

08 August 2023

FOLLOW UP RC DRILLING TARGETING PEGMATITES TO BEGIN AT DUNDAS

Lightning Minerals (LIM or the Company) is pleased to report that its maiden Aircore (AC) drill program has been completed at its 100% owned Dundas project in Western Australia. A follow up Reverse Circulation (RC) program will begin over the next few days to follow up on pegmatite intersections on tenement E63/2001. Further pegmatite intersections have also been encountered under alluvial cover. These results represent early-stage exploration success demonstrating increased potential which will be further developed through the upcoming RC drill program.

HIGHLIGHTS

The Company's maiden Aircore drilling program has been completed and follow up RC program targeting previously intersected pegmatites is now planned

New pegmatite intersections have also been encountered under alluvial cover as follows:

- o 17m in Hole DSAC0071, with end of hole (EOH) ending in pegmatite from 30m to 47m
- o 5m in Hole DSAC0069, from 67m to 72m
- o **3m in Hole DSAC0105, from 24m to 27m**
- o 3m in Hole DSAC01024, with EOH ending in pegmatite from 21m to 24m

Previous pegmatite intersections¹ encountered under alluvial cover as follows:

- o 20m in Hole DSAC0033, with end of hole (EOH) ending in pegmatite from 31m to 51m
- 12m in Hole DSAC0006, with EOH ending in pegmatite from 9m to 21m
- \circ 11m in Hole DSAC0010, from 34m to 45m downhole
- o 9m in Hole DSAC0034 with EOH ending in pegmatite from 22m to 31m
- o 7m in Hole DSAC0012, from 9m to 16m downhole

Additional RC drilling of approximately 1,000m has been designed to target pegmatites intersected during the Company's maiden Aircore drill campaign. This is scheduled to begin by mid-August. The principal purpose of the RC follow-up drilling is to further understand the dip direction of pegmatites that have so far been encountered under alluvial cover on tenement E63/2001. This will assist in future drill program planning by optimising drill direction. It will also test beneath the weathered rocks under the base of complete oxidation as intersected during the Aircore drilling. The program will potentially further demonstrate the thesis of north-west to south-east striking pegmatites as evidenced regionally.

Note: The field lithological logging and subsequent reporting of pegmatites are not indicative of economic pegmatite hosted mineralisation. No mineralogical confirmation or quantitative analysis has yet been completed. Further exploration work including an assessment of the current drill sampling results and follow up drilling and sampling will be required to confirm the presence of any mineralisation.

¹ASX Announcement 13 July 2023

Lightning Minerals Chief Executive Officer Alex Biggs said, "The early success we have experienced at our Dundas Project is very positive and warrants further follow up to determine orientation and depth of pegmatites. The indication of north-west to south-east striking pegmatites which have been located under alluvial cover is a demonstration of the team's diligent and staged approach to exploration. I congratulate the team on a job well done and look forward further successes as we continue to identify areas that host the potential for lithium mineralisation. Our exploration plans across our Dundas Project are focused on multiple lithium in soil anomalies and targets and we look forward to keeping the market updated on our progress".

ADDITIONAL PEGMATITE INTERSECTIONS ON DUNDAS TENEMENT E63/2001

Four additional downhole pegmatite intersections have been detected within the Aircore drilling program under alluvial cover. This is subsequent to the Company's recent announcement regarding pegmatite intersections also encountered on tenement E63/2001 (ASX announcement 13 July 2023).

Drillholes DSAC0069, DSAC0071, DSAC0105 and DSAC0124 (Table 1) have reported pegmatite intersections, with hole DSAC0071 displaying the largest interval occurring from 30-47m which remains open at end of hole. The locations of the intersections are shown in Figure 1 with geological cross sections shown in Figure 2 and Figure 3. Both cross sections are orientated on an east-west plane and are looking north.

 ${\cal O}$ Holes that have ended in pegmatite have either proven too difficult to re-enter due to field constraints, ightarrow or the hammer has not been able to penetrate thought the entire width of the pegmatite leaving the - true width and orientation of the pegmatite unknown at this stage, which is the purpose of the follow **(I)** up RC drilling campaign.

In total the AC drill program on tenement E63/2001 k under alluvial cover. This is a significant explorati progressing towards identifying lithium-caesium-tan stage of RC drilling which will target greater depths. *Table 1: Most recent Aircore program pegme* <u>Tenement Hole ID Drill From To Down (m) Interv</u> <u>E63/2001 DSAC0069 AC 67 72 55</u> <u>E63/2001 DSAC0071 AC 30 47 1</u> In total the AC drill program on tenement E63/2001 has intersected 10 discrete pegmatites, all located under alluvial cover. This is a significant exploration success and is a crucial step in potentially progressing towards identifying lithium-caesium-tantalum (LCT) pegmatites as a core focus of the next

	Tenement	Hole ID	Drill Type	From (m)	To (m)	Downhole Interval (m)	EOH in Pegmatite	Pegmatite (%) Intersections	Degree of Weathering
ſ	E63/2001	DSAC0069	AC	67	72	5	-	80% Pegmatite	High
	E63/2001	DSAC0071	AC	30	47	17	√	95% Pegmatite	Mod-High
	E63/2001	DSAC0105	AC	24	27	3	-	50% Pegmatite	High
Ī	E63/2001	DSAC0124	AC	21	24	3	√	50% Pegmatite	High

Table 1: Most recent Aircore program pegmatite intersections on tenement E63/2001

Figure 1: Drill location map showing Aircore drill area and intersected pegmatite locations

Figure 2: Geological cross section (Section A) of Aircore pegmatite intersections in holes DSAC0069 and DSAC0071

For personal use only

Level 6, 505 Little Collins Street, Melbourne VIC 3000 | admin@lightningminerals.com.au | www.lightningminerals.com.au | (08) 9429 8806

Pegmatite chips returned from drillhole DSAC0071 are shown in Figure 4. An Aircore blade drill bit was used until blade refusal at 31m, the hole was then re-entered with an Aircore hammer resulting in sample contamination (loss) at 31-32m, and reduced chip size.

Figure 4: DSAC0071 chip tray showing Aircore sampled pegmatite intercept between 30m and 47m (EOH).

Field geological logging suggests the pegmatites are highly weathered, the mineral species recorded are of a similar composition to those reported in prior intersections (ASX announcement 13 July 2023) with a feldspar-quartz-mica dominant composition. The full table of field geological logging is available in Appendix 1, Table 2.

Follow up confirmation of the mineral suite is required to ascertain if lithium bearing minerals are present. Field identification of weathered lithium bearing minerals in pegmatites can be difficult and

the presence of spodumene does not have a direct correlation with lithium content. The use of spectrographic mineral identification on drill cuttings and quantitative analysis by a certified laboratory using a Peroxide Fusion Digest with Inductively Coupled Plasma (ICP) finish is being finalised.

Sampling of the weathered saprolitic zone encountered during much of the Aircore drill program is being further analysed. The objective is to composite the saprolitic clay samples into larger 4m samples that may provide geochemical vectors toward LCT mineralisation given the depth at which the samples have been taken. Samples will be selected from each hole on a discretionary basis dependant on field geological logging amongst a variety of modifying factors.

FOLLOW UP REVERSE CIRCULATION (RC) DRILLING

Interpreting the orientation and true width of the intersected pegmatites is not currently possible as the Aircore drilling locates but fails to delineate the spatial presentation of the pegmatite intrusives. To accelerate the understanding approximately 1,000m of RC drilling will be employed to test depth extension beneath the Aircore drill holes that have reported pegmatites. Drilling is designed to test for depth extension to a maximum of 100m vertically beneath the natural surface. Full penetration of the pegmatites downhole will provide greater confidence of spatial geological modelling. Additionally, the collection of fresh rock samples will provide a more representative sample for analysis.

(II) As reported in ASX announcement 13 July 2023 it is yet to be determined if the pegmatites intersected 🚺 in holes DSAC0031 to DSAC0034 coalesce as part of a larger swarm or form a single pegmatite unit. The 🗂 completion of up to two RC holes under this zone will help appraise the thickness of the pegmatites at this location.

OTHER EXPLORATION PROGRESS An infill soil sampling campaign is underway on tenement E63/2000 and E63/1993 (ASX announcement 02 August 2023) to further delineate an 8km² lithium in-soil anomaly that has been identified with assays up to 218ppm lithium on tenement E63/2000.

 $oldsymbol{\mathbb{O}}$ Evaluation of various exploration programs at the Dundas North Project is also underway, approvals are Deing curated at present.

Work programs for the company's other assets are progressing, with progress being made on the Mt Jewell and Mailman Hill projects.

DUNDAS PROJECT (LIGHTNING MINERALS 100%)

The Dundas Project area is located near Norseman in Western Australia and comprises eight tenements totalling approximately 454km². Norseman has a strong history of mining dating back to 1892 and is located 190km south of Kalgoorlie. Historically, Norseman and the Dundas area has experienced mining in gold and nickel although over recent years the region has become an emerging lithium and critical minerals province with multiple discoveries and significant exploration activity.

There are two project areas at Dundas:

- a) South/western tenements surrounding Liontown Resources' Buldania/Anna lithium deposit, and,
- b) North/eastern tenements approximately 30km to the east of Alliance Mineral Assets' Bald Hill lithium-tantalum mine.

This announcement has been approved for release by the Board of Directors. -end

ABOUT LIGHTNING MINERALS

Lightning Minerals is a mineral exploration company, listed on the Australian Stock Exchange (ASX:L1M) and focused on the exploration of critical minerals and lithium at its tenements across Western Australia. The Company's flagship Dundas project is located in the prolific Dundas region of Western Australia. The Company also has other projects in Western Australia, Mt Jewell, Mt Bartle and Mailman Hill prospective for base metals and critical minerals.

FORWARD LOOKING STATEMENTS

Information included in this release constitutes forward-looking statements. Often, but not always, forward looking statements can generally be identified by the use of forward-looking words such as "may", "will", "expect", "intend", "plan", "estimate", "anticipate", "continue", and "guidance", or other similar words and may include, without limitation, statements regarding plans, strategies and objectives of management, anticipated production or construction commencement dates and expected costs or production outputs.

Forward looking statements inherently involve known and unknown risks, uncertainties and other factors that may cause the Company's actual results, performance and achievements to differ materially from any future results, performance or achievements. Relevant factors may include, but are not limited to, changes in commodity prices, foreign exchange fluctuations and general economic conditions, increased costs and demand for production inputs, the speculative nature of exploration and project development, including the risks of obtaining necessary licences and permits and diminishing quantities or grades of reserves, political and social risks, changes to the regulatory framework within which the Company operates or may in the future operate, environmental conditions including extreme weather conditions, recruitment and retention of personnel, industrial relations issues and litigation.

Forward looking statements are based on the Company and its management's good faith assumptions relating to the financial, market, regulatory and other relevant environments that will exist and affect the Company's business and operations in the future. The Company does not give any assurance that the assumptions on which forward looking statements are based will prove to be correct, or that the Company's business or operations will not be affected in any material manner by these or other factors not foreseen or foreseeable by the Company or management or beyond the Company's control.

Although the Company attempts and has attempted to identify factors that would cause actual actions, events or results to differ materially from those disclosed in forward looking statements, there may be other factors that could cause actual results, performance, achievements or events not to be as anticipated, estimated or intended, and many events are beyond the reasonable control of the Company. Accordingly, readers are cautioned not to place undue reliance on forward looking statements. Forward looking statements in these materials speak only at the date of issue. Subject to any continuing obligations under applicable law or any relevant stock exchange listing rules, in providing this information the Company does not undertake any obligation to publicly update or revise any of the forward-looking statements or to advise of any change in events, conditions or circumstances on which any such statement is based.

COMPETENT PERSONS STATEMENT

The information contained herein that relates to exploration results is based on information compiled or reviewed by Mr Jarrad Woodland, who is a Competent Person and a member of the Australasian Institute of Mining and Metallurgy. Mr Woodland is a full-time employee of the company. Mr Woodland has sufficient experience which is relevant to the style of mineralisation and types of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Persons as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Woodland consents to the inclusion of his name in the matters based on the information in the form and context in which it appears. Mr Woodland holds options in Lightning Minerals.

REFERENCES TO PREVIOUS ANNOUNCEMENTS

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements, and that all material assumptions and technical parameters have not materially changed. The Company also confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

APPENDIX 1: DUNDAS – JORC CODE 2012 TABLE 1 CRITERIA

The Table below summarises the assessment and reporting criteria used for exploration results for the Dundas Exploration Project and reflects the guidelines in Table 1 of The Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves (The JORC 2012 Code).

SECTION 1 - SAMPLING TECHNIQUES AND DATA

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	 No drill assays reported. Aircore (AC) drilling samples are collected at 1m intervals from the beginning to the end of each AC hole. Drill sample piles are placed in an orderly fashion on the drill site pad. When impenetrable lithologies are intersected a 90mm hammer is used to re-enter the hole to continue drilling. When the hammer is used, a 2-3kg samples are taken from a cone splitting device to provide drill sample for laboratory analysis. 4m compositing within oxidised saprolite that has not been logged as pegmatite may be undertaken at the Dundas Projects. This will involve sampling the 1m sample piles with an appropriate scoop to produce a 2-3kg sample from the bulk samples. Sampling was carried out using Lightning Minerals procedures and QAQC processes as per current industry standard practice. Drillhole collars are located using a Garmin Map 62s handheld device.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	• The AC drilling used an aircore blade drill bit of 90mm diameter, collecting samples at 1m intervals, with the drill sample being placed onto the drill site pad. When impenetrable lithologies are intersected by the rotation blade bit, a 90mm percussion hammer is used to re-enter the hole to continue drilling.
	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 Sample quality and % recoveries are recorded as a visual estimate percentage as part of the field drill rig geologist's rig data capture template. Recoveries remained relatively consistent throughout the program. The drill cyclone is cleaned between rod changes when drilling material that adheres to the cyclone out perimeter, and as required when drilling harder lithologies that generate coarse rock chips. Care was taken to ensure calico samples were of consistent volume and weight. Samples are representative of the drilled intervals.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	 All drillholes are geologically domain logged by suitably experienced and qualified geologists. Logging is both quantitative and qualitative in nature, including lithology, mineralisation, mineralogy, weathering, and colour. Logging is of a standard able support future resource studies should they be required. A representative washed chip sample for each one-metre interval as placed in a chip tray for future reference.

	The total length and percentage of the relevant intersections logged.	• Photographs are taken of chip trays for each drillhole and stored on L1M company servers.
		• The field lithological logging and subsequent reporting of pegmatites are not indicative of economic pegmatite hosted mineralisation. No mineralogical or quantitative analysis has yet been completed. Further exploration work including an assessment of the current drill sampling results and follow up drilling and sampling will be required to confirm the presence of any mineralisation.
Sub-sampling technique	If core, whether cut or sawn and whether quarter, half or all core	No drill sample assays have been reported in this announcement.
and sample preparation	taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether	• A 2-3kg sample is split via cone splitter into a numbered calico bag to provide drill sample for laboratory analysis. This occurs
	sampled wet or dry.	for both the RC and AC programs.
*	For all sample types, the nature, quality and appropriateness of the	 4m composite sampling may be undertaken within non pegmatite logged intervals within the oxidised saprolite. This will involve sampling the 1m cample piles with an appropriate scene to produce a 2 2kg cample from the bulk camples.
\mathbf{Q}	sample preparation technique. Quality control procedures adopted for all sub sampling stages to	involve sampling the fin sample piles with an appropriate scoop to produce a 2-skg sample from the burk samples.
	maximise representivity of samples.	
Ψ	Measures taken to ensure that the sampling is representative of the in	
()	situ material collected, including for instance results for field	
	Whether sample sizes are appropriate to the grain size of the material	
	being sampled.	
Quality of assay data an	d The nature, quality and appropriateness of the assaying and laboratory	No drill sample assays have been reported.
aboratory tests	total.	References to prior reports have adequate JORC Table 1 information contained within.
<u> </u>	For geophysical tools, spectrometers, handheld XRF instruments, etc,	
Ο	the parameters used in determining the analysis including instrument	
(h)	derivation, etc.	
4	Nature of quality control procedures adopted (eg standards, blanks,	
(1)	duplicates, external laboratory checks) and whether acceptable levels	
Verification of sampling	The verification of significant intersections by either independent or	Ne drill comple accours have been reported
and assaying	alternative company personnel.	• No unit sample assays have been reported.
<u> </u>	The use of twinned holes.	
\square	verification, data storage (physical and electronic) protocols.	
	Discuss any adjustment to assay data.	
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and	• Handheld Garmin GPS instruments were used to geo locate each drill collar, these instruments are understood to be
	aown-noie surveys), trenches, mine workings and other locations used in Mineral Resource estimation	accurate within a nominal ±5m in the horizontal and vertical planes.
	Specification of the grid system used.	• The level of topographic control offered by a handheld GPS is considered sufficient for early exploration drilling.
	Quality and adequacy of topographic control.	All samples were collected in the Geocentric Datum of Australia 1994 (GDA94) system. (MGA94, Zone 51)
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the	• The drilling spacing is considered appropriate for the reporting of the exploration results.
	degree of geological and grade continuity appropriate for the Mineral	No Mineral Resource or Ore Reserve Estimates have been completed.
		One-metre AC drill hole chip samples were prepared for sample submission.

ies. Field modifications est practice. ablish a representative
ts during drilling.
1

Section 2 - REPORTING OF EXPLORATION RESULTS

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 The Dundas Projects are located ~600km east of Perth and 20 to 50 km ENE of Norseman in Western Australia. The Dundas Project area totals ~450km² and comprises eight granted exploration licences separated into two exploration areas – Dundas North (E28/3027 and E28/3028) and Dundas South (E15/1748, E63/1932, E63/1993, E63/2000, E63/2001, and E63/2028) The Tenements are covered by the Ngadju Determined Native Title Claim (WCD2014/004). An agreement is in Place between the Ngadju Native Title Aboriginal Corporation RNTBC and Lightning Minerals. The Tenements are considered in good standing at the time of this report.
Exploration done by othe	Acknowledgment and appraisal of exploration by other parties.	 The Project area has been explored predominantly for gold and nickel by various prior parties. More recent exploration has included a focus on Lithium via explorers such as Matsa Resources (2008-2018), West Resource Ventures (2018 – 2019), and Liontown Resources (2018-2020). The result of this work is described in numerous publicly available Geological Society of Western Australia publications. Review of the considerable historic exploration activities is ongoing; data is being collated into company databases as per industry standard data collection practice.
Geology	Deposit type, geological setting and style of mineralisation.	 No known mineral deposits occur within project tenure. The mineralisation style related to this release are metals related to lithium-caesium-tantalum (LCT) pegmatites intrusives. There are publicly reported occurrences of LCT pegmatites within an acceptable proximity to the Dundas Project exploration tenure. (Liontown Resources (ASX:LTR) – Buldania Deposit) The Dundas Project is located at the southern-eastern end of the Norseman-Wiluna Belt within the Archaean Yilgarn Craton. The project area sits adjacent to the Jerdacuttup Fault which represents the boundary or the Archaean Yilgarn Craton with the adjacent Proterozoic Albany-Fraser Province.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	• One hundred and thirty-seven (137) AC holes have been drilled totalling 6,397m of drilling at the time of this announcement.

<u>A</u>	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar down hole length and interception depth, hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Relevant drill hole information has been provided in this release. No information has been excluded.
Pata aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	 No levelling of the raw geochemical data was undertaken. Plan images have been generated using QGGIS software, 3D modelling of drill results has been undertaken using Micromine software. No metal equivalent values are reported.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	 All other intercepts are reported as downhole widths. There is insufficient data provided by the aircore drill intercepts contain within this report for a relationship between pegmatite true width and intercept lengths to be reported. The true width of the pegmatites is not known, only down hole length is reported. Any relationship between reported geochemical results and potential mineralisation is unknown at the time of the report.
	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Appropriate plans and cross sections have been included in the body of this announcement; these plans suitably represent the nature of the drilling results.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Balanced reporting has been completed.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	• All meaningful data and relevant information have been included in the body of the report.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 Mineralogical studies and geochemical assay work is planned to be completed once the samples are returned to Perth. Planning of follow up Reverse Circulation or Diamond Drilling of pegmatites is partially dependant on qualified laboratory analytical results but is under consideration.

APPENDIX 1 - TABLE 1: COLLAR LOCATIONS OF DRILLING WITHIN E63/2001

Tenement	Hole ID	Drill Type	Collar Easting (MGA94_Z51)	Collar Northing (MGA94_Z51)	RL (mASL)	Dip (°)	Mag Azimuth (°)	Hole Max Depth (m)
E63/2001	DSAC0001	Aircore	416961	6444628	278	-60	270	36
E63/2001	DSAC0002	Aircore	421324	6444624	6444624 288 -60		90	27
E63/2001	DSAC0003	Aircore	421226	6444638	296	-60	90	28
E63/2001	DSAC0004	Aircore	421106	6444644	288	-60	90	28
E63/2001	DSAC0005	Aircore	421017	6444631	296	-60	90	22
E63/2001	DSAC0006	Aircore	420954	6444630	295	-60	90	21
E63/2001	DSAC0007	Aircore	420843	6444622	289	-60	90	42
E63/2001	DSAC0008	Aircore	420752	6444619	289	-60	90	64
E63/2001	DSAC0009	Aircore	420655	6444625	287	-60	90	76
E63/2001	DSAC0010	Aircore	420552	6444615	290	-60	90	65
E63/2001	DSAC0011	Aircore	420355	6444623	288	-60	90	11
E63/2001	DSAC0012	Aircore	420151	6444621	291	-60	90	19
E63/2001	DSAC0013	Aircore	419954	6444626	289	-60	90	43
E63/2001	DSAC0014	Aircore	419752	6444618	295	-60	90	27
E63/2001	DSAC0015	Aircore	419592	6444617	299	-60	90	46
E63/2001	DSAC0016	Aircore	419412	6444631	285	-60	90	76
E63/2001	DSAC0017	Aircore	419120	6444621	286	-60	90	76
E63/2001	DSAC0018	Aircore	418436	6444625	286	-60	270	51
E63/2001	DSAC0019	Aircore	418410	6444621	285	-60	270	39
E63/2001	DSAC0020	Aircore	418390	6444620	286	-60	270	40
E63/2001	DSAC0021	Aircore	418350	6444621	285	-60	270	40
E63/2001	DSAC0022	Aircore	418311	6444620	282	-60	270	37
E63/2001	DSAC0023	Aircore	418292	6444620	280	-60	270	34
E63/2001	DSAC0024	Aircore	418271	6444622	285	-60	270	38
E63/2001	DSAC0025	Aircore	418247	6444621	280	-60	270	49
E63/2001	DSAC0026	Aircore	418217	6444616	282	-60	270	43
E63/2001	DSAC0027	Aircore	418204	6444626	283	-60	270	41
E63/2001	DSAC0028	Aircore	418180	6444620	285	-60	270	38
E63/2001	DSAC0029	Aircore	418158	6444627	284	-60	270	45
E63/2001	DSAC0030	Aircore	418133	6444621	293	-60	270	44

Tenement	Hole ID	Drill Type	Collar Easting (MGA94_Z51)	Collar Northing (MGA94_Z51)	RL (mASL)	Dip (°)	Mag Azimuth (°)	Hole Max Depth (m)
E63/2001	DSAC0031	Aircore	418113	6444621	283	-60	270	34
E63/2001	DSAC0032	Aircore	418092	6444624	285	-60	270	27
E63/2001	DSAC0033	Aircore	418079	6444624	285	-60	270	51
E63/2001	DSAC0034	Aircore	418052	6444624	285	-60	270	31
E63/2001	DSAC0035	Aircore	418023	6444596	284	-60	270	29
E63/2001	DSAC0036	Aircore	417984	6444624	283	-60	270	37
E63/2001	DSAC0037	Aircore	417958	6444620	284	-60	270	43
E63/2001	DSAC0038	Aircore	417930	6444627	283	-60	270	35
E63/2001	DSAC0039	Aircore	417903	6444626	284	-60	270	33
E63/2001	DSAC0040	Aircore	417872	6444621	285	-60	270	36
E63/2001	DSAC0041	Aircore	417859	6444730	279	-60	270	52
E63/2001	DSAC0042	Aircore	417894	6444728	282	-60	270	60
E63/2001	DSAC0043	Aircore	417933	6444729	281	-60	270	61
E63/2001	DSAC0044	Aircore	417958	6444745	282	-60	270	68
E63/2001	DSAC0045	Aircore	417973	6444748	283	-60	270	65
E63/2001	DSAC0046	Aircore	418003	6444769	284	-60	270	70
E63/2001	DSAC0047	Aircore	418041	6444781	287	-60	270	67
E63/2001	DSAC0048	Aircore	418077	6444795	282	-60	270	68
E63/2001	DSAC0049	Aircore	418093	6444801	280	-60	270	70
E63/2001	DSAC0050	Aircore	418136	6444817	282	-60	270	79
E63/2001	DSAC0051	Aircore	418177	6444828	282	-60	270	82
E63/2001	DSAC0052	Aircore	418209	6444852	282	-60	270	69
E63/2001	DSAC0053	Aircore	418245	6444865	279	-60	270	66
E63/2001	DSAC0054	Aircore	418502	6444984	280	-60	270	28
E63/2001	DSAC0055	Aircore	418512	6444940	280	-60	270	81
E63/2001	DSAC0056	Aircore	418783	6444954	280	-60	270	30
E63/2001	DSAC0057	Aircore	421064	6445621	288	-60	270	38
E63/2001	DSAC0058	Aircore	421082	6445603	288	-60	270	50
E63/2001	DSAC0059	Aircore	421105	6445603	288	-60	270	39
E63/2001	DSAC0060	Aircore	421132	6445599	289	-60	270	26
E63/2001	DSAC0061	Aircore	421146	6445602	292	-60	270	26
E63/2001	DSAC0062	Aircore	421177	6445601	292	-60	270	33

Tenement	Hole ID	Drill Type	Collar Easting (MGA94_Z51)	Collar Northing (MGA94_Z51)	RL (mASL)	Dip (°)	Mag Azimuth (°)	Hole Max Depth (m)
E63/2001	DSAC0063	Aircore	421205	6445601	285	-60	270	30
E63/2001	DSAC0064	Aircore	421231	6445601	284	-60	270	26
E63/2001	DSAC0065	Aircore	421252	6445598	287	-60	270	23
E63/2001	DSAC0066	Aircore	421287	6445593	284	-60	270	24
E63/2001	DSAC0067	Aircore	421304	6445575	288	-60	270	19
E63/2001	DSAC0068	Aircore	421087	6445272	285	-60	270	74
E63/2001	DSAC0069	Aircore	421111	6445276	285	-60	270	79
E63/2001	DSAC0070	Aircore	421148	6445259	284	-60	270	25
E63/2001	DSAC0071	Aircore	421298	6445286	288	-60	270	47
E63/2001	DSAC0072	Aircore	420805	6445263	282	-60	270	31
E63/2001	DSAC0073	Aircore	419934	6445222	281	-60	270	70
E63/2001	DSAC0074	Aircore	420056	6445263	287	-60	270	78
E63/2001	DSAC0075	Aircore	420180	6445264	280	-60	270	50
E63/2001	DSAC0076	Aircore	420291	6445269	286	-60	270	33
E63/2001	DSAC0077	Aircore	420395	6445268	289	-60	270	49
E63/2001	DSAC0078	Aircore	420485	6445262	293	-60	270	53
E63/2001	DSAC0079	Aircore	420590	6445258	286	-60	270	21
E63/2001	DSAC0080	Aircore	420686	6445259	284	-60	270	43
E63/2001	DSAC0081	Aircore	419268	6444997	282	-60	270	63
E63/2001	DSAC0082	Aircore	419307	6444990	280	-60	270	71
E63/2001	DSAC0083	Aircore	419371	6444998	285	-60	270	90
E63/2001	DSAC0084	Aircore	419429	6445010	282	-60	270	72
E63/2001	DSAC0085	Aircore	419491	6445013	281	-60	270	78
E63/2001	DSAC0086	Aircore	419727	6445116	285	-60	270	69
E63/2001	DSAC0087	Aircore	418931	6444957	280	-60	270	69
E63/2001	DSAC0088	Aircore	419097	6444973	293	-60	270	81
E63/2001	DSAC0089	Aircore	421030	6445898	284	-60	270	48
E63/2001	DSAC0090	Aircore	421051	6445892	284	-60	270	46
E63/2001	DSAC0091	Aircore	421065	6445896	286	-60	270	44
E63/2001	DSAC0092	Aircore	421087	6445896	288	-60	270	45
E63/2001	DSAC0093	Aircore	421135	6445897	288	-60	270	39
E63/2001	DSAC0094	Aircore	421165	6445886	290	-60	270	37

Tenement	Hole ID	Drill Type	Collar Easting (MGA94_Z51)	Collar Northing (MGA94_Z51)	RL (mASL)	Dip (°)	Mag Azimuth (°)	Hole Max Depth (m)
E63/2001	DSAC0095	Aircore	421185	6445896	288	-60	270	35
E63/2001	DSAC0096	Aircore	421226	6445911	287	-60	270	33
E63/2001	DSAC0097	Aircore	421252	6445909	290	-60	270	25
E63/2001	DSAC0098	Aircore	421265	6445899	288	-60	270	27
E63/2001	DSAC0099	Aircore	421297	6445901	284	-60	270	24
E63/2001	DSAC0100	Aircore	421324	6445904	290	-60	270	23
E63/2001	DSAC0101	Aircore	421344	6445905	292	-60	270	21
E63/2001	DSAC0102	Aircore	419461	6445900	297	-60	270	53
E63/2001	DSAC0103	Aircore	419622	6445891	280	-60	270	46
E63/2001	DSAC0104	Aircore	419793	6445912	280	-60	270	43
E63/2001	DSAC0105	Aircore	420005	6445899	281	-60	270	34
E63/2001	DSAC0106	Aircore	420193	6445904	282	-60	270	29
E63/2001	DSAC0107	Aircore	420396	6445891	282	-60	270	39
E63/2001	DSAC0108	Aircore	420599	6445901	282	-60	270	50
E63/2001	DSAC0109	Aircore	420797	6445909	285	-60	270	76
E63/2001	DSAC0110	Aircore	420988	6445896	291	-60	270	50
E63/2001	DSAC0111	Aircore	418528	6444631	281	-60	270	48
E63/2001	DSAC0112	Aircore	418669	6444627	283	-60	270	72
E63/2001	DSAC0113	Aircore	418882	6444623	288	-60	270	55
E63/2001	DSAC0114	Aircore	420214	6444622	287	-60	270	19
E63/2001	DSAC0115	Aircore	421039	6444633	292	-60	270	22
E63/2001	DSAC0116	Aircore	417195	6444619	285	-60	270	25
E63/2001	DSAC0117	Aircore	417409	6444620	284	-60	270	53
E63/2001	DSAC0118	Aircore	417520	6444643	290	-60	270	51
E63/2001	DSAC0119	Aircore	418304	6444890	278	-60	270	68
E63/2001	DSAC0120	Aircore	418353	6444916	281	-60	270	94
E63/2001	DSAC0121	Aircore	419368	6445605	287	-60	270	25
E63/2001	DSAC0122	Aircore	419285	6445594	280	-60	270	37
E63/2001	DSAC0123	Aircore	420296	6445902	289	-60	270	58
E63/2001	DSAC0124	Aircore	419973	6445898	282	-60	90	24
E63/2001	DSAC0125	Aircore	419960	6445895	282	-60	90	18
E63/2001	DSAC0126	Aircore	419286	6446206	286	-60	270	35

Tenement	Hole ID	Drill Type	Collar Easting (MGA94_Z51)	Collar Northing (MGA94_Z51)	RL (mASL)	Dip (°)	Mag Azimuth (°)	Hole Max Depth (m)
E63/2001	DSAC0127	Aircore	419483	6446211	281	-60	270	50
E63/2001	DSAC0128	Aircore	419674	6446202	286	-60	270	43
E63/2001	DSAC0129	Aircore	418595	6445027	297	-60	270	26
E63/2001	DSAC0130	Aircore	418681	6445049	303	-60	270	76
E63/2001	DSAC0131	Aircore	418751	6445056	296	-60	270	86
E63/2001	DSAC0132	Aircore	418816	6445090	294	-60	270	90
E63/2001	DSAC0133	Aircore	418884	6445147	285	-60	270	68
E63/2001	DSAC0134	Aircore	419093	6445263	278	-60	270	46
E63/2001	DSAC0135	Aircore	419190	6445264	280	-60	270	61
E63/2001	DSAC0136	Aircore	419357	6446206	283	-60	270	27
E63/2001	DSAC0137	Aircore	419595	6446208	279	-60	270	55
E63/2001	DSRC0001	RC	417714	6448000	293	-60	90	96
E63/2001	DSRC0003	RC	417711	6448044	297	-60	90	84
E63/2001	DSRC0007	RC	417437	6448044	290	-90	0	100
E63/2001	DSRC0008	RC	417421	6448046	296	-60	270	94
E63/2001	DSRC0010	RC	417448	6448086	290	-60	270	100
E63/2001	DSRC0013	RC	417454	6448116	299	-90	0	111
E63/2001	DSRC0016	RC	417324	6448094	295	-90	0	100
E63/2001	DSRC0018	RC	417777	6448003	288	-60	270	69
E63/2001	DSRC0020	RC	417775	6448040	290	-60	270	72
E63/2001	DSRC0021	RC	417808	6448041	294	-55	270	102
E63/2001	DSRC0021A	RC	417808	6448041	294	-90	0	100
E63/2001	DSRC0022	RC	417769	6448079	291	-60	270	100
E63/2001	DSRC0023	RC	417486	6448045	291	-60	270	90
E63/2001	DSRC0024	RC	417826	6448086	289	-60	270	150

APPENDIX 1 - TABLE 2: LOGGED LITHOLOGIES FOR PEGMATITE INTERCEPTS

Tenement	Hole ID	Drill Type	Collar Easting (MGA94_Z51)	Collar Northing (MGA94_Z51)	RL (mASL)	Dip (°)	Mag Azimuth (°)	Hole Max Depth (m)	Pegmatite Intersections	Downhole Interval (m)	Pegmatite % Logged	Geology/Comments
E63/2001	DSAC0006*	AC	420954	6444630	295	-60	90	21	9-21m (EOH)	12	100% Pegmatite	Coarse grained pegmatite (Fpg), highly weathered, Feldspar 50%, Quartz 40%, Mica 10%
E63/2001	DSAC0010*	AC	420552	6444615	290	-60	90	65	34-45m	11	80% Pegmatite	Coarse grained pegmatite (Fpg), extreme weathering, Quartz 80%, Feldspar, 10%, Mica 10%. Some medium to fine granodiorite in sample pile ~20%.
E63/2001	DSAC0012*	AC	420151	6444621	291	-60	90	19	9-16m	7	100% Pegmatite	Coarse grained pegmatite (Fpg), highly weathered, Feldspar 60%, Quartz 30%, Mica 10%
E63/2001	DSAC0031*	AC	418113	6444621	283	-60	270	34	32-34m (EOH)	2	100% Pegmatite	Coarse grained pegmatite (Fpg), highly weathered, Feldspar 85%, Quartz 10%, Mica 5%
E63/2001	DSAC0032*	AC	418092	6444624	285	-60	270	27	26-27m (EOH)	1	100% Pegmatite	Coarse grained pegmatite (Fpg), highly weathered, Feldspar 55%, Quartz 40%, Mica 5%
E63/2001	DSAC0033*	AC	418079	6444624	285	-60	270	51	31-51m (EOH)	20	100% Pegmatite	Coarse grained pegmatite (Fpg), moderately weathered, Quartz 60%, Feldspar 35%, Mica 5%
E63/2001	DSAC0034*	AC	418052	6444624	285	-60	270	31	22-31m (EOH)	9	100% Pegmatite	Very Coarse-grained pegmatite (Fpg), low-moderately weathered, Feldspar 75%, Quartz 20%, Mica 5%
E63/2001	DSAC0069	AC	421111	6445276	285	-60	270	79	67-72m (EOH)	5	80% Pegmatite	Coarse grained pegmatite (Fpg), highly weathered, Feldspar 85%, Quartz 10%, Mica 5%
E63/2001	DSAC0071	AC	421298	6445286	288	-60	270	47	30-47m (EOH)	17	95% Pegmatite	Coarse grained pegmatite (Fpg), moderately-highly weathered, Feldspar 75%, Quartz 20%, Mica 5%
E63/2001	DSAC0105	AC	420005	6445899	281	-60	270	34	24-27m	3	50% Pegmatite	Coarse grained pegmatite (Fpg), highly weathered, Feldspar 50%, Quartz 43%, ± Sulphide? Ars(?) 2%, Mica 5%
E63/2001	DSAC0124	AC	419973	6445898	282	-60	90	24	21-24m (EOH)	3	50% Pegmatite	Coarse grained pegmatite (Fpg), highly weathered, Feldspar 50%, Quartz 45%, Mica 5%