

Pilbara Iron Ore Projects Update

Highlights

Broad Flat Well Iron Project, WA – 100% Interest

- The maiden reverse circulation (RC) drilling programme at Broad Flat Well was completed in July, comprising forty-seven (47) holes over six Channel Iron Deposit (CID) target areas.
- Assay results from the first pass drilling programme at Broad Flat Well include:

0	BFRC004	6m at 54.5% Fe from 0m
0	BFRC005	6m at 53.4% Fe from 0m
0	BFRC001	5m at 53.7% Fe from 0m
0	BFRC006	5m at 50.6% Fe from 0m
0	BFRC003	5m at 50.1% Fe from 0m
0	BFRC045	4m at 54.1% Fe from 0m
0	BFRC008	4m at 54.1% Fe from 0m
0	BFRC0025	4m at 53.2% Fe from 0m

Cane Bore Iron Project, WA – 100% Interest in ELA

- Cane Bore Conservation Management Plan delivered to the Minister of Mines and Petroleum Office and DEMIRS for consideration and grant of the exploration license.
- Burley is currently engaging with traditional owners around completing heritage surveys at Cane Bore for the maiden drill programme.

Burley Minerals Limited (ASX: BUR, "**Burley**" or "**the Company**") is pleased to announce that the Conservation Management Plan (CMP) for its Cane Bore Iron Project and respective, proposed exploration programme was delivered to the Minister of Mines and Petroleum's Office for review and approval. The Company is also announcing the assay results from the maiden drill programme at Broad Flat Well. See Figure 1 for Location Plan of Cane Bore and Broad Flat Well Iron Projects.

The CMP was reviewed by the Department of Biodiversity Conservation and Attractions (DBCA) and the Minster of the Environment's Office. No further information or changes were requested by the DBCA and Environment Minister. Through the CMP, Burley has clearly demonstrated that environmental impacts of its proposed exploration programme are minimal, and that the proposed exploration is supported by the tradition owners subject to complying with standard Heritage Protection Agreements which are in place.

Figure 1: Cane Bore and Broad Flat Well Iron Projects Location Plan, Pilbara, Western Australia

Burley Minerals Managing Director and CEO, Stewart McCallion commented:

"After a prolonged process, we are encouraged the Conservation Management Plan for Cane Bore has arrived at the Mines Minister's office. The Conservation Management Plan clearly shows our proposed exploration programme at the Cane River Class C Reserve has minimal impacts. The proposed exploration programme uses existing access tracks, and minimises new clearing, and through the biological surveys we completed last year, we have demonstrated that there are no threatened or priority ecological communities in the target areas. We have Heritage Protection Agreements in place with the Traditional Owners of the land, and we are lining up heritage surveys now."

Furthermore, we have received the assay results received from the maiden drilling programme at Broad Flat Well Iron Ore Project. While the results reflect what we saw in last year's rock chip sampling, that is, good iron grades at surface, extension of grade at depth is inconsistent. At this point, we will prioritise expenditure at Cane Bore and consider the next steps at Broad Flat Well."

Broad Flat Well Iron Project, Maiden Drilling Results

Burley announces the initial reverse circulation (RC) drilling assay results from the Broad Flat Well Project (100% interest) in the Hamersly Province of the Pilbara region of Western Australia. This preliminary drilling programme was designed to determine mineralisation continuity.

Significant intercepts of Channel Iron Deposit (CID) from the RC drilling programme are presented in Appendix C for drilling sample assay results for iron grades greater than 40%. Due to challenges of collecting representative RC samples at surface, the near surface materials were sampled by hand (i.e., rock chip samples) at the RC hole. Significant intercepts for surface rock chip samples combined with RC samples are summarised in Table 1 and Figure 2.

Figure 2: Broad Flat Well plan of RC drill sample and rock chip assay results

3

Figure 3: Broad Flat Well cross section of RC drilling sample and rock chip assay results

Table	1: Summ	ary of Sign	ificant Inte	ercepts, RC	+ rock ch	ip sample:	s COG >48	% Fe
Hole ID	From	То	Width	Fe%	Al ₂ O ₃ %	P %	SiO2%	LOI %
BFRC001	0	5	5	53.7	5.9	0.04	5.9	10.3
BFRC002	0	2	2	53.6	5.2	0.05	5.5	11.6
BFRC003	0	5	5	50.1	7.4	0.03	8.5	11.0
BFRC004	0	6	6	54.5	5.0	0.03	5.6	10.7
BFRC005	0	6	6	53.4	5.1	0.04	6.6	10.6
BFRC006	0	5	5	50.6	6.4	0.04	7.9	11.8
BFRC006	6	7	1	49.0	7.3	0.03	11.0	10.1
BFRC007	0	3	3	54.1	4.7	0.03	6.1	10.9
BFRC008	0	4	4	54.1	4.0	0.03	6.0	11.0
BFRC009	0	3	3	53.7	4.6	0.03	6.9	10.0
BFRC010	0	3	3	50.5	6.2	0.02	8.1	11.5
BFRC011	0	3	3	53.3	5.3	0.03	6.7	10.1
BFRC013	0	3	3	52.7	4.4	0.03	7.9	10.8
BFRC014	2	3	1	49.7	5.4	0.03	10.6	9.9
BFRC015	0	2	2	55.1	5.1	0.03	5.6	9.5
BFRC018	0	2	2	55.7	5.2	0.02	5.3	9.2
BFRC019	0	2	2	52.3	6.9	0.02	7.6	9.9
BFRC020	0	3	3	55.7	5.3	0.02	5.1	9.2
BFRC021	0	2	2	54.3	5.7	0.03	6.6	9.1
BFRC022	0	2	2	55.4	4.3	0.02	7.0	8.7
BFRC023	0	2	2	55.6	4.0	0.02	5.7	9.8

Hole ID	From	То	Width	Fe%	Al ₂ O ₃ %	P %	SiO2%	LOI %
BFRC024	0	3	3	52.2	6.9	0.02	7.1	10.8
BFRC025	0	4	4	53.2	6.0	0.02	7.5	9.7
BFRC028	0	3	3	56.1	4.4	0.02	4.6	10.5
BFRC030	0	2	2	54.3	5.4	0.03	6.3	10.3
BFRC031	2	3	1	50.8	7.7	0.03	7.4	11.1
BFRC032	0	2	2	51.1	7.6	0.04	7.0	11.1
BFRC034	0	3	3	53.8	5.9	0.02	7.0	10.1
BFRC038	0	2	2	56.3	5.1	0.02	5.6	8.6
BFRC042	0	3	3	52.7	5.9	0.02	6.3	10.2
BFRC045	0	4	4	54.1	5.0	0.03	6.9	9.5
BFRC046	0	4	4	51.5	5.9	0.02	9.2	9.8
BFRC047	0	3	3	52.8	5.9	0.02	7.3	10.0

A first pass Slimline Reverse Cycle (RC) drilling program has been completed at the Company's Broad Flat Well Project. Forty-seven (47) drill holes were completed for an advance of 522 metres. Drill hole details are attached to this report as Appendix A with a location plan as Appendix B. The program was designed to follow up the surface rock chip sampling program completed in late 2023 and reported on 12th February 2024 (ASX: BUR High Grade Assay Results at Broad Flat Well Iron Ore Project).

Drill samples were split using a stationary cone splitter mounted beneath the sample cyclone and collected in labelled calico bags. Standards were inserted in the sampling regime at regular intervals of 1 in 50. Similarly duplicate samples were taken at regular intervals of 1 in 50.

Collaring of each drill hole from surface proved problematic for representative recovery of the first metre, due primarily to broken ground, which enabled sample return to egress from the hole before the stuffing box was able to seal off the hole collar.

A contiguous program of rock chip sampling was therefore initiated at the location of each drill hole collar, where approximately 2-3kg of sample of CID outcrop and sub-crop was taken from within a radius of 5-10 metres, to represent the top surface metre of the drill hole collar. The results of the rock chip sampling are attached to this report as Appendix D, including the Hole ID for those samples taken at drill hole collars.

Analysis

RC drill samples and rock chip samples were submitted to Intertek Genalysis (Maddington) for XRF Spectrometry on prepared fused disks. For the RC drill samples, individual analysis results greater than 40% Fe are tabulated and attached to this report as Appendix C.

Results

Drilling successfully intersected Channel Iron Deposit (CID) style mineralisation. The thickness and grades were variable, and continuity of higher-grade Fe mineralisation is also variable. Further work is required to establish zones of higher Fe grade material, which might be exploitable.

NEXT STEPS

The Company is currently pursuing heritage survey proposals for the Cane Bore Iron Project while it engages with the Minister of Mines and Petroleum's office and DMIRS on the grant of the Exploration License.

The Company has requested a further heritage survey at Broad Flat Well and has begun the drill approvals process for further drilling at Broad Flat Well.

Burley intends to prioritise the maiden drill programme at Cane Bore ahead of further drilling at Broad Flat Well.

This announcement has been authorised for release by the Board of Directors.

For more information please contact:

Dan Bahen
Non-Executive Chairman
Burley Minerals Limited
dan@burleyminerals.com.au

Stewart McCallion Managing Director & CEO Burley Minerals Limited stewart@burleyminerals.com.au Alex Cowie NWR Communications +61 412 952 610 alexc@nwrcommunications.com.au

About Burley Minerals Limited

Burley Minerals Ltd **(ASX: BUR)** is an ASX-listed, Perth-based minerals explorer with iron ore and lithium projects, located within and Western Australia and the Canadian provinces of Québec and Manitoba.

Burley has the Cane Bore Prospect (exploration license application) in the Hamersley Province in Western Australia. The Cane Bore Prospect has more than 30kms of remnant outcropping CID mineralisation, averaging is 400m wide and up to 20m above the surrounding ground.

In Western Australia, Burley also owns a 70% interest in the Yerecoin Iron Ore Project, located approximately 120km northeast of Perth, and which has a JORC 2012 compliant Inferred and Indicated Mineral Resource of 246.7Mt capable of producing a concentrate at >68% Fe¹.

Burley acquired 100% ownership of the Chubb Lithium Project in Québec, Canada in February 2023. The Chubb Lithium Project is located 25 km north of the mining community of Val d'Or in the heart of the world-class lithium province of Québec, Canada with a total area of 1,509 hectares. The Chubb Project is centred within the Manneville Deformation Corridor, which hosts Canada's only operating lithium mine, the North America Lithium Operation (NAL). The NAL is owned by

¹ Refer to Burley Minerals Ltd Prospectus dated 27 May 2021 Section 10 for the Independent Technical Assessment Report.

Sayona Mining Ltd (ASX: SYA) and Piedmont Lithium Inc, with Mineral Resources of 58Mt at 1.23% Li₂O² reported, plus a number of other emerging projects including the Authier Lithium Project, with resources of 17Mt at 1.01% Li₂O reported³. The recommissioned NAL plant is located 10km northeast of the Chubb Lithium Project, with first production having commenced in the March 2023 Quarter⁴. The Chubb Lithium Project is highly prospective and has only been drill tested on 6 of the 35 Mineral Claims with significant fertile LCT pegmatites having been identified and yet to be tested.

Figure 4: Location map of the Chubb Lithium and Caesium Project near Val d'Or, southern Québec and the NAL Operation, other deposits and surrounding infrastructure.

 $^{^{\}rm 2}$ Refer to Sayona Mining's ASX Release dated 14 April 2023

³ Refer to Sayona Mining's ASX Release dated 14 April 2023.

⁴ Refer to Sayona Mining's ASX Release dated 28 April 2023.

Competent Person's Statement

The information in this Statement that relates to Exploration Results and Exploration Target is based on and fairly represents information compiled by Mr Gary Powell. Mr Powell is a consultant to the Company and holds stock in the Company. Mr Powell is a member of the Australian Institute of Geoscientists (Member No: 2278) and has sufficient experience which is relevant to the styles of mineralisation and types of deposits under consideration and to the activity which they are undertaking to qualify as Competent Persons as defined in the JORC Code, 2012 Edition.

The Yerecoin Main and South Mineral Resource Estimate was reported in 2014 under the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". The Mineral Resource Estimate was detailed in refer to Prospectus dated 27 May 2021 Section 10 for the Independent Technical Assessment Report. Burley confirms that it is not aware of any new information or data that materially affects the information included in this announcement regarding the mineral resources and that all material assumptions and technical parameters underpinning the estimates continue to apply and have not materially changed.

Caution Regarding Forward-Looking Information

This ASX announcement may contain forward looking statements that are subject to risk factors associated with iron ore exploration, mining, and production businesses. It is believed that the expectations reflected in these statements are reasonable but they may be affected by a variety of variables and changes in underlying assumptions which could cause actual results or trends to differ materially, including but not limited to price fluctuations, actual demand, currency fluctuations, drilling and production results, Reserve estimations, loss of market, industry competition, environmental risks, physical risks, legislative, fiscal and regulatory changes, economic and financial market conditions in various countries and regions, political risks, project delay or advancement, approvals and cost estimates.

Forward-looking statements, including projections, forecasts, and estimates, are provided as a general guide only and should not be relied on as an indication or guarantee of future performance and involve known and unknown risks, uncertainties, and other factors, many of which are outside the control of Burley Minerals Ltd. Past performance is not necessarily a guide to future performance and no representation or warranty is made as to the likelihood of achievement or reasonableness of any forward-looking statements or other forecast.

APPENDIX A

Broad Flat Well Project - Reverse Circulation (RC) Drill Hole Details

Hole ID	Easting ¹ (m)	Northing ¹ (m)	RL ² (m)	Depth (m)	Azimuth (TN)	Dip ³ (°)
BFRC001	530895	7619192	327	22	360	-90
BFRC002	530861	7619197	327	16	360	-90
BFRC003	530592	7618929	329	19	360	-90
BFRC004	530651	7618930	328	14	360	-90
BFRC005	530735	7618907	328	10	360	-90
BFRC006	530683	7618889	328	10	360	-90
BFRC007	530599	7618563	329	13	360	-90
BFRC008	530543	7618551	330	16	360	-90
BFRC009	530497	7618178	328	10	360	-90
BFRC010	530667	7618144	326	13	360	-90
BFRC011	530599	7618123	328	10	360	-90
BFRC012	530413	7617902	329	13	360	-90
BFRC013	530398	7617846	328	8	360	-90
BFRC014	529803	7617620	328	10	360	-90
BFRC015	529772	7617658	328	10	360	-90
BFRC016	537034	7616392	354	13	360	-90
BFRC017	537013	7616422	355	10	360	-90
BFRC018	536991	7616448	354	12	360	-90
BFRC019	536722	7616246	353	10	360	-90
BFRC020	536765	7616228	353	10	360	-90
BFRC021	536765	7616174	352	10	360	-90
BFRC022	536535	7616116	350	10	360	-90
BFRC023	536557	7616076	350	10	360	-90
BFRC024	535585	7619838	363	10	360	-90
BFRC025	535541	7619843	363	10	360	-90
BFRC026	BFRC026 535505		363	10	360	-90
BFRC027	535284	7619681	361	10	360	-90

Hole ID	Easting ¹ (m)	Northing ¹ (m)	RL ² (m)	Depth (m)	Azimuth (TN)	Dip ³ (°)
BFRC028	535292	7619648	361	10	360	-90
BFRC029	535291	7619622	361	10	360	-90
BFRC030	535063	7619591	361	10	360	-90
BFRC031	535047	7619622	361	10	360	-90
BFRC032	535013	7619647	361	10	360	-90
BFRC033	534642	7619489	358	10	360	-90
BFRC034	534634	7619537	359	10	360	-90
BFRC035	534620	7619582	358	10	360	-90
BFRC036	534314	7619345	356	10	360	-90
BFRC037	534315	7619306	355	10	360	-90
BFRC038	533916	7619288	350	10	360	-90
BFRC039	532081	7618872	336	10	360	-90
BFRC040	531984	7618823	334	10	360	-90
BFRC041	532022	7618852	335	13	360	-90
BFRC042	532053	7618545	334	10	360	-90
BFRC043	532016	7618533	334	10	360	-90
BFRC044	531983	7618535	333	10	360	-90
BFRC045	531850	7618152	335	10	360	-90
BFRC046	BFRC046 531872		336	10	360	-90
BFRC047	531893	7618136	335	10	360	-90

For personal use only

Notes:

1. Coordinate Datum: GDA94, UTM MGA94 Zone 50.

2. Elevation relative to Australian Height Datum (AHD).

3. Drill holes are vertical.

APPENDIX B

APPENDIX C

Broad Flat Well Project – Reverse Circulation (RC) Drill Hole Assays (>40% Fe)

Hole ID	From	То	Fe	Al ₂ O ₃	CaO	Cr ₂ O ₃	K ₂ O	MgO	MnO	Na ₂ O	P	S	SiO2	TiO ₂	V ₂ O ₅	LOI
	(m)	(m)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
BFRC001	1	2	54.96	5.09	0.04	0.005	0.05	0.06	0.05	Х	0.042	0.018	5.04	0.49	0.022	10.45
	2	3	54.39	5.78	0.10	0.005	0.02	0.21	0.09	Х	0.043	0.014	5.04	0.33	0.022	10.02
	3	4	52.34	6.72	0.09	0.007	0.03	0.24	0.07	Х	0.048	0.013	5.91	0.42	0.022	11.07
	4	5	50.77	8.02	0.12	0.005	0.03	0.60	0.09	0.060	0.040	0.014	8.77	0.42	0.034	9.38
BFRC002	1	2	49.89	7.27	0.04	0.006	0.14	0.11	0.04	0.050	0.068	0.012	7.87	1.13	0.027	11.90
	2	3	47.26	7.34	0.11	0.006	0.10	0.26	0.02	0.030	0.063	0.009	10.80	1.38	0.029	11.64
	3	4	43.72	7.71	0.18	0.006	0.07	0.62	0.02	0.050	0.045	0.006	15.97	2.04	0.034	10.54
	5	6	42.06	11.49	0.51	0.007	0.02	0.77	0.02	0.070	0.089	0.013	14.07	0.75	0.034	11.57
BFRC003	1	2	48.91	7.74	0.09	Х	0.06	0.18	0.03	0.030	0.023	0.017	9.06	0.84	0.030	11.38
	2	3	46.20	9.37	0.14	Х	0.05	0.25	0.01	0.020	0.024	0.012	11.23	1.03	0.032	11.93
	3	4	50.27	7.49	0.10	Х	0.01	0.21	0.02	0.020	0.034	0.011	7.51	0.82	0.038	11.78
	4	5	51.91	5.92	0.10	Х	Х	0.27	0.03	0.020	0.032	0.009	7.00	0.95	0.038	10.97
	5	6	46.81	6.69	1.65	Х	Х	1.24	0.01	0.040	0.027	0.009	10.20	1.42	0.034	12.10
BFRC004	1	2	51.61	6.27	0.07	Х	0.05	0.14	0.04	0.020	0.038	0.018	6.83	0.42	0.029	12.23
	2	3	51.99	6.52	0.11	Х	0.02	0.20	0.02	0.020	0.029	0.016	6.13	0.57	0.031	12.30
	3	4	53.65	5.17	0.07	Х	0.02	0.20	0.06	0.010	0.034	0.011	6.04	0.79	0.031	10.56
	4	5	56.46	4.50	0.06	Х	Х	0.18	0.05	Х	0.028	0.011	4.69	0.56	0.026	9.48
	5	6	55.21	5.61	0.07	Х	Х	0.26	0.06	Х	0.021	0.012	5.36	0.27	0.027	9.47
BFRC005	1	2	54.72	4.84	0.06	Х	0.02	0.14	0.04	0.010	0.027	0.021	5.35	0.34	0.026	11.30
	2	3	54.70	4.38	0.10	0.005	0.03	0.17	0.08	0.020	0.031	0.017	6.58	0.35	0.026	10.00
	3	4	48.56	7.11	0.11	0.008	0.02	0.32	0.04	0.020	0.060	0.011	9.37	1.77	0.039	11.02
	4	5	52.25	5.32	0.08	0.006	0.01	0.27	0.06	0.020	0.066	0.012	7.27	1.56	0.036	10.57
	5	6	51.96	6.26	0.13	0.006	Х	0.32	0.04	0.030	0.046	0.012	7.34	1.12	0.027	10.20
BFRC006	1	2	52.27	5.80	0.06	Х	0.02	0.19	0.04	0.020	0.024	0.027	5.70	0.34	0.019	12.55
	2	3	46.69	8.61	0.11	0.008	0.07	0.24	0.03	0.030	0.038	0.018	11.05	0.68	0.027	12.07
	3	4	48.78	7.37	0.10	0.007	0.02	0.28	0.04	0.040	0.068	0.015	8.50	1.13	0.032	12.03
	4	5	48.94	6.99	0.14	0.008	0.01	0.47	0.03	0.070	0.049	0.012	9.94	0.87	0.035	11.39
	5	6	44.29	8.35	0.23	0.009	Х	0.87	0.02	0.120	0.035	0.016	15.58	1.18	0.032	10.19
	6	7	48.98	7.33	0.18	0.009	Х	0.61	0.03	0.100	0.029	0.017	10.98	0.46	0.034	10.14
BFRC007	1	2	53.78	4.88	0.06	Х	0.07	0.12	0.05	0.020	0.038	0.025	6.20	0.28	0.031	11.48
	2	3	50.90	6.11	0.10	0.005	0.05	0.22	0.03	0.020	0.039	0.017	7.09	0.63	0.029	12.47
	3	4	46.40	6.32	2.87	0.005	0.02	0.63	0.03	0.040	0.031	0.009	9.26	1.04	0.029	13.34

Hole ID	From	То	Fe	Al ₂ O ₃	CaO	Cr ₂ O ₃	K ₂ O	MgO	MnO	Na ₂ O	P	S	SiO ₂	TiO ₂	V ₂ O ₅	LOI
	(m)	(m)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
	4	5	41.63	5.98	4.96	0.006	0.02	0.88	0.05	0.060	0.037	0.009	11.55	1.72	0.026	14.52
	7	8	43.50	9.48	0.17	0.008	0.04	0.76	0.03	0.090	0.054	0.012	14.37	0.83	0.043	11.28
BFRC008	1	2	55.72	4.60	0.05	Х	0.05	0.12	0.09	0.010	0.031	0.022	5.39	0.35	0.029	9.30
	2	3	54.64	4.01	0.11	Х	0.03	0.25	0.08	0.010	0.037	0.011	6.03	0.34	0.031	11.21
	3	4	49.38	4.23	2.32	Х	Х	0.62	0.05	0.020	0.029	0.011	8.17	0.37	0.024	13.20
	4	5	43.80	6.86	2.18	0.005	0.02	1.26	0.03	0.030	0.038	0.009	12.13	1.10	0.040	13.27
	7	8	43.21	9.34	0.19	0.009	0.02	0.75	0.06	0.120	0.037	0.009	14.81	2.81	0.033	9.78
BFRC009	1	2	52.58	4.91	0.19	Х	0.03	0.37	0.03	0.030	0.029	0.012	6.88	0.39	0.022	11.30
	2	3	52.76	4.83	0.78	Х	0.02	0.52	0.07	0.050	0.033	0.012	7.86	0.34	0.022	9.43
	3	4	46.00	6.10	0.51	Х	0.03	1.11	0.04	0.070	0.029	0.026	15.35	0.90	0.026	9.99
	4	5	45.45	5.72	0.33	0.005	0.02	0.83	0.04	0.080	0.031	0.039	15.02	2.45	0.030	10.60
	5	6	40.38	7.21	0.79	0.006	0.02	1.43	0.02	0.120	0.032	0.297	18.11	2.22	0.027	11.83
	7	8	40.53	8.92	1.24	0.005	0.02	1.00	0.01	0.110	0.036	0.051	17.92	1.18	0.027	11.47
BFRC010	1	2	50.20	6.48	0.20	0.006	0.09	0.27	0.03	0.030	0.025	0.015	9.17	0.69	0.032	10.98
	2	3	49.28	6.82	0.78	0.005	0.02	0.33	0.03	0.020	0.023	0.013	7.93	0.92	0.040	11.95
	4	5	45.44	8.82	0.67	0.009	0.02	0.67	0.05	0.040	0.031	0.010	13.76	1.61	0.031	9.69
	5	6	45.46	8.84	1.15	0.007	0.02	1.01	0.04	0.040	0.034	0.013	11.48	0.84	0.034	10.90
	6	7	43.37	10.14	1.72	0.008	0.02	1.31	0.03	0.070	0.030	0.015	12.16	0.82	0.041	11.41
	7	8	43.11	9.77	1.07	0.008	0.02	1.17	0.03	0.110	0.029	0.025	14.42	0.76	0.040	10.92
BFRC011	1	2	53.96	5.40	0.12	Х	0.07	0.21	0.09	0.030	0.032	0.016	7.12	0.35	0.032	8.62
	2	3	50.55	5.59	1.94	0.005	0.03	0.42	0.14	0.040	0.024	0.012	7.68	0.45	0.037	11.64
	4	5	40.70	6.43	2.50	0.005	0.03	1.51	0.03	0.060	0.028	0.015	17.72	0.96	0.031	11.76
	6	7	46.01	9.25	1.13	0.010	0.01	0.87	0.04	0.070	0.029	0.016	12.63	0.82	0.033	9.61
BFRC012	1	2	43.02	8.12	1.75	0.007	0.04	0.83	0.02	0.030	0.021	0.014	13.93	0.91	0.031	12.51
	2	3	43.64	7.10	1.72	0.005	0.03	1.03	0.05	0.020	0.025	0.017	14.28	0.78	0.027	11.88
	3	4	47.97	6.44	0.48	Х	0.01	0.85	0.06	0.030	0.025	0.013	11.19	0.74	0.023	11.08
	4	5	42.44	6.82	1.32	Х	Х	1.69	0.02	0.020	0.016	0.010	15.43	1.24	0.017	12.20
	5	6	44.09	7.30	0.80	0.006	Х	1.37	0.02	0.040	0.037	0.011	13.86	1.29	0.027	12.06
	6	7	47.31	6.67	0.44	0.005	Х	1.00	0.06	0.060	0.028	0.009	12.16	0.77	0.021	10.72
BFRC013	1	2	49.33	5.62	0.98	Х	0.02	0.69	0.09	0.030	0.040	0.014	9.63	0.45	0.024	11.87
	2	3	51.56	4.13	0.53	Х	0.02	0.79	0.18	0.040	0.028	0.013	9.18	0.33	0.031	10.95
	3	4	45.46	7.36	0.44	0.006	0.03	1.05	0.13	0.030	0.025	0.011	12.58	0.86	0.022	12.34
	4	5	44.42	5.97	0.41	0.005	0.02	1.29	0.04	0.040	0.023	0.009	15.18	1.48	0.024	11.58
	5	6	46.12	6.61	0.64	0.006	0.02	1.19	0.06	0.060	0.033	0.011	12.72	1.00	0.030	11.76
	6	7	41.40	9.13	0.26	0.009	0.02	1.18	0.10	0.110	0.025	0.024	18.09	1.43	0.026	10.08

\geq	
UO	
SG	
u la	
ON	
erS(
þe	
OL	

Hole ID	From	Το	Fe	Al ₂ O ₃	CaO	Cr ₂ O ₃	K ₂ O	MgO	MnO	Na ₂ O	P	S	SiO ₂	TiO ₂	V ₂ O ₅	LOI
	(m)	(m)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
	/	8	40.19	8.97	0.80	0.009	0.02	1.23	0.08	0.100	0.033	0.034	16.80	2.61	0.027	11.35
BFRC014	2	3	49./3	5.38	0.51	0.005	0.02	1.1/	0.10	0.070	0.028	0.018	10.62	0.60	0.02/	9.90
	3	4	45.29	6.2/	0.58	0.00/	0.02	1.15	0.10	0.170	0.029	0.019	14.54	1.4/	0.035	10.57
	4	5	44.8/	/.98	0.29	0.009	0.02	0./9	0.06	0.190	0.02/	0.031	14.39	2.07	0.032	9.8/
	5	6	40.10	11.47	0.22	0.014	0.03	1.07	0.08	0.280	0.024	0.047	17.64	1.58	0.039	9.57
BFRC015	1	2	53.19	6.23	0.11	0.007	0.03	0.32	0.08	0.030	0.035	0.021	6.83	0.52	0.025	9.93
	2	3	45.47	8.11	0.14	0.009	0.02	0.58	0.04	0.080	0.031	0.017	12.58	2.39	0.040	10.52
	3	4	45.09	9.24	0.51	0.010	0.03	1.05	0.05	0.160	0.029	0.035	11.97	0.94	0.034	11.10
BFRC016	10	11	47.80	9.13	0.04	0.018	0.09	0.10	Х	0.030	0.023	0.040	10.41	0.41	0.089	10.74
BFRC017	3	4	40.74	12.73	0.06	0.021	0.55	0.43	0.05	0.190	0.046	0.046	16.33	0.83	0.054	9.56
BFRC018	1	2	54.11	6.47	0.03	0.015	0.10	0.12	0.03	0.030	0.024	0.064	6.23	0.32	0.030	9.24
BFRC019	1	2	50.24	8.19	0.03	0.021	0.13	0.10	0.02	0.030	0.022	0.057	9.15	0.38	0.044	10.11
	2	3	40.64	13.14	0.05	0.040	0.11	0.20	0.01	0.050	0.019	0.031	15.84	1.00	0.101	11.14
BFRC020	1	2	55.48	6.10	0.05	0.011	0.08	0.10	0.02	0.030	0.021	0.035	5.61	0.38	0.027	8.48
	2	3	55.45	5.92	0.07	0.010	0.05	0.16	0.04	0.040	0.029	0.033	4.77	0.35	0.024	9.11
BFRC021	1	2	50.27	8.50	0.04	0.016	0.09	0.12	0.13	0.030	0.023	0.043	9.53	0.46	0.035	9.10
BFRC022	1	2	54.38	6.10	0.06	0.010	0.08	0.19	0.03	0.050	0.025	0.037	6.44	0.35	0.025	9.20
	2	3	40.83	11.19	0.54	0.015	0.09	1.02	0.03	0.270	0.022	0.043	18.45	0.50	0.077	8.81
	4	5	43.03	11.17	0.95	0.020	0.05	0.97	0.04	0.250	0.024	0.040	14.54	0.49	0.066	9.73
BFRC023	1	2	53.13	5.78	0.10	0.010	0.09	0.22	0.03	0.030	0.026	0.034	6.90	0.27	0.022	10.38
	2	3	47.65	7.83	1.24	0.012	0.04	0.77	0.04	0.140	0.021	0.052	11.92	0.41	0.051	9.58
	3	4	40.29	11.70	1.49	0.013	0.02	0.81	0.06	0.210	0.016	0.044	17.55	0.55	0.033	9.83
BFRC024	1	2	46.58	10.88	0.04	0.009	0.04	0.07	0.02	0.030	0.024	0.028	10.24	0.90	0.049	10.75
	2	3	50.48	7.70	0.04	Х	0.02	0.05	Х	0.020	0.027	0.019	7.80	0.54	0.038	11.94
	3	4	44.44	10.99	0.05	0.006	0.02	0.06	Х	0.030	0.025	0.020	12.17	1.20	0.072	11.65
BFRC025	1	2	50.46	7.15	0.09	0.007	0.05	0.09	0.01	0.030	0.025	0.020	9.96	0.55	0.024	9.78
	2	3	54.05	5.52	0.07	Х	Х	0.06	0.01	0.030	0.020	0.025	5.56	0.43	0.012	10.76
	3	4	55.67	4.10	0.08	Х	0.01	0.07	0.02	0.030	0.016	0.025	6.49	0.27	0.012	9.35
	4	5	45.46	10.65	0.08	0.005	0.01	0.07	Х	0.060	0.022	0.024	12.65	0.73	0.023	11.03
BFRC026	1	2	47.47	9.25	0.05	0.010	0.04	0.06	0.01	0.020	0.021	0.019	11.25	0.96	0.029	10.75
	4	5	44.62	10.82	0.10	0.006	0.02	0.07	Х	0.040	0.028	0.022	13.03	0.94	0.031	10.88
BFRC027	1	2	40.77	14.91	0.03	0.012	0.02	0.04	Х	0.030	0.031	0.022	12.51	1.29	0.077	12.05
BFRC028	1	2	56.65	3.95	0.02	Х	0.02	Х	0.01	Х	0.022	0.034	4.48	0.33	0.017	10.36
	2	3	51.89	7.11	0.02	Х	0.01	0.02	Х	Х	0.026	0.027	5.97	0.67	0.031	12.33
	3	4	43.20	12.17	0.03	Х	0.01	0.03	Х	0.020	0.019	0.016	13.28	1.23	0.053	11.15

\geq
NO
use
a
UO U
S
þe
JC
Ш

Hole ID	From	То	Fe	Al ₂ O ₃	CaO	Cr ₂ O ₃	K ₂ O	MgO	MnO	Na ₂ O	Р	S	\$iO2	TiO ₂	V ₂ O ₅	LOI
	(m)	(m)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
BFRC029	1	2	47.61	9.00	0.03	0.006	0.05	0.01	Х	Х	0.030	0.029	10.23	0.64	0.034	11.52
	2	3	42.55	12.15	0.03	0.011	0.03	0.02	Х	Х	0.025	0.031	13.07	0.95	0.051	12.14
	3	4	47.53	9.03	0.03	Х	0.01	0.02	Х	Х	0.023	0.020	10.11	0.85	0.049	11.15
BFRC030	1	2	51.35	7.53	0.05	0.006	0.02	0.06	0.01	0.020	0.023	0.025	8.35	0.49	0.029	10.37
	3	4	40.85	13.46	0.07	0.012	0.03	0.06	Х	0.040	0.023	0.019	15.19	1.07	0.075	11.63
	4	5	45.65	11.12	0.06	0.007	0.01	0.05	Х	0.030	0.017	0.024	11.91	0.66	0.038	10.83
BFRC031	2	3	50.77	7.71	0.16	Х	Х	0.04	0.02	0.020	0.032	0.040	7.36	0.56	0.031	11.09
	4	5	41.93	11.70	0.23	0.006	0.01	0.05	Х	0.060	0.014	0.044	15.54	0.73	0.036	11.01
BFRC032	1	2	49.18	8.66	0.05	Х	0.03	0.03	0.02	0.010	0.027	0.028	9.23	0.60	0.035	10.47
	2	3	45.29	11.36	0.05	0.009	0.04	0.04	0.01	0.020	0.020	0.025	12.34	0.79	0.033	9.93
	3	4	40.09	13.54	0.05	0.009	0.02	0.05	Х	0.030	0.019	0.021	15.45	0.90	0.052	11.98
BFRC033	2	3	45.53	10.76	0.03	0.006	Х	0.03	Х	0.010	0.026	0.020	11.13	0.77	0.035	11.66
	3	4	41.07	11.26	0.08	0.006	Х	0.05	Х	0.030	0.015	0.017	17.54	0.99	0.029	10.57
BFRC034	1	2	46.08	10.60	0.03	0.014	0.03	0.03	Х	Х	0.018	0.040	11.34	0.75	0.032	10.85
	2	3	56.67	4.72	0.02	Х	Х	0.02	0.02	Х	0.019	0.036	4.53	0.32	0.013	9.27
	3	4	41.26	12.48	0.04	0.010	0.02	0.03	0.02	0.010	0.016	0.022	15.39	0.98	0.047	11.38
BFRC035	2	3	41.44	14.71	0.02	0.008	Х	0.02	Х	0.010	0.020	0.017	13.47	1.12	0.068	10.93
	3	4	42.81	13.74	0.02	0.005	0.01	0.02	Х	Х	0.022	0.026	12.85	1.09	0.035	10.26
BFRC036	2	3	40.71	12.96	0.05	0.007	Х	0.04	Х	0.020	0.025	0.025	15.37	0.90	0.080	11.67
BFRC037	2	3	44.28	9.39	0.03	0.005	0.02	0.03	0.04	0.010	0.013	0.034	14.28	1.43	0.032	10.68
	3	4	43.63	10.80	0.03	0.005	0.03	0.04	0.01	Х	0.022	0.021	13.20	0.99	0.052	12.06
	4	5	42.01	9.05	0.10	Х	Х	0.16	Х	0.040	0.026	0.016	18.32	0.66	0.058	11.06
BFRC038	1	2	53.66	6.57	0.02	Х	0.04	0.05	0.02	0.010	0.020	0.031	7.00	0.67	0.018	9.22
	2	3	47.45	9.04	0.06	Х	0.05	0.10	0.01	0.020	0.019	0.020	11.66	0.59	0.020	10.36
	4	5	40.82	12.60	0.18	0.008	0.02	0.19	Х	0.040	0.017	0.013	18.31	0.88	0.027	9.61
	5	6	40.67	12.14	0.20	0.007	0.01	0.21	Х	0.050	0.022	0.014	18.09	1.33	0.038	9.59
BFRC039	1	2	44.74	10.06	0.67	0.007	0.08	0.67	0.05	0.020	0.031	0.011	14.24	0.87	0.037	9.41
	2	3	43.26	8.60	0.27	0.007	0.02	1.17	0.04	0.070	0.035	0.010	16.48	1.38	0.046	9.85
BFRC040	1	2	47.82	8.08	0.09	0.009	0.04	0.14	0.02	0.030	0.020	0.013	10.16	0.80	0.035	11.45
	2	3	43.09	8.82	2.45	0.009	Х	0.51	0.03	0.030	0.023	0.010	13.26	1.00	0.025	11.53
BFRC041	1	2	45.48	8.19	2.22	0.008	0.07	0.27	0.04	0.020	0.029	0.012	11.68	0.96	0.032	10.89
BFRC042	1	2	50.26	7.28	0.10	0.011	0.03	0.17	0.07	Х	0.023	0.019	7.89	1.43	0.025	10.41
	2	3	50.49	6.51	2.11	0.007	Х	0.47	0.09	0.020	0.024	0.015	7.17	0.61	0.018	11.01
BFRC043	1	2	43.07	9.82	2.23	0.018	0.07	0.45	0.05	0.040	0.025	0.022	12.57	0.91	0.047	12.36
BFRC044	1	2	42.34	8.27	2.16	0.013	0.05	1.30	0.07	0.060	0.021	0.022	15.18	0.59	0.022	11.72

Hole ID	From (m)	To (m)	Fe (%)	Al ₂ O ₃	CaO (%)	Cr ₂ O ₃	K₂O (%)	MgO (%)	MnO (%)	Na₂O (%)	P (%)	S (%)	SiO2	TiO ₂	V₂O₅ (%)	LOI (%)
	3	4	41.17	10.46	0.18	0.011	0.01	1.10	0.07	0.150	0.019	0.012	17.60	0.92	0.026	9.88
BFRC045	1	2	52.24	5.32	0.08	0.005	0.06	0.19	0.07	0.020	0.020	0.015	8.55	0.57	0.024	9.91
	2	3	55.73	4.05	0.08	0.005	Х	0.24	0.09	0.030	0.023	0.014	6.32	0.25	0.014	9.00
	3	4	51.60	6.03	0.12	0.008	0.01	0.48	0.07	0.090	0.026	0.016	8.04	0.63	0.023	10.84
	9	10	41.08	10.85	0.40	0.016	0.02	0.67	0.06	0.110	0.151	0.030	15.23	1.91	0.065	11.29
BFRC046	1	2	52.78	6.40	0.06	0.010	0.05	0.16	0.04	0.020	0.023	0.016	7.17	0.51	0.021	9.79
	2	3	49.86	4.08	0.17	0.005	0.02	0.64	0.08	0.050	0.017	0.014	13.71	0.72	0.024	9.19
	3	4	50.04	6.66	0.12	0.008	Х	0.45	0.04	0.060	0.021	0.020	8.95	0.58	0.018	10.74
BFRC047	1	2	50.86	7.28	0.06	0.011	0.05	0.14	0.04	0.020	0.020	0.020	7.53	0.68	0.046	10.74
	2	3	50.35	6.04	0.26	0.009	0.02	0.72	0.05	0.080	0.021	0.021	9.91	0.51	0.018	10.51
	3	4	46.66	8.18	0.17	0.011	0.02	0.77	0.05	0.130	0.021	0.029	12.38	0.90	0.026	10.57
	4	5	40.32	11.83	0.17	0.016	0.02	0.82	0.06	0.180	0.017	0.030	18.33	1.06	0.038	9.66

Notes:

1. Samples prepared as fused disk and elements analysed by XRF Spectrometry.

2. Compounds percentages calculated.

Loss on Ignition (LOI) analysed by Thermal Gravimetric Analyser
 From and To are recorded as metres down-hole from surface.

5. 'x' denotes result is below detection limit for this analysis method

APPENDIX D

Broad Flat Well Project – Rock Chip Sample Assays

Sample	Hole	Easting ¹	Northing ¹	Fe	Al ₂ O ₃	CaO	Cr ₂ O ₃	K ₂ O	MgO	MnO	Na ₂ O	P	S	SiO ₂	TiO ₂	V ₂ O ₅	LOI 4
ID	ID 6	(m)	(m)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
E10176		531478	7619163	56.68	5.56	0.07	0.007	0.01	0.11	0.07	0.01	0.027	0.043	4.36	0.28	0.027	8.82
E10177		531432	7619200	56.63	4.23	0.07	Х	Х	0.07	0.05	0.01	0.024	0.066	3.31	0.19	0.023	10.66
E10178		531359	7619476	59.51	2.98	0.03	Х	Х	0.04	0.04	Х	0.027	0.068	3.03	0.20	0.02	8.33
E10179		531358	7619497	59.46	2.99	0.03	Х	Х	0.04	0.03	0.01	0.03	0.07	2.69	0.18	0.022	8.56
E10180		531218	7619536	58.68	3.16	0.02	Х	Х	0.05	0.03	Х	0.015	0.052	2.70	0.31	0.015	9.71
E10181		531229	7619495	58.80	3.39	0.03	Х	Х	0.05	0.03	0.01	0.02	0.059	2.79	0.28	0.013	9.32
E10182	BFRC001	530896	7619193	56.27	4.06	0.06	Х	0.02	0.06	0.05	0.01	0.04	0.051	4.51	0.48	0.019	10.45
E10183	BFRC002	530861	7619198	57.25	3.05	0.02	Х	Х	0.04	0.04	Х	0.023	0.047	3.07	0.35	0.021	11.28
E10184	BFRC004	530651	7618930	58.15	2.00	0.06	Х	0.01	0.08	0.09	0.03	0.027	0.045	4.39	0.12	0.028	10.16
E10185	BFRC005	530735	7618906	58.15	2.48	0.02	Х	Х	0.05	0.05	0.01	0.023	0.038	3.48	0.08	0.023	10.64
E10186	BFRC006	530684	7618889	56.50	3.47	0.04	Х	0.01	0.07	0.05	0.01	0.026	0.039	4.51	0.24	0.016	11.06
E10187	BFRC007	530599	7618562	57.72	3.22	0.05	Х	0.01	0.06	0.08	0.02	0.023	0.049	5.14	0.17	0.028	8.88
E10188	BFRC010	530668	7618141	52.10	5.30	0.15	Х	0.02	0.14	0.05	0.02	0.022	0.08	7.17	0.46	0.019	11.42
E10189	BFRC011	530602	7618122	55.29	4.81	0.05	Х	0.02	0.08	0.07	0.02	0.025	0.049	5.30	0.28	0.027	10.10
E10190	BFRC012	530414	7617899	54.02	4.38	0.09	Х	0.02	0.11	0.07	0.02	0.029	0.048	7.09	0.35	0.029	10.06
E10191	BFRC013	530399	7617845	57.17	3.57	0.06	Х	0.01	0.09	0.06	0.02	0.028	0.036	4.90	0.17	0.028	9.55
E10192	BFRC014	529802	7617620	50.67	7.07	0.07	Х	0.01	0.16	0.15	0.01	0.022	0.029	7.25	0.58	0.019	11.55
E10193	BFRC016	537034	7616392	58.84	3.13	0.03	Х	Х	0.04	0.02	0.02	0.022	0.08	3.47	0.11	0.049	8.82
E10194	BFRC017	537012	7616422	57.13	3.96	0.05	Х	0.01	0.05	0.02	0.02	0.018	0.069	4.81	0.11	0.026	9.25
E10195	BFRC018	536989	7616449	57.32	4.00	0.03	0.005	0.01	0.04	0.02	0.01	0.02	0.066	4.37	0.20	0.017	9.10
E10196	BFRC020	536765	7616227	56.31	3.88	0.06	Х	0.01	0.05	0.02	0.02	0.015	0.069	4.97	0.25	0.02	9.96
E10197	BFRC022	536534	7616115	56.47	2.48	0.02	Х	Х	0.07	0.02	Х	0.018	0.051	7.53	0.17	0.017	8.22
E10198	BFRC023	536558	7616075	58.01	2.29	0.06	Х	Х	0.11	0.02	0.01	0.022	0.039	4.56	0.13	0.012	9.28
E10199	BFRC047	531895	7618136	57.09	4.37	0.05	0.006	0.01	0.07	0.05	0.02	0.025	0.056	4.59	0.25	0.013	8.86
E10200	BFRC045	531849	7618151	57.00	4.64	0.11	0.006	0.02	0.10	0.05	0.02	0.029	0.065	4.84	0.34	0.013	8.43
E10201	BFRC044	531982	7618533	57.01	4.44	0.02	0.005	Х	0.06	0.07	0.01	0.019	0.04	3.47	0.19	0.014	9.92
E10202	BFRC042	532052	7618546	57.45	3.84	0.05	0.005	0.01	0.06	0.08	0.01	0.019	0.042	3.87	0.27	0.02	9.29
E10203	BFRC040	531984	7618823	56.90	3.46	0.04	Х	Х	0.05	0.03	0.01	0.026	0.028	3.54	0.24	0.026	10.82
E10204	BFRC038	533918	7619289	58.87	3.53	0.03	Х	Х	0.03	0.03	0.01	0.021	0.062	4.11	0.35	0.007	7.94
E10205	BFRC037	534317	7619306	55.19	4.18	0.06	Х	0.01	0.03	0.02	0.01	0.02	0.05	4.90	0.31	0.013	10.77

Sample	Hole	Easting ¹	Northing ¹	Fe		CaO	Cr_2O_3	K ₂ O	MgO	MnO		P	S (97)	SiO ₂		V ₂ O ₅	
U	U °	(m)	(m)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
E10206	BFRC036	534314	7619344	58.01	3.45	0.02	Х	0.01	0.03	0.02	Х	0.026	0.047	4.04	0.19	0.01	9.13
E10207	BFRC035	534621	7619586	59.30	3.18	0.03	Х	0.01	0.02	0.02	Х	0.024	0.059	3.28	0.21	Х	8.73
E10208	BFRC033	534643	7619487	59.07	2.58	0.07	Х	0.01	0.03	0.02	Х	0.026	0.073	3.77	0.14	0.005	8.31
E10209	BFRC032	535013	7619649	53.08	6.48	0.02	Х	0.02	0.02	Х	Х	0.043	0.047	4.80	0.46	0.025	11.81
E10210	BFRC031	535047	7619620	57.35	3.50	0.04	Х	0.01	0.02	0.02	Х	0.028	0.057	4.48	0.26	0.013	9.67
E10211	BFRC030	535063	7619589	57.16	3.31	0.03	Х	0.01	0.02	0.03	0.01	0.026	0.043	4.16	0.26	0.015	10.15
E10212	BFRC029	535293	7619623	56.00	2.91	0.11	Х	0.02	0.03	0.03	Х	0.036	0.077	5.59	0.14	0.006	10.35
E10213	BFRC028	535293	7619650	59.83	2.03	0.03	Х	0.01	0.02	0.03	Х	0.021	0.046	3.48	0.20	0.007	8.92
E10214	BFRC027	535283	7619683	52.34	6.72	0.02	Х	0.02	0.02	0.02	Х	0.025	0.044	6.31	0.72	0.027	10.56
E10215	BFRC026	535507	7619850	58.77	2.87	0.03	Х	0.02	0.03	0.02	Х	0.021	0.04	3.87	0.27	0.009	9.43
E10216	BFRC025	535542	7619844	52.46	7.42	0.05	Х	0.02	0.04	0.02	Х	0.03	0.05	8.05	0.64	0.016	8.71
E10217	BFRC024	535586	7619839	59.43	2.09	0.03	Х	Х	0.02	0.02	0.01	0.02	0.055	3.18	0.13	Х	9.56
E10218		532447	7616952	54.37	6.63	0.07	0.009	0.02	0.06	0.03	0.01	0.024	0.049	5.77	0.44	0.013	8.75
E10219		532428	7616931	57.07	4.92	0.03	0.007	0.01	0.05	0.04	0.01	0.023	0.053	4.47	0.40	0.013	7.92
E10220		532610	7616844	56.60	4.83	0.11	0.006	0.03	0.07	0.04	0.01	0.029	0.045	5.78	0.29	0.01	7.93
E10221		532621	7616823	59.21	3.15	0.09	Х	0.01	0.06	0.07	0.02	0.026	0.046	3.82	0.23	0.008	8.09

Notes:

1. Coordinate Datum: GDA94, UTM MGA94 Zone 50.

Samples prepared as fused disk and elements analysed by XRF Spectrometry. 2.

3. Compounds percentages calculated.

Loss on Ignition (LOI) analysed by Thermal Gravimetric Analyser 4.

5. 'x' denotes result is below detection limit for this analysis method 6.

Hole ID is included in table for samples taken within 5-10 metres of the drill hole

APPENDIX E

JORC Code, 2012 Edition – Table 1 report

Section 1 Sampling Techniques and Data

• (Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary		
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to	 <u>RC Drilling</u> Industry Standard Reverse Circulation (RC) drilling techniques were employed to deliver consecutive 1 metre down-hole drill cuttings to the surface, whereby sample return is passed through a cyclone underflow into a stationary cone splitter attached to the underside of the cyclone. Two sub-sample collection ports are utilised to split each one metre down-hole sample, enabling up to two sub-sample splits (~2-3kg) to be collected into calico bags. The remainder of the sample was then free dumped onto the ground surface, in rows of 10 single metre piles, near to the drill hole collar. 		
	the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	 All drilling, sample collection and sampling handling procedures were supervised by Burley's consultant geology personnel to today's industry standards. QA/QC procedures were implemented during the drilling program to today's industry standards. <u>Rock Chip Sampling</u> 		
		 Forty Six (46) rock chip samples, (approximately 3-4kg) were collected from: within a 5-10m radius of each drill hole collars, if there was no historical surface sampling within 10m, and traversing across previously un-sampled remnant mesa-form Channel Iron deposits (CID). Sampling method involved obtaining random rock chips from outcrop and/or sub-crop, within a radius of 5 to 10 metres. This method is considered appropriate for sampling of CID mineralisation, and representative. 		
		All samples (Drilling and Rock Chip) were obtained to enable total pulverisation and catchweights obtained for industry		

Criteria	JORC Code explanation	Commentary
		standard iron ore package analysis
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Slimline Reverse Circulation (RC) drilling techniques employed using face sampling hammer with a hole diameter of 125mm. Drill Rig is a truck-mounted AustEx X300 with Sullair 1050psi/350cfm compressor and Hurrican 636 Booster.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 Drilling was observed at all times and recoveries were observed to be high and consistent. The top 1 metre (surface to 1m depth) however experienced poor recoveries due to establishing a collar in broken ground. Therefore the first sample (0-1m depth) was not submitted for analysis as they were deemed to not be representative.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Drill chip samples were logged geologically to a level of detail suitable for mineral resource estimation, if required. Logging was qualitative and quantitative. All drill samples were logged.
Sub- sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of	 RC drill samples were split, to obtain sub-samples for analysis, using a stationary cone splitter mounted beneath the sample cyclone attached to the drill rig. RC drilling and sample splitting using cyclones and stationary cone splitters is considered to be industry standard and appropriate for evaluating CID iron ore deposits. Duplicate samples were taken during the drilling process, with duplicate intervals taken at a ratio of 1 in 50 samples. Certified Reference Material (CRM) were inserted into the

	Criteria	JORC Code explanation	Commentary
		the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	sampling stream at a ratio of 1 in 50 samples.
	Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	 Samples were submitted to an independent laboratory (Intertek Genalysis, Maddington). Industry standard sample preparation (dry, crush and total pulverisation) and multi- element XRF techniques for a standard Iron Ore suite of elements and compounds (Intertek Codes: FB1/XRF) were employed. Lithium borate fusion and XRF Spectrometry finish is industry standard method for the analysis of oxide iron ores. Loss On Ignition (LOI) analysis technique was by Thermo Gravimetric Analyser (Intertek Code: /TGA). CRM and duplicate samples were inserted into the sampling stream, and samples submitted to the laboratory. Review of QAQC data did not reveal any bias and the levels of accuracy and precision to be appropriate for first pass exploration.
I	Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	 Verification of significant intersections was conducted internally by Company personnel. There was no twinning of holes. All data is entered into a computer database and verified. Data is recorded onto laptop computers and uploaded onto the Company's server. No adjustments were made to the original laboratory assays.
	Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	 Drill hole collars are located initially using a hand-held GPS, then later surveyed by an independent survey contractor using DGPS survey equipment with a horizontal and vertical accuracy of ±0.05 metres. Rock Chip sample sites are located using a handheld GPS with a horizontal accuracy of approximately ±5 metres.

Criteria	JORC Code explanation	Commentary
		 Coordinates are reported to GDA94 datum, UTM MGA94 Zone 50. Topographical control of high quality was obtained by a Light Detection and Ranging (LIDAR) survey, and is considered to be adequate.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	 RC drill samples were taken at 1 metre downhole intervals, however the current drill hole spacing is not considered to be sufficient to establish the degree of geological and grade continuity appropriate for Mineral Resource estimation procedure and classifications applied. Rock chip sampling was conducted near to drill hole collars that had no historical surface sampling within 10 metres, as well as traverses across some isolated mesa-form outcrops of CID mineralisation. Sample compositing was not applied to RC drill samples, however surface sample compositing was applied to the collection of rock chips from outcrop and/or sub-crop material within a 5 to 10 metre radius.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 RC drill holes were inclined at -90° (vertical) so as to achieve unbiased sampling of the sub-horizontal CID horizon. Rock chip sampling was aimed at: sampling the surface at drill hole collars, or sampling traverses were carried out orthogonal to the orientation of the mesa-form CID outcrop, and which is considered appropriate for CID deposits. RC drilling was completed using vertical holes, orthogonal to the mesa-form CID horizon, and is therefore considered that sampling bias has not been introduced.
Sample security	The measures taken to ensure sample security.	 Sample security was maintained at all times by the Company's geological consultants. Samples were collated into labeled poly-woven bags, zip-tied, packed into bulk-bags, and

	Criteria	JORC Code explanation	Commentary
			delivered to an independent transport company for delivery direct to the laboratory (Intertek Genalysis, Maddington).
)			• Except for transportation by the transport company, and delivery at the laboratory, the samples were under the direct control and supervision of the Company's geological consultants.
	Audits or reviews	The results of any audits or reviews of sampling techniques and data.	• There has been no audit or review of sampling techniques and data.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area.	 Exploration Licence 47/4580 is registered 100% to Burley Minerals Limited. The tenement occurs immediately to the south of the Millstream National Park. The northern boundary of the Millstream Water Reserve partially underlies the southern region of the application. There are no current known impediments to obtaining a license to operate in the area. Standard Western Australia royalties apply to the project.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 API Management Pty Ltd (2006 to 2010) completed campaign style rock chip sampling of the CID's within the tenement, including: Air photo interpretation using Landsat 7 imagery. Rock chip sampling – 201 samples on a 500 m x 100 m grid, (~3 kg samples). 96 samples returned CID grades varying from 50% Fe to 61% Fe. Outcropping CID thickness was variable up to 10 m, but typically less than 5 m. Rock-chip sample density appears to be adequate to identify targets for RC drilling however this was never completed by API within the Burley's tenement area. Forge Resources Swan Pty Ltd completed work program heritage surveys and RC drilling. Forge mainly completed drilling to test CID, in the distal areas of the palaeochannel, further to the east of the API outcrop sampling, and in more readily accessible areas.
Geology	Deposit type, geological setting and style of mineralisation.	The outcropping mineralisation existing on E47/4580 are Channel Iron Deposits (CID) which are alluvial deposits associated with the palaeodrainage systems of the Fortescue

C	Criteria	JORC Code explanation	Commentary
			River and George River valleys.
			 CIDs represent tertiary alluvial deposits, rich in ferruginous fragments, which were eroded from the country rock (Hamersley Surface) and deposited in river channels. Where outcropping, CIDs occur as variably dismembered, topographically inverted palaeochannel deposits preserved along major palaeodrainage lines.
			 CIDs are primarily a clast-supported, very-fine to very-coarse sandstone to granule-conglomerate comprised of iron-rich detrital material that has undergone variable amounts of weathering and alteration. The clasts are typically composed of goethite ± hematite and fossil wood (pseudomorphed by hematite ± goethite), which are cemented by iron oxide. The matrix is goethite and is often of similar grade to the pelletoids
L I	Drill hole nformation	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	 Drill hole information is tabulated and attached to this report as Appendix A
		easting and northing of the drill hole collar	
		elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar	
		dip and azimuth of the hole	
		down hole length and interception depth	
		hole length.	
		If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
L c r	Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	• Weighted averaging techniques were employed in reporting of the significant intersections. There was no cutting of high grades, and low cutoff grade of 52% Fe was utilised for reporting.

Criteria	JORC Code explanation	Commentary
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	 No data aggregation methods or metal equivalent values have been utilised in reporting of exploration results.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between mineralisatio n widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	 The CID mineralisation is sub-horizontal, and drill holes were orientated vertically to intersect the CID mineralisation at the optimum angle. Down hole intersection widths are considered to be close to true widths.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Plan view of sampling locations and %Fe results are included in the main body of this report as Figure 2 One drill cross section is included in the main body of this report as Figure 3
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All RC drill results >40% Fe are tabulated and attached to this report as Appendix C. All surface Rock Chip sample results are tabulated and attached to this report as Appendix D.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	There is no other meaningful and material exploration data to report.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	• The Company is in the process of reviewing the results with a view as to whether the results justify further expenditure in the short term.

Criteria	JORC Code explanation	Commentary
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	