

22nd August 2024

Extensional drilling at Maverick Springs intersects 13.4m at 331.76g/t Silver Equivalent (AgEq)

Laboratory assays confirm extensional hole MR24-186 intersects 41.15m at 126.75g/t AgEq, confirming the presence of high-grade silver mineralisation outside the existing Resource.

Highlights:

- Excellent start to Sun Silver's inaugural drill program with extensional hole MR24-186 intersecting 41.15m at 126.75g/t AgEq from 231.65m down-hole, including:
 - 13.42m at 331.76g/t AgEq (307.57g/t Ag, 0.285g/t Au) from 246.89m down-hole.
- MR24-186 is a step-out hole located 115m beyond historical drill intercepts, confirming that high-grade mineralisation extends to the north-west.
- In addition, drill-hole MR24-188 intersected 54.86m at 83.89g/t AgEq from 193.55m down-hole, including:
 - o 10.67m at 185.50g/t AgEq (154.73g/t Ag, 0.362g/t Au) from 204.22m down-hole; and
 - 4.57m at 257.37g/t AgEq (244.93g/t Ag, 0.146g/t Au)
- Anomalous Antimony readings have also been returned as part of most recent lab assays in MR24-186 and MR24-188, with readings of up to 1,845ppm (0.18%) Sb.
- Historical data reviews identify Antimony (Sb) assay results greater than 10,001ppm (1%) Sb over 1.52m in hole MR08-184.

Sun Silver Limited (ASX Code: **"SS1**") (**"Sun Silver**" or **"the Company**") is pleased to advise that its inaugural drill program at the globally significant Maverick Springs Silver-Gold Project in Nevada, USA (**"Maverick Springs Project**" or **"the Project**") has returned excellent assay results with wide zones of strong silver mineralisation including significant high-grade zones intersected beyond the current Resource.

The first extensional hole **MR24-186** intersected a wide zone of 41.15m grading 126.75g/t AgEq including 13.42m grading 331.76g/t AgEq. The Company's inaugural drilling campaign is currently focused north-west of the current Mineral Resource boundary.

The intercept in the first extensional hole MR24-186 is significant, as it confirms Sun Silver's theory that highgrade mineralisation extends to the north-west beyond the existing Mineral Resource, as indicated by historical data review and geochemical field works.

Sun Silver Limited

1/1 Tully Road, East Perth Western Australia 6004

> info@sunsilver.com.au www.sunsilver.com.au

The Maverick Springs Project – which is located proximal to the prolific Carlin Trend, known for low-cost mining and processing – hosts a JORC Inferred Mineral Resource of 125.4Mt grading 43.5g/t Ag and 0.34g/t Au for 175.7Moz of contained silver and 1.37Moz of contained gold (292Moz of contained silver equivalent)¹.

Hole ID	Interval (m)	Ag (g/t)	Au (g/t)	AgEq (g/t)	From (m)	To (m)
MR24-186	41.15	112.15	0.172	126.75	231.65	272.80
incl.						
MR24-186	13.72	307.57	0.285	331.76	246.89	260.60
MR24-188	54.86	63.94	0.235	83.89	193.55	248.41
incl.						
MR24-188	10.67	154.73	0.362	185.50	204.22	214.88
MR24-188	4.57	244.93	0.146	257.37	242.32	246.89

Table 1 – MR24-186 and MR24-188 drill highlights (some values affected by rounding).

Figure 1 – Oblique cross-section of drill intercepts.

¹ Refer to the Company's Replacement Prospectus dated 17 April 2024

200 m

Figure 2 – Plan map of drill hole locations and proposed extensions.

MR24-188 was drilled as a twin hole of historic 2006 drill-hole MR06-167. The latest hole recorded a similar interval 55m in length vs the 54.86m length in historic hole MR06-167² from 193.55m and 202.69m depth respectively.

The total average intercept grade of 83.9g/t AgEq in MR24-188 is lower than the ~324g/t average AgEq in MR06-167. Sun Silver geologists believe that the high-grade intercept in the historic hole may be from a high-grade vein which likely has a small spatial influence or a different orientation and was therefore not intercepted in the twin hole. The validation and analysis of historic drill-holes at the Maverick Springs Project remains ongoing.

² Refer to the Company's Replacement Prospectus dated 17 April 2024

Antinomy (Sb) – High-Priority Critical Mineral for United States of America

Over the course of the past few months, Sun Silver has continued to obtain and review further historical data from the Maverick Springs Project to further define the presence of Antimony, a critical mineral as defined by the United States Geological Survey.

Antimony sulphides stibnite and the oxide stibconite have been identified in drill material and historic petrographic analysis where it is often associated with silver sulphides and gold mineralisation.

Initial investigations into the presence and significance of Antimony at the Maverick Springs has generated compelling results including one reading over 1% Sb (above the lab's high detection limit) within historical drill-hole MR08-184. This intercept is 5m below the current mineralisation model although the majority of anomalous results documented in the table below are within the current mineralisation model. Details of historic and recent drill assay highlights are detailed within Table 2 below:

Era	Hole	From (m)	To (m)	Interval (m)	Sb Avg (ppm)	Sb %
	MR08-181	205.74	254.51	48.77	195	0.02
	MR08-181	257.56	272.80	15.24	2,252	0.23
	MR08-182	228.60	262.13	33.53	788	0.08
	Incl.	239.27	245.36	6.10	2,069	0.21
	MR08-183	196.60	225.55	28.96	177	0.02
2008	Incl.	211.84	217.93	6.10	304	0.03
2008	MR08-184	217.93	233.17	15.24	250	0.03
	MR08-184	269.75	275.84	6.10	246	0.03
	MR08-184	281.94	288.04	6.10	5,575	0.56
	Incl.	281.94	283.46	1.52	>10,000	>1
	MR08-185	205.74	227.08	21.34	160	0.02
	Incl.	207.26	210.31	3.05	293	0.03
	MR24-186	231.65	272.80	41.15	293	0.03
	incl.	246.89	252.98	6.10	960	0.1
2024	MR24-188	193.55	248.41	54.86	155	0.02
	incl.	243.84	248.41	4.57	713	0.07
	MR24-188	257.56	260.60	3.05	993	0.1

Table 2 – Antimony assay results, 2008 and 2024 drilling.

As a result of these initial investigations, the Sun Silver exploration team plan to identify historical core and RC chips for re-assaying and logging focusing on Antinomy and other minerals not previously assayed to investigate the extent of such minerals at the Maverick Springs Project

Antinomy, a critical mineral which plays a vital role in ensuring a more secure and sustainable future. Antinomy has numerous applications in defense, technology and energy, including its use in munitions (military equipment and ammunition), semi-conductors and clean energy storage batteries.

China has recently announced restrictions on the export of Antimony (Sb). China and its allies Russia & Tajikistan account for a total of 90% of world Antimony production.

Within the United States of America (USA), Perpetua Resources Corp. (Nasdaq: PPTA / TSX: PPTA)'s Stibnite Gold Project will provide the only locally mined source of Antimony once in production. Their current production plans will only meet 35% of the USA's demand.

Stibnite Gold project holds proven and probable mineral reserves of 104Mt at 0.064% Sb for 67,442t contained Sb. Project resources include inferred and indicated resource of 132Mt at 0.07% Sb for 93,387t contained Sb and inferred resource of 36Mt at 0.04% Sb for 13,277t contained Sb.³

PPTA has been provided USD\$59.4M in funding via the Defense Production Act Title III to advance its Stibnite Gold project.

Lab Assay & pXRF comparison

Comparison of laboratory assays and portable XRF (pXRF) intervals for first two drill holes results⁴ have also been carried out and show the under-estimation of silver in pXRF which is noticed in both grade and width, and to a lesser extent an underestimation of arsenic grade. Antimony appears to read accurately. Analysis and calibration will remain ongoing.

Result	Hole ID	From (m)	To (m)	Interval (m)	Ag (g/t)	As (g/t)	Sb (g/t)
Assay	MR24-186	231.65	272.8	41.15	112.15	303.1	292.5
Assay	MR24-186	246.89	257.56	10.67	384.51	160.0	679.4
pXRF	MR24-186	246.89	257.56	10.67	118.80	97.10	658.71
Assay	MR24-188	193.55	248.41	54.86	63.94	370.8	155.0
pXRF	MR24-188	193.55	248.41	54.86	26.20	246.00	151

Table 3 - Comparison of intersections between lab assays and portable XRF.

Sun Silver Executive Director, Gerard O'Donovan, said:

"We are thrilled by the exceptional results from our first two holes of our inaugural drill program. The impressive intercepts, particularly in MR24-186, not only extend known high-grade mineralisation to the north-west but also highlight the significant upside potential of this already globally significant project. The discovery of anomalous antimony further enhances the prospectivity of the area, aligning with our strategy to unlock the full value of this asset. These results reaffirm our confidence in the future growth and success of Maverick Springs."

⁴ Refer to the Company's ASX announcement dated 2 August 2024

Maverick Springs Project

Sun Silver's cornerstone asset, the Maverick Springs Project, is located 85km from the fully serviced mining town of Elko in Nevada and is surrounded by several world-class gold and silver mining operations including Barrick's Carlin Mine.

Figure 3 – Sun Silver's Maverick Springs asset location and surrounding operators.

Nevada is a globally recognised mining jurisdiction which was rated as the Number 1 mining jurisdiction in the world by the Fraser Institute in 2022.

The Project, which is proximal to the prolific Carlin Trend, hosts a JORC Inferred Mineral Resource of 125.4Mt grading 43.5g/t Ag and 0.34g/t Au for 175.7Moz of contained silver and 1.37Moz of contained gold (292Moz of contained silver equivalent).

A total of ~200 holes for ~60,000 metres of drilling has been completed at the Project to date, covering an area representing only ~20% of the property.

The deposit itself remains open along strike and at depth, with multiple mineralised intercepts located outside of the current Resource constrained model⁵.

This announcement is authorised for release by the Board of Sun Silver Limited.

ENDS

⁵ Refer to the Company's Replacement Prospectus dated 17 April 2024.

For more information:

Investors: Gerard O' Donovan Executive Director Sun Silver info@sunsilver.com.au Media: Nicholas Read Read Corporate P: +61 419 929 046 E: <u>nicholas@readcorporate.com.au</u>

Forward-looking statements

This announcement may contain certain forward-looking statements, guidance, forecasts, estimates or projections in relation to future matters (**Forward Statements**) that involve risks and uncertainties, and which are provided as a general guide only. Forward Statements can generally be identified by the use of forward-looking words such as "anticipate", "estimate", "will", "should", "could", "may", "expects", "plans", "forecast", "target" or similar expressions and include, but are not limited to, indications of, or guidance or outlook on, future earnings or financial position or performance of the Company. The Company can give no assurance that these expectations will prove to be correct. You are cautioned not to place undue reliance on any forward-looking statements. None of the Company, its directors, employees, agents or advisers represent or warrant that such Forward Statements will be achieved or prove to be correct or gives any warranty, express or implied, as to the accuracy, completeness, likelihood of achievement or reasonableness of any Forward Statements due to many important factors, risks and uncertainties. The Company does not undertake any obligation to release publicly any revisions to any "forward-looking statement" to reflect events or circumstances after the date of this announcement, except as may be required under applicable laws.

Competent Person Statement

The Exploration Results reported in this announcement are based on, and fairly represent, information and supporting documentation reviewed, and approved by Mr Brodie Box, MAIG. Mr Box is a geologist and has adequate professional experience with the exploration and geology of the style of mineralisation and types of deposits under consideration to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Box consents to the form and context in which the Exploration Results are presented in this announcement.

Competent Person Statement – Previous Results

The information in this announcement that relates to exploration results or estimates of mineral resources at the Maverick Springs Project is extracted from the Company's Replacement Prospectus dated 17 April 2024 (**Prospectus**) and the ASX announcement dated 2 August 2024 (**Original Announcements**). The Company confirms that it is not aware of any new information or data that materially affects the information contained in the Prospectus or Original Announcement and, in the case of estimates of mineral resources, that all material assumptions and technical parameters underpinning the estimates in the Prospectus continue to apply and have not materially changed.

Appendix 1 – Drill Collar Position

Hole ID	Depth (m)	Easting (m)	Northing (m)	Elevation (m)	Azimuth	Dip	Drill Year
MR24-186	294	644343	4444874	2245	0	-90	2024
MR24-187	178 (incomplete)	644422	4444785	2225	120	-70	2024
MR24-188	268	644426	4444791	2225	0	-90	2024

NAD 83 UTM Zone 11N

Appendix 2– Assay Results

	Hole_ID	From (m)	To (m)	Au ppm	Ag ppm	As ppm	Sb ppm
	MR24-186	0.00	176.78	0.003	0.21	77.60	11.52
>	MR24-186	175.26	176.78	0.012	1.7	23.6	5.41
	MR24-186	176.78	178.31	0.003	0.15	28.7	3.18
	MR24-186	178.31	179.83	0.003	0.15	23.4	1.8
	MR24-186	179.83	181.36	0.004	0.15	22.9	1.57
1)	MR24-186	181.36	182.88	0.0015	0.6	20.4	1.52
5	MR24-186	182.88	184.40	0.0015	0.15	21.8	1.89
	MR24-186	184.40	185.93	0.0015	0.15	56.2	2.07
	MR24-186	185.93	192.02		١	No sample	
Ĭ	MR24-186	192.02	193.55	0.0015	0.15	61.70	6.01
U.	MR24-186	193.55	195.07	0.0015	0.15	145.30	10.89
	MR24-186	195.07	196.60	0.0015	0.15	257.80	3.69
\bigcirc	MR24-186	196.60	198.12	0.0015	0.15	260.10	3.58
S	MR24-186	198.12	199.64	0.0015	0.15	88.80	4.27
ĺ	MR24-186	199.64	201.17	0.0015	0.15	143.90	3.51
D	MR24-186	201.17	202.69	0.0015	0.15	128.20	3.95
\bigcirc	MR24-186	202.69	204.22	0.003	0.15	58.10	3.03
	MR24-186	204.22	205.74	0.0015	0.40	69.20	5.22
\bigcirc	MR24-186	205.74	207.26	0.0015	0.15	74.80	1.66
	MR24-186	207.26	208.79	0.0015	0.15	152.10	0.94
_	MR24-186	208.79	210.31	0.0015	0.15	128.10	2.48
	MR24-186	210.31	211.84	0.0015	0.15	91.70	1.96
	MR24-186	211.84	213.36	0.0015	2.40	212.30	4.33
	MR24-186	213.36	214.88	0.0015	0.15	205.30	7.36
	MR24-186	214.88	216.41	0.0015	0.15	81.40	7.32
	MR24-186	216.41	217.93	0.0015	0.15	69.70	5.6
	MR24-186	217.93	219.46	0.0015	0.15	61.60	7.86
	MR24-186	219.46	220.98	0.0015	0.15	141.50	4.3
	MR24-186	220.98	222.50	0.0015	0.15	54.40	2.92
	MR24-186	222.50	224.03	0.0015	0.15	65.10	4.17
	MR24-186	224.03	225.55	0.0015	0.15	59.60	7
	MR24-186	225.55	227.08	0.0015	0.15	62.50	7.62
	MR24-186	227.08	228.60	0.0015	0.40	53.50	6.71
	MR24-186	228.60	230.12	0.0015	2.90	54.30	11.74
	MR24-186	230.12	231.65	0.0015	0.15	76.90	14.98
	MR24-186	231.65	233.17	0.033	44.60	249.10	50.94

Hole_ID	From (m)	To (m)	Au ppm	Ag ppm	As ppm	Sb ppm
MR24-186	233.17	234.70	0.015	29.90	255.80	63.77
MR24-186	234.70	236.22	0.009	15.00	194.90	47.45
MR24-186	236.22	237.74	0.021	7.90	179.80	49.04
MR24-186	237.74	239.27	0.0015	0.90	165.30	37.82
MR24-186	239.27	240.79	0.009	0.50	198.70	54.37
MR24-186	240.79	242.32	0.006	1.40	232.60	63.1
MR24-186	242.32	243.84	0.009	13.70	215.60	76.27
MR24-186	243.84	245.36	0.171	9.80	363.70	75.78
MR24-186	245.36	246.89	0.385	7.30	309.80	80.21
MR24-186	246.89	248.41	0.186	303.00	185.90	655.15
MR24-186	248.41	249.94	0.492	1336.00	163.20	1845.18
MR24-186	249.94	251.46	0.366	338.00	180.00	821.17
MR24-186	251.46	252.98	0.234	403.00	181.30	516.82
MR24-186	252.98	254.51	0.171	194.00	116.80	341.86
MR24-186	254.51	256.03	0.195	81.80	112.60	264.52
MR24-186	256.03	257.56	0.198	35.80	179.90	311.27
MR24-186	257.56	259.08	0.275	16.90	201.70	259.23
MR24-186	259.08	260.60	0.445	59.60	452.20	287.71
MR24-186	260.60	262.13	0.248	8.50	499.40	180.6
MR24-186	262.13	263.65	0.275	11.40	369.30	294.08
MR24-186	263.65	265.18	0.133	15.50	202.20	199.98
MR24-186	265.18	266.70	0.23	16.90	339.30	158.72
MR24-186	266.70	268.22	0.231	28.90	709.60	505.65
MR24-186	268.22	269.75	0.068	9.90	854.30	241.37
MR24-186	269.75	271.27	0.133	16.20	587.70	209.25
MR24-186	271.27	272.80	0.101	21.70	483.80	206.03
MR24-186	272.80	274.32	0.021	5.20	138.40	74.85
MR24-186	274.32	275.84	0.028	3.10	216.00	79.77
MR24-186	275.84	277.37	0.016	1.00	224.70	52.47
MR24-186	277.37	278.89	0.056	13.00	278.10	104.86
MR24-186	278.89	280.42	0.004	1.20	37.90	14.65
MR24-186	280.42	281.94	0.005	1.00	45.70	14.96
MR24-186	281.94	283.46	0.008	0.70	45.80	16.29
MR24-186	283.46	284.99	0.032	7.60	87.40	40.58
MR24-186	284.99	286.51	0.003	0.15	36.00	14.25
MR24-186	286.51	288.04	0.007	4.40	62.90	24.35
MR24-186	288.04	289.56	0.0015	0.70	42.70	22.6
MR24-186	289.56	291.08	0.035	14.30	80.10	42.51
MR24-186	291.08	292.61	0.009	2.40	50.60	19.88
MR24-186	292.61	294.13	0.0015	1.10	35.30	30.67
MR24-188	0.00	175.26	0.002	0.151	86.383	15.068
MR24-188	175.26	176.784	0.009	0.15	32.00	22.68
MR24-188	176.784	178.308	0.006	0.15	48.70	14.68
MR24-188	178.308	179.832	0.065	0.15	26.40	7.32
MR24-188	179.832	181.356	0.152	0.50	309.20	28.02
MR24-188	181.356	182.88	0.027	0.60	669.60	37.26

Hole_ID	From (m)	To (m)	Au ppm	Ag ppm	As ppm	Sb ppm
MR24-188	182.88	184.404	0.027	0.15	552.40	55.24
MR24-188	184.404	185.928	0.005	0.15	234.00	71.61
MR24-188	185.928	187.452	0.006	0.15	160.40	72.14
MR24-188	187.452	188.976	0.013	0.15	137.60	35.45
MR24-188	188.976	190.5	0.016	0.15	276.00	21.14
MR24-188	190.5	192.024	0.014	0.15	329.70	47.45
MR24-188	192.024	193.548	0.013	6.00	207.70	18.37
MR24-188	193.548	195.072	0.113	80.80	304.10	175.77
MR24-188	195.072	196.596	0.295	5.70	287.50	107.91
MR24-188	196.596	198.12	0.086	1.60	168.30	131.51
MR24-188	198.12	199.644	0.152	2.30	180.30	87.46
MR24-188	199.644	201.168	0.115	3.50	99.80	58.54
MR24-188	201.168	202.692	0.156	6.40	173.30	93.13
MR24-188	202.692	204.216	0.077	5.50	121.60	103.95
MR24-188	204.216	205.74	0.257	74.00	230.70	213.17
MR24-188	205.74	207.264	0.325	26.30	334.90	194.78
MR24-188	207.264	208.788	0.308	266.00	286.00	137.94
MR24-188	208.788	210.312	0.543	140.00	1228.40	107.33
MR24-188	210.312	211.836	0.177	17.10	368.50	40.91
MR24-188	211.836	213.36	0.668	479.00	482.50	131.78
MR24-188	213.36	214.884	0.256	80.70	318.10	60.25
MR24-188	214.884	216.408	0.17	14.30	218.70	40.74
MR24-188	216.408	217.932	0.166	5.80	153.60	31.89
MR24-188	217.932	219.456	0.099	5.90	147.70	33.69
MR24-188	219.456	220.98	0.119	4.90	167.50	72.56
MR24-188	220.98	222.504	0.072	10.00	133.40	149.17
MR24-188	222.504	224.028	0.033	16.50	70.70	64.13
MR24-188	224.028	225.552	0.077	6.20	138.50	117.15
MR24-188	225.552	227.076	0.258	57.40	274.30	120.62
MR24-188	227.076	228.6	0.62	35.50	636.10	119.10
MR24-188	228.6	230.124	0.249	26.60	1083.40	116.40
MR24-188	230.124	231.648	0.571	17.60	625.00	94.60
MR24-188	231.648	233.172	1.01	30.00	1745.80	154.50
MR24-188	233.172	234.696	0.14	26.20	235.70	75.52
MR24-188	234.696	236.22	0.108	10.30	184.90	49.06
MR24-188	236.22	237.744	0.111	9.90	425.50	44.58
MR24-188	237.744	239.268	0.163	19.50	354.20	65.48
MR24-188	239.268	240.792	0.351	49.90	704.70	164.91
MR24-188	240.792	242.316	0.106	9.00	252.10	184.64
MR24-188	242.316	243.84	0.128	65.80	403.50	97.65
MR24-188	243.84	245.364	0.215	350.00	375.10	1463.05
MR24-188	245.364	246.888	0.096	319.00	303.80	93.99
MR24-188	246.888	248.412	0.059	22.60	130.20	581.67
MD24-188	248.412	249.936	0.071	4.50	145.50	117.93
MD24-188	249.936	251.46	0.036	0.10	109.40	170.44
MR24-188	251.46	252.984	0.087	1.60	43.10	433.24

Hole_ID	From (m)	To (m)	Au ppm	Ag ppm	As ppm	Sb ppm
MR24-188	252.984	254.508	0.011	1.20	195.80	149.38
MR24-188	254.508	256.032	0.01	0.80	207.60	127.56
MR24-188	256.032	257.556	0.049	8.50	253.90	167.93
MR24-188	257.556	259.08	0.017	3.20	77.80	1034.86
MR24-188	259.08	260.604	0.029	3.80	94.80	950.54
MR24-188	260.604	262.128	0.021	3.80	260.40	194.85
MR24-188	262.128	263.652	0.032	6.20	264.30	316.30
MR24-188	263.652	265.176	0.054	9.80	339.80	413.91
MR24-188	265.176	266.7	0.015	2.30	205.70	238.97
MR24-188	266.7	268.224	0.0015	0.80	85.00	79.37

	Hole_ID	From (m)	To (m)	Au ppb	Ag ppm	As ppm	Sb ppm
	MR08-181	0	175.26	7.22	0.25	83.77	9.09
5	MR08-181	175.26	176.784	7	0.25	266	13
	MR08-181	176.784	178.308	2.5	0.5	267	9
D	MR08-181	178.308	179.832	2.5	0.25	301	12
N	MR08-181	179.832	181.356	2.5	0.25	144	7
D	MR08-181	181.356	182.88	2.5	0.25	180	7
	MR08-181	182.88	184.404	2.5	0.5	202	12
Δ	MR08-181	184.404	185.928	2.5	0.25	151	15
	MR08-181	185.928	187.452	2.5	0.5	199	24
	MR08-181	187.452	188.976	2.5	0.25	389	28
n	MR08-181	188.976	190.5	2.5	0.25	328	21
	MR08-181	190.5	192.024	9	0.25	865	47
D	MR08-181	192.024	193.548	2.5	0.25	300	26
\mathbf{D}	MR08-181	193.548	195.072	10	3.2	273	67
_[MR08-181	195.072	196.596	31	10.3	144	37
	MR08-181	196.596	198.12	44	9.6	845	101
	MR08-181	198.12	199.644	171	11.1	238	47
	MR08-181	199.644	201.168	188	11.7	311	50
Γ	MR08-181	201.168	202.692	70	10	271	48
Γ	MR08-181	202.692	204.216	19	5.9	96	31
Γ	MR08-181	204.216	205.74	33	10.4	137	72
Ī	MR08-181	205.74	207.264	56	33.3	109	1015
	MR08-181	207.264	208.788	49	31.4	142	114
Γ	MR08-181	208.788	210.312	171	247	124	345
Ī	MR08-181	210.312	211.836	241	227	120	469
	MR08-181	211.836	213.36	347	89.1	230	287
Γ	MR08-181	213.36	214.884	250	83	445	258
ſ	MR08-181	214.884	216.408	272	158	528	317
ſ	MR08-181	216.408	217.932	426	171	937	224
ľ	MR08-181	217.932	219.456	416	73.3	1005	138
	MR08-181	219.456	220.98	167	20.8	293	88

Hole_ID	From (m)	To (m)	Au ppb	Ag ppm	As ppm	Sb ppm
MR08-181	220.98	222.504	378	35	307	89
MR08-181	222.504	224.028	340	31.1	436	106
MR08-181	224.028	225.552	298	19.9	529	140
MR08-181	225.552	227.076	192	14.4	197	65
MR08-181	227.076	228.6	158	25.7	275	71
MR08-181	228.6	230.124	111	44.5	415	104
MR08-181	230.124	231.648	121	13.4	526	110
MR08-181	231.648	233.172	183	60.1	476	123
MR08-181	233.172	234.696	244	18.9	1025	161
MR08-181	234.696	236.22	608	35.6	2160	181
MR08-181	236.22	237.744	403	218	1260	180
MR08-181	237.744	239.268	413	83.1	942	101
MR08-181	239.268	240.792	324	50	1200	95
MR08-181	240.792	242.316	195	41.8	931	61
MR08-181	242.316	243.84	145	16.6	538	60
MR08-181	243.84	245.364	269	29.9	848	110
MR08-181	245.364	246.888	175	175	203	132
MR08-181	246.888	248.412	213	356	293	447
MR08-181	248.412	249.936	51	36.8	102	193
MR08-181	249.936	251.46	94	29.2	225	135
MR08-181	251.46	252.984	25	55.9	69	112
MR08-181	252.984	254.508	23	26.2	77	210
MR08-181	254.508	256.032	47	10.5	137	226
MR08-181	256.032	257.556	40	13.1	250	132
MR08-181	257.556	259.08	25	4.6	178	2670
MR08-181	259.08	260.604	25	5.7	136	5580
MR08-181	260.604	262.128	70	3.7	84	1370
MR08-181	262.128	263.652	47	5.3	119	969
MR08-181	263.652	265.176	63	23.2	182	3300
MR08-181	265.176	266.7	36	15.8	111	2840
MR08-181	266.7	268.224	29	11.5	164	2150
MR08-181	268.224	269.748	42	11.4	112	847
MR08-181	269.748	271.272	65	12.1	170	1710
MR08-181	271.272	272.796	50	6.9	163	1090
MR08-181	272.796	274.32	6	0.7	74	97
MR08-181	274.32	275.844	47	4.6	221	400
MR08-181	275.844	277.368	31	4.5	214	502
MR08-181	277.368	278.892	6	0.25	152	63
MR08-181	278.892	280.416	11	1.5	208	68
MR08-181	280.416	281.94	39	5.5	207	110
MR08-181	281.94	283.464	16	1.5	133	69
MR08-181	283.464	284.988	16	1.2	133	80
MR08-181	284.988	286.512	13	1.8	120	92

Hole_ID	From (m)	To (m)	Au ppb	Ag ppm	As ppm	Sb ppm
MR08-181	286.512	288.036	10	1.4	99	54
MR08-181	288.036	289.56	11	1.8	92	60
MR08-181	289.56	291.084	8	0.8	82	36
MR08-181	291.084	292.608	5	0.25	32	16
MR08-181	292.608	294.132	22	2.5	165	108
MR08-181	294.132	295.656	58	0.5	53	25
MR08-181	295.656	297.18	7	0.25	39	8
MR08-181	297.18	298.704	5	0.6	32	8
MR08-181	298.704	300.228	7	1.2	42	21
MR08-181	300.228	301.752	10	1	75	39
MR08-181	301.752	303.276	2.5	0.25	19	6
MR08-181	303.276	304.8	5	0.25	20	8
MR08-181	304.8	306.324	17	2.9	72	25
MR08-181	306.324	307.848	14	1.5	67	28
MR08-181	307.848	309.372	11	1.9	41	13
MR08-181	309.372	310.896	13	1.8	20	9
MR08-181	310.896	312.42	22	2.6	111	46
MR08-181	312.42	313.944	0	0	0	0
MR08-181	313.944	315.468	0	0	0	0
MR08-181	315.468	316.992	32	3.5	135	62
MR08-181	316.992	318.516	0	0	0	0
MR08-181	318.516	320.04	0	0	0	0
MR08-181	320.04	321.564	0	0	0	0
MR08-181	321.564	323.088	0	0	0	0
MR08-181	323.088	324.612	7	0.25	2.5	11
MR08-181	324.612	326.136	0	0	0	0
MR08-181	326.136	327.66	0	0	0	0
MR08-181	327.66	329.184	0	0	0	0
MR08-181	329.184	330.708	0	0	0	0
MR08-181	330.708	332.232	0	0	0	0
MR08-181	332.232	333.756	0	0	0	0
MR08-181	333.756	335.28	5	0.5	9	11
MR08-181	335.28	336.804	5	0.6	17	17
MR08-181	336.804	338.328	226	81	634	541
MR08-181	338.328	339.852	6	0.6	20	18
MR08-181	339.852	341.376	12	0.8	15	7
MR08-182	0	175.26	2.50	0.25	93.00	10.00
MR08-182	175.26	176.78	2.5	0.25	61	5
MR08-182	176.78	178.31	2.5	0.25	122	20
MR08-182	178.31	179.83	2.5	0.25	81	8
MR08-182	179.83	181.36	2.5	0.25	111	6
MR08-182	181.36	182.88	2.5	0.25	73	15
MR08-182	182.88	184.40	2.5	0.25	68	7

Hole_ID	From (m)	To (m)	Au ppb	Ag ppm	As ppm	Sb ppm
MR08-182	184.40	185.93	2.5	0.25	72	5
MR08-182	185.93	187.45	2.5	0.25	141	2.5
MR08-182	187.45	188.98	2.5	0.25	69	2.5
MR08-182	188.98	190.50	2.5	0.25	77	9
MR08-182	190.50	192.02	2.5	0.25	43	2.5
MR08-182	192.02	193.55	2.5	0.25	61	2.5
MR08-182	193.55	195.07	2.5	0.25	96	2.5
MR08-182	195.07	196.60	9	0.25	71	2.5
MR08-182	196.60	198.12	2.5	0.25	82	6
MR08-182	198.12	199.64	2.5	0.25	70	2.5
MR08-182	199.64	201.17	2.5	0.25	114	2.5
MR08-182	201.17	202.69	2.5	0.25	60	2.5
MR08-182	202.69	204.22	2.5	0.25	175	2.5
MR08-182	204.22	205.74	2.5	0.25	138	2.5
MR08-182	205.74	207.26	2.5	0.25	183	2.5
MR08-182	207.26	208.79	6	0.25	109	2.5
MR08-182	208.79	210.31	8	0.25	41	2.5
MR08-182	210.31	211.84	2.5	0.25	26	2.5
MR08-182	211.84	213.36	2.5	0.25	30	2.5
MR08-182	213.36	214.88	2.5	0.25	58	2.5
MR08-182	214.88	216.41	2.5	0.25	77	5
MR08-182	216.41	217.93	2.5	0.25	51	2.5
MR08-182	217.93	219.46	2.5	0.25	18	2.5
MR08-182	219.46	220.98	2.5	0.25	44	8
MR08-182	220.98	222.50	2.5	0.25	50	2.5
MR08-182	222.50	224.03	2.5	0.25	161	13
MR08-182	224.03	225.55	5	0.25	172	23
MR08-182	225.55	227.08	90	3.6	614	56
MR08-182	227.08	228.60	284	15.3	577	190
MR08-182	228.60	230.12	202	40.4	317	237
MR08-182	230.12	231.65	213	109	606	307
MR08-182	231.65	233.17	129	59.1	254	199
MR08-182	233.17	234.70	138	75.7	126	586
MR08-182	234.70	236.22	154	76.9	107	836
MR08-182	236.22	237.74	131	87.6	103	487
MR08-182	237.74	239.27	254	1100	130	779
MR08-182	239.27	240.79	546	5340	147	2610
MR08-182	240.79	242.32	521	1555	214	2750
MR08-182	242.32	243.84	380	618	286	1660
MR08-182	243.84	245.36	296	236	233	1255
MR08-182	245.36	246.89	373	74.9	314	870
MR08-182	246.89	248.41	304	54	566	949
MR08-182	248.41	249.94	468	39.7	984	803

Hole_ID From (To (m)	Au ppb	Ag ppm	As ppm	Sb ppm
MR08-182	249.94	251.46	409	95.8	583	963
MR08-182	251.46	252.98	141	4.4	113	154
MR08-182	252.98	254.51	439	46.1	622	548
MR08-182	254.51	256.03	409	14.8	472	322
MR08-182	256.03	257.56	277	10.1	546	350
MR08-182	257.56	259.08	586	65.7	327	223
MR08-182	259.08	260.60	553	37.5	248	220
MR08-182	260.60	262.13	328	23.4	214	228
MR08-182	262.13	263.65	158	8.3	161	247
MR08-182	263.65	265.18	181	12.8	156	166
MR08-182	265.18	266.70	163	5.4	228	187
MR08-182	266.70	268.22	238	6.4	589	160
MR08-182	268.22	269.75	166	8.2	364	146
MR08-182	269.75	271.27	169	9.1	440	119
MR08-182	271.27	272.80	194	14.5	283	136
MR08-182	272.80	274.32	228	17	523	159
MR08-182	274.32	275.84	276	64.1	257	136
MR08-182	275.84	277.37	355	45.3	252	195
MR08-182	277.37	278.89	410	23.2	620	239
MR08-182	278.89	280.42	417	13.8	505	234
MR08-182	280.42	281.94	119	15.1	339	373
MR08-182	281.94	283.46	62	4.5	167	593
MR08-182	283.46	284.99	62	5	154	575
MR08-182	284.99	286.51	111	5.5	316	507
MR08-182	286.51	288.04	126	7.4	499	404
MR08-182	288.04	289.56	89	6.3	493	254
MR08-182	289.56	291.08	45	2.9	423	75
MR08-182	291.08	292.61	52	3.6	337	36
MR08-182	292.61	294.13	52	6.6	199	63
MR08-182	294.13	295.66	24	4.2	133	41
MR08-182	295.66	297.18	2.5	1.1	30	10
MR08-182	297.18	298.70	2.5	0.8	34	12
MR08-182	298.70	300.23	74	6.7	305	201
MR08-182	300.23	301.75	54	5.3	218	149
MR08-182	301.75	303.28	2.5	0.6	25	10
MR08-182	303.28	304.80	2.5	1	44	13
MR08-182	304.80	306.32	37	3.4	168	102
MR08-182	306.32	307.85	2.5	2.2	73	25
MR08-182	307.85	309.37	82	13.1	93	13
MR08-182	309.37	310.90	41	7.9	122	17
MR08-182	310.90	312.42	25	6.5	165	47
MR08-182	312.42	313.94	25	4	171	45
MR08-182	313.94	315.47	6	1.4	64	9

Hole_ID	From (m)	To (m)	Au ppb	Ag ppm	As ppm	Sb ppm
MR08-182	315.47	316.99	2.5	0.25	49	5
MR08-182	316.99	318.52	11	2.5	59	29
MR08-182	318.52	320.04	2.5	12.1	56	27
MR08-182	320.04	321.56	2.5	14.1	45	21
MR08-182	321.56	323.09	2.5	46.1	26	54
MR08-182	323.09	324.61	7	10.7	53	22
MR08-182	324.61	326.14	2.5	2.2	27	7
MR08-182	326.14	327.66	2.5	1.5	18	7
MR08-182	327.66	329.18	2.5	1.1	28	2.5
MR08-182	329.18	330.71	2.5	3.1	35	9
MR08-182	330.71	332.23	2.5	1.5	27	2.5
MR08-182	332.23	333.76	2.5	0.8	42	9
MR08-182	333.76	335.28	2.5	1.2	53	7
MR08-183	0.00	175.26	2.97	0.48	102.65	10.01
MR08-183	175.26	176.78	16	1.4	65	31
MR08-183	176.78	178.31	225	6.9	200	104
MR08-183	178.31	179.83	512	15.8	84	204
MR08-183	179.83	181.36	412	10.6	70	805
MR08-183	181.36	182.88	161	10.5	56	323
MR08-183	182.88	184.40	236	45.8	58	171
MR08-183	184.40	185.93	84	9.1	47	128
MR08-183	185.93	187.45	43	7	50	119
MR08-183	187.45	188.98	57	12	67	193
MR08-183	188.98	190.50	73	4.2	42	143
MR08-183	190.50	192.02	55	3.6	64	144
MR08-183	192.02	193.55	79	4.5	76	390
MR08-183	193.55	195.07	105	7.4	71	255
MR08-183	195.07	196.60	176	10.6	74	168
MR08-183	196.60	198.12	174	28.5	108	120
MR08-183	198.12	199.64	131	23.6	93	147
MR08-183	199.64	201.17	96	15.4	86	86
MR08-183	201.17	202.69	99	20.7	99	216
MR08-183	202.69	204.22	135	23.1	123	96
MR08-183	204.22	205.74	165	37.7	255	101
MR08-183	205.74	207.26	360	9.4	409	102
MR08-183	207.26	208.79	711	27.9	1190	77
MR08-183	208.79	210.31	986	74.4	2400	111
MR08-183	210.31	211.84	1550	92	1770	188
MR08-183	211.84	213.36	588	10.3	1300	290
MR08-183	213.36	214.88	1875	65.3	1900	286
MR08-183	214.88	216.41	2360	123	4960	251
MR08-183	216.41	217.93	1685	267	8440	390
MR08-183	217.93	219.46	881	165	3330	185

Hole_ID	From (m)	To (m)	Au ppb	Ag ppm	As ppm	Sb ppm
MR08-183	219.46	220.98	840	157	667	123
MR08-183	220.98	222.50	683	336	897	230
MR08-183	222.50	224.03	399	139	472	90
MR08-183	224.03	225.55	399	177	410	280
MR08-183	225.55	227.08	176	7.9	104	116
MR08-183	227.08	228.60	138	8.7	182	117
MR08-183	228.60	230.12	363	4.2	1115	120
MR08-183	230.12	231.65	362	5.4	1080	135
MR08-183	231.65	233.17	68	4.1	955	138
MR08-183	233.17	234.70	120	5.5	1105	143
MR08-183	234.70	236.22	228	4.8	636	170
MR08-183	236.22	237.74	147	6.2	381	111
MR08-183	237.74	239.27	163	5.2	476	122
MR08-183	239.27	240.79	192	5.3	352	133
MR08-183	240.79	242.32	388	32.4	596	106
MR08-183	242.32	243.84	255	7.3	651	73
MR08-183	243.84	245.36	132	4.7	402	82
MR08-183	245.36	246.89	58	1.8	110	85
MR08-183	246.89	248.41	42	2.9	148	68
MR08-183	248.41	249.94	44	1.7	91	65
MR08-183	249.94	251.46	75	1.7	504	122
MR08-183	251.46	252.98	79	2.2	355	107
MR08-183	252.98	254.51	79	2.1	248	120
MR08-183	254.51	256.03	67	1.7	279	152
MR08-183	256.03	257.56	33	1	511	234
MR08-183	257.56	259.08	159	1.6	653	211
MR08-183	259.08	260.60	218	1.9	204	50
MR08-183	260.60	262.13	94	1.5	116	29
MR08-183	262.13	263.65	164	2.1	272	59
MR08-183	263.65	265.18	132	2.8	802	112
MR08-183	265.18	266.70	92	2	784	108
MR08-183	266.70	268.22	50	2.1	313	57
MR08-183	268.22	269.75	40	2.2	691	102
MR08-183	269.75	271.27	11	5.6	316	59
MR08-183	271.27	272.80	29	4.1	457	89
MR08-183	272.80	274.32	62	2.7	282	69
MR08-183	274.32	275.84	475	1.2	219	84
MR08-183	275.84	277.37	268	0.6	333	142
MR08-183	277.37	278.89	49	1.7	120	61
MR08-183	278.89	280.42	40	0.8	108	63
MR08-183	280.42	281.94	17	0.8	131	119
MR08-183	281.94	283.46	7	0.7	154	131
MR08-183	283.46	284.99	2.5	2.5	39	47

Hole_ID	From (m)	To (m)	Au ppb	Ag ppm	As ppm	Sb ppm
MR08-183	284.99	286.51	8	9.2	70	71
MR08-183	286.51	288.04	12	12	89	90
MR08-183	288.04	289.56	16	21.8	100	87
MR08-183	289.56	291.08	9	7.5	266	159
MR08-183	291.08	292.61	5	5	172	116
MR08-183	292.61	294.13	14	5.1	219	115
MR08-183	294.13	295.66	8	2.6	74	44
MR08-183	295.66	297.18	2.5	1.8	51	36
MR08-183	297.18	298.70	2.5	1.8	39	30
MR08-183	298.70	300.23	2.5	1.5	58	42
MR08-183	300.23	301.75	7	0.25	58	40
MR08-183	301.75	303.28	10	1.4	55	31
MR08-183	303.28	304.80	2.5	2	102	61
MR08-183	304.80	306.32	15	3	49	46
MR08-183	306.32	307.85	7	1.5	55	37
MR08-183	307.85	309.37	13	1.8	133	79
MR08-183	309.37	310.90	11	1.6	117	79
MR08-183	310.90	312.42	2.5	0.6	112	88
MR08-183	312.42	313.94	2.5	0.8	119	72
MR08-183	313.94	315.47	8	1.3	159	49
MR08-183	315.47	316.99	9	1.6	150	45
MR08-183	316.99	318.52	5	1	110	51
MR08-183	318.52	320.04	2.5	1.4	107	39
MR08-183	320.04	321.56	6	2	141	51
MR08-183	321.56	323.09	6	1.4	131	43
MR08-183	323.09	324.61	8	3.1	128	38
MR08-183	324.61	326.14	7	2.9	163	48
MR08-183	326.14	327.66	10	3.3	161	41
MR08-183	327.66	329.18	5	2.6	61	20
MR08-183	329.18	330.71	5	1.4	45	18
MR08-183	330.71	332.23	2.5	1.6	30	12
MR08-183	332.23	333.76	8	3.1	53	19
MR08-183	333.76	335.28	2.5	0.25	6	2.5
MR08-183	335.28	336.80	2.5	0.25	8	2.5
MR08-183	336.80	338.33	2.5	12.9	12	7
MR08-183	338.33	339.85	1120	32.6	446	644
MR08-183	339.85	341.38	2.5	2.2	12	2.5
MR08-184	0.00	175.26	1.78	0.98	/1.90	10.20
MR08-184	175.26	176.78	2.5	0.25	13	2.5
MR08-184	176.78	178.31	2.5	0.25	103	2.5
MR08-184	178.31	179.83	2.5	0.25	15	2.5
MR08-184	179.83	181.36	2.5	0.25	25	2.5
MR08-184	181.36	182.88	2.5	0.25	31	2.5

Hole_ID	From (m)	To (m)	Au ppb	Ag ppm	As ppm	Sb ppm
MR08-184	182.88	184.40	2.5	0.6	69	2.5
MR08-184	184.40	185.93	2.5	0.25	73	2.5
MR08-184	185.93	187.45	2.5	0.25	166	2.5
MR08-184	187.45	188.98	2.5	0.5	75	2.5
MR08-184	188.98	190.50	2.5	0.7	66	6
MR08-184	190.50	192.02	2.5	0.5	565	49
MR08-184	192.02	193.55	2.5	0.6	283	56
MR08-184	193.55	195.07	2.5	0.9	184	65
MR08-184	195.07	196.60	2.5	0.5	244	56
MR08-184	196.60	198.12	2.5	0.25	152	31
MR08-184	198.12	199.64	2.5	0.5	108	28
MR08-184	199.64	201.17	2.5	0.7	132	24
MR08-184	201.17	202.69	2.5	0.25	121	15
MR08-184	202.69	204.22	2.5	0.6	175	19
MR08-184	204.22	205.74	2.5	1.1	90	26
MR08-184	205.74	207.26	2.5	0.25	66	14
MR08-184	207.26	208.79	2.5	0.25	275	33
MR08-184	208.79	210.31	2.5	0.5	97	26
MR08-184	210.31	211.84	2.5	0.25	55	13
MR08-184	211.84	213.36	2.5	0.25	66	19
MR08-184	213.36	214.88	2.5	0.6	100	23
MR08-184	214.88	216.41	2.5	2.5	78	43
MR08-184	216.41	217.93	2.5	5.6	105	56
MR08-184	217.93	219.46	31	23.3	176	193
MR08-184	219.46	220.98	115	26.1	276	344
MR08-184	220.98	222.50	422	53.6	297	252
MR08-184	222.50	224.03	295	24.3	356	270
MR08-184	224.03	225.55	189	28.8	251	113
MR08-184	225.55	227.08	133	27.6	201	271
MR08-184	227.08	228.60	238	95.9	204	168
MR08-184	228.60	230.12	595	503	372	544
MR08-184	230.12	231.65	1465	224	1070	251
MR08-184	231.65	233.17	382	28.2	1400	90
MR08-184	233.17	234.70	268	11	1020	305
MR08-184	234.70	236.22	148	13.3	218	221
MR08-184	236.22	237.74	130	4.5	302	124
MR08-184	237.74	239.27	131	6.2	1415	171
MR08-184	239.27	240.79	157	5	895	143
MR08-184	240.79	242.32	195	6.4	820	138
MR08-184	242.32	243.84	168	10.4	899	101
MR08-184	243.84	245.36	178	4.8	359	77
MR08-184	245.36	246.89	176	5.5	311	102
MR08-184	246.89	248.41	155	2.7	976	152

Hole_ID	From (m)	To (m)	Au ppb	Ag ppm	As ppm	Sb ppm
MR08-184	248.41	249.94	61	3.2	990	182
MR08-184	249.94	251.46	96	3.3	565	126
MR08-184	251.46	252.98	107	2.3	671	148
MR08-184	252.98	254.51	101	2.5	428	132
MR08-184	254.51	256.03	79	2.5	147	135
MR08-184	256.03	257.56	56	2.6	454	199
MR08-184	257.56	259.08	37	3.4	530	247
MR08-184	259.08	260.60	105	4.8	572	207
MR08-184	260.60	262.13	91	8	434	499
MR08-184	262.13	263.65	83	4.6	199	175
MR08-184	263.65	265.18	92	5.5	79	249
MR08-184	265.18	266.70	75	6.5	119	211
MR08-184	266.70	268.22	95	6.4	449	189
MR08-184	268.22	269.75	71	18.9	827	161
MR08-184	269.75	271.27	58	265	200	230
MR08-184	271.27	272.80	49	221	229	431
MR08-184	272.80	274.32	15	29.2	290	171
MR08-184	274.32	275.84	32	44.2	204	153
MR08-184	275.84	277.37	6	7.1	135	132
MR08-184	277.37	278.89	7	3.8	106	123
MR08-184	278.89	280.42	7	2.2	104	165
MR08-184	280.42	281.94	14	7.1	106	138
MR08-184	281.94	283.46	39	14.7	111	>10000
MR08-184	283.46	284.99	39	11	124	6620
MR08-184	284.99	286.51	33	8.1	227	2960
MR08-184	286.51	288.04	28	8.8	150	2720
MR08-184	288.04	289.56	29	18	248	937
MR08-184	289.56	291.08	22	9.8	175	627
MR08-184	291.08	292.61	11	5.3	147	305
MR08-184	292.61	294.13	2.5	5.4	104	405
MR08-184	294.13	295.66	5	2.6	81	98
MR08-184	295.66	297.18	24	1.6	84	68
MR08-184	297.18	298.70	48	1.5	133	68
MR08-184	298.70	300.23	96	6	423	818
MR08-184	300.23	301.75	124	3.6	260	95
MR08-184	301.75	303.28	42	2.7	289	81
MR08-184	303.28	304.80	14	1.9	154	38
MR08-184	304.80	306.32	26	6.3	156	657
MR08-184	306.32	307.85	18	4.1	115	430
MR08-184	307.85	309.37	25	3.3	204	430
MR08-184	309.37	310.90	15	2.1	108	127
MR08-184	310.90	312.42	9	2.3	69	264
MR08-184	312.42	313.94	2.5	1	15	18

Hole_ID	From (m)	To (m)	Au ppb	Ag ppm	As ppm	Sb ppm
MR08-184	313.94	315.47	2.5	1	22	30
MR08-184	315.47	316.99	2.5	1	46	23
MR08-184	316.99	318.52	5	1.6	44	109
MR08-184	318.52	320.04	9	1.4	12	23
MR08-184	320.04	321.56	13	1.2	16	28
MR08-184	321.56	323.09	10	1	34	23
MR08-184	323.09	324.61	7	0.9	91	71
MR08-184	324.61	326.14	2.5	0.25	119	31
MR08-184	326.14	327.66	2.5	0.5	146	32
MR08-184	327.66	329.18	6	0.5	124	30
MR08-184	329.18	330.71	2.5	0.5	77	26
MR08-184	330.71	332.23	2.5	0.25	64	21
MR08-184	332.23	333.76	2.5	0.7	40	18
MR08-184	333.76	335.28	2.5	0.25	23	17
MR08-184	335.28	336.80	2.5	1.5	68	48
MR08-184	338.33	338.33	6	1.4	23	20
MR08-184	338.33	339.85	2.5	0.7	17	15
MR08-184	339.85	341.38	7	1.1	21	17
MR08-184	341.38	342.90	11	3.9	89	60
MR08-184	342.90	344.42	9	1.7	42	24
MR08-184	344.42	345.95	11	2.4	40	21
MR08-184	345.95	347.47	6	4.8	21	21
MR08-184	347.47	349.00	5	2.5	19	19
MR08-184	349.00	350.52	6	22.5	19	17
MR08-185	0.00	175.26	5.95	0.41	218.25	18.14
MR08-185	175.26	176.78	68	2.4	979	75
MR08-185	176.78	178.31	81	1.7	537	82
MR08-185	178.31	179.83	91	2.1	371	55
MR08-185	179.83	181.36	73	1.9	369	54
MR08-185	181.36	182.88	58	1.9	334	43
MR08-185	182.88	184.40	54	2.4	206	45
MR08-185	184.40	185.93	57	1.7	435	44
MR08-185	185.93	187.45	101	2.3	597	76
MR08-185	187.45	188.98	70	3.5	425	59
MR08-185	188.98	190.50	407	3.7	269	44
MR08-185	190.50	192.02	166	3.6	529	58
MR08-185	192.02	193.55	96	4.7	337	93
MR08-185	193.55	195.07	99	4.1	257	57
MR08-185	195.07	196.60	100	3.8	239	45
MR08-185	196.60	198.12	87	3.2	269	47
MR08-185	198.12	199.64	63	3.9	270	35
MR08-185	199.64	201.17	126	4.4	459	41
MR08-185	201.17	202.69	131	5.6	220	22

Hole_ID	From (m)	To (m)	Au ppb	Ag ppm	As ppm	Sb ppm
MR08-185	202.69	204.22	143	4.3	390	23
MR08-185	204.22	205.74	200	3.7	657	32
MR08-185	205.74	207.26	273	63.6	462	69
MR08-185	207.26	208.79	323	375	450	379
MR08-185	208.79	210.31	483	168	1160	206
MR08-185	210.31	211.84	440	68.2	494	95
MR08-185	211.84	213.36	427	41.2	820	87
MR08-185	213.36	214.88	122	7.2	449	95
MR08-185	214.88	216.41	130	4.1	468	129
MR08-185	216.41	217.93	145	4.4	571	155
MR08-185	217.93	219.46	77	3.3	974	142
MR08-185	219.46	220.98	92	5.6	441	114
MR08-185	220.98	222.50	1005	106	671	129
MR08-185	222.50	224.03	651	60.4	577	290
MR08-185	224.03	225.55	299	29.5	330	175
MR08-185	225.55	227.08	261	31.9	351	183
MR08-185	227.08	228.60	71	4	205	115
MR08-185	228.60	230.12	42	2.2	82	71
MR08-185	230.12	231.65	57	2.3	78	82
MR08-185	231.65	233.17	73	2.2	95	67
MR08-185	233.17	234.70	23	1.6	119	75
MR08-185	234.70	236.22	16	1	108	64
MR08-185	236.22	237.74	68	3.4	98	74
MR08-185	237.74	239.27	99	6.8	330	120
MR08-185	239.27	240.79	53	0.5	767	74
MR08-185	240.79	242.32	24	0.6	444	65
MR08-185	242.32	243.84	22	4.3	191	56
MR08-185	243.84	245.36	11	0.6	96	44
MR08-185	245.36	246.89	20	7.5	146	53
MR08-185	246.89	248.41	131	47.8	323	118

Drill intervals in feet have been converted to metres.

ASX Announcement

JORC Code, 2012 – Table 1

Section 1 Sampling Techniques and Data – Maverick Springs Silver Gold Project

Criteria in this section apply to all succeeding sections.)

O	Criteria	JORC Code explanation	Commentary
<u>م</u>	Criteria	JORC Code explanation	Commentary
r personal use	Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Legacy samples have been assayed at various laboratories through the history of ownership. 2008 historic RC drilling by Silver Standard was drilled with wet samples as standard and sampled through a rotary wet splitter to minimize loss of fines and assays analysed by ALS in Nevada. 2024 RC drilling has used a rotary wet splitter for wet sample collection into large bags contained in 3 gallon buckets which are dried before dispatch in effort to reduce loss of fines and produce representative sample. 2008 analysis by ALS underwent 30g FA with AA finish for gold, and 36 element aqua regia with ICP finish for Ag and multi element analysis. Ag over 100ppm underwent gravitmetric fire assay. 2024 drill assay analysis of silver and multi-elements is by 4 acid digest with ICP-MS finish, over limit silver analysed by gravimetric fire assay and gold analysed by fire assay with ICP-OES finish. Samples delineated by drill string and downhole surveys utilise a Reflex Omni X-42 North Seeking Gyro calibrated prior to use, with readings taken every 50ft.
Fo	Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Not all drill rig details or specifications are available for historic drilling, but records show industry standard 5.5" drill bits have been used in some cases often utilizing tri-cone drill bits. 2024 RC drilling is using a 2013 Foremost MPD Explorer track mounted rig drilling 5" holes. A combination of a traditional or center face sampling hammer and a tricone bit have been used to maximise sample recovery in broken ground.

	Criteria	JORC Code explanation	Commentary
NIV			
sonal use c	Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Drilling recoveries are not specifically recorded in the logging and historic reports only refer to some holes which showed generally poor recovery. 2024 drilling records poor sample recovery on a visual basis and samples are weighed at the lab. Historic reports detail a rotary wet splitter was used to collect composites which were mixed with a flocculent and large 20-30pound samples taken to minimise loss of fines. This drilling also included using hammers with a cross-over sub and tricone bits. 2024 drilling utilizes a rotary wet splitter to maximise recovery of drill material and fines with samples in large 20x24" bags with water allowed to seep out through canvas bag before analysis. No sample recovery issues or relationships are known to exist at this stage.
r pers	Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 The logging is qualitative in nature. The historic dataset shows 55% of the total drill holes at the Project have been logged. Legacy data compilation remains ongoing. 2024 drill logging is ongoing.
Fo	Subsampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 5ft (1.5m) composite samples were taken during RC drilling. RC drilling utilizes wet drilling with sampling via a rotary wet splitter. Large samples are taken in attempt to minimize loss of fines. Field duplicates are reported to have been used since the 2002 RC drilling but only 2008 samples have been reviewed. No records have been found from prior drilling. Sample sizes are considered to reflect industry standards, be appropriate for the material being sampled and show attempts made to improve recovery. 2024 drilling is inserting standards, blanks, and duplicates into the sample stream at approximately 1 in 25 samples.

	Criteria	JORC Code explanation	Commentary
NIV	Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established. 	 Internal laboratory QC has been reviewed in raw lab assays for 2006 drilling from AAL. 2008 drilling from ALS laboratories included duplicates, standards and blanks which were reviewed and showed acceptable results. Internal lab QAQC and field blanks, standards and duplicates inserted into the 2024 sample stream show acceptable results so far with only 2 drill holes analysed.
rsonal use c	Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Legacy primary data and data entry details are not fully provided but all data has been provided in csv(digital) format which is assumed to have been collected accurately from prior operators. 2024 drilling is logged digitally and uploaded into a database along with digital exports from pXRF and gyro devices. 2003-2008 raw digital assay certificates have been reviewed. Twin holes are not specifically reported but drill holes within 5-10m from each other can be observed in 3D space and show generally good correlation with grades. 2024 drilling is using twinning to confirm historic data. Assay data below detection limit is reported as a negative from the lab, this has been converted to a number half the detection limit, so no negative values are in the database for future resource work. Eg -0.05 is changed to 0.025. Assay results have been converted between ppb,ppm and ounce/ton.
FOL DE	Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill holes were located using handheld GPS, with accuracy to within 5m. 2024 drilling and any locatable historic collars will be surveyed by DGPS in the future. Downhole survey data appears to have been completed by gyroscopic tool, although this is only specifically stated for the 2002-2003 drilling. 2024 drilling uses downhole gyro for surveys. A 0.5m DTM is used for topographic control. Historic data has been collected in NAD27, and transformed to the current Grid NAD 83 UTM Zone 11.
	Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Selective data has been reported from historic drilling to highlight high-grade target zones within the established resource. The surrounding drilling including drill intercepts have previously been reported in the company's prospectus but is not relevant to this release. The current drilling includes twin hole drilling of historic drilling to verify data supplied in the legacy database and also included drilling on 200ft and 400ft grids.

	Criteria	JORC Code explanation	Commentary
>			 Samples have not been composited. Sample lengths reported reflect down hole drill sample lengths and aggregates of it (5ft /1.5m).
USe on	Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralized structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The drilling is predominantly conducted at or close to vertical with an average dip of -85°in historic drilling and -89 in the first two 2024 holes. The dip is approximately perpendicular to the flat-lying mineralisation. Angled drilling is being used to investigate cross-cutting mineralised structures, with assessment ongoing. The drill orientation is not expected to have introduced any sampling bias.
na	Sample security	The measures taken to ensure sample security.	 Historic samples were sent from site to laboratory, but no record of security protocols are reported. 2024 samples are prepared on site and collected by the laboratory's transport team.
or perso	Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 Reviews of sampling techniques, data and assays have been undertaken by Newmont in 2001, by Snowden in 2002, 2003, SRK in 2016, and by SGS in 2022. Results of these reviews regard the post 2002 drilling that is the subject of this release to be satisfactory. Pre-2002 drilling has been subject to regression calculations as previously reported. Sampling and drilling techniques are being refined for maximum recovery during drilling. Issues with sample recovery in fractured ground may result in missing sample intervals, and recoveries are recorded on a sample-by-sample basis into the drill logging database. Twin drilling will be compared to historic drilling.

Section 2 Reporting of Exploration Results – Maverick Springs Silver Gold Project

(Criteria listed in the preceding section also apply to this section.)

>	Criteria	JORC Code explanation	Commentary
nal use only	[*] Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Maverick Springs property is in northeast Nevada, USA, ~85 km SE of the town of Elko, Nevada. The property currently consists of 247 Maverick, Willow and NMS unpatented lode mining claims registered with the US Department of the Interior Bureau of Land Management ("BLM") with a total area of approximately 4800 acres. The tenements are held in the name of Artemis Exploration Company ("AEC"). Sun Silver acquired a 100% interest in the Maverick Springs Project properties from Element79 in early 2024. Gold and Silver Net Smelter Royalties (NSR) to tenement owner AEC of 5.9% which include ongoing advance royalty payments, and to Maverix Metals of 1.5%. Additional NSR of 2.9% exists for all other metals. All claims are in good standing and have been legally validated by a US based lawyer specialising in the field
For persol	Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Gold and silver exploration at the Project area has been carried out by previous explorers – Angst, Inc from 1986-1992, Harrison Western Mining L.LC.(Harrison) in 1996, Newmont in 2001, Vista Gold Corp (Vista) and Silver Standard in 2002-2016. Angst undertook first stage exploration with geochemical surveys, mapping, and drilling 128 RC and diamond drill holes for 39,625m outlining initial mineralisation at the project. Harrison drilled 2 exploration holes in 1998 for 247m. Vista advanced the project significantly drilling 54, mostly deep, RC holes over several years until 2006 which equated to ~15,267m. Silver Standard completed 5 deep RC drill holes for 1,625m in 2008. Reviews of the historic exploration show it was carried out to industry standards to produce data sufficient for mineral resource calculations.
	Geology	Deposit type, geological setting and style of mineralisation.	Previous Technical Reports have identified the Maverick Springs mineralisation as a Carlin-type or sediment/carbonate hosted disseminated silver-gold deposit. However, the 2022 review by SGS is of the opinion that the deposit has more affinity with a low- sulphidation, epithermal Au-Ag deposit. Carbonate replacement deposits also have similar settings and characteristics. The

	Criteria	JORC Code explanation	Commentary
I use only			 definition may be in conjecture, but the geological setting remains the same. The mineralisation is hosted in Permian sediments (limestones, dolomites). The sediments have been intruded locally by Cretaceous acidic to intermediate igneous rocks and overlain by Tertiary volcanics, tuffs and sediments and underlain by Paleozoic sediments. Mineralisation in the silty limestones and calcareous clastic sediments is characterised by pervasive decalcification, weak to intense silicification and weak alunitic argillisation alteration, dominated by micron-sized silver and gold with related pyrite, stibnite and arsenic sulphides associated with intense fracturing and brecciation. The mineralisation has formed a large sub-horizontal gently folded (antiformal) shaped zone with a shallow plunge to the south with the limbs of the arch dipping shallowly to moderately at 10-30° to the east and west.
For personal	Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: o easting and northing of the drill hole collar o elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar o dip and azimuth of the hole o down hole length and interception depth o hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case 	 Drill information relevant to this release has been provided above. Down hole lengths are recorded in feet locally and have been converted to metres by multiplication by 0.3048.
	Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated 	 Intersection calculations are averages weighted to standard sample length (5ft, or 1.52m) Metal equivalent AgEQ uses a ratio of 85 and is calculated by Ag + Au x 85 for each sample interval. The equivalency ratio of 85 was selected based on a gold price of \$1,827USD and the silver price of \$21.5USD per ounce, which is derived from the average metal pricing from from June '22 to June '23. Current spot price analysis of gold at \$2504USD and silver at \$29.4USD shows a ratio of 85, demonstrating continued validity of this number.
	Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known'). 	 Drill hole intersections may not always be true widths but generally thought to be close to based on the flat-lying mineralisation and near to vertical drill holes. Review of drill strings in 3D is used to verify this.

	Criteria		JORC Code explanation		Commentary
onal use only	Diagrams	•	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	•	Appropriate maps and figures have been included in this announcement.
	Balanced reporting	•	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results	•	Relevant assay data for Ag, Au, As and Sb has been included with additional elements received from analysis not deemed necessary. The first 175m of each has been averaged to reduce practicality of reporting as they are typically low grade results.
	Other substantive exploration data	•	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances	•	All relevant and material exploration data for the target areas discussed, have been reported or referenced.
	Further work	•	The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	•	Further work will include but not limited to systematic geological mapping, channel and rock chip sampling, soil sampling, pXRF and/or LIBS measurements, geophysics, structural interpretation, historic data compilation, and drilling to identify suitable host rock geology and structural architecture for silver/gold mineralisation Diagrams are included in the release.