exploration within Enova's CODA project. This approach enables rapid sampling across broad areas, essential for evaluating CODA Central's potential as a rare earth element (REE) resource base. With promising initial indicators, Enova is optimistic about uncovering valuable potential mineralisation and expanding its resource footprint within this new frontier.

| Drilling            | Project Area | Number of drill holes | Total meterage |
|---------------------|--------------|-----------------------|----------------|
| Diamond drill holes | Coda North   | 24                    | 1,310 m        |
| RC drill holes      | Coda North   | 40                    | 1,791 m        |
| RC drill holes      | Coda Central | 6                     | 297 m          |
| Total               |              | 62                    | 3,398 m        |

Table 1: Drilling statistics until 26 Oct 2024



# **Enova's Exploration Momentum Continues to Accelerate**

Recent drilling at CODA North has revealed substantial high-grade REE mineralisation within the Patos Formation, confirming a strong and continuous REE system extending across the plateau from east to west. This discovery surpasses initial expectations, validating our geological model and positioning Enova for notable resource growth and increased project value. The Board is enthusiastic about the potential to further expand our exploration footprint, driving additional value for our shareholders.



Figure 1: Enova commenced drilling in Coda Central Project site, next vast frontier of potential REE mineralisation





Figure 2: Enova's CODA North: Vast pastureland for potential REE Exploration (Enova's diamond drill rig on the horizon)



Figure 3: Diamond drill core from transition zone from laterite to brown saprolite representing kamafugite litho-unit



Figure 4: Enova's professional geologist is reviewing the diamond core in core box



# Promising Drilling Results Confirm High-Grade REE Mineralisation at CODA North

Recent drilling at the CODA North tenements confirms widespread high-grade rare earth element (REE) mineralisation. Employing both diamond drilling (DD) and reverse circulation (RC) methods, the campaign has successfully completed 3,101m of drilling in CODA North project site (refer to Figures 2, 3, 4 and 5, 6 and Table 1). Over 1,000 samples from this drilling campaign are still pending assays from SGS Geosol laboratory in Vespasiano, MG. Preliminary data analysis reveals extensive mineralised zones, indicating strong potential for a significant expansion of the project's resource base.

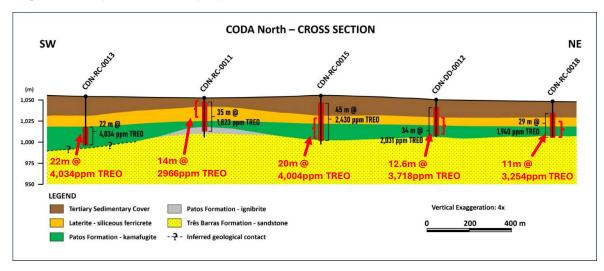



Figure 5: Schematic cross section (only significant values such as maximum intercepts and high grades of the current announcement are shown)

# **Enova's High Performing Team Drives Exploration Success**

Enova's team is currently preparing samples, employing industry-standard methods to guarantee data precision. This collaborative effort, which brings together geologists, technicians, and field personnel, is essential to our exploration success. Their expertise and dedication to accuracy drive our mission to uncover substantial mineral resources at CODA North. The Board is confident that their commitment will consistently yield outstanding results and advance Enova's growth.

# **Enova's Strategic Edge**

The high-grade REE mineralisation discovered at CODA North is set to be a cornerstone of Enova's future growth trajectory. Consistent mineralisation highlights the project's exceptional potential, establishing it as a flagship asset in our portfolio. With further assay results forthcoming, the company remains committed to maximising the value of CODA North. By deepening the understanding of the mineralised zones and pinpointing additional high-value targets, the team is strategically positioning the company for significant resource expansion and long-term economic gains. In tandem with the above, Enova has



access to vast areas of flat pasture and farmland for exploration with support of its stakeholders.

Enova will continue to capitalise on the success of recent drilling results to steer future exploration initiatives at CODA North. Our objective is to fully unlock the potential of this unique saprolite-hosted mineralisation, driving substantial value for our shareholders.



Figure 6: Reverse circulation drill cuttings are arranged prior to transfer to the sample shed



Figure 7: Enova professional geologist is checking the drill cuttings during logging



Figure 8: RC drill chips of variegated colour of saprolite are stored in chip library



Figure 9: Enova's site team is arranging samples for logging



Figure 10 below is a map illustrating the completed drill hole collar locations at CODA North to date, including the twelve newly reported holes highlighted in this announcement. This map provides an overview of our drilling activities and strategies.

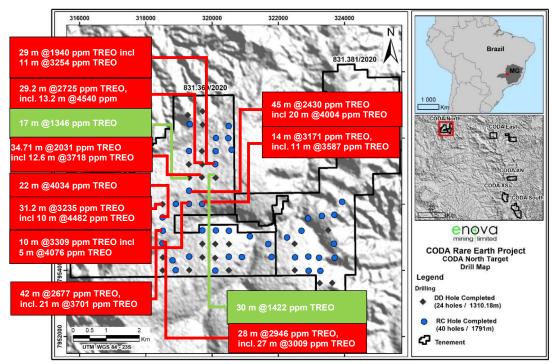



Figure 10: Drillhole map of CODA North (only significant values such as maximum intercepts and high grades of the current announcement are shown)

# Commencement of drilling in a new project area of CODA Central, see Figure 11 below:

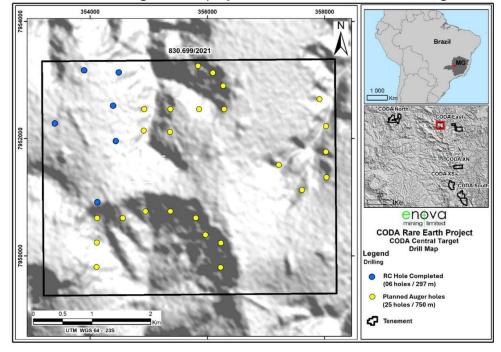



Figure 11: Drillhole map of CODA Central (Only completed drillholes are shown)



# **NEXT STEPS**

# **Enova's Drilling Campaign Targets Resource Expansion and Upgradation**

Enova's next phase of drilling at CODA North will concentrate on expanding and refining the high-grade REE mineralised zones identified in recent assays. The company will implement a strategic mix of infill and step-out drilling to accurately delineate the lateral extent and continuity of mineralisation. By increasing drill density in key areas, the company aims to elevate a significant portion of our identified resources to higher-confidence categories.

Simultaneously, Enova team will engage in resource modelling and metallurgical testing to ensure that the resource estimates accurately capture the deposit's true potential. These efforts will establish a solid foundation for future project development phases, including scoping studies and opportunities for resource expansion.

In addition to the focus on CODA North, the company has commenced drilling in a new exploration frontier, the CODA Central Project. In addition, to CODA North and Central, the company will carefully coordinate the future exploration efforts in the CODA East, Coda XN, Coda XS, Coda South project sites, taking into account local crop planting seasons. This multi-faceted exploration strategy reflects our commitment to maximising value and unlocking the full potential of the entire CODA tenement area.

# MINERAL POTENTIAL OF CODA

The CODA tenements overlay the Patos geologic formation, with potential for REE enriched Ionic Absorption Clays (IAC). Significant historical exploration drilling results from the CODA project (Reference 1) confirm the potential for REE enriched IAC in the Northern and Southern CODA tenements where drilling has been completed. The extent of the mineralised area at CODA North prospect is yet to be determined. All intersections from CODA South start from surface and are open in all directions including depth.

Enova has arrangements with metallurgical laboratories within Brazil and abroad to investigate the metallurgical character of the CODA mineralisation. Metallurgical samples have been dispatched to local laboratories. CODA is well placed with mineralised zones of potential IAC with exceptionally high REE grade. This is underpinned by CODA's potential for broad areas of mineralised zones of exceptional thickness which are expected to translate to a significant resource base giving longevity to future extractive operations.

# REGIONAL GEOLOGY AND TENEMENT OVERVIEW

Enova is encouraged by the location and size of the tenements in relation to prospective geological features. The prospective geological unit present in the CODA project is composed of the Patos Formation. It formed during the Upper Cretaceous period, when a massive volcanic event occurred in the western part of Minas Gerais state. The volcanic activity exhibited both effusive (lava flows) and explosive (pyroclastic deposits) eruptions. The predominant rock type in this formation is kamafugite, which is classified as an alkaline-



ultramafic rock. High-grade REE are also enriched in this formation.

Regionally the prospective unit consists of a horizontal bed of kamafugite, which can be up to 40 metres thick. Overburden at CODA varies from 0 to 30 metres. Weathering processes with thick clay zones are prevalent throughout this profile, leading to the accumulation of REE closer to the upper part of the formation. The rocks within this formation are predominantly soft and friable, with an extremely fine particle size. These characteristics are considered advantageous for the exploration of Ionic Clay REE deposits. Refer to Figure 12 below for the locations of the tenements at the CODA Project.

### **TENEMENTS/PERMITS**

The title holder of the CODA tenements currently is Rodrigo De Brito Mello (Earlier RBM Consultoria Mineral), who filed transfer requests of the granted exploration permits to its sole owner, Rodrigo de Brito Mello. The application cannot be transferred until the permit is published, however Rodrigo and RBM Consultoria Mineral will undertake contractual obligations to transfer the title to Enova as soon as the permit is published in the official gazette. Details of the CODA tenements are provided in the following table.

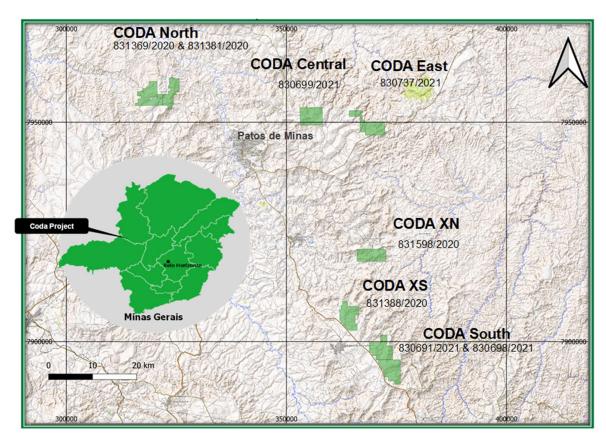



Figure 12: The CODA REE project tenements (100% ENV) Minas Gerais, Brazil



| License ID  | Area (Ha) | Ownership                    | In transference to     | Status  |
|-------------|-----------|------------------------------|------------------------|---------|
| 831381-2020 | 1,537.60  | RBM CONSULTORIA MINERAL LTDA | Rodrigo De Brito Mello | Granted |
| 831369-2020 | 1,997.80  | RBM CONSULTORIA MINERAL LTDA | Rodrigo De Brito Mello | Granted |
| 830699-2021 | 1,999.80  | RBM CONSULTORIA MINERAL LTDA | Rodrigo De Brito Mello | Granted |
| 830737-2021 | 1,999.60  | RBM CONSULTORIA MINERAL LTDA | Rodrigo De Brito Mello | Granted |
| 831598-2020 | 1,807.80  | RBM CONSULTORIA MINERAL LTDA | Rodrigo De Brito Mello | Granted |
| 831388-2020 | 1,999.60  | RBM CONSULTORIA MINERAL LTDA | Rodrigo De Brito Mello | Granted |
| 830691-2021 | 1,992.80  | RBM CONSULTORIA MINERAL LTDA | Rodrigo De Brito Mello | Granted |
| 830698-2021 | 1,997.40  | RBM CONSULTORIA MINERAL LTDA | Rodrigo De Brito Mello | Granted |
|             | 15,332.40 |                              |                        |         |

Table 2: CODA Project tenements Minas Gerais, Brazil

# ATTRACTIVE BUSINESS ENVIRONMENT

Brazil has well developed and sophisticated mining industry, and is amongst the leading exporters of iron ore, tin, bauxite, manganese, copper, gold, rare earth and lithium. The sovereign investment risk is low, and business environment is secured, based on:

- Mining is recognised as a key economic industry in Brazil and the State of Minas Gerais.
- Progressive mining policies, seeking investment, encouraging explorers and new developments,
- Mining investment free of government mandated ownership,
- Low sovereign risk and government interference,
- Attractive cost base and sophisticated support network for the mining industry
- High level of exploration/mining technical skills and expertise in country
- Excellent infrastructure is in place and practical proximity to cities

#### MANAGING OUR COMMITMENTS

Enova is currently focussed on the exploration drilling program at the CODA project. Enova also remains committed to the development of Charley Creek rare earth project with metallurgical process improvement test work continuing in Brisbane.

The Company will also continue to review projects and business opportunities as they arise.

The market will be kept appraised of developments, as required under ASX Listing Rules and in accord with continuous disclosure requirements.

Approved for release by the Board of Enova Mining Limited

Eric Vesel,

**Enova Mining Limited** CEO/ Executive Director

**Contact:** 

eric@enovamining.com



#### **Competent Person Statement**

The information related to Exploration Targets and Exploration Results is based on data compiled by Subhajit Deb Roy, a Competent Person and Chartered Member of The Australasian Institute of Mining and Metallurgy. Mr Deb Roy is currently working as Exploration Manager with Enova Mining. Subhajit has sufficient experience that is relevant to the style of mineralisation and type of deposits under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Subhajit consents to the inclusion in presenting the matters based on his information in the form.

#### Forward-looking statements

This announcement contains forward-looking statements which involve a number of risks and uncertainties. These forward-looking statements are expressed in good faith and believed to have a reasonable basis. These statements reflect current expectations, intentions or strategies regarding the future and assumptions based on currently available information. Should one or more of the risks or uncertainties materialise, or should underlying assumptions prove incorrect, actual results may vary from the expectations, intentions and strategies described in this announcement. No obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future developments.

#### **Precautionary Statement**

The information contained in this announcement regarding the exploration results at CODA North is based on data collected from diamond and reverse circulation (RC) drilling programs. While the identification of significant mineralised zones within the Patos formation of the Mata Do Corda Group suggests the potential for Rare Earth Element (REE) mineral resources, it is important to note the following cautionary considerations. The project is currently at an exploration stage, and while initial drilling results are promising, further exploration and evaluation are necessary to ascertain the extent, quality, and economic viability of the mineral resources. Potential mineralisation identified by sampling in drill holes is currently undergoing comprehensive assaying, mineralogical evaluation, structural analysis and metallurgical test work. Until these analyses are completed, surety of resource estimates in the future remains speculative.

#### Disclaimer

This ASX announcement (Announcement) has been prepared by Enova Mining Limited ("Enova" or "the Company"). It should not be considered as an offer or invitation to subscribe for or purchase any securities in the Company or as an inducement to make an offer or invitation with respect to those securities. No agreement to subscribe for securities in the Company will be entered into on the basis of this Announcement.

This Announcement contains summary information about Enova, its subsidiaries, and their activities, which is current as at the date of this Announcement. The information in this Announcement is of a general nature and does not purport to be complete nor does it contain all the information which a prospective investor may require in evaluating a possible investment in Enova.

By its very nature exploration for minerals is a high-risk business and is not suitable for certain investors. Enova's securities are speculative. Potential investors should consult their stockbroker or financial advisor. There are many risks, both specific to Enova and of a general nature which may affect the future operating and financial performance of Enova and the value of an investment in Enova including but not limited to economic conditions, stock market fluctuations, commodity price movements, regional infrastructure constraints, timing of approvals from relevant authorities, regulatory risks, operational risks and reliance on key personnel.

Certain statements contained in this announcement, including information as to the future financial or operating performance of Enova and its projects, are forward-looking statements that: may include, among other things, statements regarding targets, estimates and assumptions in respect of mineral reserves and mineral resources and anticipated grades and recovery rates, production and prices, recovery costs and results, capital expenditures, and are or may be based on assumptions and estimates related to future technical, economic, market, political, social and other conditions; are necessarily based upon a number of estimates and assumptions that, while considered reasonable by Enova, are inherently subject to significant technical, business, economic, competitive, political and social uncertainties and contingencies; and, involve known and unknown risks and uncertainties that could cause actual events or results to differ materially from estimated or anticipated events or results reflected in such forward-looking statements.

Enova disclaims any intent or obligation to update publicly any forward-looking statements, whether because of new information, future events, or results or otherwise. The words 'believe', 'expect', 'anticipate', 'indicate', 'contemplate', 'target', 'plan', 'intends', 'continue', 'budget', 'estimate', 'may', 'will', 'schedule' and similar expressions identify forward-looking statements. All forward-looking statements made in this announcement are qualified by the foregoing cautionary statements. Investors are cautioned that forward-looking statements are not guarantee of future performance and accordingly investors are cautioned not to put undue reliance on forward-looking statements due to the inherent uncertainty therein. No verification: although all reasonable care has been undertaken to ensure that the facts and opinions given in this Announcement are accurate, the information provided in this Announcement has not been independently verified



# APPENDIX A JORC TABLE 1

# **Section 1 - Sampling Techniques and Data**

| Criteria  | JORC Code explanation                   | Commentary                                                                  |
|-----------|-----------------------------------------|-----------------------------------------------------------------------------|
| Sampling  | Nature and quality of sampling (eg      | Coda Central Project                                                        |
| echniques | cut channels, random chips, or          | Coda Central Project site consisting of 830699/2021 tenement was            |
|           | specific specialised industry           | sampled using a Reverse Circulation drilling.                               |
|           | standard measurement tools              | Reverse Circulation (RC) drillholes                                         |
|           | appropriate to the minerals under       | In RC drillholes, sample was collected at 2m or 4m or longer in the         |
|           | investigation, such as down hole        | unmineralised or less mineralised overburden litho-stratigraphic unit       |
|           | gamma sondes, or handheld XRF           | (Tertiary Sedimentary Cover) which is tertiary undifferentiated detritus    |
|           | instruments, etc). These examples       | and/or lateritised cover.                                                   |
|           | should not be taken as limiting the     | Samples were collected at every 1m for underlying mineralised zone in       |
|           | broad meaning of sampling.              | Patos formation.                                                            |
|           | Include reference to measures taken     | All samples were sent for preparation to the contracted laboratory, SGS     |
|           | to ensure sample representivity and     | Geosol in Vespasiano, MG, Brazil.                                           |
|           | the appropriate calibration of any      | The sample was homogeneously reduced by using riffle splitter and one       |
|           | measurement tools or systems used.      | part is sent for assaying, other part is stored and retained or returned to |
|           | ,                                       | Patos De Minas as umpire sample.                                            |
|           | Aspects of the determination of         | The tertiary undifferentiated detritus cover layer (Tertiary Sedimentary    |
|           | mineralisation that are Material to the | Cover; Refer Table 4) has been visually differentiated from kamafugite      |
|           | Public Report.                          |                                                                             |
|           | In cases where 'industry standard'      | of Patos formation by professional geologist and additionally, magnetic     |
|           | work has been done this would be        | susceptibility test carried out by Terraplus KT10-V2 device to              |
|           | relatively simple (eg 'reverse          | differentiate the ferromagnetic iron bearing kamafugite litho-unit within   |
|           | circulation drilling was used to obtain | Patos formation from overlying and underlying formations.                   |
|           | 1 m samples from which 3 kg was         | CODA North Project                                                          |
|           | pulverised to produce a 30 g charge     | Coda North consisting of 831369/2020 and 831381/2020 areas were             |
|           | for fire assay'). In other cases, more  | sampled using a diamond drill rig, and a Reverse Circulation drill rig.     |
|           | explanation may be required, such as    | Diamond drillholes                                                          |
|           | where there is coarse gold that has     | The drill cores representing in-situ rocks are collected in plastic core    |
|           | inherent sampling problems.             | trays, and depth markers record the depth at the end of each drill run.     |
|           | Unusual commodities or                  | In the initial holes sample was collected for every 2m or every 4m or       |
|           | mineralisation types (eg submarine      | longer intervals in the unmineralised or less mineralised overburden        |
|           | nodules) may warrant disclosure of      | litho-stratigraphic unit which is tertiary undifferentiated detritus and/or |
|           | detailed information.                   | lateritised cover.                                                          |
|           |                                         | Samples were collected at every 1m for underlying mineralised zone in       |
|           |                                         | Patos formation.                                                            |
|           |                                         | In the unconsolidated drill samples, the core was halved with a metal       |
|           |                                         | spatula and bagged in plastic bags, while a powered saw halved the          |
|           |                                         | hard and consolidated rock, bagged, and each sample was tagged with         |
|           |                                         | sample number.                                                              |
|           |                                         | Reverse Circulation (RC) drillholes                                         |
|           |                                         | In RC drillholes, sample was collected at 2m or 4m or longer in the         |
|           |                                         | unmineralised or less mineralised overburden litho-stratigraphic unit       |
|           |                                         |                                                                             |
|           |                                         | which is tertiary undifferentiated detritus and/or lateritised cover.       |



Samples were collected at every 1m for underlying mineralised zone in

|              |                                                                                                                                                                                                                                                                                       | Patos formation.  All samples were sent for preparation to the contracted laboratory, SGS  Geosol in Vespasiano, MG, Brazil.  The sample was riffle split and one part is sent for assaying and other part is stored and retained or returned to Patos De Minas as umpire sample.  The tertiary undifferentiated detritus cover layer has been visually differentiated from kamafugite of Patos formation by professional                                                                                                                                                                                                                                              |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |                                                                                                                                                                                                                                                                                       | geologist and additionally, magnetic susceptibility test carried out by Terraplus KT10-V2 device to differentiate the ferromagnetic iron bearing kamafugite litho-unit within Patos formation from overlying and underlying formations.                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Drilling     | • Drill type (eg core, reverse                                                                                                                                                                                                                                                        | Diamond Drillholes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| techniques   | circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).                                | Diamond drilling was carried out by Maquesonda MACH 1210 rig, drilling vertically and sampled generally at intervals of 1.0m within the mineralised strata. The drilling used a wireline diamond core of HQ diameter of 2.63 inches (core diameter).  Drilling of each hole was conducted by the diamond core rig and terminated upon intercepting between 1 to 10 meters of underlying Areado Group, indicative of penetration into the underlying unmineralised or less mineralised zone.  Diamond Drill rig was demobilised after completing Coda North Drilling Reverse Circulation Drillholes  RC drilling was conducted using with a 4.75-inch diameter downhole |
|              |                                                                                                                                                                                                                                                                                       | rigs.  The drill site preparation included clearing, levelling the ground, and delineating the drilling area. The RC drilling was terminated upon intercepting between 1 to 10 meters of underlying Areado Group, indicative of penetration into the underlying unmineralised or less mineralised zone.  Diamond drilling was predominantly used for establishing the extent of the ore body while RC drilling being used to test the continuity of mineralised zone between diamond drillholes.                                                                                                                                                                       |
| Drill sample | Method of recording and assessing                                                                                                                                                                                                                                                     | Recovery in Diamond Drillholes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| recovery     | core and chip sample recoveries and results assessed.  • Measures taken to maximise sample recovery and ensure representative nature of the samples.  • Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential | Calculated after each run, comparing the length of core recovery vs. drill depth by visual inspection. Overall core recoveries are above 90% in diamond drilling.  Recovery in RC drillholes  Every 1m sample in the mineralised strata is collected in plastic bags and weighed. Each sample averages approximately 6-12kg, which is considered given the hole diameter, material loss sticky clay content in the lithological units and the specific density of the material. The estimated sample recovery was initially above 50% due to high clay                                                                                                                 |
|              | loss/gain of fine/coarse material.                                                                                                                                                                                                                                                    | content in the strata, loss of drill cuttings and in the later drillholes the estimated recovery of drill cuttings improved up to 70%. The recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



|                |                                        | has been estimated by visual inspection.                                     |
|----------------|----------------------------------------|------------------------------------------------------------------------------|
|                |                                        | Any sample bias due to low recovery will be determined after the assay       |
|                |                                        | and mineral characterisation completed.                                      |
| Logging        | Whether core and chip samples have     | Diamond Drillholes                                                           |
|                | been geologically and geotechnically   | Lithological descriptions are carried out at site or in Enova's warehouse    |
|                | logged to a level of detail to support | facility by professional geologist, describing broadly about the             |
|                | appropriate Mineral Resource           | pedolith, saprolite, SAP rock and underlying Areado group and the            |
|                | estimation, mining studies and         | lithological contacts. Parameters such as grain size, texture, colour,       |
|                | metallurgical studies.                 | mineralogy, magnetism, type of alterations (hydrothermal or                  |
|                | Whether logging is qualitative or      | weathering) will be logged in detail in due course. The type of              |
|                | quantitative in nature. Core (or       | lithological contact is identified by visual inspections and magnetic        |
|                | costean, channel, etc) photography.    | susceptibility readings which can help to differentiate the overlying and    |
|                | The total length and percentage of the | underlying lithology from mineralised zone.                                  |
|                |                                        | All drill holes are photographed and stored at the core facility in Patos    |
|                | relevant intersections logged.         | De Minas.                                                                    |
|                |                                        | Reverse Circulation Drillholes                                               |
|                |                                        | A professional geologist logs the material at the drill site or in the       |
|                |                                        | Enova's warehouse facility, describing broadly about the pedolith,           |
|                |                                        | saprolite, SAP rock and Areado group and the lithological contacts.          |
|                |                                        | Other parameters including grain size, texture, and colour, will be          |
|                |                                        |                                                                              |
|                |                                        | logged in detail in due course which can help identify the parent rock       |
|                |                                        | before weathering.                                                           |
|                |                                        | Due to the nature of the drilling, sampling is done at 1m intervals within   |
|                |                                        | the mineralised zone. 1m samples weighing approximately 6-12kg are           |
|                |                                        | collected in a bucket and presented for sampling and logging. The            |
|                |                                        | average weight improved up to 15kg with increasing recovery of               |
|                |                                        | samples by arresting the loss of drill cuttings.                             |
|                |                                        | The chip trays of all drilled holes have a digital photographic record and   |
|                |                                        | are stored at the Enova's warehouse facility in Patos De Minas.              |
|                |                                        | A schematic north-south cross section is shown in Figure 6                   |
| Sub-sampling   | If core, whether cut or sawn and       | Diamond Drillholes                                                           |
| techniques and | whether quarter, half or all cores     | Collection and labelling: Samples of diamond cores are taken at 1.0m         |
| sample         | taken.                                 | intervals from mineralised kamafugite lithological unit                      |
| preparation    | • If non-core, whether riffled, tube   | The cores are split longitudinally using a spatula for unconsolidated        |
|                | sampled, rotary split, etc and         | portions or using riffle splitter (Figure 8) and a rock-cutting saw for hard |
|                | whether sampled wet or dry.            | rock.                                                                        |
|                | • For all sample types, the nature,    | The samples were placed in labelled plastic bags and in the process of       |
|                | quality, and appropriateness of the    | dispatching to SGS Geosol laboratory in Vespasiano.                          |
|                | sample preparation technique.          | Field Duplicates: Duplicates are inserted approximately every 20             |
|                | Quality control procedures adopted     | samples using quarter core for QA/QC procedures                              |
|                | for all sub-sampling stages to         | Reverse Circulation (RC) Drillholes                                          |
|                | maximise representivity of samples.    | RC drillholes samples are currently sent to SGS Geosol Laboratory for        |
|                | Measures taken to ensure that the      | preparation and subsampling. SGS Geosol laboratory follows industry          |
|                | sampling is representative of the in-  | standard protocols for sub-sampling procedure.                               |
|                | situ material collected, including for | The sample assays were conducted in the following method                     |
|                |                                        | Compile Dranguetian in CCC Laboratory                                        |
|                | instance results for field             | Sample Preparation in SGS Laboratory                                         |



duplicate/second-half sampling.

 Whether sample sizes are appropriate to the grain size of the material being sampled. samples are dried at 60° or 105° C, 75% material crushed to a nominal 3mm using a jaw crusher before being split using Jones riffle splitter for pulverising.

The aliquots are pulverised to a nominal >95% of 300g passing 150 micron for which a 100g sample is then selected for analysis. A spatula is used to sample from the pulverised sample for digestion.

**Quality Control** The laboratory follows strict quality control procedures, ensuring the accuracy and precision of the assay data. Internally, the laboratory uses duplicate assays, standards, and blanks to maintain quality.

# Quality of assay data and laboratory tests

- The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.
- For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.
- Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.

Samples are analysed at the SGS Geosol laboratory in batches of approximately 50 samples including control samples (duplicate, blank, and standards).

Industry standard protocols are used by SGS-Geosol to prepare samples for analysis. Samples are dried, and a sub sample of 300g was pulverised. For rare earth element analysis, samples are prepared with lithium/Metaborate fusion and are analysed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) or Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES).

SGS Geosol detection limits of major oxides and minor and trace elements are given below

#### 3.1) ICP95A

| Deter | rminação por Fu | são com M | Metaborato de Lí  | tio - ICP | OES             |       | PM-000003/3       |
|-------|-----------------|-----------|-------------------|-----------|-----------------|-------|-------------------|
| Al2O3 | 0,01 - 75 (%)   | Ba        | 10 - 100000 (ppm) | CaO       | 0,01 - 60 (%)   | Cr2O3 | 0,01 - 10 (%)     |
| Fe2O3 | 3 0,01 - 75 (%) | K20       | 0,01 - 25 (%)     | MgO       | 0,01 - 30 (%)   | MnO   | 0,01 - 10 (%)     |
| Na2O  | 0,01 - 30 (%)   | P2O5      | 0,01 - 25 (%)     | SiO2      | 0,01 - 90 (%)   | Sr    | 10 - 100000 (ppm) |
| TiO2  | 0,01 - 25 (%)   | V         | 5 - 10000 (ppm)   | Zn        | 5 - 10000 (ppm) | Zr    | 10 - 100000 (ppm) |

#### 3.2) IMS95A

| 1 10000 11         |                                                                                                    | eterminação por Fusão com Metaborato de Lítio - ICP MS PM-000003/3                                                 |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0,1 - 10000 (ppm)  | Co                                                                                                 | 0,5 - 10000 (ppm)                                                                                                  | Cs                                                                                                                                                                                               | 0,05 - 1000 (ppm)                                                                                                                                                                                                                                                                                                                                                         | Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 - 10000 (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0,05 - 1000 (ppm)  | Er                                                                                                 | 0,05 - 1000 (ppm)                                                                                                  | Eu                                                                                                                                                                                               | 0,05 - 1000 (ppm)                                                                                                                                                                                                                                                                                                                                                         | Ga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,1 - 10000 (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0,05 - 1000 (ppm)  | Hf                                                                                                 | 0,05 - 500 (ppm)                                                                                                   | Но                                                                                                                                                                                               | 0,05 - 1000 (ppm)                                                                                                                                                                                                                                                                                                                                                         | La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,1 - 10000 (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0,05 - 1000 (ppm)  | Mo                                                                                                 | 2 - 10000 (ppm)                                                                                                    | Nb                                                                                                                                                                                               | 0,05 - 1000 (ppm)                                                                                                                                                                                                                                                                                                                                                         | Nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,1 - 10000 (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5 - 10000 (ppm)    | Pr                                                                                                 | 0.05 - 1000 (ppm)                                                                                                  | Rb                                                                                                                                                                                               | 0,2 - 10000 (ppm)                                                                                                                                                                                                                                                                                                                                                         | Sm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,1 - 1000 (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0,3 - 1000 (ppm)   | Та                                                                                                 | 0,05 - 10000 (ppm)                                                                                                 | Tb                                                                                                                                                                                               | 0,05 - 1000 (ppm)                                                                                                                                                                                                                                                                                                                                                         | Th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,1 - 10000 (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0,5 - 1000 (ppm)   | Tm                                                                                                 | 0,05 - 1000 (ppm)                                                                                                  | U                                                                                                                                                                                                | 0,05 - 10000 (ppm)                                                                                                                                                                                                                                                                                                                                                        | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,1 - 10000 (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0,05 - 10000 (ppm) | Yb                                                                                                 | 0,1 - 1000 (ppm)                                                                                                   |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                    | 0.05 - 1000 (ppm)<br>0.05 - 1000 (ppm)<br>5 - 10000 (ppm)<br>0.03 - 1000 (ppm)<br>0.5 - 1000 (ppm) | 0.05 - 1000 (ppm) Hf<br>0.05 - 1000 (ppm) Mo<br>5 - 10000 (ppm) Pr<br>0.3 - 10000 (ppm) Ta<br>0.5 - 10000 (ppm) Tm | 0.05 - 1000 (ppm) Hf 0.05 - 500 (ppm) 0.05 - 1000 (ppm) Mo 2 - 10000 (ppm) Pr 0.05 - 1000 (ppm) Pr 0.05 - 1000 (ppm) 3.3 - 1000 (ppm) Ta 0.05 - 1000 (ppm) 0.5 - 1000 (ppm) Tm 0.05 - 1000 (ppm) | 0.05 - 1000 (ppm)         Hf         0.05 - 500 (ppm)         Ho           0.05 - 1000 (ppm)         Mo         2 - 10000 (ppm)         Nb           5 - 10000 (ppm)         Pr         0.05 - 1000 (ppm)         Rb           3.3 - 1000 (ppm)         Ta         0.05 - 1000 (ppm)         Tb           0.5 - 1000 (ppm)         Tm         0.05 - 1000 (ppm)         U | 1.06 - 1000 (ppm)         HI         0.65 - 5000 (ppm)         HO         0.05 - 1000 (ppm)           0.6 - 1000 (ppm)         Mo         2 - 10000 (ppm)         Nb         0.05 - 1000 (ppm)           1 - 10000 (ppm)         Pr         0.05 - 10000 (ppm)         RB         0.2 - 10000 (ppm)           3.3 - 1000 (ppm)         Ta         0.05 - 10000 (ppm)         Tb         0.05 - 1000 (ppm)           5 - 1000 (ppm)         Tm         0.05 - 10000 (ppm)         U         0.05 - 10000 (ppm) | 1.06 - 1000 (ppm)         Hf         0.05 - 5000 (ppm)         Ho         0.05 - 1000 (ppm)         La           0.06 - 1000 (ppm)         Mo         2 - 10000 (ppm)         Nb         0.05 - 1000 (ppm)         Nd           1 - 10000 (ppm)         PT         0.05 - 1000 (ppm)         Rb         0.2 - 10000 (ppm)         Sm           3.3 - 1000 (ppm)         Ta         0.05 - 10000 (ppm)         Tb         0.05 - 1000 (ppm)         Th           5 1000 (ppm)         Tm         0.05 - 10000 (ppm)         U         0.05 - 10000 (ppm)         W | 1.06 - 1000 (ppm)         HI         0.65 - 5000 (ppm)         LA         0.1 - 10000 (ppm)         LA         0.1 - 10000 (ppm)           0.6 - 1000 (ppm)         MO         2 - 10000 (ppm)         Nb         0.05 - 10000 (ppm)         Nd         0.1 - 10000 (ppm)           1 - 10000 (ppm)         Pr         0.05 - 10000 (ppm)         RB         0.2 - 10000 (ppm)         Srm         0.1 - 10000 (ppm)           3.3 - 1000 (ppm)         Ta         0.05 - 10000 (ppm)         Tb         0.05 - 10000 (ppm)         Th         0.1 - 10000 (ppm)           5 - 1000 (ppm)         Tm         0.05 - 10000 (ppm)         U         0.05 - 10000 (ppm)         V         0.1 - 10000 (ppm) |

QA/QC samples are included amongst the submitted samples. Both standards, duplicates and blank QA/QC samples were inserted in the sample stream.

Oreas 460 and Oreas 461 samples sent from Australia which was used in 12gm package as certified reference material at an interval every 15-20 samples.

The assays were done using ICP MS, ICP AES after Fusion with Lithium Metaborate - ICP MS for major Oxides.

# Verification of sampling and assaying

- The verification of significant intersections by either independent or alternative company personnel.
- The use of twinned holes.
- Documentation of primary data, data entry procedures, data verification,

Enova's Brazilian team of professional geologist has reviewed the data collated and compared with electronic copies to verify the accuracy. Assay data, in electronic form, is checked to verify the data files are correctly handled in spreadsheets where calculations are needed. The process of verifying sampling and assaying is still ongoing as drilling progresses. Competent people also visited the site in September 2024 to verify the sampling process.



|                  | data storage (physical and                                       | This was a maiden drilling program by Enova. Hence, twinned holes            |
|------------------|------------------------------------------------------------------|------------------------------------------------------------------------------|
|                  | electronic) protocols.                                           | were not drilled to verify the representation of historical drill data.      |
|                  | Discuss any adjustment to assay                                  | 2m or 4m or longer interval composite samples of the overburden              |
|                  | data.                                                            | strata of tertiary undifferentiated detritus and/or lateritised cover. 1m    |
|                  |                                                                  | samples taken from the mineralised zone of kamafugite within Patos           |
|                  |                                                                  | formation                                                                    |
|                  |                                                                  | Field geological data was recorded on logs (Appendix 2 Table 4 and           |
|                  |                                                                  | Table 4 are shown alongside the assay results) and typed into a              |
|                  |                                                                  | spreadsheet for subsequent import to a database.                             |
|                  |                                                                  | Assay data is received in spreadsheet form from the laboratory               |
| Location of data | Accuracy and quality of surveys used                             | The drill hole collars were picked up using a Garmin handheld GPS.           |
| points           | to locate drill holes (collar and down-                          | Datum for all sitework is considered SIRGAS 2000, Zone 23 South or           |
|                  | hole surveys), trenches, mine                                    | WGS 84 UTM Zone 23S (Appendix 1, Table 2). The error in the handheld         |
|                  | workings and other locations used in                             | GPS is around ±3m. A DGPS survey picks up of collar of all drill holes       |
|                  | Mineral Resource estimation.                                     | have been planned and will be implemented in next couple of months.          |
|                  | Specification of the grid system used.                           | This universal grid system facilitates consistent data interpretation and    |
|                  |                                                                  | integration with other geospatial datasets.                                  |
|                  | <ul> <li>Quality and adequacy of topographic control.</li> </ul> | mogration with other goodpatial databases.                                   |
| Data spacing     | Data spacing for reporting of                                    | The average spacing between adjacent planned holes is about 400m x           |
| and distribution | Exploration Results.                                             | 400 m, varied according to the extent, width, and length of the              |
|                  | Whether the data spacing and                                     | tenements.                                                                   |
|                  | distribution is sufficient to establish                          | Diamond drilling is to provide insights into lateral extent of the potential |
|                  |                                                                  | mineralised zones. The exploratory nature of the diamond drilling            |
|                  | the degree of geological and grade                               |                                                                              |
|                  | continuity appropriate for the Mineral                           | further supports the overall geological understanding. Hence, they are       |
|                  | Resource and Ore Reserve                                         | drilled at larger spacings 400m x 400m. However, the current holes are       |
|                  | estimation procedure(s) and                                      | being drilled at the margin of the grid which put the holes apart by more    |
|                  | classifications applied.                                         | than 400 m spacings.                                                         |
|                  | Whether sample compositing has                                   | Reverse circulation (RC) drilling carried out on a structured grid with a    |
|                  | been applied.                                                    | 400 x 400 metres spacing. This grid pattern is tailored to enhancing the     |
|                  |                                                                  | understanding of the mineral distribution, extent of mineralisation          |
|                  |                                                                  | along strike and geological continuity across the target zone. The hole      |
|                  |                                                                  | locations have been occasionally adjusted according to the outcome           |
|                  |                                                                  | of intersects of mineralised zone in already drilled holes.                  |
|                  |                                                                  | 2m or 4m or longer interval compositing was used to produce a sample         |
|                  |                                                                  | for assay of unmineralised and less mineralised overburden zone              |
|                  |                                                                  | (Tertiary Sedimentary Cover). No other compositing of samples done at        |
|                  |                                                                  | this stage. The samples in the mineralised zone are done for every           |
|                  |                                                                  | meter drill run.                                                             |
|                  |                                                                  | No resources are reported.                                                   |
| Orientation of   | Whether the orientation of sampling                              | Mineralisation is moderately flat lying. The drillholes are vertical, which  |
| data in relation | achieves unbiased sampling of                                    | is closely perpendicular to mineralised horizons.                            |
| to geological    | possible structures and the extent to                            | Vertical drillholes are considered appropriate due to the                    |
| structure        | which this is known, considering the                             | characteristics of the deposit. The deposit is saprolitised resulting in     |
|                  | -1                                                               | supergene enrichment. This kind of deposit is typically extended             |
|                  | deposit type.                                                    | supergene emicriment. The kind of deposit is typically extended              |
|                  | <ul> <li>If the relationship between the drilling</li> </ul>     | horizontally with a relatively less variable thickness and stratabound.      |



|           | mineralised structures is considered    | sampling bias regarding the critical mineralised structures. The drilling |
|-----------|-----------------------------------------|---------------------------------------------------------------------------|
|           | to have introduced a sampling bias,     | orientation is well-aligned with the known geology of the deposit,        |
|           | this should be assessed and reported    | ensuring accurate representation and unbiased sampling of the             |
|           | if material.                            | mineralised zones. Any potential bias due to drilling orientation is      |
|           |                                         | considered negligible in this context.                                    |
|           |                                         |                                                                           |
| Sample    | The measures taken to ensure            | All samples were collected by qualified and skilled field geologists and  |
| security  | sample security.                        | meticulously packed in labelled plastic bags. They were then              |
|           |                                         | transported directly to the SGS-GEOSOL laboratory, Vespasiano,            |
|           |                                         | Minas Gerais in Brazil. The samples were secured during transit to        |
|           |                                         | prevent tampering, contamination, or loss. A chain of custody was         |
|           |                                         | maintained from the field to the laboratory, with proper documentation    |
|           |                                         | accompanying each batch to ensure transparency and traceability           |
|           |                                         | throughout the sampling process. Utilising a reputable laboratory         |
|           |                                         | further ensures the security and integrity of the assay results.          |
| Audits or | The results of any audits or reviews of | The site is attended by Enova's Brazilian Professional Geology Team to    |
| reviews   | sampling techniques and data.           | inspect drilling and sampling procedures, verify survey methods,          |
|           |                                         | inspect the storage shed, verification geological records, review QAQC    |
|           |                                         | procedures and review the geologic model. The competent person had        |
|           |                                         | audited and visited CODA project sites on 17 September 2024.              |
|           |                                         |                                                                           |



Section 2 - Reporting of Exploration Results

| Criteria         | JORC Code explanation                     | Commentary                                                                     |
|------------------|-------------------------------------------|--------------------------------------------------------------------------------|
| Mineral tenement | Type, reference name/number,              | The title holder of the tenements is now Rodrigo De Britto Mello (Earlier      |
| and land tenure  | location and ownership including          | RBM Consultoria Mineral), who filed transfer requests of the granted           |
| status           | agreements or material issues with        | exploration permits to its sole owner, Rodrigo de Brito Mello. The             |
|                  | third parties such as joint ventures,     | application cannot be transferred until the permit is published,               |
|                  | partnerships, overriding royalties,       | however Rodrigo and RBM Consultoria Mineral will undertake                     |
|                  | native title interests, historical sites, | contractual obligations to transfer the title to Enova as soon as the          |
|                  | wilderness or national park and           | permit is published in the official gazette. Details of the CODA               |
|                  | environmental settings.                   | tenements are provided in the Table 2 and Figure 12.                           |
|                  | The security of the tenure held at        | The drilling is completed in Coda North area consisting of tenements           |
|                  | the time of reporting along with any      | 831369/2020 and 831381/2020. The RC drilling is commenced in Coda              |
|                  | known impediments to obtaining a          | Central consisting of 830699/2021 from 3 Oct 2024                              |
|                  | licence to operate in the area.           | Enova has submitted the required fees and annual reports of the above          |
|                  |                                           | tenements to ANM on and before 2 August 2024 and the renewal of the            |
|                  |                                           | tenements is under process through to the next year.                           |
| Exploration done | Acknowledgment and appraisal of           | The Coda North area was earlier explored by Vicenza and the                    |
| by other parties | exploration by other parties.             | significant results of historical drilling of Coda North are announced via     |
|                  |                                           | ASX release <sup>3</sup> dated 18 March 2024. The historical data provides the |
|                  |                                           | guidance for current exploration drilling.                                     |
|                  |                                           | Coda Central project area was previously sampled under Regional                |
|                  |                                           | Surface Geochemical sampling program <sup>4</sup> . However, no other party    |
|                  |                                           | explored Coda Central.                                                         |
| Geology          | Deposit type, geological setting and      | The prospective geological unit present in the CODA project areas              |
|                  | style of mineralisation.                  | including Coda North and Coda Central, is composed of the Patos                |
|                  |                                           | formation. It formed during the Upper Cretaceous period, when a                |
|                  |                                           | massive volcanic event occurred in the western part of Minas Gerais            |
|                  |                                           | state. The volcanic activity exhibited both effusive (lava flows) and          |
|                  |                                           | explosive (pyroclastic deposits) eruptions. The predominant rock type          |
|                  |                                           | in this formation is kamafugite, which is classified as an alkaline-           |
|                  |                                           | ultramafic rock. High-grade REE are also enriched in this formation.           |
|                  |                                           | The prospective unit consists of a horizontal bed of kamafugite, which         |
|                  |                                           | can be up to 40 metres thick, overlain by overburden that varies from 0        |
|                  |                                           | to 50 metres. Weathering processes with thick clay zones are prevalent         |
|                  |                                           | throughout this profile, leading to the accumulation of REE closer to          |
|                  |                                           | the upper part of the formation. The rocks within this formation are           |
|                  |                                           | predominantly soft and friable, with an extremely fine particle size.          |
|                  |                                           | These characteristics are considered advantageous for the exploration          |
|                  |                                           | of Clay hosted REE deposits.                                                   |

<sup>&</sup>lt;sup>3</sup> ASX announcement "World class clay hosted rare earth grades uncovered at CODA North" dated 18 March 2024

<sup>&</sup>lt;sup>4</sup> ASX Announcement "CODA Geochem. sampling reveals high-grade REE mineralisation" 15 Aug 2024



|                  |                                                       | Triiling iii riica                                                        |
|------------------|-------------------------------------------------------|---------------------------------------------------------------------------|
| Drill hole       | A summary of all information                          | The data and information of about the drillholes are given below,         |
| Information      | material to the understanding of the                  |                                                                           |
|                  | exploration results including a                       | Total number of drill holes completed (Table 1)                           |
|                  | tabulation of the following                           | In Coda North Project,                                                    |
|                  | information for all Material drill                    | Diamond Drill holes 24 numbers                                            |
|                  | holes:                                                | RC drillholes 40 numbers                                                  |
|                  | • easting and northing of the drill hole              | In Coda Central Project,                                                  |
|                  | collar                                                | RC drillholes 6 numbers                                                   |
|                  | • elevation or RL (Reduced Level –                    | Collar information of all drillholes completed so far is given in Table 3 |
|                  | elevation above sea level in metres)                  | The current report documents the significant assays of 12 drillholes      |
|                  | of the drill hole collar                              | (Refer Table 4 and Figure 11 and 12) evaluated by Enova team.             |
|                  | • dip and azimuth of the hole                         | Further assays are still under assaying in SGS Geosol laboratory and      |
|                  | down hole length and interception                     | work in progress.                                                         |
|                  | depth                                                 |                                                                           |
|                  | • hole length.                                        |                                                                           |
|                  | If the exclusion of this information is               |                                                                           |
|                  | justified on the basis that the                       |                                                                           |
|                  | information is not Material and this                  |                                                                           |
|                  | exclusion does not detract from the                   |                                                                           |
|                  | understanding of the report, the                      |                                                                           |
|                  | Competent Person should clearly                       |                                                                           |
|                  | explain why this is the case.                         |                                                                           |
| Data aggregation | <ul> <li>In reporting Exploration Results,</li> </ul> | The data are being compiled in Collar, Survey, Assay and Geology files.   |
| methods          | weighting averaging techniques,                       | The Assay data has been compiled in the Assay table and TREO and          |
|                  | maximum and/or minimum grade                          | NdPr% are given in the Appendix C, Table 4. The database has been         |
|                  | truncations (eg cutting of high                       | compiled as per industry standard practices and for the use of            |
|                  | grades) and cut-off grades are                        | resource modelling in the next stage.                                     |
|                  | usually Material and should be                        | The conversion of Total Rare Earth Oxide (TREO) will be calculated        |
|                  | stated.                                               | using standard conversion table as mentioned below.                       |
|                  | Where aggregate intercepts                            | The conversion of elemental assay results to expected common rare         |
|                  | incorporate short lengths of high-                    | earth oxide products, uses conversion factors applied relating to the     |
|                  | grade results and longer lengths of                   | atomic composition of common rare earth oxide sale products. The          |
|                  | low-grade results, the procedure                      | following calculation for TREO provides REE to RE oxide conversion        |
|                  | used for such aggregation should be                   | factors and lists the REE included:                                       |
|                  | stated and some typical examples                      | TREO=                                                                     |
|                  | of such aggregations should be                        | (Ce*1.23) +(Dy*1.15) +(Er*1.14) +(Gd*1.15)                                |
|                  | shown in detail.                                      | +(Ho*1.15) +(La*1.17) +(Lu*1.14) +(Nd*1.17) +(Pr*1.21) +(Sm*1.16)         |
|                  | The assumptions used for any                          | +(Tb*1.18) +(Tm*1.14)                                                     |
|                  | reporting of metal equivalent values                  | +(Y*1.27) +(Yb*1.14)                                                      |
|                  | should be clearly stated.                             |                                                                           |
|                  | onodia 20 ciodny dialea.                              | For the reporting of significant intersections, the downhole aggregation  |
|                  |                                                       | for the cut-off calculation is based on the average of 3 consecutive      |
|                  |                                                       | samples that are greater than the nominal cutoff. No more than 3          |
|                  |                                                       | samples below cut-off are accepted in any 3m consecutive                  |
|                  |                                                       | aggregation but the aggregation with the below cut-off sample must        |
|                  |                                                       | 200. 200 and the appropriate with the polow out-on sample must            |

remain above the nominal cut-off.



| Relationship<br>between<br>mineralisation<br>widths and<br>intercept lengths | <ul> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</li> <li>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</li> </ul> | Nominal cut-offs of 1000 ppm, 2000 ppm and 3000 ppm have been applied for calculation of significant results. Notable high-grade assays have been calculated with nominal cut-off 3000 ppm.  A schematic cross section in North South direction is shown in Figure 5.  Due to the geometry of the mineralisation, the vertical orientation of the drill holes, the downhole lengths are likely to be close approximations of the true widths of the mineralised zones.  In instances where discrepancies between downhole lengths and true widths may occur, it should be noted as "downhole thickness or length, not the true width".  All drill holes are vertical and suitable for the deposit type, ensuring unbiased sampling of the mineralisation                                 |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Diagrams                                                                     | Appropriate maps and sections     (with scales) and tabulations of     intercepts should be included for     any significant discovery being     reported These should include, but     not be limited to a plan view of drill     hole collar locations and                                                                                                                                                      | The data provided in this report aids readers in comprehending the information more effectively. The document includes various diagrams and supplementary details, which enhance the clarity and accessibility of the geological findings and exploration results. Please refer to the Figure 1 to 9 for drilling, sampling related data and information and Figure 10 and 11 for drillhole locations in Coda North and Coda Central respectively.                                                                                                                                                                                                                                                                                                                                       |
| Balanced reporting                                                           | appropriate sectional views.  Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.                                                                                                                                                           | The data presented in this report aims to offer a transparent and comprehensive overview of the exploration activities and findings. It thoroughly covers information on sampling techniques, geological context, prior exploration work, and assay results. Relevant cross-references to previous announcements are included to ensure continuity and clarity. Diagrams, such as drillhole plan and tenements maps and tables, are provided to facilitate a deeper understanding of the data.  Additionally, the report distinctly mentions the source of the samples, whether from saprolitic clays, kamafugite lithounits under Patos formation, to ensure a balanced perspective. This report represents the exploration activities and findings without any undue bias or omission. |
| Other substantive exploration data                                           | Other exploration data, if    meaningful and material, should be    reported including (but not limited    to): geological observations;    geophysical survey results;    geochemical survey results; bulk    samples – size and method of                                                                                                                                                                       | There is no additional substantive, relevant and significant exploration data to report currently.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |



|              | treatment; metallurgical test       |                                                                            |
|--------------|-------------------------------------|----------------------------------------------------------------------------|
|              | results; bulk density, groundwater, |                                                                            |
|              | geotechnical and rock               |                                                                            |
|              | characteristics; potential          |                                                                            |
|              | deleterious or contaminating        |                                                                            |
|              | substances.                         |                                                                            |
| Further work | The nature and scale of planned     | In the current stage, resource delineation drilling is focused on          |
|              | further work (eg tests for lateral  | systematically mapping the extent and continuity of the mineralised        |
|              | extensions or depth extensions or   | zones identified during initial exploration. This involves both infill and |
|              | large-scale step-out drilling).     | step-out drilling to provide detailed information on the grade and         |
|              | Diagrams clearly highlighting the   | distribution of the mineralised zones, reducing geological uncertainty     |
|              | areas of possible extensions,       | and will improve the confidence and accuracy of the resource model         |
|              | including the main geological       | in the next stage.                                                         |
|              | interpretations and future drilling | As we move to the next stage, resource definition will take precedence,    |
|              | areas, provided this information is | leading to a compliant mineral resource estimate.                          |
|              | not commercially sensitive          | Diagrams and figures in the current document entail the future infill      |
|              |                                     | drilling requirement in the gaps to enhance the confidence on              |
|              |                                     | geological, grade continuity and resource categorisation.                  |



Appendix -B

The drillholes collars presented in the current release

| HoleID      | Project    | East_UTM | North_UTM | Elev | Datum | Zone | DIP | EOH (m) | Drill Type |
|-------------|------------|----------|-----------|------|-------|------|-----|---------|------------|
| CDN-DD-0001 | CODA North | 318514   | 7954393   | 1016 | WGS84 | 23\$ | 90  | 39.36   | DD         |
| CDN-DD-0002 | CODA North | 318509   | 7954001   | 1046 | WGS84 | 23S  | 90  | 57.1    | DD         |
| CDN-DD-0003 | CODA North | 320507   | 7954002   | 1033 | WGS84 | 23S  | 90  | 53.42   | DD         |
| CDN-DD-0004 | CODA North | 320514   | 7954795   | 1043 | WGS84 | 23S  | 90  | 79.9    | DD         |
| CDN-DD-0005 | CODA North | 320093   | 7954375   | 1074 | WGS84 | 23S  | 90  | 81.21   | DD         |
| CDN-DD-0006 | CODA North | 319310   | 7954007   | 1058 | WGS84 | 23S  | 90  | 81.11   | DD         |
| CDN-DD-0007 | CODA North | 319710   | 7954396   | 1061 | WGS84 | 23S  | 90  | 61.81   | DD         |
| CDN-DD-0008 | CODA North | 320096   | 7954797   | 1053 | WGS84 | 23S  | 90  | 63.09   | DD         |
| CDN-DD-0009 | CODA North | 319707   | 7954802   | 1048 | WGS84 | 23S  | 90  | 59.45   | DD         |
| CDN-DD-0010 | CODA North | 318502   | 7955997   | 1064 | WGS84 | 23S  | 90  | 68.65   | DD         |
| CDN-DD-0011 | CODA North | 319310   | 7956801   | 1020 | WGS84 | 23S  | 90  | 45.89   | DD         |
| CDN-DD-0012 | CODA North | 319697   | 7956813   | 1057 | WGS84 | 23S  | 90  | 43.31   | DD         |
| CDN-DD-0013 | CODA North | 320110   | 7956800   | 1065 | WGS84 | 23S  | 90  | 54.27   | DD         |
| CDN-DD-0014 | CODA North | 319706   | 7957204   | 1047 | WGS84 | 23S  | 90  | 36.24   | DD         |
| CDN-DD-0015 | CODA North | 319298   | 7957202   | 957  | WGS84 | 23S  | 90  | 27.71   | DD         |
| CDN-DD-0016 | CODA North | 319714   | 7957607   | 1021 | WGS84 | 23S  | 90  | 25.58   | DD         |
| CDN-DD-0017 | CODA North | 319710   | 7958398   | 1011 | WGS84 | 23S  | 90  | 27.72   | DD         |
| CDN-DD-0018 | CODA North | 319714   | 7958809   | 1029 | WGS84 | 23\$ | 90  | 30.1    | DD         |
| CDN-DD-0019 | CODA North | 319249   | 7958670   | 1023 | WGS84 | 23S  | 90  | 50.63   | DD         |
| CDN-DD-0020 | CODA North | 322517   | 7954400   | 1050 | WGS84 | 23S  | 90  | 40.81   | DD         |
| CDN-DD-0021 | CODA North | 322512   | 7954008   | 1067 | WGS84 | 23S  | 90  | 80.05   | DD         |
| CDN-DD-0022 | CODA North | 323252   | 7953613   | 1011 | WGS84 | 23S  | 90  | 85.22   | DD         |
| CDN-DD-0023 | CODA North | 323629   | 7953620   | 1045 | WGS84 | 23S  | 90  | 57.5    | DD         |
| CDN-DD-0024 | CODA North | 323298   | 7953599   | 955  | WGS84 | 23S  | 90  | 60.05   | DD         |
| CDN-RC-0001 | CODA North | 320905   | 7954403   | 1014 | WGS84 | 23S  | 90  | 50      | RC         |



| ODN DO 0000 | 0000441    | 000540 | 7055400  | 1010 | 14/0004 | 000  | 0.0 | 40 | D.O. |
|-------------|------------|--------|----------|------|---------|------|-----|----|------|
| CDN-RC-0002 | CODA North | 320512 | 7955196  | 1012 | WGS84   | 23S  | 90  | 42 | RC   |
| CDN-RC-0003 | CODA North | 320101 | 7953991  | 1056 | WGS84   | 23S  | 90  | 48 | RC   |
| CDN-RC-0004 | CODA North | 321145 | 7955026  | 997  | WGS84   | 23\$ | 90  | 30 | RC   |
| CDN-RC-0005 | CODA North | 320512 | 7954410  | 1046 | WGS84   | 23S  | 90  | 67 | RC   |
| CDN-RC-0006 | CODA North | 318904 | 7954006  | 1055 | WGS84   | 23S  | 90  | 62 | RC   |
| CDN-RC-0007 | CODA North | 318812 | 7954302  | 1036 | WGS84   | 23S  | 90  | 40 | RC   |
| CDN-RC-0008 | CODA North | 319312 | 7954414  | 1049 | WGS84   | 23S  | 90  | 56 | RC   |
| CDN-RC-0009 | CODA North | 320118 | 7955206  | 1026 | WGS84   | 23S  | 90  | 51 | RC   |
| CDN-RC-0010 | CODA North | 319710 | 7955202  | 1016 | WGS84   | 23S  | 90  | 35 | RC   |
| CDN-RC-0011 | CODA North | 318912 | 7956006  | 1054 | WGS85   | 23S  | 90  | 44 | RC   |
| CDN-RC-0012 | CODA North | 318514 | 7955195  | 1043 | WGS86   | 23S  | 90  | 58 | RC   |
| CDN-RC-0013 | CODA North | 318509 | 7955597  | 1054 | WGS87   | 23S  | 90  | 59 | RC   |
| CDN-RC-0014 | CODA North | 318503 | 7954814  | 1015 | WGS88   | 23S  | 90  | 36 | RC   |
| CDN-RC-0015 | CODA North | 319313 | 7956404  | 1062 | WGS89   | 23S  | 90  | 58 | RC   |
| CDN-RC-0016 | CODA North | 319702 | 7956008  | 979  | WGS90   | 23S  | 90  | 27 | RC   |
| CDN-RC-0017 | CODA North | 319308 | 7956007  | 1024 | WGS91   | 23S  | 90  | 28 | RC   |
| CDN-RC-0018 | CODA North | 320097 | 7957207  | 1059 | WGS92   | 23S  | 90  | 41 | RC   |
| CDN-RC-0019 | CODA North | 320108 | 7957600  | 1048 | WGS93   | 23S  | 90  | 40 | RC   |
| CDN-RC-0020 | CODA North | 320495 | 7957992  | 1047 | WGS94   | 23S  | 90  | 51 | RC   |
| CDN-RC-0021 | CODA North | 320592 | 7957645  | 1070 | WGS95   | 23S  | 90  | 62 | RC   |
| CDN-RC-0022 | CODA North | 319311 | 7957605  | 1000 | WGS96   | 23S  | 90  | 21 | RC   |
| CDN-RC-0023 | CODA North | 320108 | 7957994  | 1018 | WGS97   | 23S  | 90  | 12 | RC   |
| CDN-RC-0024 | CODA North | 320510 | 7958365  | 1026 | WGS98   | 23S  | 90  | 32 | RC   |
| CDN-RC-0025 | CODA North | 319337 | 7958404  | 1024 | WGS99   | 23S  | 90  | 50 | RC   |
| CDN-RC-0026 | CODA North | 321794 | 7954422  | 1033 | WGS100  | 23S  | 90  | 50 | RC   |
| CDN-RC-0027 | CODA North | 321712 | 7954802  | 1006 | WGS101  | 23S  | 90  | 38 | RC   |
| CDN-RC-0028 | CODA North | 322270 | 7954994  | 978  | WGS84   | 23S  | 90  | 35 | RC   |
| CDN-RC-0029 | CODA North | 322705 | 7955200  | 1003 | WGS84   | 23S  | 90  | 29 | RC   |
| CDN-RC-0030 | CODA North | 322501 | 7954808  | 1032 | WGS84   | 23S  | 90  | 67 | RC   |
| L           |            |        | <u> </u> |      | 1       |      | 1   | 1  | 1    |



| CDN-RC-0031 | CODA North | 322914 | 7954005 | 1051 | WGS84 | 23\$ | 90 | 72 | RC |
|-------------|------------|--------|---------|------|-------|------|----|----|----|
| CDN-RC-0032 | CODA North | 323314 | 7953608 | 1057 | WGS84 | 23S  | 90 | 54 | RC |
| CDN-RC-0033 | CODA North | 322912 | 7954416 | 1043 | WGS84 | 23\$ | 90 | 57 | RC |
| CDN-RC-0034 | CODA North | 323235 | 7954381 | 1013 | WGS84 | 23\$ | 90 | 37 | RC |
| CDN-RC-0035 | CODA North | 323708 | 7954381 | 1007 | WGS84 | 23\$ | 90 | 33 | RC |
| CDN-RC-0036 | CODA North | 323684 | 7954803 | 1029 | WGS84 | 23\$ | 90 | 52 | RC |
| CDN-RC-0037 | CODA North | 323931 | 7956073 | 1040 | WGS84 | 23\$ | 90 | 48 | RC |
| CDN-RC-0038 | CODA North | 323697 | 7955677 | 1050 | WGS84 | 23\$ | 90 | 60 | RC |
| CDN-RC-0039 | CODA North | 323323 | 7955646 | 1042 | WGS84 | 23\$ | 90 | 52 | RC |
| CDN-RC-0040 | CODA North | 322899 | 7955567 | 978  | WGS84 | 23\$ | 90 | 15 | RC |

Table 3A: The coordinates of Diamond and RC drillholes for which assays received in Coda North area

| HoleID      | Project      | East_UTM | North_UTM | Elev | Datum | Zone | DIP | EOH (m) | Drill Type |
|-------------|--------------|----------|-----------|------|-------|------|-----|---------|------------|
| CDC-RC-0001 | CODA Central | 354488   | 7953131   | 1033 | WGS84 | 23S  | 90  | 45.00   | RC         |
| CDC-RC-0002 | CODA Central | 353899   | 7953166   | 1077 | WGS84 | 23S  | 90  | 50.00   | RC         |
| CDC-RC-0003 | CODA Central | 354392   | 7952562   | 1074 | WGS84 | 23S  | 90  | 50.00   | RC         |
| CDC-RC-0004 | CODA Central | 353397   | 7952259   | 1096 | WGS84 | 23S  | 90  | 52.00   | RC         |
| CDC-RC-0005 | CODA Central | 354439   | 7951958   | 1002 | WGS84 | 23S  | 90  | 50.00   | RC         |
| CDC-RC-0006 | CODA Central | 354122   | 7950914   | 1057 | WGS84 | 23S  | 90  | 50.00   | RC         |

Table 3B: The coordinates of RC drillholes for which assays received in Coda Central area



# Appendix -C

| SampleID                             | FROM  | то    | Interval | TREO Inc Y2O3ppm | NdPr%      | Lithology                         |  |  |
|--------------------------------------|-------|-------|----------|------------------|------------|-----------------------------------|--|--|
| CDN-DD-0010-0001                     | 0     | 3     | 3        | 575.1            | 15%        | Litilology                        |  |  |
| CDN-DD-0010-0001                     | 3     | 6     | 3        | 647.7            | 14%        |                                   |  |  |
| CDN-DD-0010-0002                     | 6     | 9     | 3        | 781.9            | 13%        |                                   |  |  |
|                                      | 9     | 12    | 3        | 929.9            | 16%        |                                   |  |  |
| CDN-DD-0010-0005                     | 12    | 15    | 3        | 963.1            |            |                                   |  |  |
| CDN-DD-0010-0006<br>CDN-DD-0010-0007 | 15    | 18    | 3        |                  | 18%<br>21% | <b>Tertiary Sedimentary Cover</b> |  |  |
|                                      | 18    | 21    | 3        | 1132.3           |            |                                   |  |  |
| CDN-DD-0010-0008                     |       |       |          | 1162.0           | 22%        |                                   |  |  |
| CDN-DD-0010-0009                     | 21    | 24    | 3        | 1198.5           | 22%        |                                   |  |  |
| CDN-DD-0010-0010                     | 24    | 26    | 2        | 1140.0           | 23%        |                                   |  |  |
| CDN-DD-0010-0012                     | 26    | 28.15 | 2.15     | 1072.3           | 23%        |                                   |  |  |
| CDN-DD-0010-0013                     | 28.15 | 30    | 1.85     | 603.0            | 22%        | Laterite                          |  |  |
| CDN-DD-0010-0014                     | 30    | 32.84 | 2.84     | 1343.2           | 20%        |                                   |  |  |
| CDN-DD-0010-0015                     | 32.84 | 34    | 1.16     | 903.0            | 19%        |                                   |  |  |
| CDN-DD-0010-0016                     | 34    | 35    | 1        | 456.2            | 19%        |                                   |  |  |
| CDN-DD-0010-0018                     | 35    | 36    | 1        | 503.3            | 18%        |                                   |  |  |
| CDN-DD-0010-0019                     | 36    | 37    | 1        | 748.4            | 16%        |                                   |  |  |
| CDN-DD-0010-0020                     | 37    | 38    | 1        | 2780.6           | 17%        |                                   |  |  |
| CDN-DD-0010-0021                     | 38    | 39    | 1        | 4423.4           | 18%        |                                   |  |  |
| CDN-DD-0010-0022                     | 39    | 40    | 1        | 2342.6           | 18%        |                                   |  |  |
| CDN-DD-0010-0023                     | 40    | 41    | 1        | 2619.8           | 18%        |                                   |  |  |
| CDN-DD-0010-0024                     | 41    | 42    | 1        | 2677.4           | 17%        |                                   |  |  |
| CDN-DD-0010-0026                     | 42    | 43    | 1        | 2228.3           | 18%        |                                   |  |  |
| CDN-DD-0010-0027                     | 43    | 44    | 1        | 4899.4           | 20%        |                                   |  |  |
| CDN-DD-0010-0028                     | 44    | 45    | 1        | 10383.0          | 24%        |                                   |  |  |
| CDN-DD-0010-0029                     | 45    | 46    | 1        | 5213.3           | 23%        |                                   |  |  |
| CDN-DD-0010-0030                     | 46    | 47    | 1        | 2488.3           | 19%        |                                   |  |  |
| CDN-DD-0010-0032                     | 47    | 48    | 1        | 3905.3           | 25%        |                                   |  |  |
| CDN-DD-0010-0033                     | 48    | 49    | 1        | 2049.6           | 22%        |                                   |  |  |
| CDN-DD-0010-0034                     | 49    | 50    | 1        | 2439.4           | 24%        |                                   |  |  |
| CDN-DD-0010-0036                     | 50    | 51    | 1        | 5428.7           | 27%        | Kamafugite                        |  |  |
| CDN-DD-0010-0037                     | 51    | 52    | 1        | 4718.6           | 28%        |                                   |  |  |
| CDN-DD-0010-0038                     | 52    | 53    | 1        | 3291.0           | 28%        |                                   |  |  |
| CDN-DD-0010-0039                     | 53    | 54    | 1        | 2121.4           | 22%        |                                   |  |  |
| CDN-DD-0010-0040                     | 54    | 55    | 1        | 2111.1           | 24%        |                                   |  |  |
| CDN-DD-0010-0041                     | 55    | 56    | 1        | 2208.8           | 24%        |                                   |  |  |
| CDN-DD-0010-0042                     | 56    | 57    | 1        | 2202.1           | 21%        |                                   |  |  |
| CDN-DD-0010-0043                     | 57    | 58    | 1        | 1794.2           | 20%        |                                   |  |  |
| CDN-DD-0010-0044                     | 58    | 59    | 1        | 3882.1           | 13%        |                                   |  |  |
| CDN-DD-0010-0045                     | 59    | 60    | 1        | 3622.8           | 9%         |                                   |  |  |
| CDN-DD-0010-0047                     | 60    | 61    | 1        | 2268.0           | 15%        |                                   |  |  |
| CDN-DD-0010-0047                     | 61    | 62    | 1        | 3274.8           | 11%        |                                   |  |  |
| CDN-DD-0010-0049                     | 62    | 63    | 1        | 2754.4           | 12%        | <u> </u>                          |  |  |
| CDN-DD-0010-0050                     | 63    | 64    | 1        | 1548.4           | 21%        |                                   |  |  |
| CDN-DD-0010-0052                     | 64    | 65    | 1        | 2592.6           | 21%        |                                   |  |  |
| CDN-DD-0010-0052                     | 65    | 66    | 1        | 2754.5           | 21%        |                                   |  |  |
| CDN-DD-0010-0054                     | 66    | 67    | 1        | 2975.8           | 23%        |                                   |  |  |
|                                      | 67    | 68.21 | 1.21     |                  | 23%        |                                   |  |  |
| CDN-DD-0010-0056                     |       |       |          | 2450.1           |            | Candatana                         |  |  |
| CDN-DD-0010-0057                     | 68.21 | 68.65 | 0.44     | 195.8            | 20%        | Sandstone                         |  |  |



| SampleID         | FROM  | то    | Interval | TREO Inc Y2O3ppm | NdPr% | Lithology                        |
|------------------|-------|-------|----------|------------------|-------|----------------------------------|
| CDN-DD-0011-0002 | 3     | 6     | 3        | 754.1            | 14%   |                                  |
| CDN-DD-0011-0003 | 6     | 9     | 3        | 993.9            | 14%   | <b>Tertiary Seimentary Cover</b> |
| CDN-DD-0011-0004 | 9     | 11.49 | 2.49     | 1028.5           | 18%   |                                  |
| CDN-DD-0011-0005 | 11.49 | 14    | 2.51     | 789.5            | 21%   |                                  |
| CDN-DD-0011-0006 | 14    | 16.04 | 2.04     | 1233.3           | 22%   | Laterite                         |
| CDN-DD-0011-0007 | 16.04 | 17    | 0.96     | 3164.1           | 24%   |                                  |
| CDN-DD-0011-0009 | 17    | 18    | 1        | 1614.9           | 18%   |                                  |
| CDN-DD-0011-0011 | 18    | 19    | 1        | 2067.2           | 18%   |                                  |
| CDN-DD-0011-0012 | 19    | 20    | 1        | 2141.7           | 17%   |                                  |
| CDN-DD-0011-0013 | 20    | 21    | 1        | 1422.5           | 19%   |                                  |
| CDN-DD-0011-0014 | 21    | 22    | 1        | 1127.4           | 21%   |                                  |
| CDN-DD-0011-0016 | 22    | 23    | 1        | 1087.6           | 22%   |                                  |
| CDN-DD-0011-0017 | 23    | 24    | 1        | 990.8            | 21%   |                                  |
| CDN-DD-0011-0018 | 24    | 25    | 1        | 1291.2           | 22%   |                                  |
| CDN-DD-0011-0019 | 25    | 26    | 1        | 1043.1           | 25%   |                                  |
| CDN-DD-0011-0020 | 26    | 27    | 1        | 770.8            | 26%   |                                  |
| CDN-DD-0011-0021 | 27    | 28    | 1        | 244.7            | 22%   |                                  |
| CDN-DD-0011-0022 | 28    | 29    | 1        | 563.8            | 27%   |                                  |
| CDN-DD-0011-0023 | 29    | 30    | 1        | 344.3            | 27%   |                                  |
| CDN-DD-0011-0025 | 30    | 31    | 1        | 561.5            | 25%   | Kamafugite                       |
| CDN-DD-0011-0026 | 31    | 32    | 1        | 147.5            | 31%   |                                  |
| CDN-DD-0011-0027 | 32    | 33    | 1        | 146.7            | 32%   |                                  |
| CDN-DD-0011-0028 | 33    | 34    | 1        | 101.0            | 30%   |                                  |
| CDN-DD-0011-0030 | 34    | 35    | 1        | 105.1            | 33%   |                                  |
| CDN-DD-0011-0031 | 35    | 36    | 1        | 73.0             | 35%   |                                  |
| CDN-DD-0011-0032 | 36    | 37    | 1        | 79.3             | 34%   |                                  |
| CDN-DD-0011-0033 | 37    | 38    | 1        | 128.3            | 36%   |                                  |
| CDN-DD-0011-0034 | 38    | 39    | 1        | 141.6            | 31%   |                                  |
| CDN-DD-0011-0035 | 39    | 40    | 1        | 107.0            | 27%   |                                  |
| CDN-DD-0011-0037 | 40    | 41    | 1        | 97.9             | 23%   |                                  |
| CDN-DD-0011-0039 | 41    | 42    | 1        | 88.1             | 19%   |                                  |
| CDN-DD-0011-0040 | 42    | 43    | 1        | 91.5             | 21%   |                                  |
| CDN-DD-0011-0041 | 43    | 44    | 1        | 101.6            | 22%   |                                  |
| CDN-DD-0011-0042 | 44    | 45.89 | 1.89     | 87.9             | 26%   |                                  |

| SampleID         | FROM  | TO    | Interval | TREO Inc Y2O3ppm | NdPr% | Lithology                  |  |
|------------------|-------|-------|----------|------------------|-------|----------------------------|--|
| CDN-DD-0012-0002 | 2     | 4     | 2        | 691.1            | 14%   |                            |  |
| CDN-DD-0012-0003 | 4     | 6     | 2        | 751.5            | 14%   |                            |  |
| CDN-DD-0012-0004 | 6     | 8     | 2        | 920.0            | 14%   |                            |  |
| CDN-DD-0012-0005 | 8     | 10    | 2        | 1029.8           | 16%   |                            |  |
| CDN-DD-0012-0006 | 10    | 12    | 2        | 1123.8           | 19%   | Tertiary Sedimentary Cover |  |
| CDN-DD-0012-0008 | 12    | 14    | 2        | 1176.5           | 20%   | rertiary sedimentary cover |  |
| CDN-DD-0012-0009 | 14    | 16    | 2        | 1295.5           | 21%   |                            |  |
| CDN-DD-0012-0011 | 16    | 18    | 2        | 1293.5           | 21%   |                            |  |
| CDN-DD-0012-0012 | 18    | 20    | 2        | 1277.8           | 22%   |                            |  |
| CDN-DD-0012-0013 | 20    | 21    | 1        | 1213.4           | 22%   |                            |  |
| CDN-DD-0012-0014 | 21    | 23    | 2        | 1001.7           | 23%   |                            |  |
| CDN-DD-0012-0016 | 23    | 25    | 2        | 463.7            | 21%   |                            |  |
| CDN-DD-0012-0017 | 25    | 27    | 2        | 810.2            | 22%   |                            |  |
| CDN-DD-0012-0018 | 27    | 29    | 2        | 1202.7           | 21%   |                            |  |
| CDN-DD-0012-0019 | 29    | 30.16 | 1.16     | 1099.9           | 21%   | Laterite                   |  |
| CDN-DD-0012-0020 | 30.16 | 31    | 0.84     | 2505.3           | 21%   |                            |  |
| CDN-DD-0012-0021 | 31    | 32    | 1        | 2746.3           | 21%   |                            |  |
| CDN-DD-0012-0022 | 32    | 33    | 1        | 2468.7           | 20%   |                            |  |
| CDN-DD-0012-0023 | 33    | 34    | 1        | 2140.1           | 20%   |                            |  |
| CDN-DD-0012-0025 | 34    | 35    | 1        | 2726.5           | 19%   |                            |  |
| CDN-DD-0012-0026 | 35    | 36    | 1        | 3678.4           | 26%   | Kamafugite                 |  |
| CDN-DD-0012-0028 | 36    | 37    | 1        | 6058.4           | 27%   | Kallialugite               |  |
| CDN-DD-0012-0029 | 37    | 38    | 1        | 5070.6           | 26%   |                            |  |
| CDN-DD-0012-0030 | 38    | 39    | 1        | 3052.0           | 20%   |                            |  |
| CDN-DD-0012-0031 | 39    | 40    | 1        | 3305.6           | 22%   |                            |  |
| CDN-DD-0012-0032 | 40    | 41    | 1        | 5806.9           | 28%   |                            |  |
| CDN-DD-0012-0033 | 41    | 42.71 | 1.71     | 4388.3           | 27%   |                            |  |
| CDN-DD-0012-0034 | 42.71 | 43.31 | 0.6      | 264.0            | 34%   | Sandstone                  |  |



| SampleID         | FROM  | то    | Interval | TREO Inc Y2O3ppm | NdPr% | Lithology                  |
|------------------|-------|-------|----------|------------------|-------|----------------------------|
| CDN-DD-0013-0003 | 2     | 4     | 2        | 670.0            | 15%   |                            |
| CDN-DD-0013-0005 | 4     | 6     | 2        | 724.1            | 14%   |                            |
| CDN-DD-0013-0006 | 6     | 8     | 2        | 862.2            | 15%   |                            |
| CDN-DD-0013-0007 | 8     | 10    | 2        | 937.2            | 17%   |                            |
| CDN-DD-0013-0008 | 10    | 12    | 2        | 944.9            | 18%   | Tartian Cadinaantan Cause  |
| CDN-DD-0013-0009 | 12    | 14    | 2        | 973.9            | 19%   | Tertiary Sedimentary Cover |
| CDN-DD-0013-0010 | 14    | 16    | 2        | 1143.2           | 20%   |                            |
| CDN-DD-0013-0011 | 16    | 18    | 2        | 1129.5           | 21%   |                            |
| CDN-DD-0013-0013 | 18    | 20    | 2        | 1235.9           | 21%   |                            |
| CDN-DD-0013-0014 | 20    | 21.32 | 1.32     | 1182.8           | 22%   |                            |
| CDN-DD-0013-0015 | 21.32 | 23    | 1.68     | 1234.0           | 22%   |                            |
| CDN-DD-0013-0016 | 23    | 25    | 2        | 1141.4           | 23%   |                            |
| CDN-DD-0013-0017 | 25    | 27    | 2        | 949.9            | 23%   |                            |
| CDN-DD-0013-0019 | 27    | 28    | 1        | 825.2            | 22%   |                            |
| CDN-DD-0013-0020 | 28    | 29.49 | 1.49     | 529.3            | 22%   | Laterite                   |
| CDN-DD-0013-0021 | 29.49 | 31    | 1.51     | 1100.9           | 18%   |                            |
| CDN-DD-0013-0022 | 31    | 32    | 1        | 3340.1           | 19%   |                            |
| CDN-DD-0013-0024 | 32    | 33    | 1        | 1409.5           | 16%   |                            |
| CDN-DD-0013-0025 | 33    | 34    | 1        | 1204.5           | 15%   |                            |
| CDN-DD-0013-0026 | 34    | 35    | 1        | 769.2            | 15%   |                            |
| CDN-DD-0013-0027 | 35    | 36    | 1        | 516.4            | 18%   |                            |
| CDN-DD-0013-0028 | 36    | 37    | 1        | 643.1            | 15%   |                            |
| CDN-DD-0013-0029 | 37    | 38    | 1        | 1555.1           | 19%   |                            |
| CDN-DD-0013-0030 | 38    | 39    | 1        | 3408.9           | 11%   |                            |
| CDN-DD-0013-0031 | 39    | 40    | 1        | 4715.2           | 15%   |                            |
| CDN-DD-0013-0033 | 40    | 41    | 1        | 1892.6           | 5%    |                            |
| CDN-DD-0013-0035 | 41    | 42    | 1        | 2027.1           | 7%    | Kamafugite                 |
| CDN-DD-0013-0036 | 42    | 43    | 1        | 1911.2           | 9%    | Kalilalugite               |
| CDN-DD-0013-0037 | 43    | 44    | 1        | 1158.4           | 5%    |                            |
| CDN-DD-0013-0038 | 44    | 45    | 1        | 452.4            | 13%   |                            |
| CDN-DD-0013-0039 | 45    | 46    | 1        | 606.1            | 14%   |                            |
| CDN-DD-0013-0040 | 46    | 47    | 1        | 468.6            | 14%   |                            |
| CDN-DD-0013-0041 | 47    | 48    | 1        | 442.1            | 23%   |                            |
| CDN-DD-0013-0042 | 48    | 49    | 1        | 319.7            | 9%    |                            |
| CDN-DD-0013-0043 | 49    | 50    | 1        | 383.4            | 24%   |                            |
| CDN-DD-0013-0045 | 50    | 51    | 1        | 705.7            | 25%   |                            |
| CDN-DD-0013-0046 | 51    | 52    | 1        | 1827.3           | 28%   |                            |
| CDN-DD-0013-0048 | 52    | 53    | 1        | 1652.1           | 30%   |                            |
| CDN-DD-0013-0049 | 53    | 53.72 | 0.72     | 1239.5           | 30%   |                            |
| CDN-DD-0013-0051 | 53.72 | 54.27 | 0.55     | 697.6            | 29%   | Sandtone                   |

| SampleID         | FROM  | TO    | Interval | TREO Inc Y2O3ppm | NdPr% | Lithology                  |
|------------------|-------|-------|----------|------------------|-------|----------------------------|
| CDN-DD-0014-0003 | 3     | 6     | 3        | 897.1            | 15%   |                            |
| CDN-DD-0014-0004 | 6     | 9     | 3        | 1149.8           | 16%   |                            |
| CDN-DD-0014-0005 | 9     | 12    | 3        | 1276.1           | 19%   | Tertiary Sedimentary Cover |
| CDN-DD-0014-0006 | 12    | 15    | 3        | 1452.4           | 20%   |                            |
| CDN-DD-0014-0007 | 15    | 16.64 | 1.64     | 784.1            | 21%   |                            |
| CDN-DD-0014-0008 | 16.64 | 18    | 1.36     | 830.3            | 22%   | Laterite                   |
| CDN-DD-0014-0010 | 18    | 20.69 | 2.69     | 1267.0           | 22%   | Laterite                   |
| CDN-DD-0014-0011 | 20.69 | 22    | 1.31     | 1616.6           | 19%   |                            |
| CDN-DD-0014-0012 | 22    | 23    | 1        | 2776.3           | 20%   |                            |
| CDN-DD-0014-0013 | 23    | 24    | 1        | 3937.0           | 23%   |                            |
| CDN-DD-0014-0015 | 24    | 25    | 1        | 6063.5           | 30%   |                            |
| CDN-DD-0014-0016 | 25    | 26    | 1        | 6764.0           | 25%   |                            |
| CDN-DD-0014-0017 | 26    | 27    | 1        | 6961.9           | 29%   |                            |
| CDN-DD-0014-0018 | 27    | 28    | 1        | 3577.6           | 29%   | Vo mafi voita              |
| CDN-DD-0014-0020 | 28    | 29    | 1        | 3206.3           | 27%   | Kamfugite                  |
| CDN-DD-0014-0021 | 29    | 30    | 1        | 5703.8           | 25%   |                            |
| CDN-DD-0014-0022 | 30    | 31    | 1        | 4571.3           | 21%   |                            |
| CDN-DD-0014-0023 | 31    | 32    | 1        | 6144.7           | 19%   |                            |
| CDN-DD-0014-0025 | 32    | 33    | 1        | 5151.4           | 20%   |                            |
| CDN-DD-0014-0026 | 33    | 34    | 1        | 2716.0           | 23%   |                            |
| CDN-DD-0014-0027 | 34    | 35.24 | 1.24     | 2046.8           | 21%   |                            |
| CDN-DD-0014-0028 | 35.24 | 36.24 | 1        | 298.5            | 27%   | Sandstone                  |



| SampleID         | From | То | Interval | TREO Inc Y2O3ppm | NdPr% | Lithology                  |
|------------------|------|----|----------|------------------|-------|----------------------------|
| CDN-RC-0012-0001 | 0    | 3  | 3        | 753.6            | 15%   |                            |
| CDN-RC-0012-0002 | 3    | 6  | 3        | 843.1            | 15%   | Tertiary Sedimentary Cover |
| CDN-RC-0012-0003 | 6    | 8  | 2        | 1166.2           | 17%   |                            |
| CDN-RC-0012-0004 | 8    | 10 | 2        | 827.8            | 20%   |                            |
| CDN-RC-0012-0005 | 10   | 12 | 2        | 677.0            | 21%   |                            |
| CDN-RC-0012-0007 | 12   | 14 | 2        | 641.7            | 22%   | Laterite                   |
| CDN-RC-0012-0008 | 14   | 16 | 2        | 791.2            | 21%   |                            |
| CDN-RC-0012-0009 | 16   | 18 | 2        | 1270.5           | 19%   |                            |
| CDN-RC-0012-0010 | 18   | 19 | 1        | 1397.6           | 17%   |                            |
| CDN-RC-0012-0011 | 19   | 20 | 1        | 1705.2           | 16%   |                            |
| CDN-RC-0012-0012 | 20   | 21 | 1        | 2385.3           | 18%   |                            |
| CDN-RC-0012-0013 | 21   | 22 | 1        | 1805.1           | 17%   |                            |
| CDN-RC-0012-0014 | 22   | 23 | 1        | 2253.1           | 21%   |                            |
| CDN-RC-0012-0015 | 23   | 24 | 1        | 6106.1           | 28%   |                            |
| CDN-RC-0012-0017 | 24   | 25 | 1        | 3985.0           | 25%   |                            |
| CDN-RC-0012-0018 | 25   | 26 | 1        | 5654.0           | 26%   |                            |
| CDN-RC-0012-0019 | 26   | 27 | 1        | 5480.5           | 27%   |                            |
| CDN-RC-0012-0020 | 27   | 28 | 1        | 5629.4           | 25%   |                            |
| CDN-RC-0012-0021 | 28   | 29 | 1        | 4284.7           | 25%   |                            |
| CDN-RC-0012-0022 | 29   | 30 | 1        | 5075.2           | 23%   |                            |
| CDN-RC-0012-0023 | 30   | 31 | 1        | 4543.2           | 22%   |                            |
| CDN-RC-0012-0024 | 31   | 32 | 1        | 3893.4           | 22%   |                            |
| CDN-RC-0012-0026 | 32   | 33 | 1        | 2814.0           | 22%   |                            |
| CDN-RC-0012-0028 | 33   | 34 | 1        | 2701.4           | 22%   |                            |
| CDN-RC-0012-0029 | 34   | 35 | 1        | 2388.9           | 21%   |                            |
| CDN-RC-0012-0030 | 35   | 36 | 1        | 2553.4           | 19%   |                            |
| CDN-RC-0012-0031 | 36   | 37 | 1        | 2901.6           | 22%   |                            |
| CDN-RC-0012-0033 | 37   | 38 | 1        | 5756.4           | 7%    | Kamafugite                 |
| CDN-RC-0012-0034 | 38   | 39 | 1        | 2162.1           | 19%   | _                          |
| CDN-RC-0012-0035 | 39   | 40 | 1        | 2939.3           | 14%   |                            |
| CDN-RC-0012-0036 | 40   | 41 | 1        | 2406.9           | 15%   |                            |
| CDN-RC-0012-0037 | 41   | 42 | 1        | 1934.6           | 20%   |                            |
| CDN-RC-0012-0038 | 42   | 43 | 1        | 1903.4           | 20%   |                            |
| CDN-RC-0012-0039 | 43   | 44 | 1        | 1911.0           | 22%   |                            |
| CDN-RC-0012-0040 | 44   | 45 | 1        | 2220.6           | 22%   |                            |
| CDN-RC-0012-0041 | 45   | 46 | 1        | 2163.2           | 22%   |                            |
| CDN-RC-0012-0042 | 46   | 47 | 1        | 1466.6           | 21%   | •                          |
| CDN-RC-0012-0043 | 47   | 48 | 1        | 1330.1           | 20%   | •                          |
| CDN-RC-0012-0044 | 48   | 49 | 1        | 1590.3           | 21%   |                            |
| CDN-RC-0012-0045 | 49   | 50 | 1        | 1711.6           | 21%   |                            |
| CDN-RC-0012-0047 | 50   | 51 | 1        | 1481.7           | 21%   | •                          |
| CDN-RC-0012-0049 | 51   | 52 | 1        | 986.5            | 20%   |                            |
| CDN-RC-0012-0049 | 52   | 53 | 1        | 2541.2           | 22%   |                            |
| CDN-RC-0012-0052 | 53   | 54 | 1        | 2021.0           | 22%   |                            |
| CDN-RC-0012-0053 | 54   | 55 | 1        | 1658.0           | 22%   |                            |
| CDN-RC-0012-0054 | 55   | 56 | 1        | 1870.6           | 22%   |                            |
| CDN-RC-0012-0055 | 56   | 57 | 1        | 1411.3           | 22%   |                            |
| CDN-RC-0012-0056 | 57   | 58 | 1        | 884.8            | 22%   | Sandstone                  |



| SampleID         | From | То | Interval | TREO Inc Y2O3ppm | NdPr% | Lithology                  |
|------------------|------|----|----------|------------------|-------|----------------------------|
| CDN-RC-0013-0001 | 0    | 3  | 3        | 702.8            | 15%   |                            |
| CDN-RC-0013-0002 | 3    | 6  | 3        | 737.2            | 14%   |                            |
| CDN-RC-0013-0003 | 6    | 9  | 3        | 1013.2           | 15%   |                            |
| CDN-RC-0013-0004 | 9    | 12 | 3        | 1080.6           | 17%   |                            |
| CDN-RC-0013-0005 | 12   | 15 | 3        | 1237.5           | 20%   | Tertiary Sedimentary Cover |
| CDN-RC-0013-0006 | 15   | 18 | 3        | 1289.6           | 21%   | reflary Sedimentary Cover  |
| CDN-RC-0013-0007 | 18   | 21 | 3        | 1321.2           | 21%   |                            |
| CDN-RC-0013-0009 | 21   | 24 | 3        | 1373.6           | 22%   |                            |
| CDN-RC-0013-0010 | 24   | 27 | 3        | 1040.6           | 23%   |                            |
| CDN-RC-0013-0012 | 27   | 30 | 3        | 487.5            | 22%   |                            |
| CDN-RC-0013-0013 | 30   | 33 | 3        | 800.4            | 20%   | l -ada-                    |
| CDN-RC-0013-0015 | 33   | 35 | 2        | 836.2            | 18%   | Laterite                   |
| CDN-RC-0013-0016 | 35   | 36 | 1        | 905.6            | 17%   |                            |
| CDN-RC-0013-0017 | 36   | 37 | 1        | 901.1            | 19%   |                            |
| CDN-RC-0013-0018 | 37   | 38 | 1        | 3087.4           | 20%   |                            |
| CDN-RC-0013-0019 | 38   | 39 | 1        | 4764.9           | 20%   |                            |
| CDN-RC-0013-0020 | 39   | 40 | 1        | 3972.9           | 21%   |                            |
| CDN-RC-0013-0021 | 40   | 41 | 1        | 4325.5           | 20%   |                            |
| CDN-RC-0013-0022 | 41   | 42 | 1        | 3395.2           | 22%   |                            |
| CDN-RC-0013-0023 | 42   | 43 | 1        | 3980.9           | 24%   |                            |
| CDN-RC-0013-0025 | 43   | 44 | 1        | 4736.2           | 25%   |                            |
| CDN-RC-0013-0026 | 44   | 45 | 1        | 3353.6           | 24%   |                            |
| CDN-RC-0013-0027 | 45   | 46 | 1        | 2973.5           | 23%   |                            |
| CDN-RC-0013-0028 | 46   | 47 | 1        | 5517.4           | 27%   |                            |
| CDN-RC-0013-0030 | 47   | 48 | 1        | 4281.6           | 28%   |                            |
| CDN-RC-0013-0031 | 48   | 49 | 1        | 4218.4           | 27%   |                            |
| CDN-RC-0013-0032 | 49   | 50 | 1        | 5016.9           | 27%   |                            |
| CDN-RC-0013-0033 | 50   | 51 | 1        | 5553.0           | 26%   |                            |
| CDN-RC-0013-0034 | 51   | 52 | 1        | 5476.5           | 25%   |                            |
| CDN-RC-0013-0035 | 52   | 53 | 1        | 5014.4           | 24%   |                            |
| CDN-RC-0013-0037 | 53   | 54 | 1        | 2671.2           | 20%   |                            |
| CDN-RC-0013-0038 | 54   | 55 | 1        | 3885.8           | 21%   |                            |
| CDN-RC-0013-0039 | 55   | 56 | 1        | 3574.9           | 21%   |                            |
| CDN-RC-0013-0041 | 56   | 57 | 1        | 3303.8           | 21%   | Kamafugite                 |
| CDN-RC-0013-0042 | 57   | 59 | 2        | 2825.5           | 21%   | Sandstone                  |

| SampleID         | From | To | Interval | TREO Inc Y2O3ppm | NdPr% | Lithology                  |
|------------------|------|----|----------|------------------|-------|----------------------------|
| CDN-RC-0014-0001 | 0    | 3  | 3        | 901.0            | 19%   |                            |
| CDN-RC-0014-0002 | 3    | 6  | 3        | 2267.7           | 19%   |                            |
| CDN-RC-0014-0003 | 6    | 9  | 3        | 2694.4           | 20%   |                            |
| CDN-RC-0014-0004 | 9    | 12 | 3        | 4148.7           | 25%   | Tertiary Sedimentary Cover |
| CDN-RC-0014-0005 | 12   | 15 | 3        | 3567.0           | 20%   | l remary Sedimentary Cover |
| CDN-RC-0014-0006 | 15   | 17 | 2        | 2802.5           | 19%   |                            |
| CDN-RC-0014-0008 | 17   | 19 | 2        | 3127.8           | 19%   |                            |
| CDN-RC-0014-0009 | 19   | 20 | 1        | 2894.8           | 19%   |                            |
| CDN-RC-0014-0010 | 20   | 23 | 3        | 2260.1           | 19%   |                            |
| CDN-RC-0014-0011 | 23   | 26 | 3        | 3378.4           | 21%   | Laterite                   |
| CDN-RC-0014-0012 | 26   | 29 | 3        | 3084.4           | 20%   |                            |
| CDN-RC-0014-0013 | 29   | 30 | 1        | 2274.3           | 19%   |                            |
| CDN-RC-0014-0014 | 30   | 31 | 1        | 1254.6           | 19%   | Komofugito                 |
| CDN-RC-0014-0016 | 31   | 32 | 1        | 988.6            | 19%   | Kamafugite                 |
| CDN-RC-0014-0018 | 32   | 33 | 1        | 861.0            | 20%   |                            |
| CDN-RC-0014-0019 | 33   | 36 | 3        | 248.1            | 18%   | Sandstone                  |



| SampleID         | From | То | Interval | TREO Inc Y2O3ppm | NdPr% | Lithology                  |
|------------------|------|----|----------|------------------|-------|----------------------------|
| CDN-RC-0015-0001 | 0    | 3  | 3        | 726.6            | 15%   |                            |
| CDN-RC-0015-0002 | 3    | 6  | 3        | 812.3            | 15%   |                            |
| CDN-RC-0015-0003 | 6    | 9  | 3        | 998.6            | 16%   |                            |
| CDN-RC-0015-0004 | 9    | 12 | 3        | 1025.3           | 18%   |                            |
| CDN-RC-0015-0005 | 12   | 15 | 3        | 1222.8           | 20%   | Tertiary Sedimentary Cover |
| CDN-RC-0015-0006 | 15   | 18 | 3        | 1291.5           | 21%   | l remary Sedimentary Cover |
| CDN-RC-0015-0007 | 18   | 21 | 3        | 1337.2           | 21%   |                            |
| CDN-RC-0015-0009 | 21   | 24 | 3        | 1390.3           | 22%   |                            |
| CDN-RC-0015-0010 | 24   | 27 | 3        | 863.0            | 22%   |                            |
| CDN-RC-0015-0011 | 27   | 29 | 2        | 743.6            | 22%   |                            |
| CDN-RC-0015-0012 | 29   | 32 | 3        | 1018.6           | 23%   | Laterite                   |
| CDN-RC-0015-0014 | 32   | 33 | 1        | 1624.6           | 23%   | Laterite                   |
| CDN-RC-0015-0015 | 33   | 34 | 1        | 2401.9           | 21%   |                            |
| CDN-RC-0015-0016 | 34   | 35 | 1        | 2161.7           | 22%   |                            |
| CDN-RC-0015-0017 | 35   | 36 | 1        | 4656.0           | 28%   |                            |
| CDN-RC-0015-0019 | 36   | 37 | 1        | 2821.3           | 23%   |                            |
| CDN-RC-0015-0020 | 37   | 38 | 1        | 2928.7           | 22%   |                            |
| CDN-RC-0015-0021 | 38   | 39 | 1        | 2615.6           | 21%   |                            |
| CDN-RC-0015-0022 | 39   | 40 | 1        | 3855.0           | 22%   |                            |
| CDN-RC-0015-0023 | 40   | 41 | 1        | 6136.9           | 25%   |                            |
| CDN-RC-0015-0024 | 41   | 42 | 1        | 4882.8           | 26%   |                            |
| CDN-RC-0015-0025 | 42   | 43 | 1        | 4070.4           | 24%   |                            |
| CDN-RC-0015-0026 | 43   | 44 | 1        | 3086.8           | 21%   | Kamafugite                 |
| CDN-RC-0015-0027 | 44   | 45 | 1        | 2687.2           | 20%   |                            |
| CDN-RC-0015-0029 | 45   | 46 | 1        | 3288.3           | 23%   |                            |
| CDN-RC-0015-0030 | 46   | 47 | 1        | 2821.2           | 23%   |                            |
| CDN-RC-0015-0032 | 47   | 48 | 1        | 6738.3           | 29%   |                            |
| CDN-RC-0015-0033 | 48   | 49 | 1        | 5054.7           | 25%   |                            |
| CDN-RC-0015-0034 | 49   | 50 | 1        | 4900.1           | 26%   |                            |
| CDN-RC-0015-0035 | 50   | 51 | 1        | 5775.6           | 22%   |                            |
| CDN-RC-0015-0036 | 51   | 52 | 1        | 4796.4           | 24%   |                            |
| CDN-RC-0015-0037 | 52   | 53 | 1        | 4406.7           | 25%   |                            |
| CDN-RC-0015-0039 | 53   | 54 | 1        | 1726.3           | 24%   |                            |
| CDN-RC-0015-0040 | 54   | 55 | 1        | 759.9            | 24%   | Sandstone                  |
| CDN-RC-0015-0041 | 55   | 58 | 3        | 197.4            | 26%   | Sanustone                  |

| SampleID         | From | То | Interval | TREO Inc Y2O3ppm | NdPr% | Lithology                  |
|------------------|------|----|----------|------------------|-------|----------------------------|
| CDN-RC-0016-0001 | 0    | 3  | 3        | 654.0            | 16%   | Tertiary Sedimentary Cover |
| CDN-RC-0016-0002 | 3    | 5  | 2        | 771.5            | 20%   |                            |
| CDN-RC-0016-0003 | 5    | 7  | 2        | 686.2            | 21%   | Laterite                   |
| CDN-RC-0016-0004 | 7    | 9  | 2        | 814.5            | 21%   | Latente                    |
| CDN-RC-0016-0005 | 9    | 11 | 2        | 1495.0           | 20%   |                            |
| CDN-RC-0016-0007 | 11   | 12 | 1        | 1940.3           | 16%   |                            |
| CDN-RC-0016-0009 | 12   | 13 | 1        | 2504.4           | 16%   |                            |
| CDN-RC-0016-0010 | 13   | 14 | 1        | 3386.7           | 17%   |                            |
| CDN-RC-0016-0011 | 14   | 15 | 1        | 2188.6           | 18%   |                            |
| CDN-RC-0016-0012 | 15   | 16 | 1        | 4476.1           | 20%   |                            |
| CDN-RC-0016-0013 | 16   | 17 | 1        | 2662.8           | 22%   |                            |
| CDN-RC-0016-0014 | 17   | 18 | 1        | 3467.2           | 23%   | Kamafugite                 |
| CDN-RC-0016-0015 | 18   | 19 | 1        | 4025.7           | 24%   |                            |
| CDN-RC-0016-0016 | 19   | 20 | 1        | 5284.4           | 26%   |                            |
| CDN-RC-0016-0018 | 20   | 21 | 1        | 4170.5           | 23%   |                            |
| CDN-RC-0016-0019 | 21   | 22 | 1        | 3688.0           | 24%   |                            |
| CDN-RC-0016-0020 | 22   | 23 | 1        | 3608.2           | 25%   |                            |
| CDN-RC-0016-0021 | 23   | 24 | 1        | 959.7            | 25%   |                            |
| CDN-RC-0016-0022 | 24   | 25 | 1        | 282.4            | 25%   |                            |
| CDN-RC-0016-0024 | 25   | 27 | 2        | 324.2            | 25%   | Sandstone                  |



| SampleID         | From | То | Interval | TREO Inc Y2O3ppm | NdPr% | Lithology                  |
|------------------|------|----|----------|------------------|-------|----------------------------|
| CDN-RC-0017-0001 | 0    | 3  | 3        | 667.3            | 16%   |                            |
| CDN-RC-0017-0002 | 3    | 6  | 3        | 788.3            | 15%   | Tartian, Sadimantan, Cayar |
| CDN-RC-0017-0004 | 6    | 9  | 3        | 966.8            | 18%   | Tertiary Sedimentary Cover |
| CDN-RC-0017-0005 | 9    | 10 | 1        | 705.5            | 20%   |                            |
| CDN-RC-0017-0006 | 10   | 11 | 1        | 801.7            | 22%   | Laterite                   |
| CDN-RC-0017-0007 | 11   | 13 | 2        | 777.6            | 23%   | Laterite                   |
| CDN-RC-0017-0008 | 13   | 14 | 1        | 900.2            | 23%   |                            |
| CDN-RC-0017-0009 | 14   | 15 | 1        | 2579.8           | 23%   |                            |
| CDN-RC-0017-0010 | 15   | 16 | 1        | 2723.3           | 22%   |                            |
| CDN-RC-0017-0011 | 16   | 17 | 1        | 2469.3           | 22%   |                            |
| CDN-RC-0017-0012 | 17   | 18 | 1        | 2758.3           | 22%   |                            |
| CDN-RC-0017-0013 | 18   | 19 | 1        | 2173.8           | 22%   |                            |
| CDN-RC-0017-0015 | 19   | 20 | 1        | 3767.0           | 25%   | Kamafugite                 |
| CDN-RC-0017-0016 | 20   | 21 | 1        | 3799.8           | 24%   |                            |
| CDN-RC-0017-0018 | 21   | 22 | 1        | 3830.9           | 24%   |                            |
| CDN-RC-0017-0019 | 22   | 23 | 1        | 4848.0           | 23%   |                            |
| CDN-RC-0017-0020 | 23   | 24 | 1        | 4136.4           | 22%   |                            |
| CDN-RC-0017-0021 | 24   | 25 | 1        | 812.3            | 23%   |                            |
| CDN-RC-0017-0023 | 25   | 26 | 1        | 336.5            | 24%   |                            |
| CDN-RC-0017-0024 | 26   | 27 | 1        | 332.0            | 23%   | Condatono                  |
| CDN-RC-0017-0025 | 27   | 28 | 1        | 306.7            | 22%   | Sandstone                  |

| SampleID         | From | То | Interval | TREO Inc Y2O3ppm | NdPr% | Lithology                  |
|------------------|------|----|----------|------------------|-------|----------------------------|
| CDN-RC-0018-0001 | 0    | 3  | 3        | 558.8            | 15%   |                            |
| CDN-RC-0018-0002 | 3    | 6  | 3        | 668.6            | 15%   |                            |
| CDN-RC-0018-0003 | 6    | 9  | 3        | 919.5            | 15%   | Tertiary Sedimentary Cover |
| CDN-RC-0018-0004 | 9    | 12 | 3        | 923.4            | 18%   | Tertiary Sedimentary Cover |
| CDN-RC-0018-0005 | 12   | 15 | 3        | 1096.9           | 20%   |                            |
| CDN-RC-0018-0006 | 15   | 18 | 3        | 1159.3           | 21%   |                            |
| CDN-RC-0018-0007 | 18   | 21 | 3        | 838.5            | 22%   |                            |
| CDN-RC-0018-0008 | 21   | 23 | 2        | 693.2            | 22%   | Laterite                   |
| CDN-RC-0018-0010 | 23   | 26 | 3        | 1851.3           | 20%   | Laterite                   |
| CDN-RC-0018-0012 | 26   | 27 | 1        | 1648.6           | 19%   |                            |
| CDN-RC-0018-0013 | 27   | 28 | 1        | 911.1            | 17%   |                            |
| CDN-RC-0018-0014 | 28   | 29 | 1        | 2525.5           | 17%   |                            |
| CDN-RC-0018-0015 | 29   | 30 | 1        | 1494.5           | 19%   |                            |
| CDN-RC-0018-0017 | 30   | 31 | 1        | 2876.6           | 21%   |                            |
| CDN-RC-0018-0018 | 31   | 32 | 1        | 3201.8           | 19%   |                            |
| CDN-RC-0018-0019 | 32   | 33 | 1        | 3066.2           | 19%   | Kamafugite                 |
| CDN-RC-0018-0020 | 33   | 34 | 1        | 2802.9           | 19%   | Kamarugite                 |
| CDN-RC-0018-0021 | 34   | 35 | 1        | 2287.2           | 23%   |                            |
| CDN-RC-0018-0022 | 35   | 36 | 1        | 3448.7           | 22%   |                            |
| CDN-RC-0018-0023 | 36   | 37 | 1        | 2797.4           | 22%   |                            |
| CDN-RC-0018-0024 | 37   | 38 | 1        | 6945.0           | 24%   |                            |
| CDN-RC-0018-0025 | 38   | 39 | 1        | 4347.7           | 23%   |                            |
| CDN-RC-0018-0027 | 39   | 40 | 1        | 581.4            | 25%   | Condatono                  |
| CDN-RC-0018-0028 | 40   | 41 | 1        | 1091.7           | 24%   | Sandstone                  |

Table 4: Significant results of assays from drillholes of CODA North area



# Appendix -D:

#### References:

- 1. ASX announcement, "World Class Clay hosted rare earth grade uncovered at Coda North", 18 March 2024
- 2. ASX Announcement "Diamond drilling commences at coda", 16 July 2024
- 3. ASX Announcement "Significant REE mineralised zones intersected in drilling at coda", 7 August 2024
- 4. ASX Announcement "Drilling broadens potential REE mineralisation footprint at coda north", 6 September 2024
- 5. ASX Announcement "Coda north demonstrates significant growth potential", 24 September 2024
- 6. ASX Announcement "CODA Geochem. sampling reveals high-grade REE mineralisation" 15 Aug 2024

#### **Abbreviations & Legend**

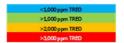
CREO = Critical Rare Earth Element Oxide

HREO = Heavy Rare Earth Element Oxide

IAC = Ion Adsorption Clay

LREO = Light Rare Earth Element Oxide

REE = Rare Earth Element


REO = Rare Earth Element Oxide

TREO = Total Rare Earth Element Oxides including Yttrium Oxide

NdPr% = Percentage amount of neodymium and praseodymium oxides as a proportion of the total amount of rare earth oxide

wt% = Weight percent

#### Colour legend

