

OSMOND ENCOURAGED BY ASSAY RESULTS AT IBERIAN ONE PROJECT SPAIN

HIGHLIGHTS

- Assay results received from initial five-hole confirmatory drilling program at Iberian One Project
- Results include:
 - \circ S24-03 6.9m at 22.4% Al₂O₃ from 16.2m below surface
 - \circ S24-03 3.6m at 25.4% Al_2O_3 from 62.1m below surface
 - S24-05 6.6m at 25.8% Al₂O₃ from 72.2m below surface

(refer Table 1 below, noting that results do not distinguish between size fractions)

- Strategic Review of Project being completed to determine ability to fast-track development of an EU critical minerals mine to take advantage of positive EU legislation and funding backdrop
- In South Australia, a sampling program and review of historical drill samples has been completed.

Osmond Resources Limited (ASX: OSM) (**Osmond** or the **Company**) is pleased to announce encouraging assay results from the five-hole confirmatory drilling program at the **Iberian One Project** (Project), located in Spain. The drilling was completed as part of the due diligence program to determine if the proposed staged acquisition of the Project should progress (refer ASX announcement dated <u>15 November 2023</u>).

All five drill holes intersected mineralisation with encouraging results. The samples were analysed by multi element analysis with a focus on Al₂O₃, SO₃, K₂O and SiO₂ content to confirm potential alunite and kaolinite in line with results from historical drilling. Osmond is now completing selective XRD analysis to better determine the mineral assemblages, particularly in relation to alunite and kaolinite.

In addition to the XRD analysis, the Company is completing a strategic review designed to test some assumptions associated with the Company's ability to fast-track development activities to deliver a compelling EU critical minerals mine quickly. Osmond expects to determine whether it intends to progress the staged acquisition quickly.

In addition, the Company has completed a technical review of historical exploration results and a selective re-assay of historical drill samples at the Fowler Project (South Australia).

In South Australia, the work undertaken by Osmond was targeting proof of concept for largescale sedimentary hosted uranium systems and magmatic Cu-Ni sulphide systems. An initial literature review showed the presence of low levels of uranium at the water table within reduced sand units and lignite associated with the margins of the uraniferous Hiltaba Suite

granites. Inspection and sampling of historic drill cuttings and core was undertaken to validate the presence of these systems.

New assays from the historical drill cuttings reported modestly elevated uranium levels associated with saprolite along fault intersections at the margins of the Hiltaba Suite granite. This localised anomalism was in contrast to the proposed large-scale sedimentary hosted uranium systems. As a consequence of the results, Osmond has commenced rationalisation of its South Australian portfolio, commencing the relinquishment of the Talacootra (EL6615), Coorabie (EL6692) and Fowler Project (EL6603 and EL6604).

The Yumbarra Project (EL6417) remains a priority target for Osmond and will now be the main focus of exploration in South Australia. Planning for detailed geophysics surveys and geochemistry reviews is in progress.

Osmond Resources Executive Director, Andrew Shearer, commented:

"We are pleased with the assay results from Spain regarding our confirmatory drilling program at the Iberian One Project. Importantly, all five drill holes intersected mineralisation comparable to those encountered in historical drilling.

We still believe there may be an opportunity to fast-track development activities to deliver a compelling critical minerals opportunity located in the EU."

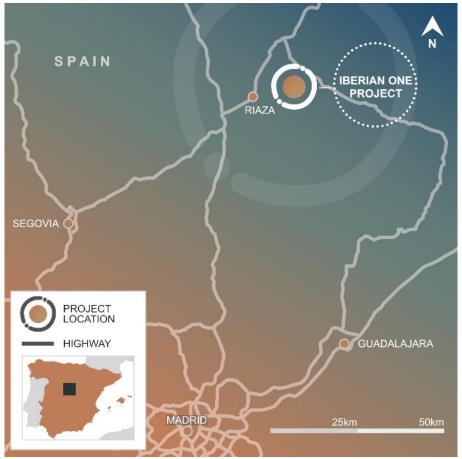


Figure 1: Iberian One Project Location, Spain.

Iberian One Project

The Project is located in a historic kaolin, iron, and graphite mining district between the villages of Madriguera and El Negredo in Segovia, Spain, approximately 100km NNW of the major city of Madrid (Figure 1). The Project includes multiple historic mines that appear to have focused on alunite and kaolin mineralisation.

The Project consists of the Grafenal Investigation Permit (47.5km²), the Becerril Mining Permit (1.6km²), and a small aggregates Mining Permit called "Paula," which mostly overlaps with the Becerril Mining Permit, totalling approximately 50km² (refer Figure 3 below).

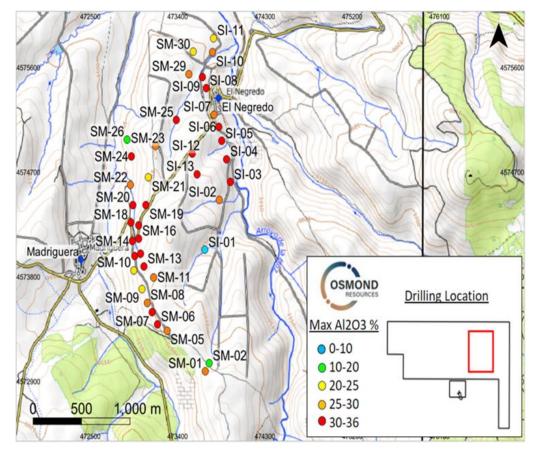


Figure 2: Map showing historical drilling locations and Al2O3 maximums

Confirmatory Drilling Program

A five-hole confirmatory drilling program was designed to test historical results.

Historical exploration records indicate that the Institute of Geology and Minerals Spain (IGME) in 1964 undertook a sampling program across artisanal kaolin pits in the area and identified occurrences of alunite mineralisation. In 1974 and 1975, two drilling programs were completed for a total of 43 holes and a total of 2,584m across the project area, with drill hole depths between 50-75m. The focus of the 1970s exploration by the IGME over the alunite occurrences at Madriguera and El Negredo (both within the Project area) was on the SOP potential of the alunite while also identifying kaolinite occurrences.

Drilling locations are shown below, with a table of locations located in Appendix 1.

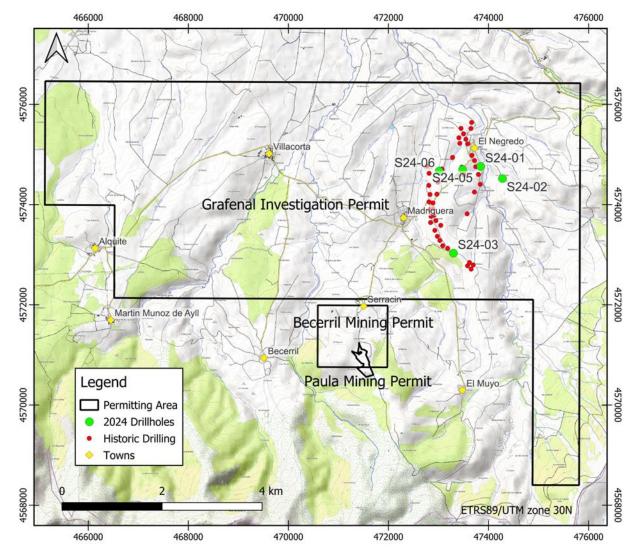


Figure 3: Map of permit area showing drill hole locations for Osmond's 2024 drilling campaign

The table below presents a summary of assay results from the program. Samples were bagged in plastic and sent to the SGS labs in Huelva (Spain), where they were crushed, pulverised and split, prior to being shipped to SGS Labs in Canada for full geochemical assessment. Complete results are included in Appendix 2.

HOLE SAMPLE	From	То	Thickness (m)	% S0 3	%Al ₂ 0 ₃	%K ₂ O	% ALUNITE
S24-01-M4	15.25	16.25	1.0	0.53	19.3	1.7	1.4
S24-01-M5	16.25	17.25	1.0	2.35	23.5	2.2	6.1
S24-01-M6	17.25	18.25	1.0	0.28	25.1	2.9	0.7
S24-01-M7	18.25	19.25	1.0	0.39	21.8	2.4	1.0
S24-01-M8	19.25	20.15	0.9	0.34	14.8	1.3	0.9
S24-01-M9	20.15	21.15	1.0	1.57	27.1	2.8	4.1
S24-01-M10	21.15	22.15	1.0	4.00	24.3	2.4	10.3
Average			6.9		22.4		3.5
S24-03-M1	62.1	63.1	1.0	3.26	19.0	1.4	8.4
S24-03-M2	63.1	64.1	1.0	6.15	25.5	2.4	15.9
S24-03-M3	64.1	64.65	0.6	19.22	30.2	3.6	31.8
S24-03-M4	64.65	65.65	1.0	6.50	29.2	2.2	16.8
Average			3.6		25.4		16.5
S24-05-M1	68.25	69.25	1.0	1.40	20.3	2.4	3.6
S24-05-M2	69.25	70.25	1.0	4.99	24.4	2.3	12.9
S24-05-M3	70.25	71.25	1.0	1.98	17.3	1.8	5.1
S24-05-M4	71.25	72.25	1.0	0.61	15.8	1.8	1.6
S24-05-M5	72.25	73.25	1.0	2.47	24.3	2.0	6.4
S24-05-M6	73.25	74.25	1.0	3.21	25.7	2.0	8.3
S24-05-M7	74.25	74.8	0.5	0.92	26.1	2.3	2.4
S24-05-M8	74.8	75.8	1.0	6.78	26.4	2.2	17.5
S24-05-M9	75.8	76.8	1.0	14.54	27.9	1.4	12.7
S24-05-M10	76.8	77.8	1.0	11.80	26.9	1.8	15.9
S24-05-M11	77.8	78.8	1.0	9.07	23.3	1.8	15.9
Average			6.6		25.8		11.9

Table 1: Summary of Select Assay Result from Osmond's 2024 five-hole drilling campaign

Samples were digested using a sodium peroxide fusion and analysed using multielement ICP-MS technology. Oxides were calculated using standard stoichiometric calculations, and then total SO₃ and any relative available K_2O and Al_2O_3 were assumed to report an Alunite composition based on historical mineral assemblage observations.

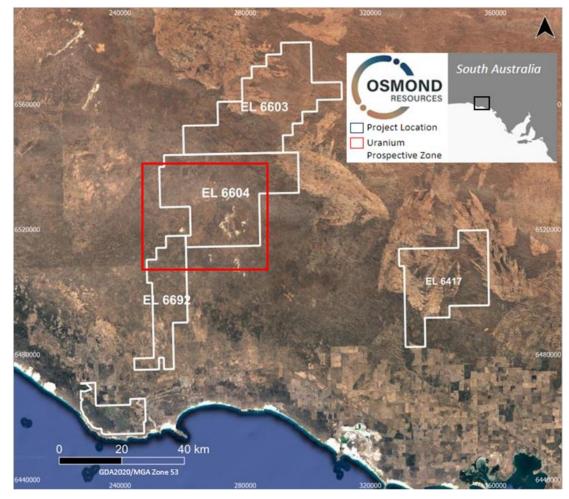
South Australian Projects

Overview

The primary objective of recent work was to verify the presence of uranium mineralised redox systems, assess potential economic concentrations of rare earth elements (REEs), and address the gaps in our understanding of the anomalous nickel and copper observed in the project areas. A total of 56 historic drill samples were selected from 31 drill holes based on their geological context across a target area on EL6604 and EL6692 (Figure 4). The program was designed as a broad spaced first pass study. The locations of the historic drill holes sampled are shown in Figure 5.

The assay results from these samples corroborate the historical drill core data in that the sediments in contact and adjacent to the granites within the Mitcherie Pluton exhibit elevated concentrations of uranium and rare earth elements (REEs) and that mafic-ultramafic intrusives contain elevated Nickel, Copper, and Chromium.

New assays from the historical drill cuttings showed moderately elevated uranium levels were detected in saprolite along a fault intersection at the margins of the Hiltaba Suite granite, specifically in drill hole BAC 88 (Figure 5), which reported 6m at 75.8 ppm U_3O_8 from 22-28m.


Uranium occurrences from historical data appears to be tabular, associated with the water table and reduced facies sands/lignites adjacent to the uraniferous Mitcherie Pluton (Hiltaba Suite Granite).

Currently, structural hosted and mafic hosted uranium mineralisation models within the Fowler and Coorabie Projects have not been tested. Mafic units intruded along regional structures adjacent to the uriniferous Mitcherie Pluton, which may provide reducing environments for mineralisation.

In addition to uranium, Osmond identified historical drill holes which reported anomalous nickel, copper, chrome, rare earth elements and pegmatite, that were reviewed and assayed to expand on our understanding of the Ni-Cu systems as well as other potential economic mineralisation: nickeliferous ultramafic units and clay hosted rare earth accumulations greater than 2000 ppm. The work has improved our geological understanding of the projects and reinforced our focus on the Yumbarra Project (EL6417) for nickel and PGEs.

The detailed findings of the selected assay results, together with their full details, are shown in Appendix 5 and Appendix 6. The following drill holes were drilled by North Mining Ltd in 1998, and only the basement assay results were reported. Osmond undertook sampling of the overlying weathered material.

Figure 4: Location of the Fowler Project Area EL6604 and EL6692, highlighted portion (red) is the target area for the sampling program. Yumbarra Project is EL6417

Drill hole BAC78

New assay results provided significant insights into drill hole BAC 78. Previous assays by North Mining only included basement samples, reporting 470 ppm Ni and 1040 ppm Cr at 88 meters. The new assay results have revealed a nickel anomalous interval of **14 meters at 1430 ppm Ni from 58-72 meters and 2955 ppm Cr from 58-72 meters**. This 14-meter nickelchromium anomalous interval is situated in saprolite above ultramafic harzburgite, associated with a Hiltaba Suite intrusion.

Drill hole BAC 72

Highlights from the assays included **2640 ppm Rb at 94 meters, 20m at 329 ppm Cu from 80-100 meters.** The rubidium concentrations suggest the potential for fractional crystallisation, particularly late-stage differentiation products such as pegmatites. Highly fractionated pegmatites usually exhibit elevated Rb concentrations¹.

¹ Bradley, D.C., McCauley, A.D., and Stillings, L.M., 2017, Mineral-deposit model for lithiumcesium-tantalum pegmatites: U.S. Geological Survey Scientific Investigations Report 2010– 5070–0, 48 p., https://doi.org/10.3133/sir201050700

Drill hole BAC 68

A noteworthy highlight was **5m at 2158 ppm TREO from 94-99 meters** at the contact of weathered pegmatite.

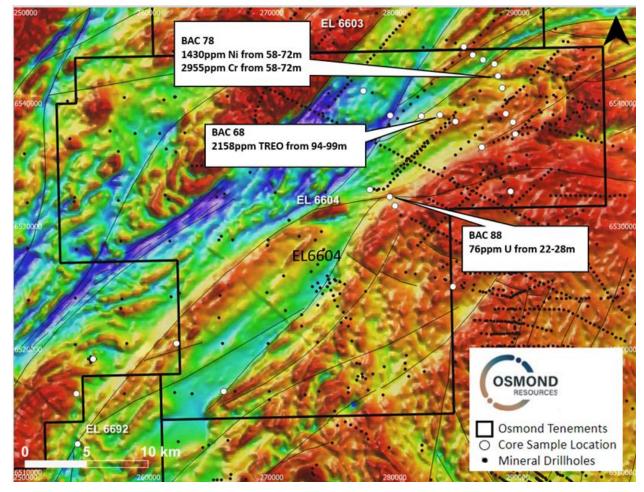


Figure 5: Location of historic drill holes from which samples were assayed

Yumbarra Project (EL 6614)

The environmental permitting process for the Yumbarra Project fixed loop electro-magnetic (FLEM) survey is well underway. FLEM contractors have been engaged and will be on-site as soon as the EPEPR approval is granted. The FLEM survey is proposed over the priority coincident VTEM-AEM-Gravity targets to define conductive rock units at depth on inferred ultramafic basal contact zones and feeder dykes. The proposed FLEM survey locations are shown in Figure 6.

Next Steps

Spain - Osmond has been granted an extension to 30 September 2024 to complete due diligence activities to determine whether it will progress the staged acquisition of the Project as outlined in the ASX release dated <u>15 November 2023</u>. Osmond expects to complete additional analyses and a strategic review focusing on its ability to fast-track development activities to deliver an EU critical minerals mine before 30 September 2024.

Results of this review and next steps will be announced prior to the end of 30 September 2024.

South Australia – With the focus on Yumbarra, the plans are to engage a petrology expert to undertake a detailed classification of the Yumbarra mafic-ultramafic systems from historical geochemical data and petrology samples and vector towards Cu-Ni sulphides. The results will feed into the planned detailed electrical geophysics at Yumbarra with a view to undertaking drilling as soon as it is practical.

References:

- Osmond Resources Ltd ASX announcement released <u>28 August 2023</u>.
- Osmond Resources Ltd ASX announcement released <u>18 January 2024</u>.
- North Mining Ltd. North Fowlers Bay and Chundaria annual and progress reports 1993-1999, Primary Industries and Resources SA Envelope 8851.
- Loongana Pty Ltd. Chundie Swamps Progress Report 1980-1981, Primary Industries and Resources SA Envelope 3830.
- Equinox Resources NL. Tallala Hill, Quangong Prospect Annual Report, Primary Industries and Resources SA Envelope 8861
- Samples were assayed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Optical Emission Spectrometry (ICP-OES).

-Ends-

Approved for release by the Board of Osmond Resources.

CONTACT

Andrew Shearer | Executive Director andrew@osmondresources.com.au +61 3 9614 0600

Mark Flynn | Investor Relations info@osmondresources.com.au +61 416 068 733

Competent Person Statement - Spain

The information in this release that relates to Exploration Results from the Iberian One Project is based on information compiled by Mr Rhoderick Grivas. Mr Grivas is the Chairman of Osmond and is a member of AusIMM. Mr Grivas has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which they are undertaking to qualify as a CP as defined in the 2012 edition of the Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC code). Mr Grivas consents to the inclusion of this information in the form and context in which they occur.

Competent Persons Statement – South Australia

The information in this report that relates to Exploration Results from the South Australian Projects is based on information compiled by Mr Charles Nesbitt. Mr Charles Nesbitt is a full-time employee of Osmond Resources Ltd. Mr Charles Nesbitt has extensive experience in uranium mining and exploration, relevant to the style of mineralisation and type of deposit under consideration and to the activity which they are undertaking to qualify as Competent Persons as defined in the 2012 edition of the Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC code). Mr Charles Nesbitt consents to the inclusion of this information in the form and context in which they occur.

ABOUT OSMOND RESOURCES

Osmond Resources Limited (ASX:OSM) (Osmond or the Company) is a mineral and exploration company committed to increasing shareholder wealth through the exploration, development and acquisition of mineral resource projects.

Osmond Resources (ASX:OSM) Project Locations

Australian Projects

Osmond was formed with the purpose of assembling a portfolio of projects predominantly located in the Gawler Craton region of South Australia. Since its incorporation, the Company has secured agreements in respect of a number of tenements that are considered highly prospective for gold, copper, nickel and REE. The Osmond Board is excited by recent exploration successes in these frontier areas for gold and base metals.

The Company entered into acquisition agreements in South Australia, with Fowler Resources Pty Ltd (Fowler) for exploration tenements EL6417 (Yumbarra Tenement), EL6615 (Tallacootra Tenement) and EL6692 (Coorabie Tenement) and with Kimba Resources Pty Ltd (Kimba) (being a wholly owned subsidiary of ASX-listed Investigator Resources Pty Ltd (Investigator)) for EL6603 and EL6604 (together, the Fowler Tenements).

Iberian One Project, Spain

In November 2023, Osmond executed a Binding staged Earn-In Agreement to acquire up to 100% of the Iberian One Project, located in Segovia Province, central Spain. The project aims to exploit alunite and kaolinite mineralisation to deliver EU critical minerals. A five-hole drilling program has been completed to test results from historic drill holes and two historical mines. Osmond's focus is on its ability to fast-track development activities to take advantage of EU critical minerals legislation and the need for extraction projects to reduce the EU's reliance on imports of alumina, potash and graphite.

APPENDIX CONTENTS

Appendix 1 Drill Hole Locations Spain	Page 13
Appendix 2 Summary of five-hole drill program assay results Spain	Page 14
Appendix 3 Riaza, Spain JORC TABLE 1	Page 15
Appendix 4 Drill Hole BAC 78 Ni-Cr Intervals – South Australia	Page 20
Appendix 5 Sample Details – South Australia	Page 21
Appendix 6 Assay Results South Australia	Page 26
Appendix 7 JORC Code, 2012 Edition – Table 1 South Australia	Page 41

Drillhole ID	Easting	Northing	RL	Max Depth	Drilling Method	Azimuth	Dip
S24-01	473845.640	4574762.062	1164.565	29.10	DDH	360	90
S24-02	474279.561	4574520.454	1209.153	49.00	DDH	360	90
S24-03	473301.052	4573031.344	1266.727	69.60	DDH	360	90
S24-05	473482.184	4574701.876	1201.219	79.45	DDH	360	90
S24-06	473014.280	4574669.504	1201.230	80.30	DDH	360	90

APPENDIX 1 - DRILL HOLE LOCATIONS SPAIN

APPENDIX 2 – SUMMARY OF FIVE-HOLE DRILL PROGRAM ASSAY RESULTS SPAIN

SAMPLE	From	То	Thickness (m)	S	AI	к	Fe	Si	%S03	Al ₂ 0 ₃ %	%K20	%SiO2	% ALUNITE
S24-01-M1	12.25	13.25	1.0	0.244	8.5	2.1	5.98	24.9	0.61	16.1	2.5	78.3	1.6
S24-01-M2	13.25	14.25	1.0	0.229	7.54	2	1.82	29.1	0.57	14.2	2.4	91.5	1.5
S24-01-M3	14.25	15.25	1.0	0.316	9.44	2.1	1.95	26.6	0.79	17.8	2.5	83.6	2.0
S24-01-M4	15.25	16.25	1.0	0.212	10.2	1.4	6.16	18.3	0.53	19.3	1.7	57.5	1.4
S24-01-M5	16.25	17.25	1.0	0.941	12.45	1.8	6.26	18.5	2.35	23.5	2.2	58.1	6.1
S24-01-M6	17.25	18.25	1.0	0.113	13.31	2.4	2.66	23.4	0.28	25.1	2.9	73.5	0.7
S24-01-M7	18.25	19.25	1.0	0.156	11.53	2	3.5	22.8	0.39	21.8	2.4	71.7	1.0
S24-01-M8	19.25	20.15	0.9	0.137	7.83	1.1	3.95	12.3	0.34	14.8	1.3	38.7	0.9
S24-01-M9	20.15	21.15	1.0	0.629	14.36	2.3	0.96	20.4	1.57	27.1	2.8	64.1	4.1
S24-01-M10	21.15	22.15	1.0	1.6	12.86	2	1.73	22.2	4.00	24.3	2.4	69.8	10.3
S24-02-M1	37.8	38.8	1.0	0.102	3.05	1	1.81	10.2	0.26	5.8	1.2	32.1	0.7
S24-02-M2	38.8	39.8	1.0	0.183	3.99	1.4	2.68	14.2	0.46	7.5	1.7	44.6	1.2
S24-02-M3	39.8	40.8	1.0	0.08	4.97	1.5	4.01	18.7	0.20	9.4	1.8	58.8	0.5
S24-02-M4	40.8	41.8	1.0	0.031	7.55	2	3.39	16.5	0.08	14.3	2.4	51.9	0.2
S24-02-M5	41.8	42.8	1.0	0.028	8.98	2.6	4.7	18.9	0.07	17.0	3.1	59.4	0.2
S24-02-M6	42.8	43.8	1.0	0.021	9.42	2.9	4.75	19.6	0.05	17.8	3.5	61.6	0.1
S24-03-M1	62.1	63.1	1.0	1.304	10.07	1.2	17.99	13.1	3.26	19.0	1.4	41.2	8.4
S24-03-M2	63.1	64.1	1.0	2.459	13.48	2	7.24	14.6	6.15	25.5	2.4	45.9	15.9
S24-03-M3	64.1	64.65	0.6	7.687	15.97	3	1.46	10.3	19.22	30.2	3.6	32.4	31.8
S24-03-M4	64.65	65.65	1.0	2.598	15.46	1.8	1.5	19.8	6.50	29.2	2.2	62.2	16.8
S24-05-M1	68.25	69.25	1.0	0.56	10.77	2	6.56	21.8	1.40	20.3	2.4	68.5	3.6
S24-05-M2	69.25	70.25	1.0	1.996	12.91	1.9	2.58	20.8	4.99	24.4	2.3	65.4	12.9
S24-05-M3	70.25	71.25	1.0	0.79	9.15	1.5	3.89	24.5	1.98	17.3	1.8	77.0	5.1
S24-05-M4	71.25	72.25	1.0	0.244	8.36	1.5	16.05	19	0.61	15.8	1.8	59.7	1.6
S24-05-M5	72.25	73.25	1.0	0.988	12.89	1.7	1.79	21.5	2.47	24.3	2.0	67.6	6.4
S24-05-M6	73.25	74.25	1.0	1.283	13.63	1.7	2.19	20.1	3.21	25.7	2.0	63.2	8.3
S24-05-M7	74.25	74.8	0.5	0.368	13.81	1.9	3.26	21.4	0.92	26.1	2.3	67.3	2.4
S24-05-M8	74.8	75.8	1.0	2.712	13.97	1.8	2.96	19.6	6.78	26.4	2.2	61.6	17.5
S24-05-M9	75.8	76.8	1.0	5.814	14.79	1.2	1.36	14.5	14.54	27.9	1.4	45.6	12.7
S24-05-M10	76.8	77.8	1.0	4.718	14.22	1.5	2.11	18.1	11.80	26.9	1.8	56.9	15.9
S24-05-M11	77.8	78.8	1.0	3.626	12.34	1.5	2.63	20.1	9.07	23.3	1.8	63.2	15.9
S24-06-M1	66.15	67.15	1.0	1.268	10.97	2.6	6.26	20.1	3.17	20.7	3.1	63.2	8.2
S24-06-M2	67.15	68.15	1.0	2.29	9.36	2.3	9.2	14.4	5.73	17.7	2.8	45.3	14.8
S24-06-M3	68.15	69.15	1.0	0.936	10.1	2.4	8.18	14.5	2.34	19.1	2.9	45.6	6.1
S24-06-M4	69.15	70.15	1.0	0.386	10.62	2.4	7.08	19.1	0.97	20.1	2.9	60.0	2.5
S24-06-M5	70.15	71.15	1.0	1.32	11.3	2.1	5.88	19.1	3.30	21.3	2.5	60.0	8.5
S24-06-M6	71.15	72.15	1.0	2.398	9.91	2.3	4.96	19.9	6.00	18.7	2.8	62.5	15.5
S24-06-M7	72.15	73.15	1.0	1.997	10.92	2.3	5.12	20.4	4.99	20.6	2.8	64.1	12.9
S24-06-M8	73.15	74.15	1.0	0.27	10.65	2.5	3.98	23	0.68	20.1	3.0	72.3	1.7
S24-06-M9	74.15	75.15	1.0	0.352	10.11	2.5	6.15	18.8	0.88	19.1	3.0	59.1	2.3
S24-06-M10	75.15	76.15	1.0	1.188	9.62	2.1	10.45	14.6	2.97	18.2	2.5	45.9	7.7

APPENDIX 3 – RIAZA, SPAIN JORC TABLE 1 JORC CODE, 2012 EDITION – TABLE 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
<i>Sampling techniques</i>	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 The mineralised interval intersected in each DDH have been logged, photographed and nominally divided on one metre intervals. Each sample interval was marked and numbered. The cores of each sample were halved with one half cut into two (quarters). One of the quarters was then sent to be assayed. Duplicate samples from twin quarters were inserted in a ratio of 1:10 for quality sampling purposes. Blanks were inserted at a ratio of 1:20 samples to assess the accuracy, precision and methodology of the external laboratory used. No Certified Reference Materials (CRM) were inserted. The management of cores in mineralised intervals was very careful. The most cohesive fragments were cut with diamond cutting disk at a very low flow of water. Less cohesive fragments were divided up with a palette knife. The disintegrated parts of cores were handed out in equivalent amounts. Samples were bagged in plastic and sent to the SGS delegation in Huelva (Spain), where they were crushed, ground and split, prior to being shipped to SGS Labs in Canada. The core samples were assayed using sodium peroxide fusion / ICP-MS. Some samples with overlimits in Mn and Zn have been assayed with ICP-AES. The results of sulfur were also reanalysis where overlimits using LECO.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 All drilling was completed with Diamond Drill Hole (DDH) PQ3 method, with continuous core recovery using wireline extraction. Due to the scant cohesive material drilled, a triple-tube core barrel was used.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential 	 Drilling muds were used to ensure core recovery was very good, with more than 95% recovery. The cohesion of the materials drilled has demanded special mud to drill. The core recovery was very good, with more than 95% The drilling was completed using PQ3 core to maximise core recovery.

Criteria	JORC Code explanation	Commentary
	loss/gain of fine/coarse material.	 There was no significant core loss. Only in the first hole was some loss related to a quartz vein crossed between white clays, which was quickly corrected with an improvement in drilling mud composition.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Cores have been qualitatively logged in detail for lithology, alteration, mineral assemblage and structure. All cores have been photographed and half core remains in its boxes in storage.
<i>Sub- sampling techniques and sample preparation</i>	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	duplicates or other proposals.Every quarter of the sample was weighed and compared, trying to get
<i>Quality of assay data and laboratory tests</i>	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Assaying was conducted by SGS using standarised preparation crushing and pulversing, digestion by sodium peroxide fusion and analysis by ICP-MS techniques. Overlimit sulfur was solved with a complementary assay with LECO These are considered to be total digestion techniques. Both Iberian Alumina. and SGS Labs maintain independent QA/QC programs including the insertion of Certified Reference Material (CRM), duplicates and blanks

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 levels of variations. The accuracy and precision of the CRM, duplicates and blanks in the autocheck of the lab have shown acceptable levels. For this first pass drilling program no verification, twinning have been undertaken All new holes have been logged and verified both physically and digitally
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill hole locations have been surveyed using pocket GPS, and a professional surveyor with precision GPS has taken the final coordinates after the completion of the drilling campaign. Grid system used have been European Terrestrial Reference System 1989 (ETRS89) for compatibility with modern survey information High precision GPS/mobile network based surveying used
<i>Data spacing and distribution</i>	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Spacing as shown by images in report was first pass drilling amongst historical holes. The data spacing of the drillholes completed along with the historical holes confirms the continuity of the geological horizon, but they show irregularities in grade distribution that should be explored with additional drilling.
<i>Orientation of data in relation to geological structure</i>	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Mineralised horizon is considered sub horizontal and therefore drilling was vertical to give true widths Vertical drilling has not introduced a bias in the sampling. It is possible to consider the length of the interval as representative of the true thickness of the mineralized horizon
Sample security	The measures taken to ensure sample security.	• The chain of custody has been managed by Iberian Alumina's personnel. Cores has been boxed at the drill site and transported to a secure facility for logging, photographing and quartering. Following this, samples for assaying have been bagged and secured with zip locks to be shipped to the laboratory
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	Not completed

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
<i>Mineral tenement and land tenure status</i>	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Investigation Permit (PI) "Grafenal", Number 1357. located at Riaza County, Segovia Province, Castilla-Leon Region, central Spain. Omnis Minería, S.L. is full owner of the PI "Grafenal" The PI was granted on 27/07/2023, for 3 years. The Spanish Mining Laws can extend the license by other 3 years.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	• Previously, the deposit had been drilled by a private company and the Spanish Geological Survey (IGME). 43 DDHs were made, recovering detailed information on 37 of them.
Geology	Deposit type, geological setting and style of mineralisation.	• The deposit is mantle type, forming an ancient bed of meteoric alteration (weathered bed) developed mainly on the black slates of a Paleozoic sequence, which would adapt to a Miocene paleosurface.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Summary collar table is included as Appendix 1
<i>Data aggregation methods</i>	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	 A normative calculation of the mineral composition from the chemical assays of samples has been made, considering as main components alunite, sericite, kaolinite and quartz. And are provided in Appendix 2 Oxides were calculated using standard stoichiometric calculations and then total SO₃ and any relative available K₂O and Al₂O₃ was assumed to report to an Alunite composition, based on historical

Criteria	JORC Code explanation	Commentary
	• The assumptions used for any reporting of metal equivalent values should be clearly stated.	mineral assemblage observations.
<i>Relationship between mineralisation widths and intercept lengths</i>	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The sample thickness can be considered real thickness, as the orebody is sub-horizontal and holes are vertical.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Appropriate maps have been provided in the report. Sectional views are not provided as the mineralized horizon is flat lying and can be visualized form the plan view
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Appendix 2 provides all analysis results for each interval
<i>Other substantive exploration data</i>	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 There were two historical drill campaigns completed in the 1970s of the last century. The original information is only in reports in paper format. The assays and other data from these reports has been classified and introduced in a database in XLS format. Maps have been scanned and drill points put into a GIS system. No collars have been found on the field, for this reason the locations of drill holes are considered approximate. The collar location are found on maps in the report.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 As this is a first pass program, results are reported as received. Additional XRD analysis is planned on selected intercepts from the drilling to better determine mineral assemblages, followed by a strategic review of current results and historical results. Follow-up exploration is likely to include additional drilling to quantify any Exploration Target.

APPENDIX 4 - DRILL HOLE BAC 78 NI-CR INTERVALS – SOUTH AUSTRALIA

Depth (m)	Ni (ppm)	Cr (ppm)
54	20	470
55	20	470
56	20	470
57	20	470
58	1070	2920
59	1070	2920
60	1070	2920
62	1070	2920
63	1070	2920
64	1070	2920
65	1070	2920
66	1790	2990
68	1790	2990
69	1790	2990
70	1790	2990
72	1790	2990
73	n/a	n/a
74	n/a	n/a
75	n/a	n/a
76	n/a	n/a
77	n/a	n/a
78	n/a	n/a
80	n/a	n/a
81	n/a	n/a
82	n/a	n/a
83	n/a	n/a
84	n/a	n/a
85	n/a	n/a
86	n/a	n/a

APPENDIX 5 - SAMPLE DETAILS SOUTH AUSTRALIA

Sample ID	DRILLHOLE NO	DH NAME	SAMPLE INTERVAL (m)	SAMPLE DESCRIPTION	STRATIGRAPHY (From Historic Logs)
FW0001	176832	BAC 66	52-58	grey to orange sands, upwards fining, course to fine, less oxidize than basal sequence below	Ooldea Sand, Hampton Sandstone
FW0002	176832	BAC 66	58-64	upwards fine sand, interbedded calcrete from 62-64. Orange colored sand	Ooldea Sand, Hampton Sandstone
FW0003	176833	BAC 67	74-80	basal sands, yellow to orange	Ooldea Sand, Hampton Sandstone
FW0004	176833	BAC 67	90-98	greenish-grey zone, large muscovite flakes, possible pegmatite zone, sits in between two granitic zones. Some red san contamination is sample	Archaean-Palaeoproterozoic rocks
FW0005	176834	BAC 68	76-80	basal sands, yellow to orange medium-coarse grained.	Ooldea Sand, Hampton Sandstone
FW0006	176834	BAC 68	94-99	kaolin, weathered granite.	Hiltaba Suite Granite, Archaean-Mesoproterozoic rocks
FW0007	176834	BAC 68	98.5-99	basal sample has pegmatite, Large pink feldspar crystals	Hiltaba Suite Granite, Archaean-Mesoproterozoic rocks
FW0008	176835	BAC 69	82-86	boundary between oxidized sands to grey brown lignitic sands and clays	Ooldea Sand, Pidinga Formation
FW0009	176835	BAC 69	100-104	saprolitic white-pink clays underneath lignite	Ooldea Sand, Pidinga Formation
FW0010	176836	BAC 70	68-72	coarse basal sands, ferrous cement, sands sitting above saprolitic zone, saprolite clays sit above lignite unit, possible weathered lignite.	Pidinga Formation, Archean- Mesoproterozoic rocks
FW0011	176836	BAC 70	72-76	saprolitic clays, possible weathered lignite	Pidinga Formation, Archean- Mesoproterozoic rocks

FW0012	2 176836	BAC 70	106-112	weather gray nodules amongst	Archaean-Palaeoproterozoic
FW0013	3 176837	BAC 71	54-58	saprolite sandy lignite, medium grained	rocks Ooldea Sand, Pidinga Formation
FW0014	4 176837	BAC 71	74-78	basal sands sitting above saprolitic weathered lignite	Ooldea Sand, Pidinga Formation
FW001	5 176837	BAC 71	106-112	yellow to purple clays, shear zone, saprolite, weathered nodules, sits below lignite unit	Pidinga Formation, Archean- Mesoproterozoic rocks
FW0016	6 176838	BAC 72	70-74	basal sands, upwards fining, yellow to orange colour	Ooldea Sand, Hampton Sandstone
FW0017	7 176838	BAC 72	80-90	saprolite	Pidinga Formation, Archean- Mesoproterozoic rocks
FW0018	8 176838	BAC 72	93-94	pegmatite, large muscovite flakes.	Hiltaba Suite Granite, Archaean-Mesoproterozoic rocks
FW0019	9 176839	BAC 73	76-80	basal sands, carbonate nodules, orange to beige colour	Ooldea Sand, Hampton Sandstone
FW0020	0 176840	BAC 74	78-82	basal sands, pink-orange, pink saprolite	Hampton Sandstone, Archean-Mesoproterozoic rocks
FW002	1 176840	BAC 74	82-90	saprolitic clays, pink-white, fine sands, muscovite flakes	Archaean-Palaeoproterozoic rocks
FW0022	2 176840	BAC 74	90-100	saprolite, white to grey colour, muscovite flakes	Archaean-Palaeoproterozoic rocks
FW0023	3 176841	BAC 75	74-78	basal sands, beige-orange, medium grained	Ooldea Sand, Hampton Sandstone
FW0024	4 176841	BAC 75	78-86	saprolite, pink-orange colour, muscovite flakes, transition zone to lower saprolite	Hiltaba Suite Granite, Archaean-Mesoproterozoic rocks
FW002	5 176841	BAC 75	86-92	lower saprolite, white to grey, muscovite flakes	Hiltaba Suite Granite, Archaean-Mesoproterozoic rocks

FW0026	176842	BAC 76	78-84	basal sands, orange, ferrous nodules	Hampton Sandstone, Archean-Mesoproterozoic rocks
FW0027	176842	BAC 76	84-90	saprolite, pink	Hiltaba Suite Granite, Archaean-Mesoproterozoic rocks
FW0028	176843	BAC 77	38-42	basal sands, yellow orange.	Ooldea Sand
FW0029	176843	BAC 77	42-46	saprolite, pink to white	Hiltaba Suite Granite, Archaean-Mesoproterozoic rocks
FW0030	176844	BAC 78	54-58	basal sands, medium grained, yellow-orange,	Ooldea Sand
FW0031	176844	BAC 78	58-66	saprolite	Hiltaba Suite Granite, Archaean-Mesoproterozoic rocks
FW0032	176844	BAC 78	68-72	green saprolite (from hazburgite)	Hiltaba Suite Granite, Archaean-Mesoproterozoic rocks
FW0033	176845	BAC 79	26-30	basal sands, orange, medium grained	Ooldea Sand
FW0034	176845	BAC 79	30-36	basal sands, pink to orange fine grained	Ooldea Sand
FW0035	176845	BAC 79	36-40	grey saprolite silts	Ooldea Sand
FW0036	176846	BAC 80	46-50	basal sands, fine grained, pink to orange.	Ooldea Sand
FW0037	176846	BAC 80	50-54	upper saprolite, white to pink,	Archaean-Mesoproterozoic rocks
FW0038	176846	BAC 80	54-62	lower saprolite, white to grey-green	Archaean-Mesoproterozoic rocks
FW0039	176847	BAC 81	56-62	upper saprolite, orange to pink.	Archaean-Mesoproterozoic rocks
FW0040	176847	BAC 81	82-88	lower saprolite grey to purple	Archaean-Mesoproterozoic rocks
FW0041	176848	BAC 82	86-90	lower saprolite	Archaean-Mesoproterozoic rocks

FW0042	176853	BAC 87	24-30	clays sitting above lignite, light orange to brown	Pidinga Formation
FW0043	176854	BAC 88	22-28	clays sitting above lignite zone, at the water table	Pidinga Formation
FW0044	176855	BAC 89	18-22	clays sitting above lignite zone	Pidinga Formation
FW0045	176919	BAC 93	68-77	granite/pegmatite, large pink feldspar crystals	Hiltaba Suite
FW0046	176928	BAC 98	24-28	yellow grey sands sitting above red sandy unit	Ooldea Sand
FW0047	176856	BAC 90	42-46	basal sands, orange to yellow, medium to coarse grains.	Ooldea Sand
FW0048	176856	BAC 90	46-52	basal sands, very coarse grained, pebbles	Ooldea Sand
FW0049	176856	BAC 90	52-55	pegmatite	Hiltaba Suite
FW0050	951	CHUNDIE SWAMP 36	18.1-19	carbonaceous sands, silts and lignites	Pidinga Formation
FW0051	176197	THRAB 01	28-32	pulp sample, gneiss	Hiltaba Suite
FW0052	176197	THRAB 01	32-35	pulp sample, gneiss	Hiltaba Suite
FW0053	131267	602 47	19.94-20.15	sand and lignite interbeds	Pidinga Formation, Palaeoproterozoic- Mesoproterozoic rocks
FW0054	131267	602 47	20.9-21.25	sand and lignite interbeds	Pidinga Formation, Palaeoproterozoic- Mesoproterozoic rocks
FW0055	131267	602 47	29.5-30	sand, coarse, weathered granite	Pidinga Formation, Palaeoproterozoic- Mesoproterozoic rocks
FW0056	131267	602 47	30.5-31	sand, coarse, weathered granite	Pidinga Formation, Palaeoproterozoic- Mesoproterozoic rocks
4461775	951	CHUNDIE SWAMP 36	61.8-62.15	oxidized sands, orange brown	Pidinga Formation, Palaeoproterozoic- Mesoproterozoic rocks
4461776	951	CHUNDIE SWAMP 36	65.9-66.15	saprolitic clays, weathered basement	Palaeoproterozoic- Mesoproterozoic rocks

-	- 1				1
446177	131264	602 44	12.0-14.0	pale brown, fine grained sands	Pidinga Formation
446178	131264	602 44	22.75-23	weathered basement, mottled	Palaeoproterozoic-
				purplish yellow red saprolite	Mesoproterozoic rocks
446179	131264	602 44	14.0-16.0	pale brown, fine grained sands	Pidinga Formation
446180	131264	602 44	22-22.75	weathered basement, mottled	Palaeoproterozoic-
				purplish yellow red saprolite	Mesoproterozoic rocks
446181	131264	602 44	16.0-18.0	orange, f-grained unconsolidated, becoming clayey at the base. Fe- oxide staining	Pidinga Formation
446182	131264	602 44	18.92-21	orange, f-grained unconsolidated, becoming clayey at the base. Fe- oxide staining	Pidinga Formation
446183	131264	602 44	29.75-30	weathered basement, mottled purplish yellow red saprolite	Palaeoproterozoic- Mesoproterozoic rocks
446184	131268	602 54	16.0-17.0	light brown to orange brown, slightly silty, fine grained. well sorted and unconsolidated`	Pidinga Formation
446185	131268	602 54	17.0-19.0	light brown to orange brown, slightly silty, fine grained. well sorted and unconsolidated`	Pidinga Formation
446186	131268	602 54	20.8-22	off white silts, calcrete nodules. band of orange sands and clays	Pidinga Formation, Palaeoproterozoic- Mesoproterozoic rocks
446187	131268	602 54	26.5-26.7	off white silts, calcrete nodules. band of orange sands and clays	Pidinga Formation, Palaeoproterozoic- Mesoproterozoic rocks
446188	131268	602 54	33-33.25	weathered basement. Fe-oxide staining. coarse quartz grains	Palaeoproterozoic- Mesoproterozoic rocks

APPENDIX 6 - ASSAY RESULTS SOUTH AUSTRALIA

		FROM														
	DH_NAME	(m)	TO (m)	SAMPLE ID	Ag	Al	As	Ва	Ca	Cd	Со	Cr	Cs	Cu	Fe	Ga
				UNITS	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
				SCHEME	MA102	MA101	MA102	MA102	MA101	MA102	MA102	MA101	MA102	MA102	MA101	MA102
\geq	DH_NAME	FROM (m)	TO (m)	DETECTION LIMIT	0.2	100	1	0.5	100	0.5	1	10	0.1	1	100	0.2
	BAC 66	52	28	FW0001	<0.2	3300	3	29	200	<0.5	2	<10	<0.1	48	9100	1
\mathbf{O}	BAC 66	58	64	FW0002	<0.2	4500	4	71.5	<100	<0.5	1	50	0.2	38	8800	1
	BAC 67	74	80	FW0003	<0.2	2100	5	27	<100	<0.5	1	<10	<0.1	30	13300	0.6
S	BAC 67	90	98	FW0004	<0.2	97300	3	791	<100	<0.5	2	50	3.1	25	21700	29.6
	BAC 68	76	80	FW0005	<0.2	2200	2	44	<100	<0.5	<1	<10	<0.1	22	7700	0.6
	BAC 68	94	99	FW0006	<0.2	127000	8	917	10300	<0.5	3	20	6.1	19	10900	30.2
J					<0.2	81000	<1	1700	2000	<0.5	1	50	2.8	22	10500	11.8
	BAC 68	98.5	99	FW0007	<0.2	37100	7	403	300	<0.5	1	90	1	42	12300	17.2
0	BAC 69	100	104	FW0008	<0.2	135000	5	385	3000	<0.5	10	20	1.6	63	25800	32
S	BAC 69	68	72	FW0009	<0.2	5100	20	287	<100	<0.5	<1	180	<0.1	12	35100	0.6
	BAC 70	72	76	FW0010	<0.2	65500	13	252	400	<0.5	1	90	1.8	33	134000	23.6
) (BAC 70	72	76	FW0011	<0.2	40800	<1	258	10200	<0.5	40	40	0.8	55	263000	12.6
	BAC 70	106	112	FW0012	<0.2	14300	9	45.5	<100	<0.5	<1	<10	0.1	5	11400	2.6
	BAC 71	54	58	FW0013	<0.2	36200	54	175	200	<0.5	2	130	0.5	17	63900	14.2
	BAC 71	74	78	FW0014	<0.2	114000	3	360	1500	<0.5	5	20	0.8	57	69900	29.8
-	BAC 71	106	112	FW0015	<0.2	6300	14	43.5	<100	<0.5	<1	90	0.1	7	17500	2
	BAC 72	70	74	FW0016	<0.2	125000	7	250	300	<0.5	132	20	3.4	329	12100	37.6
	BAC 72	80	90	FW0017	<0.2	80900	<1	130	400	<0.5	6	40	670	18	4600	25.8
	BAC 72	93	94	FW0018	<0.2	22500	11	80	200	<0.5	4	40	1.5	23	21500	7.4
	BAC 73	76	80	FW0019	<0.2	49000	3	117	<100	<0.5	1	20	1.3	30	10900	17.8
	BAC 74	78	82	FW0020	<0.2	80700	<1	105	<100	<0.5	8	110	1	94	24200	18.6

				-												
	BAC 74	82	90	FW0021	<0.2	89200	2	225	200	<0.5	10	<10	1.2	29	30900	21.6
	BAC 74	90	100	FW0022	<0.2	8200	2	76.5	<100	<0.5	1	130	0.2	15	9600	2.6
	BAC 75	74	78	FW0023	<0.2	71100	2	220	<100	<0.5	7	40	1.1	57	16100	15.6
	BAC 75	78	86	FW0024	<0.2	98200	8	839	200	<0.5	19	90	2	78	11200	24.2
	BAC 75	86	92	FW0025	<0.2	6400	17	35.5	<100	<0.5	2	40	0.1	31	103000	4.2
	BAC 76	78	84	FW0026	<0.2	76900	4	204	<100	<0.5	4	90	2.5	35	23600	26.6
	BAC 76	84	90	FW0027	<0.2	8800	4	67	1100	<0.5	1	130	1.8	38	12800	2.6
	BAC 77	38	42	FW0028	<0.2	90100	4	168	200	<0.5	<1	40	0.4	19	26700	22.6
0	BAC 77	42	46	FW0029	<0.2	35000	7	35	<100	<0.5	1	470	1.2	304	42300	13.2
d)	BAC 78	54	58	FW0030	<0.2	99200	10	42.5	500	<0.5	90	2920	1.2	94	64400	20.8
S	BAC 78	58	66	FW0031	<0.2	69200	<1	14.5	6700	<0.5	156	2990	1.3	136	113000	17.6
	BAC 78	68	72	FW0032	<0.2	6100	11	15.5	<100	<0.5	3	130	<0.1	9	15500	1.6
	BAC 79	26	30	FW0033	<0.2	115000	4	74.5	200	<0.5	5	130	0.7	55	32300	26.8
g	BAC 79	30	36	FW0034	<0.2	108000	2	303	<100	<0.5	43	90	6	80	53100	24.2
	BAC 79	36	40	FW0035	<0.2	88400	2	81	200	<0.5	2	110	0.5	30	26000	20.2
Ο	BAC 80	46	50	FW0036	<0.2	84600	2	94	200	<0.5	2	20	0.7	16	9900	19.4
S	BAC 80	50	54	FW0037	<0.2	85900	2	478	1400	<0.5	14	70	1.3	33	48800	21.6
	BAC 80	54	62	FW0038	<0.2	75000	3	224	<100	<0.5	1	40	0.8	187	29200	17.6
Q	BAC 81	56	62	FW0039	<0.2	84700	5	1230	1900	<0.5	35	40	1.5	130	25100	19.8
9	BAC 81	82	88	FW0040	<0.2	95200	3	731	1200	<0.5	7	40	2.5	168	9800	20.6
C	BAC 82	86	90	FW0041	<0.2	82900	18	855	600	<0.5	3	50	2.3	23	10200	27
	BAC 87	24	30	FW0042	0.4	55300	5	474	900	<0.5	82	70	1.9	35	10800	19.2
	BAC 88	22	28	FW0043	<0.2	54100	5	693	500	<0.5	9	50	1.8	26	5000	22
	BAC 89	18	22	FW0044	<0.2	89400	3	1840	4400	<0.5	21	<10	8.2	48	5500	18.2
	BAC 93	68	77	FW0045	<0.2	12600	10	113	400	<0.5	2	50	0.3	25	9300	3
	BAC 98	24	28	FW0046	<0.2	1900	6	40	<100	<0.5	1	<10	0.1	60	24300	1.6
	BAC 90	42	46	FW0047	<0.2	1700	4	56	<100	<0.5	<1	90	0.3	29	9200	0.8
	BAC 90	46	52	FW0048	<0.2	88700	<1	2710	4200	<0.5	2	<10	4.7	29	9100	17.6

	BAC 90	52	55	FW0049	8.8	25500	15	409	1900	<0.5	2	110	0.9	19	13900	5.2
	CHUNDIE SWAMP															
	36	18.1	19	FW0050	<0.2	86600	<1	856	8100	<0.5	6	140	3	115	35700	19.4
	THRAB 01	28	32	FW0051	<0.2	69100	2	303	42800	<0.5	24	160	1.2	55	61300	17.8
	THRAB 01	32	35	FW0052	<0.2	61400	11	96.5	5000	<0.5	9	40	1.6	57	24900	15.6
\geq	602 47	19.94	20.15	FW0053	<0.2	28700	4	112	1400	<0.5	4	250	1.5	6	33700	7.6
	602 47	20.9	21.25	FW0054	<0.2	18500	2	46.5	1300	<0.5	2	<10	2.4	85	13600	4.8
Ō	602 47	29.5	30	FW0055	<0.2	94700	<1	10.5	400	<0.5	5	70	3.5	10	10900	19.4
	602 47	30.5	31	FW0056	<0.2	12100	7	26	500	0.5	13	<10	0.2	15	12500	2.4
Ð	603 47	18.78	19.03	4461773	0.2	26900	16	107	800	<0.5	4	160	0.8	69	13100	8.6
NS NS	604 47	18.14	18.46	4461774	<0.2	86900	<1	68	1700	<0.5	3	20	1.4	114	11400	20.4
	602 36	61.9	62.15	4461775	<0.2	127000	<1	257	600	<0.5	5	70	3.1	45	47800	36.2
a	602 36	65.9	66.15	4461776	<0.2	4600	6	76.5	5500	<0.5	2	<10	0.2	62	9900	1.6
	602 44	12	14	4461777	<0.2	111000	7	86.5	6900	<0.5	5	70	0.3	74	88200	29.6
	602 44	22.75	23	4461778	<0.2	4500	10	50.5	1700	<0.5	2	110	0.2	2	10000	1.8
S S	602 44	14	16	4461779	<0.2	31500	9	85.5	28000	<0.5	2	20	0.4	7	22500	10.4
	602 44	22	22.75	4461780	<0.2	7200	9	86.5	1000	<0.5	2	130	0.3	<1	12000	2.4
Φ	602 44	16	18	4461781	<0.2	7700	12	98	8800	<0.5	2	<10	0.4	11	12100	2.6
Q	602 44	18.92	21	4461782	<0.2	125000	<1	240	700	<0.5	7	160	3.4	40	26300	25.4
<u> </u>	602 44	29.75	30	4461783	<0.2	14000	14	320	300	<0.5	2	20	1	<1	23200	5
0	602 54	16	17	4461784	<0.2	7600	7	151	4900	<0.5	4	130	0.5	9	14900	2.8
	602 54	17	19	4461785	<0.2	6100	35	134	1600	<0.5	4	40	0.3	38	58800	4.6
	602 54	20.8	22	4461786	<0.2	61300	4	193	400	<0.5	2	140	4.5	14	33800	23
	602 54	26.5	26.7	4461787	<0.2	73300	<1	962	10900	<0.5	15	20	2.6	43	22800	20.6
	602 54	33	33.25	4461788	<0.2	73300	<1	962	10900	<0.5	15	20	2.6	43	22800	

	FROM														
DH_NAME	(m)	TO (m)	SAMPLE ID	Hf	In	К	Li	Mg	Mn	Мо	Na	Nb	Ni	Р	Pb
			UNITS	ppm											
			SCHEME	MA102	MA102	MA101	MA102	MA101	MA101	MA102	MA101	MA102	MA102	MA101	MA102
DH_NAME	FROM (m)	TO (m)	DETECTION LIMIT	0.2	0.05	100	0.5	100	2	0.5	100	0.5	5	50	1
BAC 66	52	28	FW0001	1.6	<0.05	300	2.5	<100	104	2	500	3.5	<5	<50	4
BAC 66	58	64	FW0002	1.2	<0.05	400	2.5	<100	84	2.5	600	2.5	<5	<50	3
BAC 67	74	80	FW0003	0.6	<0.05	200	2.5	<100	116	3	300	2	<5	<50	2
BAC 67	90	98	FW0004	5.4	0.1	50800	16	2800	126	1	2600	15.5	<5	100	38
BAC 68	76	80	FW0005	0.6	<0.05	400	4.5	<100	80	1.5	400	2	<5	<50	2
BAC 68	94	99	FW0006	2.6	<0.05	8700	17.5	1700	88	<0.5	18200	13.5	20	2500	28
BAC 68	98.5	99	FW0007	0.2	<0.05	74500	1.5	200	64	2	18000	1	<5	250	47
BAC 69	100	104	FW0008	4	0.1	5100	13.5	500	52	11.5	3300	10.5	10	100	30
BAC 69	68	72	FW0009	5.4	0.1	6600	24	1000	286	1	1800	17	20	700	43
BAC 70	72	76	FW0010	0.8	<0.05	5300	3.5	<100	54	4.5	1100	2	<5	100	17
BAC 70	72	76	FW0011	7	<0.05	5400	13	900	48	22	4100	23	5	300	30
BAC 70	106	112	FW0012	2.2	0.05	4200	5.5	9400	16800	<0.5	1000	6.5	5	500	19
D BAC 71	54	58	FW0013	0.8	<0.05	600	2.5	200	54	2.5	700	2.5	<5	<50	4
BAC 71	74	78	FW0014	2.8	0.05	14500	4.5	400	262	9	4300	8	<5	100	52
BAC 71	106	112	FW0015	3.4	0.1	4800	17.5	700	914	1	2000	14.5	20	450	27
BAC 72	70	74	FW0016	2	<0.05	900	2.5	<100	90	3	600	3	<5	<50	5
BAC 72	80	90	FW0017	6	0.2	5000	34	500	250	1.5	3400	25.5	100	700	26
BAC 72	93	94	FW0018	1	<0.05	80100	3	200	94	1	13400	6.5	<5	100	28
BAC 73	76	80	FW0019	4.4	<0.05	1700	6	200	72	6.5	1300	11	10	50	8
BAC 74	78	82	FW0020	12	<0.05	2400	7	300	90	2	1700	17.5	10	100	10
BAC 74	82	90	FW0021	9.6	0.1	6100	14.5	500	120	1	1700	13	10	100	39
BAC 74	90	100	FW0022	6.2	0.05	11100	29	1100	810	<0.5	2000	13.5	10	100	43

_																
	BAC 75	74	78	FW0023	1.6	<0.05	900	4	<100	70	2.5	600	3.5	5	<50	3
	BAC 75	78	86	FW0024	6	0.05	8100	11.5	700	100	1.5	1600	13	35	100	36
	BAC 75	86	92	FW0025	5.6	0.15	15400	20	1000	80	1	2400	16.5	70	950	86
	BAC 76	78	84	FW0026	1.2	<0.05	600	3.5	<100	62	3	700	2.5	<5	200	6
	BAC 76	84	90	FW0027	16.2	0.05	5800	9	500	156	4.5	2400	27	15	250	22
	BAC 77	38	42	FW0028	1.2	<0.05	1300	3.5	200	66	2	600	3	<5	<50	4
	BAC 77	42	46	FW0029	4.8	<0.05	3800	7.5	500	52	1.5	1500	10	15	200	12
	BAC 78	54	58	FW0030	1.8	<0.05	2900	6	300	52	2	1200	3	20	<50	6
0	BAC 78	58	66	FW0031	2	0.05	1900	5	11900	258	<0.5	5700	4	1070	500	14
(1)	BAC 78	68	72	FW0032	1.8	0.05	1700	12	45300	1870	<0.5	6700	3	1790	200	5
S	BAC 79	26	30	FW0033	0.8	<0.05	200	2	500	56	1	500	1	35	<50	3
Ď	BAC 79	30	36	FW0034	4.4	0.05	2800	10.5	1400	142	1	2100	9	65	300	17
	BAC 79	36	40	FW0035	3.8	0.05	9900	39	5000	422	1.5	2100	6	105	500	27
σ	BAC 80	46	50	FW0036	3.8	<0.05	4300	16	600	76	1.5	1700	10.5	15	250	12
	BAC 80	50	54	FW0037	6.2	<0.05	5800	17	700	78	1	1800	10.5	15	200	15
0	BAC 80	54	62	FW0038	5.2	0.05	10500	22	2000	1930	<0.5	1900	14	20	450	32
S	BAC 81	56	62	FW0039	2.8	<0.05	12000	6.5	600	50	3.5	1600	11	10	100	17
	BAC 81	82	88	FW0040	7.6	0.05	37100	13	5000	742	<0.5	6500	11	25	350	50
A	BAC 82	86	90	FW0041	4	0.05	26800	5	1200	144	1	5200	13	10	200	22
	BAC 87	24	30	FW0042	7	0.1	8000	32.5	1400	42	20	7300	20.5	10	200	46
J	BAC 88	22	28	FW0043	6	0.15	4700	12.5	1000	50	14.5	4100	17	35	100	36
	BAC 89	18	22	FW0044	5.6	0.1	7100	13.5	1400	38	24.5	7900	16.5	15	200	19
	BAC 93	68	77	FW0045	3.6	<0.05	68500	6	300	86	1.5	18100	11	25	250	37
	BAC 98	24	28	FW0046	2	<0.05	900	4.5	400	76	2	800	4.5	<5	<50	8
	BAC 90	42	46	FW0047	0.6	<0.05	600	2.5	<100	82	3	500	1	<5	<50	3
	BAC 90	46	52	FW0048	0.8	<0.05	1600	2	<100	72	1.5	500	1	<5	<50	10
	BAC 90	52	55	FW0049	2	<0.05	119000	3	700	106	<0.5	18700	4.5	<5	300	43

	CHUNDIE SWAMP 36	10.1	10	54/0050	с <i>4</i>	<0.05	10000		1000	004	7	7000	0	00	50	27
·		18.1	19	FW0050	5.4	< 0.05	18600	5.5	1800	284	7	7200	9	20	50	37
-	THRAB 01	28	32	FW0051	5.2	0.05	32200	9	4700	316	1.5	20100	10	10	300	16
	THRAB 01	32	35	FW0052	2.8	0.05	10500	17	21300	1130	2.5	20100	6	25	550	8
	602 47	19.94	20.15	FW0053	3.4	<0.05	4100	30	4300	94	4.5	14200	10.5	35	100	44
\geq	602 47	20.9	21.25	FW0054	6	<0.05	5300	16.5	1500	138	4	5000	10.5	15	50	16
	602 47	29.5	30	FW0055	2	<0.05	6100	15.5	1200	396	2.5	4600	5.5	<5	<50	8
Ō	602 47	30.5	31	FW0056	3	<0.05	3900	70.5	900	74	1.5	3700	12	<5	<50	87
	603 47	18.78	19.03	4461773	1.4	<0.05	1000	5	700	106	2	5000	2.5	40	<50	19
Ο	604 47	18.14	18.46	4461774	3	<0.05	4200	11	1000	114	3	4400	9	15	<50	10
N	602 36	61.9	62.15	4461775	7.8	0.05	4700	28	2000	130	1.5	6600	17	10	<50	36
	602 36	65.9	66.15	4461776	6.4	0.1	24400	18	2000	1250	1	4900	18.5	10	200	107
al	602 44	12	14	4461777	1.2	<0.05	1900	4	700	104	13	600	3	<5	<50	233
	602 44	22.75	23	4461778	6.6	<0.05	2800	13	1300	56	4	4300	14	25	950	29
	602 44	14	16	4461779	1.2	<0.05	1700	3.5	500	90	3	500	2.5	<5	<50	24
S	602 44	22	22.75	4461780	2.6	<0.05	3200	6	1500	130	2	1300	4.5	10	100	14
Ľ	602 44	16	18	4461781	1.6	<0.05	3000	3.5	1100	98	7.5	700	4	5	<50	136
Ð	602 44	18.92	21	4461782	1.4	<0.05	3600	4	1600	88	3	800	3.5	<5	<50	18
0	602 44	29.75	30	4461783	3.8	0.15	21600	16.5	3000	308	1	5600	4.5	10	200	4
	602 54	16	17	4461784	3.8	<0.05	14100	3.5	500	120	4	1100	7	<5	<50	13
0	602 54	17	19	4461785	1.8	<0.05	5800	3.5	1100	90	4.5	800	3.5	<5	<50	17
	602 54	20.8	22	4461786	1	<0.05	8800	2	300	92	23	1200	3	<5	50	55
	602 54	26.5	26.7	4461787	4.6	<0.05	21600	13	3000	114	4	2600	4	<5	100	9
	602 54	33	33.25	4461788	6	0.05	31300	40	9800	732	<0.5	16100	10.5	45	250	18

ĺ		FROM														
	DH_NAME	(m)	TO (m)	SAMPLE ID	Rb	Re	S	Sc	Se	Sn	Sr	Та	Те	Th	Ti	τι
				UNITS	ppm											
				SCHEME	MA102	MA102	MA101	MA102	MA101	MA102						
	DH_NAME	FROM (m)	TO (m)	DETECTION LIMIT	0.2	0.1	50	2	5	0.1	0.5	0.1	0.2	0.1	50	0.1
	BAC 66	52	28	FW0001	1.6	<0.1	250	<2	<5	0.8	7	0.3	<0.2	2.2	900	<0.1
	BAC 66	58	64	FW0002	2.2	<0.1	200	<2	<5	0.7	8.5	0.2	<0.2	1.8	650	<0.1
Ο	BAC 67	74	80	FW0003	1	<0.1	200	<2	<5	0.6	6.5	0.1	<0.2	1.8	350	<0.1
	BAC 67	90	98	FW0004	185	<0.1	2050	16	<5	5.5	73.5	0.8	<0.2	17.5	3000	0.6
Ð	BAC 68	76	80	FW0005	1	<0.1	500	<2	<5	0.6	6.5	0.1	<0.2	1.1	450	<0.1
S	BAC 68	94	99	FW0006	74.8	<0.1	1750	16	<5	3.4	2500	1.1	<0.2	6.5	6700	0.4
	BAC 68	98.5	99	FW0007	210	<0.1	700	<2	<5	1	377	0.2	<0.2	1.9	250	0.9
a	BAC 69	100	104	FW0008	15.6	<0.1	8350	12	<5	2	83	0.9	<0.2	11.6	3450	<0.1
5	BAC 69	68	72	FW0009	46	<0.1	3850	30	<5	4	212	1.3	<0.2	16.6	6950	0.3
	BAC 70	72	76	FW0010	2.8	<0.1	10500	<2	<5	0.9	11	0.2	<0.2	0.9	300	<0.1
Š	BAC 70	72	76	FW0011	28.2	<0.1	5600	14	<5	3.7	112	1.7	<0.2	33.9	7100	0.1
Ľ	BAC 70	106	112	FW0012	27.2	<0.1	550	28	<5	3.6	37.5	0.6	<0.2	12.1	2600	0.2
Φ	BAC 71	54	58	FW0013	3	<0.1	250	<2	<5	1	20	0.2	<0.2	2.1	600	<0.1
0	BAC 71	74	78	FW0014	13.4	<0.1	33500	8	<5	1.8	70	0.6	<0.2	5.7	2500	0.3
	BAC 71	106	112	FW0015	27.6	<0.1	7850	16	<5	3.8	64	0.9	<0.2	8.6	6500	0.4
0	BAC 72	70	74	FW0016	2.6	<0.1	1450	<2	<5	1.1	12.5	0.3	<0.2	5.7	950	<0.1
Ш	BAC 72	80	90	FW0017	86	<0.1	5300	18	<5	2.8	242	15.8	<0.2	20.5	3500	1.3
	BAC 72	93	94	FW0018	2640	<0.1	1100	<2	<5	0.7	17	2.3	<0.2	0.3	<50	15.9
	BAC 73	76	80	FW0019	13	<0.1	600	4	<5	1.8	22.5	1.2	<0.2	7.8	3250	0.1
	BAC 74	78	82	FW0020	13.8	<0.1	550	8	<5	3.1	22.5	1.1	<0.2	5.7	8000	<0.1
	BAC 74	82	90	FW0021	30	<0.1	4250	10	<5	2.5	16	0.9	<0.2	11.6	3350	0.2
	BAC 74	90	100	FW0022	59	<0.1	1000	10	<5	3.4	12	0.8	<0.2	20.6	3200	0.3

-		0		1		0		1	0							
	BAC 75	74	78	FW0023	5	<0.1	200	<2	<5	1.1	6	0.2	<0.2	3	950	<0.1
	BAC 75	78	86	FW0024	37.6	<0.1	8550	10	<5	3.7	21.5	1	<0.2	21.7	3450	0.2
	BAC 75	86	92	FW0025	71.4	<0.1	4400	20	<5	4.7	255	1.1	<0.2	29.2	3950	1
	BAC 76	78	84	FW0026	3	<0.1	1300	2	5	0.6	5.5	0.2	<0.2	7	800	<0.1
	BAC 76	84	90	FW0027	35	<0.1	1400	16	<5	4.8	46.5	1.9	<0.2	16.4	10200	0.2
	BAC 77	38	42	FW0028	13	<0.1	150	<2	<5	1	11	0.2	<0.2	2.6	950	<0.1
	BAC 77	42	46	FW0029	19	<0.1	300	12	<5	2.3	28.5	0.6	<0.2	10.4	4400	<0.1
	BAC 78	54	58	FW0030	16.4	<0.1	600	6	<5	1.1	4.5	0.4	<0.2	5.9	1800	<0.1
Ο	BAC 78	58	66	FW0031	12.8	<0.1	550	126	<5	1.2	27.5	0.4	0.2	0.9	7750	<0.1
(1)	BAC 78	68	72	FW0032	9	<0.1	550	40	<5	1	31	0.2	<0.2	0.6	6300	<0.1
S	BAC 79	26	30	FW0033	1.2	<0.1	150	4	<5	0.4	3.5	<0.1	<0.2	1.5	550	<0.1
5	BAC 79	30	36	FW0034	16	<0.1	600	14	<5	2.3	69.5	0.5	<0.2	9.9	5250	<0.1
	BAC 79	36	40	FW0035	91.6	<0.1	500	16	<5	1.4	68	0.4	<0.2	6.3	3150	0.6
σ	BAC 80	46	50	FW0036	34	<0.1	950	10	<5	2.2	34.5	1	<0.2	15.2	4600	0.1
	BAC 80	50	54	FW0037	46.8	<0.1	650	10	<5	2.1	50.5	0.7	<0.2	15.6	2700	0.2
0	BAC 80	54	62	FW0038	74.4	<0.1	2250	12	<5	2.6	52	0.9	<0.2	28.9	3250	0.4
S	BAC 81	56	62	FW0039	64.4	<0.1	550	6	<5	2	27.5	0.7	<0.2	26.1	1650	0.2
	BAC 81	82	88	FW0040	161	<0.1	600	10	<5	2.1	130	0.5	<0.2	82.8	2750	0.6
A	BAC 82	86	90	FW0041	126	<0.1	1450	12	<5	3	83.5	0.6	<0.2	22.2	3700	0.6
	BAC 87	24	30	FW0042	37	<0.1	6000	20	15	3.3	88.5	1.6	<0.2	23.4	6450	0.2
C	BAC 88	22	28	FW0043	27.4	0.4	9750	36	20	2.8	60	1.3	<0.2	52.8	5000	3.3
	BAC 89	18	22	FW0044	28	<0.1	9600	20	15	2.9	86.5	1.3	<0.2	20.7	5300	1.2
	BAC 93	68	77	FW0045	263	<0.1	1900	8	<5	1.7	235	0.9	<0.2	15.7	2650	1.2
	BAC 98	24	28	FW0046	4.2	<0.1	350	2	<5	1	11.5	0.3	<0.2	3.1	1800	<0.1
	BAC 90	42	46	FW0047	2.2	<0.1	350	<2	<5	0.5	4.5	<0.1	<0.2	1.6	350	<0.1
	BAC 90	46	52	FW0048	4.4	<0.1	750	<2	<5	0.6	5	<0.1	<0.2	1.1	400	<0.1
	BAC 90	52	55	FW0049	191	<0.1	300	4	<5	1	321	0.4	<0.2	6.8	1450	1

	CHUNDIE SWAMP 36	18.1	19	FW0050	55.4	<0.1	10100	4	<5	1.4	77	0.7	0.6	7.5	3150	0.3
•	THRAB 01	28	32	FW0051	125	<0.1	6650	20	<5	2.7	199	0.7	<0.2	11.1	4800	0.5
	THRAB 01	32	35	FW0052	44.4	<0.1	3250	30	<5	1.7	129	0.5	<0.2	7.2	5750	0.2
	602 47	19.94	20.15	FW0053	22.2	<0.1	41600	6	<5	2.3	89.5	0.8	<0.2	11.4	3150	0.2
>	602 47	20.9	21.25	FW0054	23.2	<0.1	29000	4	<5	2	31.5	0.9	<0.2	7.1	2950	0.3
	602 47	29.5	30	FW0055	34.8	<0.1	8300	4	<5	1.5	26	0.6	<0.2	3.8	1000	0.2
Ō	602 47	30.5	31	FW0056	46.4	<0.1	4450	8	<5	2.1	7.5	1.1	<0.2	14.7	600	1.6
	603 47	18.78	19.03	4461773	4.4	0.2	5450	<2	<5	0.7	10	0.2	<0.2	1.1	900	0.4
Ο	604 47	18.14	18.46	4461774	17.4	0.5	7250	4	<5	1.4	24	0.7	<0.2	4	2850	1
S	602 36	61.9	62.15	4461775	27.6	<0.1	5550	8	<5	3.6	20.5	1	<0.2	12.3	5000	0.3
	602 36	65.9	66.15	4461776	124	<0.1	3700	18	<5	4.7	19	1.3	<0.2	32.1	3950	0.6
a	602 44	12	14	4461777	7.4	<0.1	200	<2	<5	0.6	20.5	0.2	<0.2	1.6	1200	<0.1
č	602 44	22.75	23	4461778	10.6	<0.1	1450	20	<5	2.1	784	1	<0.2	22.5	4900	<0.1
Ō	602 44	14	16	4461779	6.6	<0.1	150	<2	<5	0.6	14.5	0.2	<0.2	1.6	1000	<0.1
S	602 44	22	22.75	4461780	11.4	<0.1	1000	8	<5	1.2	67	0.4	<0.2	4.1	3850	<0.1
	602 44	16	18	4461781	12.4	<0.1	150	<2	<5	0.8	22	0.3	<0.2	2.2	1650	<0.1
Ð	602 44	18.92	21	4461782	13.8	<0.1	200	<2	<5	0.7	32.5	0.2	<0.2	2.3	1350	<0.1
\bigcirc	602 44	29.75	30	4461783	84.4	<0.1	500	60	<5	1.9	49	0.5	<0.2	3.6	8950	0.3
	602 54	16	17	4461784	47.4	<0.1	150	2	<5	1.3	39.5	0.6	<0.2	5.1	2700	0.2
O	602 54	17	19	4461785	22.6	<0.1	150	<2	<5	0.8	23.5	0.3	<0.2	3.2	1300	0.1
	602 54	20.8	22	4461786	17.8	<0.1	8400	2	<5	0.6	24.5	0.2	<0.2	9.3	1000	<0.1
	602 54	26.5	26.7	4461787	157	<0.1	550	34	<5	1.8	17.5	0.3	<0.2	11	10700	0.5
	602 54	33	33.25	4461788	118	<0.1	250	14	<5	2.9	113	0.6	<0.2	13.4	2800	0.6

ĺ		FROM														
	DH_NAME	(m)	TO (m)	SAMPLE ID	U	V	W	Y	Zn	Zr	La	Ce	Pr	Nd	Sm	Eu
				UNITS	ppm											
				SCHEME	MA102	MA101	MA102									
	DH_NAME	FROM (m)	TO (m)	DETECTION LIMIT	0.1	5	0.5	0.1	2	1	0.1	0.1	0.05	0.05	0.05	0.05
	BAC 66	52	28	FW0001	0.5	10	3.5	1.9	6	52	9.5	13.7	1.05	3.05	0.4	0.05
	BAC 66	58	64	FW0002	0.4	10	2.5	1.8	6	38	12.2	15.6	1.05	2.65	0.45	0.05
Ο	BAC 67	74	80	FW0003	1.2	20	1.5	0.9	6	19	20.3	27.1	1.95	4.55	0.25	<0.05
	BAC 67	90	98	FW0004	1.6	70	3.5	9.2	18	174	39.6	83.9	8.4	29.6	5.05	0.85
θ	BAC 68	76	80	FW0005	0.4	10	1.5	1.3	4	25	17.7	23.2	1.6	3.65	0.35	<0.05
Sr	BAC 68	94	99	FW0006	1.9	110	1.5	21.9	34	93	408	953	85.3	265	37.6	8.9
	BAC 68	98.5	99	FW0007	0.9	20	1	3.5	28	6	10	21	1.6	5.25	0.85	0.85
al	BAC 69	100	104	FW0008	16.2	40	5	11.4	16	133	24.8	51.1	6.5	24.7	5.1	1.1
	BAC 69	68	72	FW0009	2.8	115	1	21.3	52	192	163	275	37.1	130	19.2	4.1
	BAC 70	72	76	FW0010	0.7	15	1.5	3.9	8	21	7.6	10.2	0.8	1.95	0.45	0.1
S S	BAC 70	72	76	FW0011	7.2	80	3	16.7	22	259	63.4	90.7	11.2	35.5	6.15	1.35
Ľ	BAC 70	106	112	FW0012	2.1	160	<0.5	17.9	104	88	69.2	147	7.75	21.4	2.95	0.8
Ð	BAC 71	54	58	FW0013	0.4	15	2	2	8	26	18	25.1	1.85	4.65	0.55	0.1
\mathbf{O}	BAC 71	74	78	FW0014	2.1	50	2	6.1	16	105	28.6	39	3.75	11.6	1.75	0.35
	BAC 71	106	112	FW0015	1.5	105	1	9.6	48	122	67.2	103	12.6	38.9	6.55	1.65
0	BAC 72	70	74	FW0016	0.6	60	2	2.6	8	76	21.1	27.8	1.95	4.9	0.55	0.1
ш	BAC 72	80	90	FW0017	12.4	125	1	70.3	34	122	184	289	57.4	222	37.5	8
	BAC 72	93	94	FW0018	0.8	<5	<0.5	2.9	32	8	3.5	5.4	0.75	2.7	0.6	0.1
	BAC 73	76	80	FW0019	1.7	40	5	7.8	20	152	20.3	28.6	3.75	12.8	2.2	0.45
	BAC 74	78	82	FW0020	2.5	45	4.5	9	16	446	32.8	22.6	6	19.4	3.25	0.75
	BAC 74	82	90	FW0021	2.7	40	3	8.2	26	321	22.5	47.8	3.9	12.6	2.15	0.45
	BAC 74	90	100	FW0022	2.6	45	2.5	18.6	38	205	51.6	155	12.4	42.5	8.05	1.65

_																
	BAC 75	74	78	FW0023	0.6	10	2	3.4	8	50	9.3	14.2	1.35	4.1	0.65	0.1
	BAC 75	78	86	FW0024	4.6	40	4	8.1	16	194	37.5	89.8	7.65	25.1	3.9	0.7
	BAC 75	86	92	FW0025	8.6	55	5	61.1	48	182	274	757	77.5	294	53.7	11.8
	BAC 76	78	84	FW0026	2	60	2	1.5	14	44	4.2	8.1	0.85	3.15	0.55	0.1
	BAC 76	84	90	FW0027	3.3	95	3	15.7	24	537	55.6	58.5	11.8	38.3	6.8	1.65
	BAC 77	38	42	FW0028	0.7	25	2.5	2.8	8	43	5.9	7.7	0.9	3.1	0.55	0.1
	BAC 77	42	46	FW0029	1.8	60	2	15.7	38	172	47.5	92.9	15	54.8	10.3	2.3
	BAC 78	54	58	FW0030	1	90	3	6	16	53	4.1	4.7	0.65	2.3	0.5	0.1
0	BAC 78	58	66	FW0031	2.9	230	1.5	54.8	160	56	242	296	90.7	324	55.2	12
()	BAC 78	68	72	FW0032	0.7	190	1	78.7	154	51	81.2	57.7	16	65.7	13.9	4.45
S	BAC 79	26	30	FW0033	0.4	35	1	2.6	10	26	9.1	11.8	3.05	11	1.9	0.4
Ď	BAC 79	30	36	FW0034	1	105	1.5	9.5	34	150	50.2	46.4	10.5	33.2	5.2	1.35
	BAC 79	36	40	FW0035	1.6	90	2	40.4	150	129	40	141	11.9	48	9.45	2.5
J	BAC 80	46	50	FW0036	1.5	110	3.5	9.6	18	132	43.6	46.9	8.1	28.2	4.55	1
	BAC 80	50	54	FW0037	1.7	65	2.5	21.7	18	207	35.4	66.1	7.85	28.9	5.2	1.1
0	BAC 80	54	62	FW0038	2.2	80	1.5	28.2	64	172	60.1	109	14.9	52.5	9.45	1.75
S	BAC 81	56	62	FW0039	1.4	35	2.5	13.1	16	85	54.3	78.4	10	31.9	5.85	0.8
	BAC 81	82	88	FW0040	4.1	45	1	78	70	265	211	443	53.4	190	33.1	6.8
H	BAC 82	86	90	FW0041	8.6	60	3	27.4	18	134	74.2	167	19.9	69.7	13.1	2.6
	BAC 87	24	30	FW0042	18.9	60	3.5	23.7	14	236	46.2	87.5	12.6	47.2	11.6	2.5
JC	BAC 88	22	28	FW0043	75.8	40	3	13.2	12	201	31.5	48.3	6.45	23.2	4.9	1.05
	BAC 89	18	22	FW0044	29.1	55	3	18.4	12	199	37.9	68.2	9.1	34.4	7.95	1.75
	BAC 93	68	77	FW0045	10.3	25	3.5	26.1	12	120	53.5	111	12.9	42.1	7.6	2.2
	BAC 98	24	28	FW0046	1.1	20	2.5	3.3	12	67	5.2	8.7	1.05	3.9	0.85	0.2
	BAC 90	42	46	FW0047	0.8	15	2	1.2	6	21	2.5	4	0.45	1.5	0.25	<0.05
	BAC 90	46	52	FW0048	0.6	<5	<0.5	1	4	28	2.6	4.1	0.45	1.6	0.25	0.05
	BAC 90	52	55	FW0049	1.7	15	1	10	12	68	30.5	61.1	6.4	22.6	3.9	1.65

	CHUNDIE SWAMP															
	36	18.1	19	FW0050	3.2	35	1	6.9	16	188	12.9	24.4	2.7	9.5	1.8	0.35
	THRAB 01	28	32	FW0051	2.6	120	3.5	23	34	170	23.5	44.5	4.85	17.4	3.35	0.75
	THRAB 01	32	35	FW0052	1.6	150	2.5	34.6	76	90	21.8	46.7	5.75	23.2	5.45	1.5
	602 47	19.94	20.15	FW0053	5.6	40	1.5	19	48	118	25.6	50.7	6.3	22.4	4.05	0.95
\geq	602 47	20.9	21.25	FW0054	1.9	20	1	10.2	16	204	13.9	25.7	3.1	10.9	2.05	0.4
	602 47	29.5	30	FW0055	2.2	10	<0.5	13.4	10	59	7.4	18	1.7	6.2	1.3	0.25
Ō	602 47	30.5	31	FW0056	1.7	<5	<0.5	10.9	18	54	5.3	42.7	1.1	3.85	1.05	0.15
	603 47	18.78	19.03	4461773	3.6	<5	<0.5	2.2	10	46	2.5	5.1	0.6	2.2	0.45	0.05
O	604 47	18.14	18.46	4461774	22.8	15	1	6.3	10	106	10.6	21.4	2.5	9.45	1.8	0.35
NS NS	602 36	61.9	62.15	4461775	2.2	40	<0.5	6.7	20	308	5.6	39	0.9	2.9	0.6	0.15
	602 36	65.9	66.15	4461776	2	70	<0.5	4.3	26	226	17.2	476	2.15	5.9	0.9	0.35
a	602 44	12	14	4461777	0.6	15	3.5	1.9	18	51	3	5.9	0.6	2.1	0.4	0.05
	602 44	22.75	23	4461778	2.9	95	1	14.2	22	235	103	199	31	131	24	5.1
	602 44	14	16	4461779	0.6	20	3	1.7	10	35	2.6	7.3	0.55	2	0.4	0.1
S	602 44	22	22.75	4461780	1.2	55	<0.5	3.6	14	88	10.9	18.8	2.2	7.75	1.4	0.35
	602 44	16	18	4461781	0.6	30	2	2.4	28	50	5.1	7.7	0.85	3	0.55	0.1
Φ	602 44	18.92	21	4461782	0.7	30	<0.5	2.8	18	48	5.7	9.2	1.05	3.65	0.7	0.15
Q	602 44	29.75	30	4461783	10	175	1	11	42	130	13.1	23.5	3	11.5	2.4	0.7
<u> </u>	602 54	16	17	4461784	2	80	1	5.5	8	118	12.7	20	2.05	6.9	1.25	0.3
0	602 54	17	19	4461785	1.2	45	<0.5	4.3	6	55	5.6	10.1	1.15	4.15	0.85	0.15
	602 54	20.8	22	4461786	2.5	40	<0.5	2.3	16	38	3.4	6	0.65	2.55	0.5	0.1
	602 54	26.5	26.7	4461787	4.5	185	1	6.2	14	152	11.2	20.1	2.5	9.1	1.7	0.3
	602 54	33	33.25	4461788	2.9	75	<0.5	80	92	187	33.2	40.8	7.7	31	7.25	2.25

		FROM														
	DH_NAME	(m)	TO (m)	SAMPLE ID	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Au	Pd	Pt	WetWt
				UNITS	ppm	ppb	ppb	ppb	grams							
				SCHEME	MA102	FA002	FA002	FA002	PR002							
	DH_NAME	FROM (m)	TO (m)	DETECTION LIMIT	0.2	0.02	0.05	0.02	0.05	0.05	0.05	0.02	1	1	5	1
\langle	BAC 66	52	28	FW0001	0.4	0.08	0.5	0.12	0.35	0.05	0.35	0.04	<1	<1	<5	80
	BAC 66	58	64	FW0002	0.4	0.04	0.35	0.06	0.2	<0.05	0.25	0.04	<1	<1	<5	71
Ο	BAC 67	74	80	FW0003	<0.2	0.02	0.15	0.04	0.1	<0.05	0.15	0.02	<1	<1	<5	66
	BAC 67	90	98	FW0004	4	0.54	2.55	0.4	0.95	0.1	0.85	0.14	<1	<1	<5	54
Ð	BAC 68	76	80	FW0005	0.2	0.04	0.25	0.06	0.15	<0.05	0.2	0.02	2	<1	<5	65
JS	BAC 68	94	99	FW0006	21.6	2.46	11.2	1.5	3.25	0.3	1.85	0.26	<1	<1	<5	64
	BAC 68	98.5	99	FW0007	0.8	0.1	0.65	0.12	0.35	<0.05	0.35	0.06	I.S.	I.S.	I.S.	25
al	BAC 69	100	104	FW0008	3.8	0.6	3.5	0.64	1.95	0.25	2	0.34	2	<1	<5	54
16	BAC 69	68	72	FW0009	13.2	1.64	8.15	1.18	2.85	0.35	2.2	0.3	I.S.	I.S.	I.S.	32
JC	BAC 70	72	76	FW0010	0.4	0.06	0.35	0.08	0.25	0.05	0.2	0.04	<1	<1	<5	55
S(BAC 70	72	76	FW0011	4.6	0.7	4	0.72	2.15	0.3	2.2	0.34	5	<1	<5	48
Ľ	BAC 70	106	112	FW0012	2.8	0.42	2.95	0.64	2.1	0.3	2.45	0.38	<1	<1	<5	62
Ð	BAC 71	54	58	FW0013	0.4	0.06	0.35	0.08	0.2	<0.05	0.25	0.04	5	<1	5	42
0	BAC 71	74	78	FW0014	1.4	0.22	1.35	0.24	0.8	0.1	0.8	0.12	4	<1	<5	44
	BAC 71	106	112	FW0015	4.8	0.66	3.45	0.52	1.25	0.15	0.9	0.12	3	<1	<5	40
.0	BAC 72	70	74	FW0016	0.4	0.08	0.5	0.1	0.35	0.05	0.4	0.06	<1	<1	<5	58
ш	BAC 72	80	90	FW0017	27.8	3.74	19.3	3.16	8.45	1.05	6.65	0.94	3	<1	<5	73
	BAC 72	93	94	FW0018	0.6	0.08	0.5	0.1	0.3	<0.05	0.25	0.04	3	<1	<5	44
	BAC 73	76	80	FW0019	1.8	0.28	1.75	0.34	1	0.15	1.1	0.16	<1	<1	<5	51
	BAC 74	78	82	FW0020	2.6	0.4	2.25	0.4	1.25	0.2	1.35	0.24	2	<1	<5	59
	BAC 74	82	90	FW0021	1.8	0.28	1.65	0.34	1.2	0.15	1.1	0.22	2	<1	<5	71
	BAC 74	90	100	FW0022	6.4	0.9	4.6	0.72	1.9	0.25	1.7	0.26	<1	<1	<5	78

-		1		n	1			-	-	1	-	-	-	-		
	BAC 75	74	78	FW0023	0.6	0.1	0.65	0.14	0.4	0.05	0.45	0.06	3	<1	<5	48
	BAC 75	78	86	FW0024	3	0.38	1.95	0.32	1	0.1	1	0.14	<1	<1	<5	78
	BAC 75	86	92	FW0025	47.2	5.8	25.2	3.36	7	0.7	4	0.52	8	<1	<5	44
	BAC 76	78	84	FW0026	0.4	0.06	0.35	0.06	0.2	<0.05	0.2	0.04	3	<1	<5	61
	BAC 76	84	90	FW0027	5.2	0.76	4.1	0.7	2.05	0.35	2.15	0.36	3	<1	<5	57
	BAC 77	38	42	FW0028	0.4	0.08	0.6	0.12	0.3	0.05	0.35	0.06	3	<1	<5	38
	BAC 77	42	46	FW0029	7	0.94	5.05	0.82	2.25	0.3	2.1	0.3	4	<1	5	42
	BAC 78	54	58	FW0030	0.6	0.12	1.05	0.22	0.75	0.1	0.75	0.1	15	4	5	44
0	BAC 78	58	66	FW0031	30.8	3.76	17.9	2.64	6.6	0.8	5.55	0.76	<1	3	<5	63
(1)	BAC 78	68	72	FW0032	16.2	2.22	12.8	2.44	6.95	0.9	5.75	0.9	3	6	10	44
Se	BAC 79	26	30	FW0033	1	0.14	0.75	0.12	0.3	<0.05	0.3	0.04	4	<1	<5	36
Ď	BAC 79	30	36	FW0034	4.2	0.56	2.85	0.46	1.15	0.15	0.95	0.14	3	3	<5	38
	BAC 79	36	40	FW0035	8.8	1.24	7.5	1.46	4.5	0.6	4.1	0.66	I.S.	I.S.	I.S.	35
g	BAC 80	46	50	FW0036	3.4	0.42	2.25	0.38	1.1	0.15	1	0.14	4	<1	<5	37
	BAC 80	50	54	FW0037	4.4	0.64	3.85	0.76	2.4	0.4	2.4	0.4	6	3	<5	37
0	BAC 80	54	62	FW0038	7.8	1	5.55	1.02	2.95	0.4	2.8	0.42	4	<1	<5	43
S	BAC 81	56	62	FW0039	4.8	0.62	3.15	0.5	1.3	0.15	1.25	0.18	4	<1	5	45
	BAC 81	82	88	FW0040	26.4	3.42	17.8	3.08	8.9	1.2	8.45	1.4	3	<1	<5	40
O	BAC 82	86	90	FW0041	10.4	1.38	7.1	1.12	2.9	0.35	2.5	0.38	2	<1	<5	37
	BAC 87	24	30	FW0042	8.6	1.34	7.95	1.36	4.15	0.6	4.5	0.68	6	3	<5	52
C	BAC 88	22	28	FW0043	3.8	0.6	3.45	0.62	1.95	0.25	1.95	0.3	5	3	10	46
	BAC 89	18	22	FW0044	5.8	0.94	5.65	0.98	2.95	0.4	3.05	0.46	5	<1	<5	45
	BAC 93	68	77	FW0045	6.2	0.96	5.5	0.98	2.9	0.4	2.45	0.38	<1	<1	<5	76
	BAC 98	24	28	FW0046	0.8	0.16	1.05	0.22	0.7	0.1	0.7	0.12	3	4	<5	58
	BAC 90	42	46	FW0047	0.2	0.04	0.25	0.04	0.15	<0.05	0.15	0.02	3	1	<5	45
	BAC 90	46	52	FW0048	0.2	0.04	0.2	0.04	0.1	<0.05	0.15	0.02	<1	<1	<5	69
	BAC 90	52	55	FW0049	3	0.42	2.4	0.42	1.2	0.15	1.05	0.16	2	2	5	48

	CHUNDIE SWAMP														_	
	36	18.1	19	FW0050	1.4	0.24	1.5	0.28	0.95	0.15	1.1	0.18	79	<1	<5	53
	THRAB 01	28	32	FW0051	3.2	0.46	2.75	0.54	1.65	0.25	1.7	0.28	5	1	<5	37
	THRAB 01	32	35	FW0052	6	1	6.45	1.3	3.95	0.55	3.55	0.54	2	1	<5	64
	602 47	19.94	20.15	FW0053	3.8	0.58	3.45	0.68	2.1	0.25	1.8	0.28	<1	1	<5	132
\geq	602 47	20.9	21.25	FW0054	1.8	0.3	1.9	0.38	1.2	0.2	1.35	0.2	<1	<1	<5	149
	602 47	29.5	30	FW0055	1.4	0.26	2	0.44	1.55	0.25	1.8	0.28	<1	<1	<5	147
Ō	602 47	30.5	31	FW0056	1	0.26	2.2	0.5	1.4	0.25	1.9	0.28	<1	1	<5	112
	603 47	18.78	19.03	4461773	0.4	0.06	0.45	0.08	0.25	<0.05	0.3	0.04	<1	<1	<5	218
Ð	604 47	18.14	18.46	4461774	1.4	0.22	1.4	0.26	0.8	0.15	0.8	0.12	<1	1	<5	207
NS NS	602 36	61.9	62.15	4461775	0.6	0.14	1.1	0.26	1.05	0.15	1.1	0.22	<1	1	<5	69
	602 36	65.9	66.15	4461776	0.8	0.1	0.8	0.16	0.65	0.15	0.95	0.18	<1	<1	<5	126
al	602 44	12	14	4461777	0.4	0.06	0.35	0.08	0.25	<0.05	0.3	0.04	<1	<1	<5	73
	602 44	22.75	23	4461778	12.8	1.4	6	0.84	2.05	0.25	1.65	0.24	<1	<1	<5	160
Z	602 44	14	16	4461779	0.4	0.06	0.35	0.06	0.2	<0.05	0.25	0.04	<1	<1	<5	146
S	602 44	22	22.75	4461780	1	0.14	0.9	0.16	0.45	0.05	0.55	0.08	<1	<1	<5	102
	602 44	16	18	4461781	0.4	0.08	0.5	0.1	0.3	<0.05	0.35	0.06	<1	<1	<5	123
Ð	602 44	18.92	21	4461782	0.6	0.08	0.6	0.12	0.35	0.05	0.4	0.06	2	1	<5	115
Q	602 44	29.75	30	4461783	2.4	0.38	2.45	0.5	1.6	0.25	1.9	0.3	<1	<1	<5	215
	602 54	16	17	4461784	1	0.18	1.1	0.22	0.75	0.1	0.85	0.12	<1	1	<5	82
0	602 54	17	19	4461785	0.8	0.12	0.8	0.16	0.5	0.05	0.55	0.08	<1	<1	<5	92
	602 54	20.8	22	4461786	0.4	0.06	0.45	0.1	0.25	<0.05	0.3	0.04	2	<1	<5	175
	602 54	26.5	26.7	4461787	1.4	0.24	1.35	0.26	0.85	0.15	1	0.16	2	1	<5	146
	602 54	33	33.25	4461788	10.4	1.84	12.6	2.78	8.8	1.2	7.85	1.24	<1	1	<5	168

APPENDIX 7 -JORC CODE, 2012 EDITION – TABLE 1 SOUTH AUSTRALIA

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Samples were taken from historical drill cuttings samples. THRAB – Rotary Air Blast BAC – Air Core 602 – Rotary Mud and HQ wireline core Samples were taken by scooping the drill cuttings from the sample bag or chip tray into the new sample bag, often with the aid of a teaspoon. Sample weights are detailed in Appendix 6. Assays were carried out by Bureau Veritas in Adelaide, South Australia. The sample(s) have been digested and refluxed with a mixture of Acids, including: Hydrofluoric, Nitric, Hydrochloric and Perchloric Acids. This extended digest approaches a total digest for many elements however, some refractory minerals are not completely attacked. Al,Ca,Cr,Fe,K,Mg,Mn,Na,P,S,Ti,V have been determined by Inductively Coupled Plasma (ICP) Optical Emission Spectrometry. Ag,As,Ba,Cd,Ce,Co,Cs,Cu,Dy,Er,Eu,Ga,Gd,Hf,Ho,In,La,Li,Lu,Mo,Nb, Nd,Ni,Pb,Pr,Rb,Re,Sc,Se,Sm,Sn,Sr,Ta,Tb,Te,Th,TI,Tm,U,W,Y,Yb,Zn, Zr have been determined by Inductively Coupled Plasma (ICP) Mass Spectrometry. The samples have been analysed by Firing a 40 gm (approx.) portion of the sample. Lower sample weights may be employed for samples with very high sulphide and metal contents. This is the classical fire assay process and will give total separation of Gold, Platinum and Palladium in the sample. (Test Method MC-FA-01) Au,Pd,Pt have been determined by Inductively Coupled Plasma (ICP) Optical Emission Spectrometry. % Passing is the percentage of material passing the sieve using wet sieving techniques75um have been determined fire assay process and will give total separation of material passing the sieve using wet sieving techniques75um have been determined Gravimetrically.
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 North Mining Ltd – Reverse Circulation, drill holes with prefix "BAC-" Loongana Pty Ltd – Rotary Mud and HQ wireline core (target of coring was the lignite units. Drill holes with prefix "602-" and "Chundie Swamp" Equinox Resources NL. – Rotary Air Blast drill holes with

Criteria	JORC Code explanation	Commentary
		prefix_"THRAB"
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 No sample recovery information was reported in historical drilling reports.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Each sample was described in the historical reports. Logged lithology details from historical reports are listed in Appendix 5. Descriptions of samples from Osmond Resources Geologist is also detailed in Appendix 5.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 No formal splitting of historical cuttings was carried out as the sample sizes were limited. Due to limited sample volume of some historical samples, some samples were composited across multiple historical samples. Grain size of the material was appropriate for the sample size.
<i>Quality of assay data and laboratory tests</i>	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The sample(s) have been digested and refluxed with a mixture of Acids, including: Hydrofluoric, Nitric, Hydrochloric and Perchloric Acids. This extended digest approaches a total digest for many elements however, some refractory minerals are not completely attacked. AI,Ca,Cr,Fe,K,Mg,Mn,Na,P,S,Ti,V have been determined by Inductively Coupled Plasma (ICP) Optical Emission Spectrometry. Ag,As,Ba,Cd,Ce,Co,Cs,Cu,Dy,Er,Eu,Ga,Gd,Hf,Ho,In,La,Li,Lu,Mo,Nb, Nd,Ni,Pb,Pr,Rb,Re,Sc,Se,Sm,Sn,Sr,Ta,Tb,Te,Th,TI,Tm,U,W,Y,Yb,Zn, Zr have been determined by Inductively Coupled Plasma (ICP) Mass Spectrometry. The samples have been analysed by Firing a 40 gm

Criteria	JORC Code explanation	Commentary
		 (approx.) portion of the sample. Lower sample weights may be employed for samples with very high sulphide and metal contents. This is the classical fire assay process and will give total separation of Gold, Platinum and Palladium in the sample. (Test Method MC-FA-01) Au,Pd,Pt have been determined by Inductively Coupled Plasma (ICP) Optical Emission Spectrometry. % Passing is the percentage of material passing the sieve using wet sieving techniques75um have been determined Gravimetrically. Laboratory QA/QC samples and duplicates were included within each sample despatch. Laboratory repeats were also conducted on every as part of the laboratory's internal QAQC control. The results from the QA/QC process verified the accuracy of reported results.
<i>Verification of sampling and assaying</i>	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All data is historical and open file data through the South Australian Dept of Energy and Mining (DEM), on the South Australian Resources Information Gateway (SARIG). Including: Open File Envelope No. 8861, Equinox Resources NL, 1997 Open File Envelope No. 3830, Loongana Pty Ltd, 1981 Open File Envelope No. 8851, North Mining Ltd, 1998
<i>Location of data points</i>	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All maps are in GDA2020/MGA zone 53 Locations of historical drill holes reported in this ASX release are detailed in Appendix 5 and Figure 5
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Locations of historical drill holes reported in this ASX release are detailed in Appendix 5 and Figure 5. No geological or grade continuity estimations are being determined from the historical data.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 All drill holes were drilled vertically. Orientation of mineralisation is unknown.
Sample security	The measures taken to ensure sample security.	 Osmond Resources was not present during the handling of the samples and cannot verify sample security. All sample information is from historical reports.

Criteria	JORC Code explanation	Commentary
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	No audits have been carried out.

1.1 Section 2 Reporting of Exploration Results

Criteria	d in the preceding section also apply to this section.) JORC Code explanation	Commentary
<i>Mineral tenement and land tenure status</i>	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Osmond entered into an acquisition agreement with Kimba Resources Pty Ltd (Kimba) (being a wholly owned subsidiary of ASX- listed Investigator Resources Pty Ltd (Investigator)) for EL6603 and EL6604 (together, the Fowler Tenements) in South Australia. Osmond Resources Ltd has informed Kimba Minerals Pty Ltd that it is terminating the acquisition agreement for EL6603 and EL6604. Osmond has entered into an acquisition agreement with Fowler Resources Pty Ltd (Private Company) for EL6692 and EL6615 in South Australia. Osmond Resources Ltd has informed Fowler Resources Pty Ltd that it is terminating the acquisition agreement for EL6692 and EL6615.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Historical exploration work across Osmond Resources' South Australian tenements targeting uranium and coal were undertaken by the following companies: Australasian Mining Corp Ltd, EL 316, 1970, targeting uranium with a total of 65 holes drilled. Pechiney (Australia) Exploration Pty Ltd, EL 9 and EL 10, 1974, targeting uranium with a total of 18 holes drilled. Loongana Pty Ltd, EL 602, 1981, targeting coal with a total of 48 holes drilled Equinox Resources NL, EL1894, 23/11/1993 to 22/11/1998, targeting gold. North Mining Ltd, EL1865 and EL2555, 15/9/93 to 14/9/95 and 28/10/98 to 12/3/99, targeting base metals and gold Lost Sands Pty Ltd and Ellemby Resources Pty Ltd, EL4170, 4/8/2008 to 3/8/2010, targeting mineral sands and base metals. Merritt Mining Ltd, EL2169, 31/05/1996 to 10/02/1998, targeting gold and base metals. Doray Minerlas Ltd, EL5539 and EL5685, 2017, targeting gold. Iluka Resources Ltd, 2003 to 2019, targeting Mineral Sands and base metals

Criteria	JORC Code explanation	Commentary
Geology	 Deposit type, geological setting and style of mineralisation. 	 Fowler exploration targets are: sedimentary hosted uranium roll front style mineralization. Magmatic NiCu sulphides
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Drill hole details for re-assay of historical samples have been tabulated in Appendix 5 of this document.
<i>Data aggregation methods</i>	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No aggregation of assay results were reported. TREO grades are based on stoichiometric conversions from elemental assay results.
Relationship between mineralisati on widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	All drill holes are reported as down hole lengths. True width unknown.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Appropriate maps are located within the body of the release.

Criteria	JORC Code explanation	Commentary
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All holes reviewed by this release are listed in Appendix 5.
<i>Other substantive exploration data</i>	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 All relevant data included in diagrams, tables and the body of the text.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Earn in agreements into EL6615, EL6603, EL6604, EL6692 have been terminated. Yumbarra Project EL6417 will form the focus of South Australian exploration, with regulatory approvals underway for Fixed Loop EM survey over Yumbarra Project targets and Lithogeochem review of historical petrology and geochemical sample assays.