

SIGNIFICANT HIGH-GRADE INTERCEPT UNLOCKS 1.4 KILOMETRE GOLD TREND

WARMBLOOD EMERGING AS A SUBSTANTIAL GOLD SYSTEM

Highlights:

Warmblood

- Diamond drilling at Warmblood has returned a very significant result:
 - HWDD017: 14.4 metres @ 6.0g/t Au from 114 metres (including 7 metres @ 10.6g/t Au).
- This is the first hole to test for depth extensions to the mineralisation outside of the current Warmblood resource, with mineralisation appearing to open up and improve at depth (Figure 4).

Mineralisation remains open at depth and down-plunge from this intersection.

Recent multi-element analysis on historic pulp samples shows this trend continuing a further 400 metres to the north of HWDD017 and 1,000 metres to the south, giving a total prospective strike length of 1.4 kilometres that is yet to be adequately drill tested (Figure 2).

Additional diamond drilling north of Palomino has continued to expand the primary mineralisation down-plunge beyond the limits of the current resource:

HWDD004: 14.9 metres @ 3.9g/t Au from 222.1 metres (including 2.4 metres @ 10.9g/t Au).

Closer to surface, further drilling testing the oxide and transitional domains has successfully returned high grade mineralisation:

- HWDD026: 19 metres @ 3g/t Au from 45 metres (including 3 metres @ 12.0g/t Au); and
- HWRC294: 14 metres @ 2.8g/t Au from 37 metres (including 9 metres @ 4.2 g/t Au); and
- HWRC295: 16 metres @ 2.4g/t Au from 79 metres (including 7 metres @ 5.1g/t Au).

Assay turnaround times are continuing to be delayed due to factors beyond the Company's control. Strickland currently has over 40 sample submissions awaiting assay.

Introduction

Strickland Metals Limited (ASX:STK) (Strickland or the Company) is pleased to provide an update on exploration activities at its 100%-owned Horse Well project in Western Australia (Figure 1).

Paul L'Herpiniere, Managing Director of Strickland, said: "The result at Warmblood is potentially a game-changer for the prospect as it demonstrates the possibility for substantial mineralisation at depth. This is the first-time drilling at Warmblood has tested for down-plunge extensions, and indeed the first diamond drilling to have occurred at the prospect. If positive results from Warmblood continue as the Company expects, this extension of mineralisation has the potential to underpin a much larger open pit optimisation (see Figure 3).

Results like this, especially when viewed in the context of the defined extents of the associated multi-element geochemical trend, continue to confirm Strickland's belief in the inter-connected nature of the Horse Well prospects, with each primary lode having a north-west plunge. Historical drilling failed to demonstrate the geometry of the mineralisation, while these recent results indicate that the licence area is ripe for additional resource growth and further discoveries."

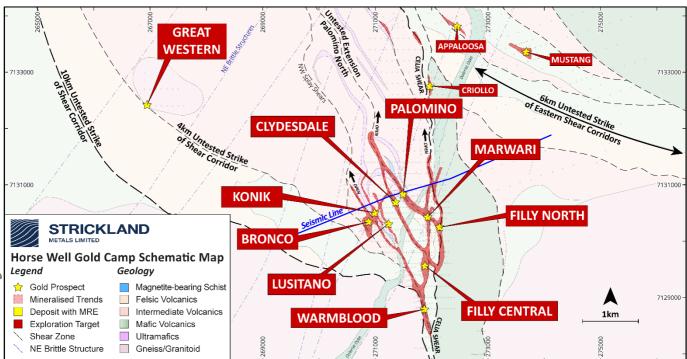


Figure 1. Topographic Geological Schematic Diagram highlighting the emerging Horse Well Gold Camp

Warmblood

Strickland is pleased to announce that further diamond drilling at Warmblood has delivered an exceptional intercept of 14.4 metres @ 6.0g/t Au from 114 metres (including 7 metres @ 10.6g/t Au) within HWDD017, with a deeper, second parallel lode returning 12.7 metres @ 1.7g/t Au from 144 metres (Figure 3). Both lodes are hosted in intensely sheared mafic volcaniclastics with silica-sericite-pyrite-ankerite alteration. Centimetre scaled boudinaged quartz Sheared mafic volcaniclastics with silica-sericite-pyrite-ankerite alteration. Centimetre so veining throughout both intercepts are host to the high-grade gold mineralisation (Figure 2).

3

Figure 2. HWDD017 diamond drill core. 114 to 122.5 metres showing the sample intervals (red lines) with the corresponding gold grade in grams per tonne – (lode associated with 14.4 metres @ 6.0g/t Au from 114 metres (including 7 metres @ 10.6g/t Au)

This intercept is significant as it is the deepest high-grade gold intercept that has been drilled at Warmblood to date, while also confirming the primary controls on mineralisation. Importantly, the mineralisation remains totally open at depth, along strike and down plunge (Figure 4).

As previously reported, aircore drilling results from the 2023 program (please refer to ASX announcement 20 December 2023) successfully connected the two historic, shallow oxide resources at Warmblood and Filly SW into a coherent, combined oxide domain with over 1 kilometre of strike (now collectively termed Warmblood). HWDD017 demonstrates that not only are these connected in the oxide domain, but more importantly in the primary domain, as a high-grade shoot that is open at depth and along strike.

Over the past several months, the Strickland exploration team has focused on re-assaying historic drill pulp residue samples across the Horse Well Gold Camp for full multi-element analysis. This was undertaken to define the key pathfinder element association with the gold mineralisation. A small dataset from historic Warmblood RC holes was previously released (please refer to ASX announcement 20 December 2023) and suggested that gold mineralisation is strongly associated with Bi,Te,W, and Ag. Sample pulps from over 100 historic aircore and Reverse Circulation (RC) drillholes have been sent for multi-element analysis to better define the Warmblood host-structure (coherent pathfinder geochemical results from historic RC drilling are contained within Appendix A- Table 3). Results of the analysis show a coherent mineralised trend extending a further 400 metres along strike to the north of the current resource area. This extends the overall potential mineralised strike to over 1.4 kilometres, with very few holes testing the primary structure below the oxide domain.

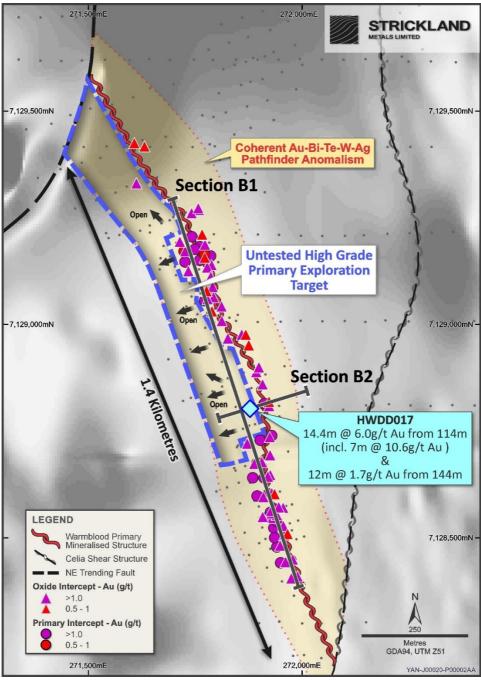


Figure 3. Warmblood Topographic Section highlighting the recent high-grade HWDD017 intercept in relation to the coherent 1.4km Au-Bi-Te-W-Ag mineralised trend

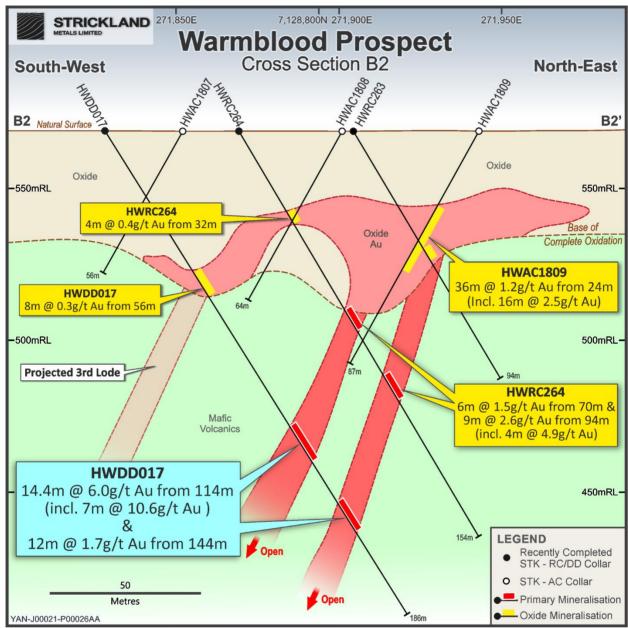


Figure 4. Warmblood Cross Section B2 highlighting two of the high-grade primary domains that are open down-dip

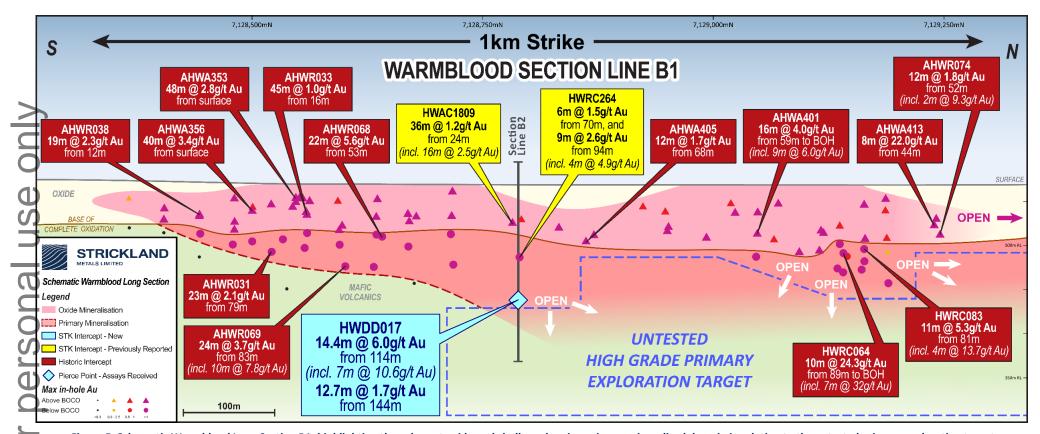


Figure 5. Schematic Warmblood Long Section B1, highlighting the coherent oxide and shallow plunging primary mineralised domain in relation to the untested primary exploration target

Palomino

In addition to the developments across Warmblood, Strickland is also pleased to announce that additional diamond drilling north of Palomino has continued to expand high-grade mineralisation down-plunge (Figure 6):

HWDD004: 14.9 metres @ 3.9g/t Au from 222.1 metres (including 2.4 metres @ 10.9g/t Au from 222.1 metres and 3.7 metres @ 5.9g/t Au from 230.8 metres)

Further testing of oxide and transition mineralisation across Palomino has also returned significant mineralisation:

- HWDD026: 19 metres @ 3g/t Au from 45 metres (including 3 metres @ 12g/t Au from 58 metres)
- HWRC294: 14 metres @ 2.8g/t Au from 37 metres (including 9 metres @ 4.2 g/t Au from 37 metres)
- HWRC295: 16 metres @ 2.4g/t Au from 79 metres (including 7 metres @ 5.1g/t Au from 88 metres)

These higher-grade results in HWRC294 and HWRC295 were intersected in areas that were historically characterised as lower-grade mineralisation. These latest results will therefore likely lead to an improvement in the grade of the resource model in this area.

Both the RC and diamond drilling across the Horse Well Gold Camp prospects has enhanced understanding of the primary controls on mineralisation, allowing Strickland to continue to successfully target high-grade mineralisation in areas where historic drilling failed to intersect significant mineralisation grades.

Drilling at the Horse Well Gold Camp continues to demonstrate the inter-connected nature of the prospects, with identified high-grade lodes each displaying a north-northwest plunge. It is clear from the ongoing drilling programs that Ohistoric drilling between prospects failed to identify the plunging geometry of the interconnecting primary lodes below the flat-lying oxide mineralisation, providing an exceptional opportunity to discover additional high-grade ___mineralisation at depth throughout the area.

CAssays

 \subseteq The current turnaround time for fire assay gold analysis is continuing to be slower than expected. Strickland currently has a large backlog of samples with over 40 sample submissions outstanding. Further results will be released to the market once they are received by the Company.

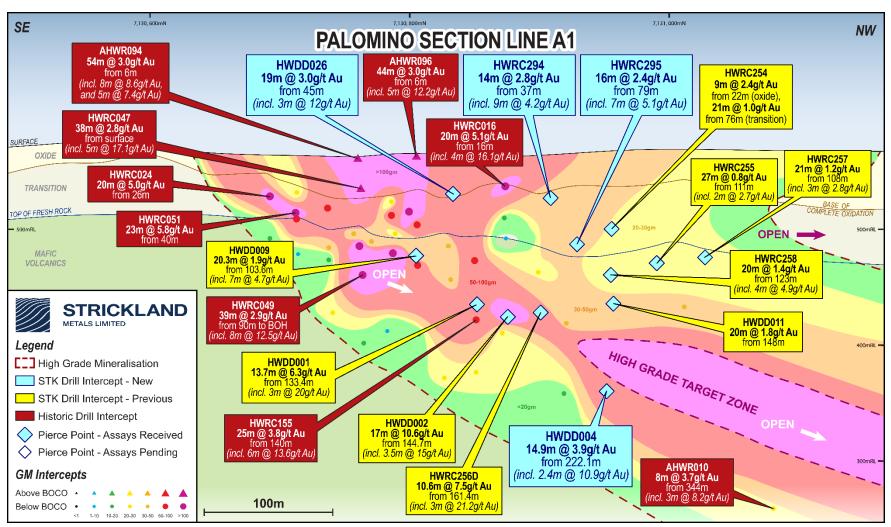


Figure 6: Schematic Palomino Long Section A1: Highlighting the recent high-grade oxide, transitional and primary mineralisation in relation to the Gram x Metre (GM) gold intercepts

This release has been authorised by the Company's Managing Director Mr Paul L'Herpiniere.

— **Ends** —

For further information, please contact:

Paul L'Herpiniere

Managing Director
Phone: +61 (8) 6317 9875
info@stricklandmetals.com.au
stricklandmetals.com.au

Competent Person's Statement

The information in this report that relates to Exploration Results or Mineral Resources is based on information compiled or reviewed by Mr Richard Pugh who is the Strickland Metals Limited Technical Director, WA and is a current Member of the Australian Institute of Geoscientists (AIG). Mr Richard Pugh has sufficient experience, which is relevant to the style of mineralisation and types of deposit under consideration and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Pugh consents to the inclusion in the report of the matters based on the information in the form and context in which it appears.

OForward-Looking Statements

This announcement may contain certain forward-looking statements, guidance, forecasts, estimates, prospects, projections or statements in relation to future matters that may involve risks or uncertainties and may involve significant items of subjective judgement and assumptions of future events that may or may not eventuate (Forward-Looking Statements). Forward-Looking Statements can generally be identified by the use of forward-looking words such as "anticipate", "estimates", "will", "should", "could", "may", "expects", "plans", "forecast", "target" or similar expressions and may include, without limitation, statements regarding plans, strategies and objectives of management, anticipated production and expected costs. Indications of, and guidance on future earnings, cash flows, costs, financial position and performance are also Forward Looking Statements.

Persons reading this announcement are cautioned that such statements are only predictions, and that actual future results or performance may be materially different. Forward-Looking Statements, opinions and estimates included in this announcement are based on assumptions and contingencies which are subject to change, without notice, as are statements about market and industry trends, which are based on interpretation of current market conditions. Forward-Looking Statements are provided as a general guide only and should not be relied on as a guarantee of future performance.

No representation or warranty, express or implied, is made by Strickland that any Forward-Looking Statement will be achieved or proved to be correct. Further, Strickland disclaims any intent or obligation to update or revise any Forward-Looking Statement whether as a result of new information, estimates or options, future events or results or otherwise, unless required to do so by law.

Appendix A – Significant Intercepts

Table 1 – Warmblood

Hole ID	Coordinat	tes (MGA94 Zor	ne 51)		Hole De	etails				Intercept	Details	
	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Dept h (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments
HWDD017	271,830	7,128,780	569	RC_DD	72.5	-60	186	114	128.4	14.4	6.0	14.4m @ 6.0g/t Au from 114m
including								115	122	7	10.6	7m @ 10.6g/t Au from 115m
and								144	156.7	12.7	1.7	12.7m @ 1.7g/t Au from 144m
HWRC263*	271,906	7,128,805	569	RC	72.5	-60	94	39	44	5	0.4	5m @ 0.4g/t Au from 39m
HWRC264*	271,868	7,128,792	569	RC	72.5	-60	154	32	36	4	0.4	4m @ 0.4g/t Au from 32m
and								70	76	6	1.5	6m @ 1.5g/t Au from 70m
including								72	74	2	3.6	2m @ 3.6g/t Au from 72m
and								94	103	9	2.6	9m @ 2.6g/t Au from 94m
including								95	99	4	4.9	4m @ 4.9g/t Au from 95m
HWRC265*	271,885	7,128,840	569	RC	72.5	-60	124	53	56	3	3.5	3m @ 3.5g/t Au from 53m
HWRC266*	271,855	7,128,704	569	RC	72.5	-60	154	109	110	1	3.2	1m @ 3.2g/t Au from 109m
and								112	114	2	0.7	2m @ 0.7g/t Au from 112m
and								128	130	2	0.5	2m @ 0.5g/t Au from 128m
HWRC275*	271,912	7,128,722	569	RC	72.5	-60		4	5	1	0.4	1m @ 0.4g/t Au from 4m
and								37	43	6	4.0	6m @ 4.0g/t Au from 37m
including								38	41	3	7.6	3m @ 7.6g/t Au from 38m
and								62	69	7	1.1	7m @ 1.1g/t Au from 62m
AHWA351*	271,925	7,128,543	570	AC	360	-90	45	12	20	8	4.4	8m @ 4.4g/t Au from 12m
AHWA352*	271,933	7,128,542	570	AC	360	-90	46	13	14	1	0.4	1m @ 0.4g/t Au from 13m
and								20	28	8	4.8	8m @ 4.8g/t Au - from 20m, incl. 3m
including								22	25	3	11.3	@ 11.3g/t Au
AHWA353*	271,943	7,128,549	570	AC	360	-90	52	0	48	48	2.8	48m @ 2.8g/t Au from 0m, incl 16m @
including								0	16	16	6.6	6.6g/t Au
AHWA354*	271,941	7,128,490	571	AC	360	-90	48	12	16	4	0.3	4m @ 0.3g/t Au from 12m
AHWA355*	271,949	7,128,496	571	AC	360	-90	51					NSR
AHWA356*	271,960	7,128,502	571	AC	360	-90	57	0	40	40	3.4	40m @ 3.4g/t Au
including								28	40	12	9.0	- from 0m, incl. 12m @ 9.0g/t Au
AHWA357*	271,968	7,128,505	571	AC	360	-90	68	20	28	8	0.6	8m @ 0.6g/t Au from 20m
AHWA358*	271,978	7,128,513	571	AC	360	-90	66	20	24	4	0.3	4m @ 0.3g/t Au from 20m
AHWA394*	271,837	7,128,956	565	AC	70	-60	69					NSR
AHWA395*	271,807	7,128,948	567	AC	70	-60	72	48	52	4	1.3	4m @ 1.3g/t Au from 48m
AHWA396*	271,788	7,128,944	567	AC	70	-60	68					NSR

Hole ID	Coordinat	es (MGA94 Zoi	ne 51)		Hole De	etails				Intercept	Details	
	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Dept h (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments
AHWA397*	271,764	7,128,933	571	AC	65	-60	53			()		NSR
AHWA398*	271,744	7,128,931	573	AC	70	-60	48					NSR
AHWA399*	271,693	7,128,908	573	AC	70	-60	41					NSR
AHWA400*	271,782	7,129,046	568	AC	70	-60	60	25	44	19	1.7	19m @ 1.7g/t Au from 25m
AHWA401*	271,755	7,129,037	569	AC	70	-60	75	34	35	1	0.7	1m @ 0.7g/t Au from 34m
and								59	75	16	4.0	16m @ 4.0g/t Au from 59m, incl. 9m
including								60	69	9	6.0	@ 6.0g/t Au
AHWA402*	272,009	7,128,905	568	AC	75	-60	48					NSR
AHWA403*	271,961	7,128,892	567	AC	70	-60	58					NSR
AHWA404*	271,917	7,128,873	570	AC	70	-60	64					NSR
AHWA405*	271,863	7,128,867	567	AC	70	-60	83	68	80	12	1.7	12m @ 1.7g/t Au from 68m
AHWA406*	271,844	7,128,850	567	AC	70	-60	84					NSR
AHWA407*	271,817	7,128,845	565	AC	70	-60	63					NSR
AHWA408*	271,795	7,128,834	567	AC	70	-60	58					NSR
AHWA409*	271,769	7,128,828	570	AC	70	-60	59					NSR
AHWA410*	271,745	7,128,819	571	AC	70	-60	59					NSR
AHWA411*	271,727	7,128,812	571	AC	70	-60	45					NSR
AHWA412*	271,746	7,129,247	566	AC	70	-60	72	36	40	4	1.2	4m @ 1.2g/t Au from 36m
AHWA413*	271,725	7,129,238	565	AC	70	-60	69	44	52	8	22.0	8m @ 22g/t Au from 44m
AHWA414*	271,696	7,129,229	567	AC	70	-60	71					NSR
AHWA415*	271,677	7,129,222	567	AC	70	-60	72					NSR
AHWA416*	271,650	7,129,217	569	AC	70	-60	69					NSR
AHWA417*	271,628	7,129,205	569	AC	70	-60	65					NSR
AHWA418*	271,601	7,129,197	566	AC	70	-60	64					NSR
AHWA419*	271,580	7,129,195	565	AC	70	-60	64	44	52	8	0.7	8m @ 0.7g/t Au from 44m
AHWA420*	271,555	7,129,188	567	AC	70	-60	63					NSR
AHWR012*	271,890	7,128,893	569	RC	70	-60	90	32	36	4	0.5	4m @ 0.5g/t Au from 32m
AHWR013*	271,867	7,128,877	569	RC	70	-60	111	56	68	12	0.7	12m @ 0.7g/t Au from 56m
AHWR014*	271,866	7,128,936	569	RC	70	-60	99	24	32	8	0.5	8m @ 0.5g/t Au from 24m
AHWR015*	271,846	7,128,925	569	RC	70	-60	114	40	48	8	0.4	8m @ 0.4g/t Au from 40m
and								56	60	4	0.4	4m @ 0.4g/t Au from 56m
AHWR016*	271,855	7,128,959	569	RC	70	-60	63	28	36	8	0.4	8m @ 0.4g/t Au from 28m
AHWR017*	271,833	7,128,953	569	RC	70	-60	108	48	56	8	1.6	8m @ 1.6g/t Au from 48m
AHWR018*	271,811	7,128,946	569	RC	70	-60	123					NSR
AHWR019*	271,853	7,129,011	569	RC	70	-60	66					NSR
AHWR020*	271,834	7,129,004	569	RC	70	-60	90					NSR

Hole ID	Coordinat	es (MGA94 Zor	ne 51)		Hole De	etails				Intercept	Details	
	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Dept h (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments
AHWR021*	271,814	7,128,997	569	RC	70	-60	111					NSR
AHWR022*	271,796	7,128,990	569	RC	70	-60	111	52	56	4	0.4	4m @ 0.4g/t Au from 52m
AHWR023*	271,778	7,128,981	569	RC	70	-60	111	52	56	4	0.5	4m @ 0.5g/t Au from 52m
AHWR024*	271,799	7,129,024	569	RC	70	-60	72	28	36	8	1.9	8m @ 1.9g/t Au from 28m
AHWR025*	271,783	7,129,015	569	RC	70	-60	90	20	24	4	0.6	4m @ 0.6g/t Au from 20m
AHWR026*	271,760	7,129,012	569	RC	70	-60	120					NSR
AHWR027*	271,784	7,129,071	569	RC	70	-60	60	16	24	8	2.3	8m @ 2.3g/t Au from 16m
AHWR028*	271,767	7,129,060	569	RC	70	-60	90					NSR
AHWR029*	271,746	7,129,053	569	RC	70	-60	120	68	76	8	0.4	8m @ 0.4g/t Au from 68m
AHWR030*	271,973	7,128,529	571	RC	249	-54	120	13	36	23	0.5	23m @ 0.5g/t Au from 13m
and								40	45	5	0.8	5m @ 0.8g/t Au from 40m
AHWR031*	271,993	7,128,536	572	RC	256	-54	132	20	21	1	0.7	1m @ 0.7g/t Au from 20m
and								37	41	4	0.3	4m @ 0.3g/t Au from 37m
and								48	49	1	0.3	1m @ 0.3g/t Au from 48m
and								79	102	23	2.1	23m @ 2.1g/t Au
including								93	101	8	5.5	from 79m, incl. 8m @ 5.5g/t Au
and								108	109	1	0.5	1m @ 0.5g/t Au from 108m
AHWR032*	271,965	7,128,569	570	RC	250	-54	90	0	7	7	0.4	7m @ 0.4g/t Au from 0m
and								18	43	25	0.6	25m @ 0.6g/t Au from 18m
and								57	62	5	1.1	5m @ 1.1g/t Au from 57m
AHWR033*	271,978	7,128,573	570	RC	250	-55	132	10	12	2	0.3	2m @ 0.3g/t Au from 10m
and								16	61	45	1	45m @ 1.0g/t Au from 16m
and								66	68	2	1.0	2m @ 1g/t Au from 66m
and								99	112	13	0.4	13m @ 0.4g/t Au from 99m
AHWR034*	271,989	7,128,492	572	RC	249	-56	108	44	47	3	0.5	3m @ 0.5g/t Au from 44m
and								52	55	3	0.7	3m @ 0.7g/t Au from 52m
and								60	63	3	1.1	3m @ 1.1g/t Au from 60m
and								71	87	16	2.7	16m @ 2.7g/t Au
including								79	86	7	4.6	from 71m, incl. 7m @ 4.6g/t Au
AHWR035*	272,006	7,128,499	572	RC	250	-55	162					NSR
AHWR038*	271,962	7,128,440	571	RC	71	-60	114	12	31	19	2.4	19m @ 2.3g/t Au from 12m, incl. 5m
including								14	19	5	5.1	@ 5.1g/t Au
and								38	40	2	6.3	2m @ 6.3g/t Au from 38m
AHWR039*	271,943	7,128,433	571	RC	70	-59	162	33	34	1	0.3	1m @ 0.3g/t Au from 33m

Hole ID	Coordinat	es (MGA94 Zo	ne 51)		Hole De	etails				Intercept	Details	
	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Dept h (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments
and							,	38	45	7	1.0	7m @ 1g/t Au from 38m
and								58	64	6	0.6	6m @ 0.6g/t Au from 58m
AHWR040*	271,976	7,128,402	572	RC	71	-60	156	18	19	1	0.4	1m @ 0.4g/t Au from 18m
and								21	22	1	0.4	1m @ 0.4g/t Au from 21m
and								32	33	1	8.6	1m @ 8.6g/t Au from 32m
and								37	40	3	0.7	3m @ 0.7g/t Au from 37m
AHWR041*	271,955	7,128,395	572	RC	72	-60	126	35	49	14	0.7	14m @ 0.7g/t Au from 35m
AHWR042*	271,983	7,128,362	572	RC	71	-59	156	19	20	1	0.4	1m @ 0.4g/t Au from 19m
and								23	24	1	0.3	1m @ 0.3g/t Au from 23m
AHWR043*	271,923	7,128,549	570	RC	68	-60	39	3	5	2	0.3	2m @ 0.3g/t Au from 3m
and								10	32	22	3.7	22m @ 3.7g/t Au
including								10	19	9	5.2	from 10m, incl. 9m @ 5.2g/t Au
AHWR044*	271,904	7,128,542	570	RC	68	-60	39	14	32	18	0.9	18m @ 0.9g/t Au
including								14	17	3	3.7	from 14m, incl. 3m @ 3.7g/t Au
AHWR045*	271,951	7,128,603	569	RC	68	-61	69	12	34	22	0.4	22m @ 0.4g/t Au from 12m
AHWR046*	271,931	7,128,597	569	RC	68	-61	59	19	21	2	0.7	2m @ 0.7g/t Au from 19m
and								24	33	9	0.5	9m @ 0.5g/t Au from 24m
AHWR047*	271,908	7,128,591	570	RC	68	-61	69	14	21	7	1.9	7m @ 1.9g/t Au
including								15	16	1	10.9	from 14m, incl. 1m @ 10.9g/t Au
and								27	36	9	0.3	9m @ 0.3g/t Au from 27m
and								51	56	5	3.2	5m @ 3.2g/t Au from 51m
AHWR048*	271,892	7,128,581	570	RC	68	-65	89	28	39	11	2.3	11m @ 2.3g/t Au from 28m
and								54	80	26	1.8	26m @ 1.8g/t Au
including								54	60	6	6.5	from 54m, incl. 6m @ 6.5g/t Au
AHWR049*	271,969	7,128,695	569	RC	68	-60	69					NSR
AHWR050*	271,933	7,128,683	569	RC	68	-60	69					NSR
AHWR051*	271,892	7,128,666	569	RC	74	-60	69	20	47	27	1.2	27m @ 1.2g/t Au
including								35	43	8	3.0	from 20m, incl. 8m @ 3g/t Au
AHWR052*	271,848	7,128,651	569	RC	68	-60	69					NSR
AHWR053*	271,949	7,128,776	569	RC	68	-60	79					NSR
AHWR054*	271,910	7,128,763	569	RC	68	-60	69					NSR
AHWR055*	271,865	7,128,748	569	RC	68	-60	69	61	63	2	0.4	2m @ 0.4g/t Au from 61m
AHWR056*	271,946	7,128,478	571	RC	73	-60	37	15	20	5	1.1	5m @ 1.1g/t Au from 15m
AHWR057*	271,929	7,128,472	571	RC	71	-60	55	46	49	3	13.6	3m @ 13.6g/t Au
including								47	48	1	35.4	from 46m, incl. 1m @ 35.4g/t Au

and AHWR058* 2 AHWR059* 2	Easting (m) 271,920 271,904	Northing (m)	RL (m)	Hole Type	Azi	Dip	Total	Depth	Depth	Intercept	Grade	Grade Summary/
AHWR058* 2 AHWR059* 2		7.420.620			(deg)	(deg)	Dept h (m)	from (m)	To (m)	Width (m)	(g/t)	Comments
AHWR059* 2		7 420 620						53	55	2	1.3	2m @ 1.3g/t Au from 53m
	271,904	7,128,638	569	RC	72	-60	48	15	26	11	0.5	11m @ 0.5g/t Au from 15m
AHWR060*		7,128,630	569	RC	70	-61	68	21	42	21	1.0	21m @ 1g/t Au from 21m
2	271,881	7,128,623	569	RC	71	-61	88	30	32	2	0.4	2m @ 0.4g/t Au from 30m
and								39	41	2	0.6	2m @ 0.6g/t Au from 39m
and								65	69	4	1.0	4m @ 1g/t Au from 65m
AHWR061* 2	271,909	7,128,681	569	RC	72	-61	48	21	24	3	0.6	3m @ 0.6g/t Au from 21m
and								28	30	2	0.8	2m @ 0.8g/t Au from 28m
and								32	43	11	1.1	11m @ 1.1g/t Au from 32m
AHWR062* 2	271,870	7,128,661	569	RC	74	-61	94	43	49	6	2.3	6m @ 2.3g/t Au from 43m
and								57	58	1	4.1	1m @ 4.1g/t Au from 57m
and								70	81	11	1.2	11m @ 1.2g/t Au from 70m
AHWR063* 2	271,894	7,128,721	569	RC	75	-61	58	24	26	2	0.9	2m @ 0.9g/t Au from 24m
and								54	58	4	2.9	4m @ 2.9g/t Au from 54m to BOH
AHWR064* 2	271,872	7,128,713	569	RC	76	-60	78	5	7	2	1.4	2m @ 1.4g/t Au from 5m
and								66	68	2	1.8	2m @ 1.8g/t Au from 66m
AHWR065* 2	271,853	7,128,709	569	RC	77	-61	99					NSR
AHWR066* 2	271,880	7,128,755	569	RC	74	-60	59					NSR
AHWR067* 2	271,845	7,128,657	569	RC	71	-60	152					NSR
	271,855	7,128,623	569	RC	71	-60	143	20	21	1	0.5	1m @ 0.5g/t Au from 20m
and								36	37	1	0.6	1m @ 0.6g/t Au from 36m
and								43	46	3	0.6	3m @ 0.6g/t Au from 43m
and								53	75	22	5.6	22m @ 5.6g/t Au
including								67	71	4	20.1	from 53m, incl. 4m @ 20.1g/t Au
and								89	92	3	1.6	3m @ 1.6g/t Au from 89m
AHWR069* 2	271,859	7,128,576	569	RC	67	-60	160	83	107	24	3.7	24m @ 3.7g/t Au
including								85	95	10	7.8	from 83m, incl. 10m @ 7.8g/t Au
AHWR070* 2	271,910	7,128,519	570	RC	67	-60	110	69	77	8	2.7	8m @ 2.7g/t Au from 69m
and								82	92	10	1.1	10m @ 1.1g/t Au from 82m
AHWR071* 2	271,869	7,128,508	570	RC	67	-60	161					NSR
AHWR072* 2	271,902	7,128,483	570	RC	71	-60	130	73	81	8	1.8	8m @ 1.8g/t Au from 73m
AHWR073* 2	271,921	7,128,427	571	RC	71	-60	130	63	72	9	2.2	9m @ 2.2g/t Au from 63m
AHWR074* 2	271,733	7,129,247	569	RC	71	-60	80	52	64	12	1.8	

Hole ID	Coordinat	es (MGA94 Zo	ne 51)		Hole De	etails				Intercept	Details	
	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Dept h (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments
including							(,	61	63	2	9.3	12m @ 1.8g/t Au from 52m, incl. 2m @ 9.3g/t Au
AHWR075*	271,705	7,129,237	569	RC	71	-60	120					NSR
AHWR101*	271,879	7,128,456	570	RC	63	-60	127					NSR
AHWR102*	271,939	7,128,562	570	RC	69	-61	49	0	1	1	0.3	1m @ 0.3g/t Au from 0m
and								9	23	14	1.2	14m @ 1.2g/t Au from 9m
and								27	43	16	0.8	16m @ 0.8g/t Au from 27m
AHWR103*	271,913	7,128,552	570	RC	73	-61	79	22	44	22	0.7	22m @ 0.7g/t Au from 22m
and								60	64	4	1.5	4m @ 1.5g/t Au from 60m
AHWR104*	271,829	7,128,612	569	RC	67	-61	157	103	107	4	1.6	4m @ 1.6g/t Au
including								106	107	1	5.2	from 103m, incl. 1r @ 5.2g/t Au
and								144	145	1	1.9	1m @ 1.9g/t Au from 144m
AHWR105*	271,804	7,128,603	570	RC	67	-61	199					NSR
AHWR106*	271,884	7,128,717	569	RC	71	-61	109	72	73	1	1.8	1m @ 1.8g/t Au from 72m
and								77	78	1	0.3	1m @ 0.3g/t Au from 77m
and								99	109	10	1.5	10m @ 1.5g/t Au from 99m to BOH
HWRC064*	271,726	7,129,129	568	RC	71	-60	99	89	99	10	24.3	10m @ 24.3g/t Au from 89m to BOH
including	-							89	96	7	32.0	incl. 7m @ 32g/t A
HWRC065*	271,821	7,129,163	568	RC	253	-58	117	92	93	1	0.9	1m @ 0.9g/t Au from 92m
and								96	98	2	0.7	2m @ 0.7g/t Au from 96m
and								101	102	1	0.4	1m @ 0.4g/t Au from 101m
HWRC078*	271,752	7,129,136	568	RC	75	-60	100	51	52	1	0.7	1m @ 0.7g/t Au from 51m
and								78	80	2	0.9	2m @ 0.9g/t Au from 78m
HWRC079*	271,708	7,129,122	568	RC	75	-59	150	105	106	1	0.5	1m @ 0.5g/t Au from 105m
and								110	117	7	1.2	7m @ 1.2g/t Au from 110m
HWRC080*	271,787	7,129,177	568	RC	72	-61	102					NSR
HWRC081*	271,768	7,129,171	568	RC	72	-62	111					NSR
HWRC082*	271,744	7,129,162	568	RC	72	-61	105	68	69	1	1.2	1m @ 1.2g/t Au from 68m
HWRC083*	271,721	7,129,155	568	RC	74	-60	111	22	23	1	2.4	1m @ 2.4g/t Au from 22m
and								81	92	11	5.3	11m @ 5.3g/t Au from 81m, incl. 4r
including								85	89	4	13.7	@ 13.7g/t Au
HWRC084*	271,697	7,129,146	568	RC	75	-61	123	113	123	10	0.8	10m @ 0.8g/t Au from 113m to BO
HWRC085*	271,675	7,129,141	568	RC	73	-60	110	100	101	1	0.8	1m @ 0.8g/t Au from 100m

Hole ID	Coordinat	es (MGA94 Zor	ne 51)		Hole De	etails				Intercept	Details	
	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Dept h (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments
and							,	103	104	1	1.0	1m @ 1g/t Au from 103m
HWRC086*	271,808	7,129,132	568	RC	74	-60	99	81	82	1	2.1	1m @ 2.1g/t Au from 81m
HWRC087*	271,786	7,129,124	568	RC	72	-60	99					NSR
HWRC088*	271,764	7,129,116	568	RC	70	-60	105	52	67	15	2.6	15m @ 2.6g/t Au from 52m, incl. 4m
including	274 725	7 120 100	568	D.C.	75	50	117	57	61	4	8.2	@ 8.2g/t Au
HWRC089*	271,735	7,129,108	508	RC	75	-59	117	71	72	1	0.4	1m @ 0.4g/t Au from 71m
and								83	89	6	3.4	6m @ 3.4g/t Au from 83m
HWRC090*	271,711	7,129,102	568	RC	71	-60	123	59	60	1	4.6	1m @ 4.6g/t Au from 59m
HWRC106*	271,755	7,129,190	568	RC	74	-60	99	31	32	1	0.7	1m @ 0.7g/t Au from 31m
HWRC107*	271,737	7,129,186	568	RC	74	-60	105	68	69	1	0.5	1m @ 0.5g/t Au from 68m
HWRC108*	271,711	7,129,177	568	RC	72	-60	117	16	17	1	1.1	1m @ 1.1g/t Au from 16m
and								58	62	4	0.4	4m @ 0.4g/t Au from 58m
HWRC109*	271,789	7,129,100	568	RC	73	-59	99					NSR
HWRC110*	271,766	7,129,092	568	RC	73	-59	99	68	69	1	0.3	1m @ 0.3g/t Au from 68m
HWRC111*	271,743	7,129,083	568	RC	74	-59	105	85	86	1	0.5	1m @ 0.5g/t Au from 85m
and								89	90	1	1.2	1m @ 1.2g/t Au from 89m
HWRC238*	271,673	7,129,115	568	RC	73	-60	240	116	119	3	2.9	3m @ 2.9g/t Au from 116m
and								164	167	3	0.3	3m @ 0.3g/t Au from 164m
and								171	172	1	0.6	1m @ 0.6g/t Au from 171m
HWRC241*	271,682	7,129,170	568	RC	71	-61	227	50	53	3	0.3	3m @ 0.3g/t Au from 50m
and								62	63	1	0.3	1m @ 0.3g/t Au from 62m
and								64	65	1	0.3	1m @ 0.3g/t Au from 64m
and								130	133	3	0.6	3m @ 0.6g/t Au from 130m
HWRC242*	271,735	7,129,030	568	RC	72	-61	250	93	95	2	1.2	2m @ 1.2g/t Au from 93m
and								221	223	2	0.3	2m @ 0.3g/t Au from 221m
HWAC1774*	271,550	7,129,200	572	AC	270	-60	54					NSR
HWAC1775*	271,600	7,129,200	572	AC	270	-60	63					NSR
HWAC1776*	271,650	7,129,200	572	AC	270	-60	65					NSR
	·				270	60						
HWAC1777*	271,700	7,129,200	572	AC	270	-60	57					NSR
HWAC1778*	271,750	7,129,200	572	AC	270	-60	78					NSR
HWAC1779*	271,800	7,129,200	572	AC	270	-60	68					NSR

Hole ID	Coordinat	tes (MGA94 Zo	ne 51)		Hole De	etails				Intercept	Details	
	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Dept h (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments
HWAC1780*	271,850	7,129,200	572	AC	270	-60	74					NSR
HWAC1781*	271,900	7,129,200	572	AC	270	-60	81					NSR
HWAC1782*	271,950	7,129,200	572	AC	270	-60	89	20	24	4	0.4	4m @ 0.4g/t Au from 20m
HWAC1791*	271,700	7,129,000	572	AC	270	-60	13					NSR
HWAC1792*	271,750	7,129,000	572	AC	270	-60	57					NSR
HWAC1793*	271,800	7,129,000	572	AC	270	-60	64					NSR
HWAC1794*	271,850	7,129,000	572	AC	270	-60	75	64	68	4	1.0	4m @ 1g/t Au fror 64m
HWAC1795*	271,900	7,129,000	572	AC	270	-60	65					NSR
HWAC1796*	271,950	7,129,000	572	AC	270	-60	70					NSR
HWAC1797*	272,000	7,129,000	572	AC	270	-60	80					NSR
HWAC1806*	271,800	7,128,800	572	AC	270	-60	48					NSR
HWAC1807*	271,850	7,128,800	572	AC	270	-60	56					NSR
HWAC1808*	271,900	7,128,800	572	AC	270	-60	64					NSR
HWAC1809*	271,950	7,128,800	572	AC	270	-60	87	24	60	36	1.2	36m @ 1.2g/t Au from 24m, incl. 16
including								32	48	16	2.5	@ 2.5g/t Au
HWAC1810*	272,000	7,128,800	572	AC	270	-60	69					NSR

Table 2 – Palomino

_		Coordina	tes (MGA94 Zo	ne 51)		Hole De	etails				Intercep	t Details	
	HoleID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments
	HWDD001*	271,495	7,130,870	568	DDH	252	-62	213.0	127.9	129.4	1.4	1.3	1.4m @ 1.3g/t Au from 127.9m
	and								133.4	147	13.7	6.3	13.7m @ 6.3g/t Au from 133.4m
	including								133.9	136.9	3	20.0	3m @ 20g/t Au from 133.9m
	HWDD002*	271,494	7,130,895	568	DDH	252	-62	201.0	14.2	17	2.9	0.9	2.9m @ 0.9g/t Au from 14.2m
	and								19	19.7	0.7	1.7	0.7m @ 1.7g/t Au from 19m
	and								144.7	161.6	17	10.6	17m @ 10.6g/t Au from 144.7m
	including								150.1	153.6	3.5	15.0	3.5m @ 15g/t Au from 150.1m
	HWDD004	271,274	7,130,918	565	RC_DD	72.5	-60	293.5	52.0	56.0	4.0	1.8	4m @ 1.8g/t Au from 52m
	and								166.2	167.9	1.6	3.1	1.6m @ 3.1g/t Au from 166.2m
	including								166.9	167.9	0.9	5.1	0.9m @ 5.1g/t Au from 166.9m

	Coordinat	tes (MGA94 Zo	ne 51)		Hole D	etails				Intercep	t Details	
HoleID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments
and							(,	182.2	183.9	1.7	0.9	1.7m @ 0.9g/t Au from 182.2m
and								222.1	236.9	14.9	3.9	14.9m @ 3.9g/t Au from 222.1m
including								222.1	224.5	2.4	10.9	2.4m @ 10.9g/t Au from 222.1m
and								230.8	234.6	3.7	5.9	3.7m @ 5.9g/t Au from 230.8m
and								252	253.0	1.0	0.9	1m @ 0.9g/t Au from 252m
HWDD009*	271,397	7,130,783	567	DDH	72.5	-60	174.0	19.5	20	0.5	1.0	0.5m @ 1g/t Au from 19.5m
and								49	55.6	6.4	0.5	6.4m @ 0.5g/t Au from 49m
and								61.3	67	6.7	0.5	6.7m @ 0.5g/t Au from 61.3m
and								68.9	73.5	4.6	0.4	4.6m @ 0.4g/t Au from 68.9m
and								80	83	3	0.4	3m @ 0.4g/t Au from 80m
and								103.6	123.9	20.3	1.9	20.3m @ 1.9g/t Au from 103.6m
including								109	116	7	4.7	7m @ 4.7g/t Au from 109m
HWDD011*	271,310	7,130,929	565	DDH	72.5	-60	213.0	148	168	20	1.8	20m @ 1.8g/t Au from 148m
HWDD026	271,425	7,130,825	565	DDH	73	-60	84	45	64	19	3.0	19m @ 3g/t Au from 45m
including								58	61	3	12.0	3m @ 12g/t Au from 58m
HWRC254*	271,350	7,130,942	567	RC	72.5	-60	136.0	22	31	9	2.4	9m @ 2.4g/t Au from 22m
and								76	97	21	1.0	21m @ 1g/t Au from 76m
HWRC255*	271,319	7,130,974	566	RC	72.5	-60	172.0	62	64	2	0.4	2m @ 0.4g/t Au from 62m
and								83	85	2	0.5	2m @ 0.5g/t Au from 83m
and								111	138	27	0.8	27m @ 0.8g/t Au
including								111	114	3	1.8	3m @ 1.8g/t Au from 111m
including								134	136	2	2.8	2m @ 2.8g/t Au from 134m
and								141	142	1	0.4	1m @ 0.4g/t Au from
HWRC256D*	271,330	7,130,873	566	RC_DD	72.5	-60	225.0	161.4	172	10.6	7.5	141m 10.6m @ 7.5g/t Au from 161.4m
including								165.9	168.9	3	21.2	3m @ 21.2g/t Au from 165.9m
HWRC257*	271,312	7,131,013	567	RC	72.5	-60	202.0	68	80	12	0.5	12m @ 0.5g/t Au
and								108	129	21	1.2	from 68m 21m @ 1.2g/t Au
including								113	117	4	2.0	from 108m 4m @ 2g/t Au from
including								126	129	3	2.7	113m 3m @ 2.7g/t Au from
HWRC258*	271,330	7,130,935	567	RC	72.5	-60	202.0	123	143	20	1.4	126m 20m @ 1.4g/t Au
including								133	137	4	4.9	from 123m 4m @ 4.9g/t Au from
HWRC294	271,406	7,130,895	567	RC	72.5	-60	100.0	37	51	14	2.8	133m 14m @ 2.8g/t Au from 37m

	Coordina	tes (MGA94 Zo	ne 51)		Hole D	etails				Intercep	t Details	
HoleID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments
including							(,	37	46	9	4.2	9m @ 4.2g/t Au from 37m
HWRC295	271,358	7,130,912	567	RC	72.5	-60	124.0	37	41	4	0.9	4m @ 0.9g/t Au from 37m
and								79	95	16	2.4	16m @ 2.4g/t Au from 79m
including								88	95	7	5.1	7m @ 5.1g/t Au from 88m
AHWA170*	271,534	7,130,721	565	AC	252	-60	64.0	15	18	3	0.7	3m @ 0.7g/t Au from 15m
and								36	64	28	2.0	28m @ 2g/t Au from 36m
AHWR007*	271,494	7,131,051	567	AC	247.5	-60	264.0	236	237	1	0.8	1m @ 0.8g/t Au from 236m
and								250	264	14	0.8	14m @ 0.8g/t Au from 250m to BOH
AHWR008*	271,448	7,131,148	566	AC	247.5	-60	303.0	270	279	9	0.9	9m @ 0.9g/t Au from 270m
AHWR010*	271,505	7,131,169	566	AC	247.5	-60	361.0	163	164	1	1.8	1m @ 1.8g/t Au from 163m
and								344	352	8	3.7	8m @ 3.7g/t Au from 344m
including								347	350	3	8.2	3m @ 8.2g/t Au from 347m
AHWR092*	271,503	7,130,710	568	AC	71.9	-60	56.0	24	32	8	2.3	8m @ 2.3g/t Au from 24m
AHWR093*	271,480	7,130,703	568	AC	71.2	-60	85.0	20	21	1	0.5	1m @ 0.5g/t Au from 20m
and								23	24	1	0.8	1m @ 0.8g/t Au from 23m
and								28	29	1	4.0	1m @ 4g/t Au from 28m
o and								41	60	19	1.3	19m @ 1.3g/t Au from 41m
AHWR094*	271,464	7,130,752	568	AC	75.1	-60	85.0	6	60	54	3.0	54m @ 3g/t Au from 6m
including								27	35	8	8.6	8m @ 8.6g/t Au from 27m
including								45	50	5	7.4	5m @ 7.4g/t Au from 45m
AHWR095*	271,442	7,130,745	568	AC	73.8	-60	120.0	42	45	3	0.3	3m @ 0.3g/t Au from 42m
and								81	103	22	3.6	22m @ 3.6g/t Au from 81m
AHWR096*	271,447	7,130,799	568	AC	73.8	-60	79.0	6	50	44	3.0	44m @ 3g/t Au from 6m
including								32	37	5	12.2	5m @ 12.2g/t Au from 32m
AHWR097*	271,418	7,130,789	568	AC	68.7	-60	139.0	23	38	15	0.4	15m @ 0.4g/t Au from 23m
and								48	52	4	0.8	4m @ 0.8g/t Au from 48m
and								72	88	16	3.9	16m @ 3.9g/t Au from 72m
AHWR098*	271,371	7,130,775	568	AC	69.8	-60	199.0	117	118	1	0.6	1m @ 0.6g/t Au from 117m
and								121	122	1	0.4	1m @ 0.4g/t Au from 121m
and								132	143	11	0.4	11m @ 0.4g/t Au from 132m
and								174	187	13	1.0	13m @ 1g/t Au from 174m
and								192	199	7	0.3	7m @ 0.3g/t Au from 192m to BOH

	Coordina	tes (MGA94 Zo	ne 51)		Hole D	etails				Intercep	t Details	
HoleID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments
AHWR099*	271,346	7,130,800	568	AC	69.5	-60	229.0	124	126	2	0.4	2m @ 0.4g/t Au from 124m
and								159	166	7	0.4	7m @ 0.4g/t Au from 159m
and								213	224	11	2.0	11m @ 2g/t Au from 213m
AHWR100*	271,343	7,130,845	566	AC	69.5	-60	229.0	173	184	11	2.3	11m @ 2.3g/t Au from 173m
including								176	177	1	6.2	1m @ 6.2g/t Au from 176m
HWAC1321*	271,350	7,131,200	572	AC	270	-60	87.0	38	41	3	0.4	3m @ 0.4g/t Au from 38m
and								69	70	1	0.4	1m @ 0.4g/t Au from 69m
HWAC1348*	271,400	7,131,000	572	AC	270	-60	61.0	34	35	1	1.6	1m @ 1.62g/t Au from 34m
and								20	21	1	1.0	1m @ 1g/t Au from 20m
and								24	28	4	0.7	4m @ 0.7g/t Au from 24m
and								33	39	6	0.7	6m @ 0.7g/t Au from 33m
HWAC1380*	271500	7130800	572	AC	270	-60	69.0	0	3	3	0.4	3m @ 0.4g/t Au from 0m
5 and								14	17	3	0.4	3m @ 0.4g/t Au from 14m
and								20	22	2	0.5	2m @ 0.5g/t Au from 20m
a nd								25	64	39	6.1	39m @ 6.1g/t Au from 25m
including								45	52	7	22.2	7m @ 22.2g/t Au from 45m
HWAC1438*	271,600	7,130,600	572	RC	270	-60	57.0	28	52	24	0.9	24m @ 0.9g/t Au from 28m
including								35	37	2	6.5	2m @ 6.5g/t Au from 35m
HWDH001*	271,491	7,130,791	568	DD	257	-60	108.0	0	11	11	0.5	11m @ 0.5g/t Au from 0m
and —								17	19	2	0.5	2m @ 0.5g/t Au from 17m
and								65	66	1	0.3	1m @ 0.3g/t Au from 65m
and								70	82	12	1.7	12m @ 1.7g/t Au from 70m
and								87	89	2	0.3	2m @ 0.3g/t Au from 87m
HWDH002*	271,515	7,130,800	568	DD	252	-60	120.0	24	25	1	0.7	1m @ 0.7g/t Au from 24m
and								32	33	1	1.5	1m @ 1.5g/t Au from 32m
and								41	42	1	0.6	1m @ 0.6g/t Au from 41m
and								54	57	3	0.3	3m @ 0.3g/t Au from 54m
and								101	102	1	0.8	1m @ 0.8g/t Au from 101m
and								106	108	2	0.4	2m @ 0.4g/t Au from 106m
and								114	118	4	1.2	4m @ 1.2g/t Au from 114m
HWRC006*	271,526	7,130,745	568	RC	252	-60	120.0	24	58	34	2.2	34m @ 2.2g/t Au from 24m
and								83	84	1	1.5	1m @ 1.5g/t Au from 83m

	Coordina	tes (MGA94 Zo	ne 51)		Hole D	etails				Intercep	t Details	
HoleID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments
and							(,	89	90	1	0.5	1m @ 0.5g/t Au from 89m
and								95	98	3	0.3	3m @ 0.3g/t Au from 95m
and								102	103	1	0.4	1m @ 0.4g/t Au from 102m
HWRC007*	271,550	7,130,753	568	RC	252	-60	120.0	79	80	1	0.3	1m @ 0.3g/t Au from 79m
and								84	99	15	2.3	15m @ 2.3g/t Au from 84m
HWRC008*	271,482	7,130,787	568	RC	252	-60	120.0	0	3	3	0.4	3m @ 0.4g/t Au from 0m
and								31	65	34	1.9	34m @ 1.9g/t Au from 31m
and								98	105	7	0.3	7m @ 0.3g/t Au from 98m
HWRC009*	271,504	7,130,795	568	RC	252	-60	120.0	0	2	2	0.8	2m @ 0.8g/t Au from 0m
and								26	105	79	1.9	79m @ 1.9g/t Au from 26m
HWRC010*	271,528	7,130,804	568	RC	252	-60	120.0	39	41	2	0.3	2m @ 0.3g/t Au from 39m
and								51	52	1	0.4	1m @ 0.4g/t Au from 51m
and								54	55	1	0.3	1m @ 0.3g/t Au from 54m
and								114	120	6	0.9	6m @ 0.9g/t Au from 114m to BOH
HWRC011*	271,492	7,130,842	568	RC	252	-60	120.0	5	6	1	0.5	1m @ 0.5g/t Au from 5m
and								40	41	1	0.5	1m @ 0.5g/t Au from 40m
n and								44	73	29	1.3	29m @ 1.3g/t Au from 44m
and								80	83	3	0.3	3m @ 0.3g/t Au from 80m
and								90	96	6	1.2	6m @ 1.2g/t Au from 90m
and								110	111	1	0.5	1m @ 0.5g/t Au from 110m
and								115	116	1	1.4	1m @ 1.4g/t Au from 115m
HWRC016*	271,453	7,130,881	568	RC	252	-60	117.0	16	36	20	5.1	20m @ 5.1g/t Au from 16m
including								24	28	4	16.1	4m @ 16.1g/t Au from 24m
HWRC017*	271,476	7,130,889	568	RC	252	-60	120.0	45	46	1	0.3	1m @ 0.3g/t Au from 45m
and								62	64	2	0.4	2m @ 0.4g/t Au from 62m
and								75	76	1	0.3	1m @ 0.3g/t Au from 75m
and								83	87	4	1.9	4m @ 1.9g/t Au from 83m
HWRC019*	271,467	7,130,834	568	RC	252	-60	120.0	6	16	10	1.4	10m @ 1.4g/t Au from 6m
and								28	29	1	0.5	1m @ 0.5g/t Au from 28m
and								92	96	4	0.6	4m @ 0.6g/t Au from 92m
HWRC021*	271,554	7,130,808	568	RC	252	-60	201.0	42	43	1	0.8	1m @ 0.8g/t Au from 42m
and								160	162	2	1.3	2m @ 1.3g/t Au from 160m

	Coordina	tes (MGA94 Zo	ne 51)		Hole D	etails				Intercep	t Details	
HoleID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments
and							()	174	178	4	1.7	4m @ 1.7g/t Au from
HWRC023*	271,571	7130765	568	RC	252	-60	171.0	152	163	11	2.7	174m 11m @ 2.7g/t Au
and	-							167	168	1	0.3	from 152m 1m @ 0.3g/t Au from 167m
HWRC024*	271,535	7,130,698	568	RC	252	-60	120.0	2	9	7	0.4	7m @ 0.4g/t Au from 2m
and								26	46	20	5.0	20m @ 5g/t Au from 26m
and								82	83	1	0.3	1m @ 0.3g/t Au from 82m
HWRC025*	271,558	7,130,706	568	RC	252	-60	120.0	13	19	6	2.0	6m @ 2g/t Au from 13m
and								36	37	1	0.3	1m @ 0.3g/t Au from 36m
and								85	88	3	4.1	3m @ 4.1g/t Au from 85m
HWRC027*	271599	7,130,666	568	RC	252	-60	120.0	100	102	2	0.5	2m @ 0.5g/t Au from 100m
HWRC030*	271,434	7,130,929	568	RC	252	-60	117.0	26	59	33	0.5	33m @ 0.5g/t Au from 26m
and								99	100	1	0.3	1m @ 0.3g/t Au from 99m
HWRC031*	271,459	7,130,936	568	RC	252	-60	120.0	105	109	4	3.4	4m @ 3.4g/t Au from 105m
and								119	120	1	1.2	1m @ 1.2g/t Au from 119m to BOH
HWRC034*	271,463	7,130,884	568	RC	252	-60	99.0	41	43	2	0.7	2m @ 0.7g/t Au from 41m
and								61	67	6	1.9	6m @ 1.9g/t Au from 61m
HWRC036*	271,459	7,130,857	568	RC	252	-60	117.0	10	20	10	1.9	10m @ 1.9g/t Au from 10m
and								111	117	6	0.3	6m @ 0.3g/t Au from 111m to BOH
HWRC037*	271,484	7,130,864	568	RC	252	-60	120.0	20	21	1	0.4	1m @ 0.4g/t Au from 20m
and								53	57	4	0.4	4m @ 0.4g/t Au from 53m
and								63	67	4	0.3	4m @ 0.3g/t Au from 63m
and								89	106	17	4.6	17m @ 4.6g/t Au from 89m
including								97	104	7	10.2	7m @ 10.2g/t Au from 97m
HWRC038*	271,478	7,130,840	568	RC	252	-60	135.0	27	32	5	1.8	5m @ 1.8g/t Au from 27m
and								37	38	1	0.6	1m @ 0.6g/t Au from 37m
and								41	48	7	0.6	7m @ 0.6g/t Au from 41m
and								67	68	1	0.4	1m @ 0.4g/t Au from 67m
and								75	78	3	1.0	3m @ 1g/t Au from 75m
and								81	83	2	0.4	2m @ 0.4g/t Au from 81m
and								108	110	2	2.6	2m @ 2.6g/t Au from 108m
HWRC039*	271,503	7,130,844	568	RC	252	-60	141.0	35	36	1	1.2	1m @ 1.2g/t Au from 35m
and								113	115	2	0.7	2m @ 0.7g/t Au from 113m

	Coordina	tes (MGA94 Zo	ne 51)		Hole D	etails				Intercep	t Details	
HoleID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments
and							(1117)	120	131	11	3.9	11m @ 3.9g/t Au from 120m
HWRC042*	271,496	7,130,814	568	RC	252	-60	117.0	42	112	70	1.3	70m @ 1.3g/t Au from 42m
HWRC045*	271,471	7,130,783	568	RC	252	-60	120.0	9	32	23	0.8	23m @ 0.8g/t Au from 9m
and								36	49	13	0.8	13m @ 0.8g/t Au from 36m
and								83	94	11	0.3	11m @ 0.3g/t Au from 83m
HWRC047*	271,489	7,130,763	568	RC	252	-60	123.0	0	38	38	2.8	38m @ 2.8g/t Au from 0m
including								13	18	5	17.1	5m @ 17.1g/t Au from 13m
and								40	41	1	0.3	1m @ 0.3g/t Au from 40m
and								77	86	9	0.3	9m @ 0.3g/t Au from 77m
HWRC048*	271,514	7,130,768	568	RC	252	-60	129.0	29	93	64	1.7	64m @ 1.7g/t Au from 29m
and								110	112	2	0.5	2m @ 0.5g/t Au from 110m
and								119	122	3	0.4	3m @ 0.4g/t Au from 119m
HWRC049*	271,538	7,130,776	568	RC	252	-60	129.0	40	42	2	0.6	2m @ 0.6g/t Au from 40m
and								50	53	3	0.7	3m @ 0.7g/t Au from 50m
and								90	129	39	2.9	39m @ 2.9g/t Au from 90m
including								111	119	8	12.5	8m @ 12.5g/t Au from 111m
HWRC051*	271,532	7,130,718	568	RC	252	-60	123.0	0	14	14	3.9	14m @ 3.9g/t Au from 0m
and								24	31	7	8.3	7m @ 8.3g/t Au from 24m
and								40	63	23	5.8	23m @ 5.8g/t Au from 40m
and =								77	78	1	0.7	1m @ 0.7g/t Au from 77m
and								85	89	4	0.3	4m @ 0.3g/t Au from 85m
HWRC052*	271,553	7,130,728	568	RC	252	-60	123.0	90	101	11	0.4	11m @ 0.4g/t Au from 90m
HWRC053*	271,547	7,130,705	568	RC	252	-60	129.0	4	5	1	0.3	1m @ 0.3g/t Au from 4m
and								19	20	1	0.3	1m @ 0.3g/t Au from 19m
and								57	58	1	0.5	1m @ 0.5g/t Au from 57m
HWRC056*	271,574	7,130,658	568	RC	252	-60	99.0	44	46	2	0.4	2m @ 0.4g/t Au from 44m
HWRC058*	271,588	7,130,610	568	RC	252	-60	108.0					NSR
HWRC059*	271,611	7,130,619	568	RC	252	-60	123.0	69	79	10	1.0	10m @ 1g/t Au from 69m
HWRC061*	271,627	7,130,571	568	RC	252	-60	135.0	47	48	1	0.6	1m @ 0.56g/t Au from 47m
HWRC063*	271,440	7,130,720	568	RC	252	-60	168.0	42	49	7	5.8	7m @ 5.8g/t Au from 42m
and								104	114	10	1.5	10m @ 1.5g/t Au from 104m
HWRC135*	271,486	7,130,855	568	RC	252	-60	131.0	75	78	3	0.6	3m @ 0.6g/t Au from 75m

	Coordina	tes (MGA94 Zo	ne 51)		Hole D	etails				Intercep	t Details	
HoleID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments
and							(,	94	110	16	0.8	16m @ 0.8g/t Au from 94m
and								120	123	3	0.8	3m @ 0.8g/t Au from 120m
HWRC136*	271,508	7,130,780	568	RC	252	-60	107.0	0	4	4	0.4	4m @ 0.4g/t Au from 0m
and								11	13	2	0.5	2m @ 0.5g/t Au from 11m
and								21	24	3	0.6	3m @ 0.6g/t Au from 21m
and								40	59	19	1.5	19m @ 1.5g/t Au from 40m
and								76	89	13	0.9	13m @ 0.9g/t Au from 76m
HWRC137*	271,310	7,130,703	568	RC	252	-60	119.0	4	11	7	0.3	4m @ 0.3g/t Au from 4m
and								16	23	7	1.1	7m @ 1.1g/t Au from 16m
and								36	50	14	1.7	14m @ 1.7g/t Au from 36m
HWRC138*	271,345	7,130,713	568	RC	252	-60	119.0	50	59	9	0.7	9m @ 0.7g/t Au from 50m
and								62	66	4	0.3	4m @ 0.3g/t Au from 62m
and								76	91	15	1.4	15m @ 1.4g/t Au from 76m
including								76	81	5	2.3	5m @ 2.3g/t Au from 76m
and								105	107	2	0.3	2m @ 0.3g/t Au from 105m
and								117	118	1	0.4	1m @ 0.4g/t Au from 117m
HWRC152*	271,466	7,130,912	568	RC	252	-60	185.0	70	74	4	0.7	4m @ 0.7g/t Au from 70m
and								86	118	32	0.7	32m @ 0.7g/t Au from 86m
and								173	177	4	0.6	4m @ 0.6g/t Au from 173m
and								183	185	2	1.7	2m @ 1.7g/t Au from
HWRC155*	271,505	7,130,872	568	RC	252	-60	185.0	34	35	1	0.5	183m to BOH 1m @ 0.5g/t Au from 34m
and								140	165	25	3.8	25m @ 3.8g/t Au from 140m
including								154	160	6	13.6	6m @ 13.6g/t Au from 154m
and								180	181	1	0.4	1m @ 0.4g/t Au from
and								184	185	1	0.3	180m 1m @ 0.3g/t Au from
HWRC156*	271,528	7,130,879	568	RC	252	-60	233.0	112	113	1	0.6	184m to BOH 1m @ 0.6g/t Au from
and								206	216	10	2.1	112m 10m @ 2.1g/t Au
and								220	223	3	0.3	from 206m 3m @ 0.3g/t Au from
HWRC157*	271,524	7,130,854	568	RC	252	-60	179.0	173	178	5	1.1	220m 5m @ 1.1g/t Au from
HWRC160*	271,559	7,130,785	568	RC	252	-60	201.0	7	10	3	1.0	173m 3m @ 1g/t Au from
and								39	41	2	0.3	7m 2m @ 0.3g/t Au from
and								68	69	1	0.9	39m 1m @ 0.9g/t Au from 68m

	Coordina	tes (MGA94 Zo	ne 51)		Hole D	etails				Intercep	t Details	
HoleID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments
and								72	73	1	0.8	0m @ 0.8g/t Au from 72m
and								88	89	1	0.3	1m @ 0.3g/t Au from 88m
and								98	99	1	0.3	1m @ 0.3g/t Au from 98m
and								182	188	6	2.6	6m @ 2.6g/t Au from 182m
HWRC162*	271,590	7,130,769	568	RC	252	-60	203.0					NSR
HWRC165*	271,594	7,130,747	568	RC	252	-60	203.0	104	105	1	0.5	1m @ 0.47g/t Au from 104m
HWRC166*	271,595	7,130,719	568	RC	252	-60	209.0					NSR
HWRC229*	271,492	7,130,948	568	RC	252	-60	280.0	16	18	2	0.3	2m @ 0.3g/t Au from 16m
and								165	176	11	3.0	11m @ 3g/t Au from 165m
including								168	172	4	6.8	4m @ 6.8g/t Au from 168m
and								219	221	2	0.5	2m @ 0.5g/t Au from 219m
HWRC231*	271,574	7,130,893	568	RC	252	-60	323.0	87	92	5	0.3	5m @ 0.3g/t Au from 87m
and								98	103	5	0.4	5m @ 0.4g/t Au from 98m
HWRC239*	271,530	7,130,959	568	RC	252	-60	330.0	243	247	4	2.4	4m @ 2.4g/t Au from 243m
including								245	246	1	8.1	1m @ 8.1g/t Au from 245m
and								296	297	1	0.3	1m @ 0.3g/t Au from 296m
and								306	308	2	0.4	2m @ 0.4g/t Au from 306m
and								312	314	2	2.3	2m @ 2.3g/t Au from 312m
HWRC249*	271,462	7,131,044	568	RC	252	-60	287.0	143	161	18	1.8	18m @ 1.8g/t Au from 143m
including								144	146	2	7.0	2m @ 7g/t Au from 144m
and								189	190	1	2.3	1m @ 2.3g/t Au from 189m
PLRC001*	271,419	7,131,027	568	RC	250	-60	150.0	74	99	25	0.6	25m @ 0.6g/t Au from 74m
and								121	131	10	0.4	10m @ 0.4g/t Au from 121m

*Previously announced or historic result
A cutoff of 0.3g/t Au was applied to each significant intercept with a maximum internal dilution of 3 metres.

Table 3: Key Pathfinder Element Association – Warmblood Historic RC Drilling

AHWR061 12 16 4 0.1 0.9 AHWR061 16 17 1 0.1 1.0 AHWR061 17 18 1 0.1 1.1 AHWR061 18 19 1 0.1 1.7	0.1 0.4 0.4	33.4 48.5	0.5
AHWR061 17 18 1 0.1 1.1		48.5	
	0.4		0.3
AHWR061 18 19 1 0.1 1.7		40.3	0.3
	0.4	27.6	0.5
AHWR061 19 20 1 0.1 2.2	0.3	36.4	0.4
AHWR061 20 21 1 0.2 0.8	0.1	16.9	0.9
AHWR061 21 22 1 1.3 0.3	0.1	53.5	1.0
AHWR061 22 23 1 0.1 0.3	0.2	76.7	0.5
AHWR061 23 24 1 0.3 0.3	0.1	68.1	0.6
AHWR061 24 25 1 0.2 0.4	0.3	16.4	0.4
AHWR061 25 26 1 0.2 0.8	0.4	13.4	0.2
AHWR061 26 27 1 0.1 1.0	0.5	28.6	0.9
AHWR061 27 28 1 0.2 0.1	0.1	43.7	1.0
AHWR061 28 29 1 1.2 0.2	0.1	38.5	0.7
AHWR061 29 30 1 0.5 0.1	0.1	26.1	0.4
AHWR061 30 31 1 0.1 0.1	0.1	59.3	0.7
AHWR061 31 32 1 0.1 0.1	0.2	38.2	0.3
AHWR061 32 33 1 0.3 0.1	0.1	27.2	0.3
AHWR061 33 34 1 1.2 0.3	0.3	49.3	0.4
AHWR061 34 35 1 0.6 0.1	0.2	63.2	0.4
AHWR061 35 36 1 0.7 0.2	0.2	80.9	0.8
AHWR061 36 37 1 0.9 0.2	0.2	64.3	0.9
AHWR061 37 38 1 0.7 0.3	0.2	77.5	0.9
AHWR061 38 39 1 1.7 0.7	0.4	124.5	1.5
AHWR061 39 40 1 3.9 1.2	0.6	88.8	1.4
AHWR061 40 41 1 1.1 1.2	0.6	20.0	0.4
AHWR061 41 42 1 0.1 0.6	0.4	10.4	0.2
AHWR061 42 43 1 0.7 0.8	0.4	20.8	0.6
AHWR061 43 44 1 0.1 0.2	0.1	21.4	0.3
AHWR062 69 70 1 0.0 0.1	0.1	7.2	0.1
AHWR062 70 71 1 0.6 0.1	0.3	13.1	0.4
AHWR062 71 72 1 0.8 0.4	0.4	28.8	0.2
AHWR062 72 73 1 1.2 0.4	0.3	57.4	0.4
AHWR062 73 74 1 3.0 0.5	0.3	37.8	0.7
AHWR062 74 75 1 3.3 0.4	0.3	22.3	0.6
AHWR062 75 76 1 0.5 0.2	0.1	41.3	0.2
AHWR062 76 77 1 1.5 1.6	0.8	64.2	0.8
AHWR062 77 78 1 1.1 1.4	0.3	20.1	0.3
AHWR062 78 79 1 0.3 0.3	0.1	12.4	0.1
AHWR062 79 80 1 0.1 0.5	0.1	12.7	0.2
AHWR062 80 81 1 0.7 2.1	1.1	13.8	0.6

	Hole ID	Depth From (m)	Depth To (m)	Width (m)	Au (ppm)	Bi (ppm)	Te (ppm)	W (ppm)	Ag (ppm)
	AHWR062	81	82	1	0.2	0.6	0.2	13.8	0.3
	AHWR062	82	83	1	0.0	0.2	0.1	3.0	0.1
	AHWR069	82	83	1	0.1	0.9	0.3	10.0	0.3
	AHWR069	83	84	1	0.5	1.2	0.5	15.1	0.4
	AHWR069	84	85	1	0.4	1.9	0.7	3.8	0.4
	AHWR069	85	86	1	34.0	21.6	10.6	22.0	3.5
	AHWR069	86	87	1	8.3	9.3	3.6	38.0	1.1
	AHWR069	87	88	1	5.2	1.9	0.9	27.0	0.9
	AHWR069	88	89	1	1.9	1.2	0.6	13.0	0.4
	AHWR069	89	90	1	0.8	0.7	0.3	77.2	0.3
	AHWR069	90	91	1	13.7	5.3	3.2	66.0	2.0
	AHWR069	91	92	1	7.9	4.0	2.4	28.5	1.5
	AHWR069	92	93	1	1.7	1.3	0.7	6.9	0.5
0	AHWR069	93	94	1	1.5	1.0	0.5	7.7	0.3
4	AHWR069	94	95	1	2.8	1.9	1.1	29.3	0.6
Θ	AHWR069	95	96	1	0.3	1.3	0.7	4.4	0.4
0)	AHWR069	96	97	1	0.3	1.4	0.7	4.5	0.4
	AHWR069	97	98	1	0.9	2.2	1.2	4.2	0.5
	AHWR069	98	99	1	0.4	1.3	0.6	10.3	<dl< td=""></dl<>
CO	AHWR069	99	100	1	0.0	0.1	0.1	4.7	<dl< td=""></dl<>
	AHWR069	100	101	1	0.1	0.4	0.2	7.0	<dl< td=""></dl<>
O	AHWR069	101	102	1	0.0	0.2	0.1	1.8	<dl< td=""></dl<>
S	AHWR069	102	103	1	0.0	0.6	0.2	5.3	<dl< td=""></dl<>
	AHWR069	103	104	1	2.0	0.7	0.4	99.6	<dl< td=""></dl<>
Θ	AHWR069	104	105	1	0.8	0.3	0.1	490.0	<dl< td=""></dl<>
\bigcirc	AHWR069	105	106	1	3.3	0.5	0.3	191.0	<dl< td=""></dl<>
_	AHWR069	106	107	1	1.7	0.4	0.3	226.0	<dl< td=""></dl<>
O	AHWR069	107	108	1	0.1	0.1	0.0	16.8	<dl< td=""></dl<>
Ш	AHWR069	108	109	1	0.1	0.6	0.3	35.8	<dl< td=""></dl<>
	AHWR069	109	110	1	0.1	0.2	0.1	10.5	<dl< td=""></dl<>
	AHWR069	110	111	1	0.0	0.1	0.1	8.2	<dl< td=""></dl<>
	AHWR070	67	68	1	0.0	0.4	0.2	6.7	0.0
	AHWR070	68	69	1	0.2	1.1	0.4	18.6	0.1
	AHWR070	69	70	1	1.1	2.3	0.8	33.5	0.3
	AHWR070	70	71	1	1.2	3.6	1.0	46.0	0.3
	AHWR070	71	72	1	0.8	1.7	0.5	15.8	0.2
	AHWR070	72	73	1	7.2	2.5	1.0	27.9	1.3
	AHWR070	73	74	1	4.8	4.0	1.5	21.8	0.9
	AHWR070	74	75	1	1.6	2.4	0.7	20.7	0.4
	AHWR070	75	76	1	4.8	3.1	1.5	30.2	1.2
	AHWR070	76	77	1	0.4	0.4	0.2	9.0	0.1
	AHWR070	77	78	1	0.0	0.2	0.1	5.8	0.1

Depth Depth To **Hole ID** Width (m) Au (ppm) Bi (ppm) Te (ppm) W (ppm) Ag (ppm) (m) From (m) AHWR070 78 79 0.0 0.2 0.1 18.4 0.1 1 AHWR070 79 80 1 0.1 0.6 0.2 8.0 0.2 AHWR070 0.8 80 81 1 0.0 0.3 4.7 0.1 AHWR070 81 82 1 0.0 0.1 0.1 3.8 0.2 AHWR070 82 83 1 0.5 0.5 0.3 23.4 0.2 AHWR070 83 84 1 0.3 0.4 0.2 30.4 0.2 AHWR070 219.0 84 85 1 2.3 0.5 0.3 0.3 AHWR070 85 86 1 0.4 0.3 354.0 0.7 5.0 AHWR070 0.3 0.3 68.3 86 87 1 0.5 0.2 AHWR070 19.2 87 88 1 0.4 0.2 0.1 0.2 0.4 AHWR070 88 1 0.5 0.2 18.3 0.3 89 AHWR070 0.3 89 90 1 0.2 0.1 22.0 0.0 or personal use on AHWR070 90 91 1 0.1 0.2 0.1 7.9 0.0 AHWR070 91 92 1 0.9 2.1 0.9 10.4 0.6 AHWR070 4 0.0 0.2 2.7 92 96 0.1 0.1 AHWR072 72 73 1 0.0 0.5 0.2 2.5 0.1 1.4 AHWR072 73 74 1 0.3 0.4 4.2 0.3 AHWR072 74 75 2.9 2.7 1.2 5.3 0.6 1 AHWR072 75 76 1 4.5 2.9 1.5 6.3 0.8 AHWR072 76 77 1 0.9 2.4 1.0 5.3 0.2 AHWR072 77 78 1 0.7 2.0 0.7 7.2 0.3 AHWR072 78 79 2.0 7.2 0.4 1 0.4 0.7 AHWR072 79 80 1 2.4 3.5 1.7 12.3 0.7 AHWR072 81 1 2.5 2.7 10.7 0.8 80 1.3 AHWR072 81 82 1 0.1 0.8 0.3 5.9 0.2 AHWR072 82 0.2 83 1 0.1 0.6 1.4 0.2 AHWR073 61 62 1 0.1 0.4 0.1 6.7 0.0 AHWR073 62 63 1 0.1 0.4 0.2 13.7 0.1 AHWR073 1 34.8 0.3 63 64 1.7 1.6 0.6 AHWR073 64 65 1 3.1 1.7 0.7 39.1 0.4 AHWR073 1.7 1.5 0.5 33.9 0.5 65 66 1 4.3 AHWR073 66 67 1 5.9 2.3 13.0 1.0 AHWR073 67 1 3.2 14.8 0.6 68 1.2 1.4 AHWR073 68 69 1 0.4 2.3 0.7 9.5 0.2 AHWR073 69 70 1 8.0 1.7 0.7 20.9 0.2 AHWR073 2.1 1.2 15.5 70 71 1 4.7 1.1 AHWR073 71 72 1 0.4 0.5 0.2 4.3 0.1 AHWR073 72 73 1 0.1 0.2 0.1 1.8 0.0

The following values for each pathfinder element are deemed to be anomalous:

- >0.5ppm Te
- >0.4ppm Bi
- >10ppm W
- >0.4ppm Ag

Appendix B JORC Table 1 – Warmblood – Palomino Section 1 Sampling Techniques and Data

Criteria JORC Code explanation	Commentary
 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	Alloy Resources The Warmblood prospect was first discovered by Alloy Resources Ltd in 2011 (please refer to ASX announcements 9 June 2011 & 22 June 2011), with the completion of 101 air core holes, testing extensions to the Filly SW prospect returning significant oxide gold mineralisation. Aircore drilling was completed by Raglan Drilling and were completed to blade refusal, usually at saprock or fresh bedrock to an average depth of 66 metres. This reconnaissance drilling was carried out a widely spaced pattern of 200 metres by 400 metres, with drill samples composited over 4 metre intervals and assays for gold down to 0.001ppm or 1ppb Au. Any gold values greater than 0.05ppm Au in the 4 metre composite were considered to be significant warrant follow up drilling. Drilling samples were transported by trailer to Wiluna, were they were placed in bulka bags and shipped to Perth via Toll-Ipec for assay. The drilling samples were analysed by ALS-Chemex in Perth. All samples and blind standards were analysed for gold using 30g fire assay and ICP-AES finish (range 0.001-10ppm Au). Assays greater than 10ppm were analysed using the AA25 methos, but only standard samples were above this level. The initial RC program at Warmblood was carried out by Easternwell Drilling. RC samples were split directly from the cyclone into 2kg bags for every metre drilled. Samples were assayed as 4 metre composites. For all 4 metre composite samples which returned greater than 0.5g/t Au, 1 metre samples were collected from the original 'split' one metre samples and assayed. Alloy Resources & Doray Minerals Ltd (JV)

Criteria	JORC Code explanation	Commentary
		From 2013 to 2021 exploration work was undertaken by Alloy Resources and Doray Minerals Ltd under the pre-existing JV agreement. The details regarding RC sampling from this work is outlined below:
		Reverse circulation (RC) percussion drill chips collected through a cyclone and cone splitter at 1m intervals.
		Spitter was cleaned regularly during drilling.
1		Splitter was cleaned and levelled at the end of each hole.
		Mineralisation determined qualitatively through rock type, sulphide and quartz content and intensity of alteration.
3		 Mineralisation determined quantitatively via assay (aqua-regia digest followed by ICP-MS for multi-element data and 25g Fire Assay and AAS determination for gold at 1m intervals). RC samples pulverized to 75 pm
		 All samples analysed by aqua-regia digest followed by ICP-MS for multi- element data and 25g Fire Assay and AAS determination for gold at 1 m intervals.
1		Strickland Metals Ltd
}		Diamond Drilling
 		 Diamond coring was undertaken predominantly as HQ sizing, with PQ utilized to maximise recovery, where required, particularly within saprolite and clay zones.
		Triple-tubing was utilised throughout to maximise recovery.
		Diamond core samples were collected at geologically-defined intervals, with a minimum sample length of 0.5m and a maximum of 1.2m.
		Core samples were cut using an automated variable-speed diamond saw with half core, weighing approximately 3kg, submitted for analysis.

Criteria	JORC Code explanation	Commentary
>		OREAS certified reference material (CRM) was inserted at a ratio of 1:20 throughout sampling. The grade ranges of the CRMs were selected based on grade populations and economic grade ranges. The reference material type was selected based on the geology, weathering, and analysis method of the sample.
		 Density measurements were collected as per Water Displacement Method 3 (Lipton, 2001) with paraffin wax coatings used for oxide and porous samples. Selected core samples were 0.1 – 0.2 m in size. Aluminium cylinders of 0.1 and 0.2 m in length, with known mass and density were measured at regular intervals at a ratio of 1:20, as a reference material. Duplicate sample weights were measured in fresh rock at a ratio of 1:20.
		 Handheld instruments, such as an Olympus Vanta pXRF and Terraplus KT-10 meter were used to aid geological interpretation. CRMs were tested at regular intervals at a ratio of 1:20.
1		RC Drilling
		2-3 kg samples were split from dry 1 m bulk samples. The sample was initially collected from the cyclone in an inline collection box, with independent upper and lower shutters. Once the full metre was drilled to completion, the drill bit was lifted off the bottom of the hole, creating a gap between samples; ensuring the entirety of the 1 m sample was collected, and over-drilling did not occur. When the gap of air entered the collection box, the top shutter was closed off. Once the top shutter was closed, the bottom shutter was opened, dropping the sample under gravity over a cone splitter.
		 Two even 2 – 3 kg duplicate sample splits, from the A- and B-chutes of the splitter, were collected at the same time for each metre, with the remaining reject bulk sample being collected in labelled green bags directly below the cyclone, minimising external contamination.

Criteria	JORC Code explanation	Commentary
		 Original sample bags were consistently collected from the A-chute, whilst duplicate sample splits were collected from the B-chute. During the sample collection process, the original and duplicate calico sample splits, and green bag of bulk reject sample were weighed to test for sample splitting bias and sample recovery.
5		 Green bags were then placed in neat lines on the ground, with tops folded over to avoid contamination. Duplicate B-chute sample bags are retained and stored on site for follow up analysis and test work.
		• In mineralised zones, the original A-chute sample split was sent to the laboratory for analysis. In non-mineralised 'waste' zones, a 4 m composite scoop sample was collected from the green bags and the A-chute bag retained on site for follow up analysis test work. All composite intervals over 0.1 g/t Au were resampled at 1 m intervals using the original A-chute bag from the cyclone splitter.
		 QA samples were inserted at a combined ratio of 1:20 throughout. Field duplicates were collected at a 1:40 ratio from the B-chute of the cone splitter at the same time as the original sample was collected from the A- chute. OREAS certified reference material (CRM) was inserted at a ratio of 1:40. The grade ranges of the CRMs were selected based on grade populations and economic grade ranges. The reference material type was selected based on the geology, weathering, and analysis method of the sample.
		• The cyclone was cleaned after each rod, at the base of oxidation, and when deemed necessary by the geologist to minimise contamination of samples. Sample condition was recorded for bias analysis. The cyclone was balanced at the start of each rod and checked after each sample to avoid split bias. Dual air-vibrators on the cyclone transfer box were utilised, when necessary, to aid sample throughput. Vibrators were placed on opposite sides of the cyclone and perpendicular to the chutes to avoid vibration-induced splitting bias.

Criteria	JORC Code explanation	Commentary
		Handheld instruments, such as an Olympus Vanta pXRF and Terraplus KT-10 meter were used to aid geological interpretation. CRMs were tested at regular intervals at a ratio of 1:20.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). The provided in the	 Historic Drilling The original Eagle Mining RAB program was completed by Kennedy Drilling. Eagle Mining engaged with Drillex to undertake the Reverse Circulation drilling. In 2019 Alloy Resources undertook Reverse Circulation Drilling with an 120mm bit. Strickland Metals Ltd Diamond Drilling Diamond Drilling was undertaken by Terra Drilling using a truck-mounted KWL1600 drill rig. Diamond coring was undertaken predominantly as HQ sizing, with PQ utilised to maximise recoveries where necessary. Triple-tubing was utilised to maximise recovery. REFLEX Sprint IQ and OMNI-Tool North-Seeking Gyroscopes were used for downhole dip and azimuth calculation, with multishot measurements taken every 30m during drilling, and a continuous IN and OUT readings taken at end-of-hole (EOH). RELFEX TN-14 Rig Aligner was used to align the rig to within 0.01 degrees of the planned azimuth, dip and roll at the start of each hole. Boart Longyear Orientation tools were used for core orientation. RC Drilling
		RC drilling was undertaken by Ranger Drilling, using a truck-mounted Hydco 350RC Rig with a 1350 cfm @ 500 psi on-board compressor, a 1150 cfm

teria JORC Code explanation	Commentary
ill sample • Method of recording and assessing core and chip sample recoveries and results assessed.	 Commentary onboard Booster, and a truck-mounted Sullair 900 cfm @ 350 psi Auxiliary Compressor. RC holes were drilled with a 5 ½" hammer. REFLEX Sprint IQ and OMNI-Tool North-Seeking Gyroscopes were used for downhole dip and azimuth calculation, with multishot measurements taken every 30m during drilling, and a continuous IN and OUT readings taken at end-of-hole (EOH). RELFEX TN-14 Rig Aligner was used to align the rig to within 0.01 degrees of the planned azimuth, dip and roll at the start of each hole. Strickland Metals Ltd Diamond Drilling
 Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Diamond Drilling Diamond core samples are considered dry. Triple-tubing and the appropriate drill tube diameter was selected (PQ, HQ, or NQ) depending on ground competency to maximise sample recovery. Sample recovery is recorded every run (average run length of 3m) and is generally above 98%, except for in very broken ground. Core was cut in half, with the same half of the core submitted to the laboratory for analysis. From the collection of recovery data, no identifiable bias exists. RC Drilling During the RC sample collection process, the original and duplicate cone split samples, and green bag reject bulk samples were weighed to test for bias and sample recoveries. The majority of this work was undertaken in ore

Criteria	JORC Code explanation	Commentary
		Once drilling reached fresh rock, a fine mist of water was used to suppress dust and limit loss of fines through the cyclone chimney.
		At the end of each metre, the bit was lifted off the bottom of hole to separate each metre drilled.
,		The majority of samples were of good quality, with ground water having minimal effect on sample quality or recovery.
}		From the collection of recovery data, no identifiable bias exists.
}		Historic Drilling
3		RC drill chip recoveries recorded at the time of logging and stored in the database.
3		Sample splitter was cleaned at the end of each rod to ensure no sample hang-ups have occurred. Sample bag weights are recorded and in general were approximately 3kg.
		Wet samples due to excess ground water were noted when present.
}		As sample recoveries were generally very high, there is no known relationship between sample recovery and grade.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	Strickland Metals Ltd
-		 Logging of lithology, structure, alteration, veining, mineralisation, oxidation state, weathering, mineralogy, colour, magnetic susceptibility and pXRF geochemistry were recorded.
		Logging was both qualitative and quantitative in nature.
		Diamond Drilling
		Diamond core was geotechnically logged at 1cm resolution; recording recovery, RQD, orientation confidence, joint density, joint sets, joint asperity and fill mineralogy.

For personal

Criteria	JORC Code explanation	Commentary
		 Core trays were photographed wet and dry. Structural measurements were collected utilizing the IMDEX IQ-Logger 2, with reference measurements taken at the start of each logging session and every 20 measurements throughout the drill hole to ensure instrument calibration and data quality. RC Drilling RC chips were washed, logged and a representative sub-sample of the 1 m drill sample retained in reference chip trays for the entire length of a hole. Reference chip trays were photographed wet and dry. Historic Drilling Aircore holes were logged qualitatively and chip trays photographs were taken across all metre intervals. RC Holes were logged to a level of detail to support future mineral resource estimation: lithology; alteration; mineralization; geotechnical (Diamond core only); structural. Qualitative: lithology, alteration, foliation Quantitative: vein percentage; mineralization (sulphide) percentage; All holes logged for the entire length of hole. All RC holes were chipped and archived.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	Strickland Metals Ltd Diamond Drilling Diamond core samples were collected at geologically defined intervals, with a minimum sample length of 0.5m and maximum of 1.2m. Samples were cut using an automated variable-speed diamond saw.

Criteria	JORC Code explanation	Commentary		
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Core was cut in half, with the same half of the core submitted to the laboratory for analysis.		
	Measures taken to ensure that the sampling is representative of the in situ	Diamond core samples are considered dry.		
>	material collected, including for instance results for field duplicate/second-half sampling.	 Triple-tubing and the appropriate drill tube diameter was selected (PQ, HQ, or NQ) depending on ground competency to maximise sample recovery. 		
5	Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample recovery is recorded every run (average run length of 3m) and is generally above 98%, except for in very broken ground.		
		 Handheld instruments, such as an Olympus Vanta pXRF and Terraplus KT-10 Magnetic Susceptibility meter, were used to aid geological interpretation. Core was analysed at 1m intervals for 60 seconds (3 x 20 second beams) utilising an Olympus Vanta pXRF instrument. CRMs were tested at regular intervals at a ratio of 1:20. 		
9		RC Drilling		
		RC samples were split from dry, 1m bulk sample via a cone splitter directly from the cyclone.		
		 Weighing of calico and reject green samples to determine sample recovery compared to theoretical sample recovery, and check sample bias through the splitter. 		
<u></u>		Field duplicates collected from the B-chute of the splitter through the entire hole at the same time as the original sample collection from the A-chute.		
		Quality Control Procedures		
		 Approximately 3kg of sample was submitted to ALS, Perth WA for analysis via 50g fire assay with an ICP-AES finish (method code: Au-ICP22). Samples that over-ranged are subsequently analysed by 50g fire assay and gravimetric finish (method code: Au-GRA22). 		

Criteria	JORC Code explanation	Co	mmentary					
		•	Ore zones w Au-PA01).	vere additiona	ally analysed	d via 250g Pho	oton Assay (me	ethod code:
		•	Detection li	mits of utilise	d methods:			
				Method	Unit	Lower Limit	Upper Limit	
5				Au-ICP22	ppm	0.001	10	
				Au-GRA22	ppm	0.01	100	
5				Au-PA01	ppm	0.03	350	
		•					atio of 1:20 ling of waste r	_
		•	throughout material. The populations	sampling of one grade rand and econom	ore zones, a ges of the iic grade rai	nd 1:40 throu CRMs were s nges. The refe	serted at a ra ighout samplii selected base erence materi analysis met	ng of waste d on grade al type was
		•		ial was 1:10.			ample ratio t mbined QAQC	_
		•	Field Duplic	ates and CRN	1s were sub	mitted to the	lab using unio	que Sample
		•	crushing to with a QC sp sample was	2mm. Crushe pecification o	d samples v f ensuring > ed for Au by	vere then split 85% passing <	95°C and weigl c and pulverise c 75µm. 50g of d ICP-AES (lov	ed to 75μm, f pulverised

Criteria	JORC Code explanation	Commentary
		Sample size and preparation is appropriate for the grain size of the sample material.
		Historic Alloy Resources RC Drilling
		RC chips were cone split every metre, sampled dry where possible and wet when excess ground water could not be prevented. Sample condition (wet, dry or damp) was recorded at the time of logging.
		Where mineralization was unlikely, the samples were composited by spear sampling – four x 1 metre subsamples combined to approximately 3kg and submitted for assay.
3		• The entire ~3kg RC sample was pulversised to 75um (85% passing). This is considered best practice and is standard throughout the industry.
g		Pulp duplicates taken at the pulverizing stage and selective repeats conducted at the laboratories discretion.
5		Duplicate samples were taken every 50 th sample.
n n		Sample size is appropriate for the grain size of the sample material.
15		Historic Pulp Multi Element Assay
5		 Historic pulp samples from Warmblood were stored at the STK warehouse in sealed carboard boxes that were labelled with the key lab job number from the historic gold only Fire Assay analysis. The lab job number was referenced with the existing drill database to determine each representative hole ID. The samples/holes requiring multi-element analysis were then subsequently placed in new cardboard boxes with new sample submission numbers and sent to ALS laboratory in Perth for full four-acid multi element analysis – code MS61.
Quality o assay data and	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Strickland Metals Ltd Diamond Drilling

Criteria	JORC Code explanation	Commentary
laboratory tests	 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Sample duplicates (DUP) were inserted at a ratio of 1:20 throughout sampling of ore zones, and 1:40 throughout sampling of waste material. OREAS certified reference material (CRM) was inserted at a ratio of 1:20 throughout sampling of ore zones, and 1:40 throughout sampling of waste material. The grade ranges of the CRMs were selected based on grade populations and economic grade ranges. The reference material type was selected based on the geology, weathering, and analysis method of the sample. The total combined QAQC (DUPs and CRMs) to sample ratio through ore zone material was 1:10. For waste zones the combined QAQC to sample ratio was 1:20. Field Duplicates and CRMs were submitted to the lab using unique Sample IDs. ALS, Perth WA conduct CRM analysis and laboratory check assays at a combined ratio of 1:25 samples as part of standard laboratory QAQC protocols. Blank quartz 'flushes' were inserted into the sample sequence throughout high-grade ore zones. After each high-grade sample (usually determined by the presence of visible gold) is crushed, a quartz flush is crushed. A second quartz flush is run after each sample is pulverised, prior to the quartz crush flush undergoing pulverisation. In total, two quartz flushes are conducted (one for each preparation stage) for each suspected high-grade sample to determine the level of potential contamination across samples. No bias or contamination is seen across samples. Core was analysed at 1m intervals for 60 seconds (3 x 20 second beams) utilising an Olympus Vanta pXRF instrument. CRMs were tested at regular intervals at a ratio of 1:20. Olympus Vanta pXRF instruments cannot accurately measure elemental Au and whole-suite elemental data are not considered appropriate for reporting, pXRF data are used as a guide for

Criteria	JORC Code explanation	Commentary
		logging only. RC Drilling
		 2-3 kg samples were split from dry 1 m bulk samples. The sample was initially collected from the cyclone in an inline collection box, with independent upper and lower shutters. Once the full metre was drilled to completion, the drill bit was lifted off the bottom of the hole, creating a gap between samples; ensuring the entirety of the 1 m sample was collected, and over-drilling did not occur. When the gap of air entered the collection box, the top shutter was closed off. Once the top shutter was closed, the bottom shutter was opened, dropping the sample under gravity over a cone splitter.
		 Two even 2 – 3 kg duplicate sample splits, from the A- and B-chutes of the splitter, were collected at the same time for each metre, with the remaining reject bulk sample being collected in labelled green bags directly below the cyclone, minimising external contamination.
		 Original sample bags were consistently collected from the A-chute, whilst duplicate sample splits were collected from the B-chute. During the sample collection process, the original and duplicate calico sample splits, and green bag of bulk reject sample were weighed to test for sample splitting bias and sample recovery.
5		 Green bags were then placed in neat lines on the ground, with tops folded over to avoid contamination. Duplicate B-chute sample bags are retained and stored on site for follow up analysis and test work.
_		 In mineralised zones, the original A-chute sample split was sent to the laboratory for analysis. In non-mineralised 'waste' zones, a 4 m composite scoop sample was collected from the green bags and the A-chute bag retained on site for follow up analysis test work. All composite intervals over 0.1 g/t Au were resampled at 1 m intervals using the original A-chute bag from the cyclone splitter.
		QA samples were inserted at a combined ratio of 1:20 throughout. Field

Criteria	JORC Code explanation	Commentary
		duplicates were collected at a 1:40 ratio from the B-chute of the cone splitter at the same time as the original sample was collected from the A-chute. OREAS certified reference material (CRM) was inserted at a ratio of 1:40. The grade ranges of the CRMs were selected based on grade populations and economic grade ranges. The reference material type was selected based on the geology, weathering, and analysis method of the sample.
		• The cyclone was cleaned after each rod, at the base of oxidation, and when deemed necessary by the geologist to minimise contamination of samples. Sample condition was recorded for bias analysis. The cyclone was balanced at the start of each rod and checked after each sample to avoid split bias. Dual air-vibrators on the cyclone transfer box were utilised, when necessary, to aid sample throughput. Vibrators were placed on opposite sides of the cyclone and perpendicular to the chutes to avoid vibration-induced splitting bias.
		 Handheld instruments, such as an Olympus Vanta pXRF and Terraplus KT-10 meter were used to aid geological interpretation. CRMs were tested at regular intervals at a ratio of 1:20.
-		Historic Eagle Mining Drilling
		 Samples were analysed for Au by single stage mix and grind preparation, with an aqua-regia digest and AAS finish to 0.02ppm. Repeats (approximately 10%) were fire assays to a detection limit of 0.01ppm. All samples were sent to Australian Assay Laboratories (AAL) in Boulder, WA.
		Historic Alloy Resources RC Drilling
		Fire assay was used and is a total digest technique.
		Certified reference material standards, 1 in every 50 samples.
		Blanks: a lab barren quartz flush is requested following a predicted high- grade sample (i.e., visible gold).

Criteria	JORC Code explanation	Commentary
		Lab: Random pulp duplicates were taken on average 1 in every 10 samples.
		Accuracy and precision levels have been determined to be satisfactory after analysis of these QAQC samples.
Verification of	• The verification of significant intersections by either independent or	Strickland Metals Ltd
sampling and assaying	alternative company personnel.	Logging and sampling were recorded directly into LogChief, utilising lookup
	The use of twinned holes.	tables and in-file validations, on a Toughbook by a geologist at the rig.
	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. 	 Logs and sampling were imported daily into Micromine for further validation and geological confirmation.
5	Discuss any adjustment to assay data.	When received, assay results were plotted on section and verified against neighboring drill holes.
3		From time to time, assays will be repeated if they fail company QAQC protocols.
		All data is verified by senior Company geologists.
		No adjustments to assay data are made.
-		Historic Alloy Resources RC Drilling
\$		All sampling was routinely inspected by senior geological staff. Significant intercepts were inspected by senior geological staff.
+		No twinned holes were drilled during the program.
)		Data was hard keyed into Excel data capture software and merged with Datashed SQL based database on internal company server. Data is validated by a Database Administrator, import validation protocols in place.
		Visual checks of data was completed within Surpac software by consultant geologists.
		No adjustments were made to any of the assay data.

Criteria	JORC Code explanation	Commentary	
		This data is now managed and hosted by Mitchell River Group.	
Location of data points	hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. • Specification of the grid system used. • Quality and adequacy of topographic control.	 Strickland Metals Ltd The grid system used was MGA94 Zone 51 and drillhole collar positions surveyed using a Garmin GPSMAP 64 (+/- 3m accuracy). REFLEX Sprint IQ and OMNI-Tool North-Seeking Gyroscopes were used for downhole dip and azimuth calculation, with multishot measurements taken every 30m during drilling, and a continuous IN and OUT readings taken at end-of-hole (EOH). RELFEX TN-14 Rig Aligner was used to align the rig to within 0.01 degrees of the planned azimuth, dip and roll at the start of each hole. Boart Longyear Orientation tools were used for core orientation. Historic Alloy Resources RC Drilling Collars: surveyed with GPS with expected relative accuracy of approximately 2-3m. Downhole: surveyed with in-rod reflex Gyro tool continuously. 	
		 Holes are located in MGA94 zone 51. Estimated RL's were assigned during the drilling. Strickland has engaged with an independent surveyor to pick up and locate all collars that have not been subject to a DGPS pick-up. 	
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Historic Drilling Holes were drilled on a variable collar spacing of approximately 40m across the bulk of the Palomino resource estimate with up to 80 to 100 metre spacings in the northern part (down-plunge extent) of Palomino. Intercepts are reported as composites of individual 1m assay results from a cut-off of 0.5g/t Au. 	

	Criteria	JORC Code explanation	Commentary
			Reported intercepts include internal waste averaging 3m.
			Strickland Metals Ltd
>			• Diamond Drilling at Palomino is located between existing 40m-spaced historic drill holes, to achieve 20m x 20m spacing within the Mineral Resource.
0)		 Assay results show good continuity of grade and width of intercepts between STK and Historic drill holes, both along strike, down-dip and down- plunge.
US()		• The data spacing and distribution is sufficient to demonstrate spatial and grade continuity of the mineralised horizon to support the classification of the Mineral Resources reported.
Ja			• Intercepts are reported as composites of individual 1m assay results from a cut-off of 0.5g/t Au.
Ö			Reported intercepts include internal waste averaging 3m.
oers	 Orientation of data in relation to geological structure If the relationship between the drilling orientation and the orientation of kermineralised structures is considered to have introduced a sampling bias, the should be assessed and reported if material. 	 Based on the drilling completed to date, the orientation (both dip and plunge) of mineralisation is based on numerical Au assay values and confirmed by structural data collected from Strickland Metals' diamond drilling. 	
For		· ·	 The orientation of primary mineralisation is approximately vertical. Oxide mineralisation is approximately flat. STK-drilling has been completed at -60 degrees and perpendicular to the strike of mineralisation to avoid the introduction of bias to results.
			Drilling intercepts are reported as down-hole width.
	Sample	The measures taken to ensure sample security.	Strickland Metals Ltd
	security		Chain of Custody of digital data was managed by Strickland Metals Ltd.

Criteria	JORC Code explanation	Commentary
Criteria	JORC Code explanation	 All samples were bagged in tied numbered calico bags, grouped into larger polyweave bags and cabled-tied. Polyweave bags were placed into larger Bulky Bags with a sample submission sheet and tied shut. Delivery address details were written on the side of the bag. Sample material was stored on site and, when necessary, delivered to the assay laboratory by Strickland Metals personnel and a nominated courier (DFS). Thereafter, laboratory samples were controlled by the nominated laboratory. Sample collection was controlled by digital sample control files and hard-copy ticket books. Historic Drilling
		 The data was originally maintained by Eagle Mining Corporation and forwarded to Normandy Jundee Operation All DRM historic samples were selected, cut and bagged in a tied numbered
		calico bag, grouped into larger polyweave bags and cable tied. Polyweave bags were placed into larger Bulky Bags with a sample submission Doray Minerals Ltd, 21st October 2015 Criteria JORC Code explanation Commentary sheet and tied shut. Consignment note and delivery address details were written on the side of the bag and delivered to Toll Express in Meekatharra. The bags were delivered directly to MinAnalytical in Canning Vale, WA who are NATA accredited for compliance with ISO/IEC17025:2005.
		 All Alloy Resources historic samples were assayed by ALS Laboratories (Perth) using Aqua Regia (2012 AC program) and Fire Assay with ICP_MS finish (RC programs) to detection limits of 0.01 and 0.001ppm respectively.
Audits of reviews	The results of any audits or reviews of sampling techniques and data.	Strickland Metals

Criteria	JORC Code explanation	Commentary
		All assay data is audited and reviewed by Mitchell River Group (MRG), with weekly performance meetings held between Strickland Personnel and the Database Manager at MRG.
		 The multi-element geochemistry from the historic drill pulps was reviewed by Dr Nigel Brand (Geochemical Services Pty Ltd), who determined the key pathfinder element suite.
		Historic Drilling
		 Performance meetings held between a DRM and MinAnalytical representative were conducted monthly. QAQC data were reviewed with each assay batch returned, and on regular monthly intervals (trend analysis).

Section 2: Reporting of Exploration Results

	Criteria	JC	ORC Code explanation	Cor	mmentary
טט	Mineral tenement and land tenure status	•	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	•	Warmblood and Palomino are located on 100% owned STK tenure (tenement ID) E69/1772. L11 Capital Pty Ltd holds a 1% gross revenue royalty over the above tenure.
	Exploration done by other parties	•	Acknowledgment and appraisal of exploration by other parties.	•	Exploration prior to Strickland in the region was conducted by Eagle Mining and Great Central Mines Ltd. Drilling included shallow RAB and RC drilling that was completed in the mid – 1990s, all of which had been sampled, assayed, and logged and records held by the Company. This early work, including aeromagnetic data interpretation, was focused on gold and provided anomalous samples which was the focus of this period of exploration.

Criteria	JORC Code explanation	Commentary
Geology	Deposit type, geological setting and style of mineralisation.	Palomino and Warmblood are Archean aged gold prospects with common host rocks and structures related to mesothermal orogenic gold mineralisation as found throughout the Yilgarn Craton of Western Australia.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 information documented in Appendix A – Table 1, Table 2 and Table 3. Historic drill holes relating to the re-assay of existing pulps for multi-element pathfinder geochemistry.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 A cut-off of 0.3g/t Au was applied for all significant gold assay results. The following values were deemed anomalous for the key pathfinder element suite associated with the gold mineralisation at Warmblood: >0.5ppm Te >0.4ppm Bi >10ppm W
Relationship between mineralisation widths and	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	mineralisation is approximately flat. STK-drilling has been completed at -60

Criteria	JORC Code explanation	Commentary
intercept Iengths	• If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Please refer to the main body of text.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All Au assays are presented in the appendix to this announcement for clarity. Representative higher-grade intervals have been presented in the text and section.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 All meaningful and material information has been included in the body of the text. In March 2020, Alloy Resources engaged with Australian Laboratory Services (ALS) to undertake Metallurgical Testwork on Palomino RC chip samples. From the samples received, six composites were generated. Overall gold recovery, via gravity-amalgam and cyanide leaching at a 75um grind was high, at 89.03% and 87.2% respectively.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Continued RC and diamond drilling along strike and down plunge to determine the overall economic potential of each target area.