WILDCAT SET TO ACQUIRE RICH MINERALISED LCT PEGMATITE FIELD IN THE WORLD CLASS PILBARA LITHIUM PROVINCE WA

Highlights

- Wildcat has entered into a conditional, binding agreement to acquire 100% of the Tabba Tabba Tantalum Mine and Lithium-Tantalum Project, 50km from Port Hedland in the Pilbara, WA
- Historical exploration defined a very high-grade, pegmatite-hosted tantalum deposit, with no focus on the exploration potential for lithium
- Previous drilling intersected high-grade lithium including 8m at 1.42% Li₂O from 4m (TDRC02) (limited assaying for lithium)
- Wildcat set to welcome new major shareholders post deal completion

Wildcat Resources Limited (ASX: WC8) ("Wildcat" or "Company") is pleased to announce it has entered into an exclusive, binding, conditional agreement to acquire 100% of the Tabba Tabba Lithium-Tantalum Project ("the Project") from Global Advanced Metals Wodgina Pty Ltd ("GAM"). The acquisition complements Wildcat's already commanding landholding in the region.

Tabba Tabba is a group of **granted mining leases**, with large areas of outcropping pegmatites and a high-grade tantalum deposit with a Mineral Resource estimate of **318Kt at 950ppm Ta₂O₅**. The project is located just 50km from Port Hedland, WA and is nearby some of the world's largest hard-rock lithium mines. Previous exploration focussed on tantalum mineralisation and the majority of samples were not assayed for lithium. However, mapping, sampling, and drilling has defined extensive occurrences of lithium-caesium-tantalum ("LCT") mineralised pegmatites with several intersections of high-grade lithium (> 2.0% Li₂O) mineralisation.

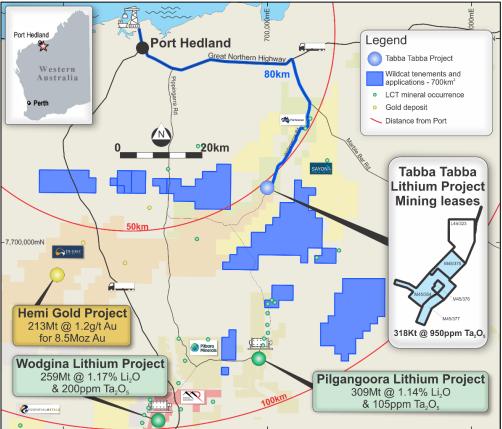


Figure 1 – Location of the Tabba Tabba Project relative to infrastructure and Wildcat's existing exploration tenements at the Bolt Cutter Project, Pilbara, WA

ASX Code:	WC8
Director:	Jeff Elliott
Director:	Matthew Banks
Director:	Samuel Ekins
Director:	Alex Hewlett
Secretary:	James Bahen

RECISTERED OFFICE Level 2, 25 Richardson St, West Perth, WA, 6005

Postal Address Level 2, 25 Richardson St, West Perth, WA, 6005

WEBSITE www.wildcatresources.com.au

> T: +61 (8) 6555 2950 F: +61 (8) 6166 0261

ACN: 098 236 938

Wildcat Resources Ltd

Wildcat Resources is a company focussed on discovery with strategic landholdings in world class provinces in Australia. The company has key landholdings for gold in the Lachlan Fold Belt (NSW), gold and lithium in the Mallina Province - Pilbara (WA), and greenfields exploration projects regionally in WA.

FOR ENQUIRIES PLEASE CONTACT: info@wildcatresources.com.au T: +61 (8) 6555 2950

Executive Director Matthew Banks commented "This is a big step forward for the Company to acquire such a highly prospective lithium exploration project that adds to our already large ground position in the World Class Pilbara Lithium Province. Tabba Tabba is a proven LCT pegmatite system that was within Pancontinental's tantalum portfolio in the 1980's, along with Pilgangoora (Pilbara Minerals Ltd), Wodgina (Mineral Resources Ltd) and Yinnertharra (Delta Lithium Ltd). Our technical team believes there is significant exploration upside at Tabba Tabba, it is located within granted mining leases and we have approval for a 200 hole drill program. On deal completion we will welcome a range of major shareholders to the Company and look forward to following through with discovery-focussed drill programs earmarked for 2023."

Tabba Tabba – Background and Development Opportunity

History

Alluvial tin and tantalum mining have occurred at Tabba Tabba since the early 1900s. Exploration by Pancontinental Mining Ltd in the 1980s resulted in the discovery of high-grade pegmatite-hosted tantalum mineralisation at Tabba Tabba, and at the Wodgina and Pilgangoora Projects. At the time the exploration and mining focus was tin and tantalum, and the projects were largely unexplored for lithium.

Various feasibility studies and minor tribute mining, including by Sons of Gwalia Ltd, occurred throughout the 1990s and early 2000s. In 2007, key assets were purchased by Resource Capital Funds and the tantalum projects were subsequently transferred to GAM.

Trial mining for tantalum by Pilbara Minerals Ltd in a 50/50 JV with Nagrom under a 5-year tantalum mining and offtake agreement with GAM commenced in 2015 but was abandoned due to unspecified tantalum plant commissioning issues. The tantalum mine and infrastructure were rehabilitated between 2016 and 2019, and the tenements have remained in GAM's ownership since.

Nearly forty (40) outcropping pegmatite bodies have been mapped within the mining leases at Tabba Tabba, however only one was extensively drilled and most of the samples were not assayed for lithium. The lack of drilling offers significant upside for Wildcat for lithium exploration.

The pegmatite body that contains **the high-grade Tabba Tabba tantalum deposit has a Mineral Resource estimate of 318Kt at 950ppm Ta₂O₅ for 666,200lbs Ta₂O₅** at a 400ppm lower cut-off grade¹. The resource drilling on the Tabba Tabba pegmatite was only to 35m depth, and the mineralisation is open in most directions. With regard to the reported tantalum resource, the information is extracted from the report entitled "Pilbara Reports Updated Mineral Resource for Tabba Tabba Tabba Tantalum Project, WA created on 19th January 2015 and is available to view on <u>https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2995-01591791-</u> <u>6A706666?access token=83ff96335c2d45a094df02a206a39ff4</u>. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement.

The only drill holes outside of the Tabba Tabba tantalum deposit were drilled in 2013 and intersected a pegmatite that returned **8m at 1.42% Li₂O from 4m (TDRC02)**, **16m at 0.9% Li₂O from 10m (TDRC03) and 1m at 2.00% Li₂O from 40m to EOH (TDRC04)² (Appendix 1, Table 2)**. This single pegmatite outcrop is 300m long (Figure 2).

The rest of the mapped pegmatites have yet to be drilled. Field checking by Wildcat confirmed extensive pegmatites coincident with the detailed geological mapping as shown on Figure 2.

 ¹ Pilbara Minerals Ltd ASX announcement 19th January 2015: <u>https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2995-01591791-6A706666?access_token=83ff96335c2d45a094df02a206a39ff4
 ² A100814. Annual Mining and Mineral Exploration Report Wodgina Project: https://gapages.dmirs.wa.gov.au/Web/decumentlict/10/Report_Ref/A100814
</u>

ASX Announcement 17 May 2023

The Company notes that extensive, grid drilling has been completed by FMG on the northern extensions of the pegmatite field in the adjoining tenement underlying what is now miscellaneous license L45/323 at Tabba Tabba (Figure 2).

Lithium Exploration and Project Potential

Elongate crystal textures observed in pegmatite outcrop at Tabba Tabba are shown on Figure 3. The mineral species and geochemistry of these will be determined by Wildcat during exploration at Tabba Tabba this year.

Wildcat has received approval from the Department of Mines, Industry, Regulation and Safety ("DMIRS") for a comprehensive program of work ("POW") and has planned 6,000m of RC and diamond drilling to test the extent of lithium-tantalum mineralisation throughout the leases. The objective is to rapidly discover and delineate resources that could be developed in the near term.

The Tabba Tabba Project has very favourable geological attributes for exploration and evaluation activities as well as for future mine development. The Project comprises active mining leases, with an approved mine plan for the tantalum resource. Tabba Tabba is also one of the best located lithium exploration projects in terms of access to services, transport, and shipping infrastructure in Western Australia. It occurs adjacent to Wallareenya Road and is only 80km by road to the Port Hedland port. It is 60km by road to the Pilgangoora Lithium Mine processing plant and 97km by road to the Wodgina Lithium Mine processing plant.

The Tabba Tabba Lithium Project provides Wildcat with an advanced exploration opportunity and with exploration success, a potential near-term development project. This complements the Company's early-stage exploration ground at its large and prospective Bolt Cutter Project.

The Tabba Tabba pegmatite field is hosted by greenstone rocks proximal to the regionally significant Tabba Tabba Shear Zone, a major long-lived structure that separates the East and West Pilbara Blocks³. The structure has a long history of displacement and reversals of movement due to different tectonic events. This has resulted in significant ground preparation of the host rocks, creating favourable conduits and trap sites for pegmatite melts migrating away from their source. Late, highly fractionated monzogranites of the Split Rock Supersuite have a spatial relationship to the LCT pegmatites in the Pilbara and are considered the source of mineralised pegmatites in the district⁴. Several plutons of Split Rock Supersuite granites are intruded proximal to the Tabba Tabba pegmatite field providing ample sources for enriched pegmatite melts.

The regional setting is ideal for the formation of fractionated lithium and tantalum mineralised LCT pegmatites. The potential for the Tabba Tabba pegmatite field to host a significant lithium mineralisation is further supported by the occurrence of high-grade lithium in the few drill samples that have been assayed for lithium and in many of the rock chips samples obtained during Wildcat's due diligence work.

 ³ K.A. Beintema, P.R.D. Mason, D.R. Nelson, S.H. White, and J.R. Wijbrans. 2003. New constraints on the timing of tectonic events in the Archaean Central Pilbara Craton, Western Australia. Journal of the Virtual Explorer 13
 ⁴ Sweetapple, M.T. 2017. A review of the setting and internal characteristics of lithium pegmatite systems of the Archaean North Pilbara and Yilgarn Cratons, Western Australia. Extended Abstract, Granites2017 conference. Bulletin 65. Australian Institute of Geoscientists

ASX Announcement 17 May 2023

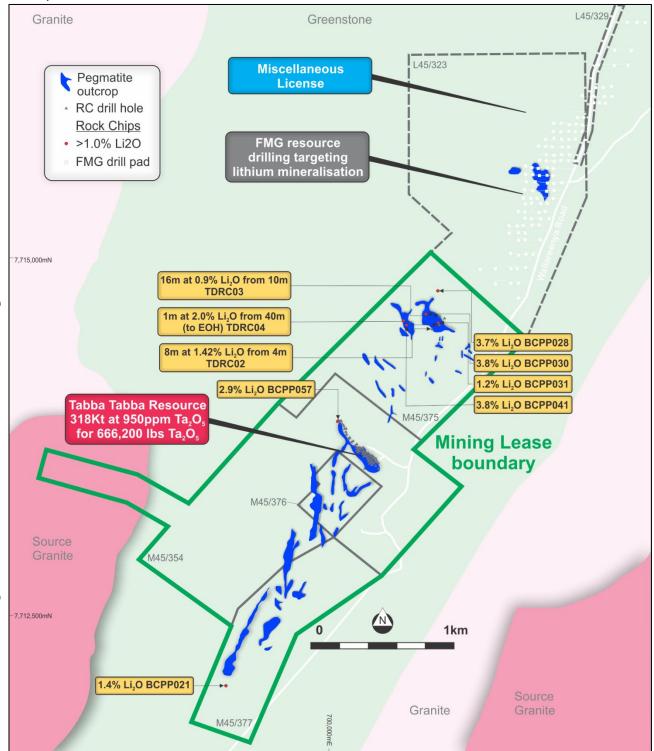


Figure 2 – Tabba Tabba mining lease area in green showing the mapped outcropping pegmatites at surface, the pegmatite that hosts the Tabba Tabba tantalum resource, surfaces rock chips >1% Li_2O obtained during DD (listed in Appendix 2, Table 2), and lithium intercepts in the drilling in the pegmatite to the north.

The Bolt Cutter package now comprises 475km² of 100% owned, granted and application tenements and 230km² of tenements under application and subject to a ballot. The tenements are located proximal to numerous Split Rock Supersuite granite plutons (enriched source rocks) and straddle major structures that form prospective corridors for lithium mineralised LCT pegmatites that include the Wodgina, Pilgangoora and Tabba Tabba pegmatite fields; and numerous other LCT occurrences. The western Bolt Cutter tenements straddle the Berghaus Shear in a prospective gold mineralisation corridor that includes the Hemi Gold Deposit (Figure 4).

Figure 3: Elongate crystal textures observed in pegmatite outcrop at Tabba Tabba (699,575mE; 7,712,390mN)

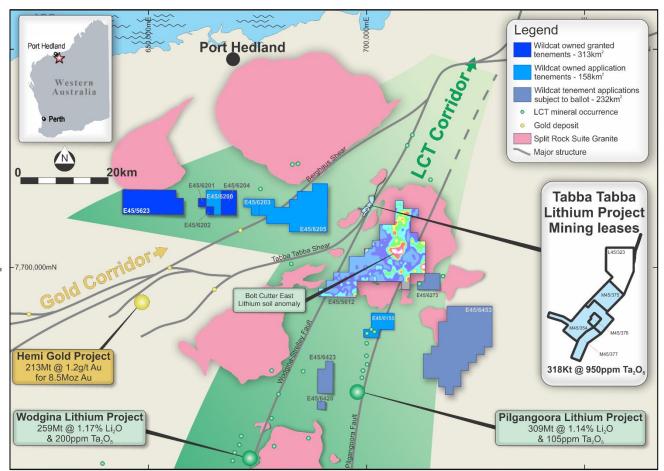


Figure 4 – Wildcat's Pilbara lithium tenements showing the distribution of Split Rock Supersuite granite (LCT pegmatite source rocks), major structures, mineral corridors, and major lithium and gold deposits. The location of the Bolt Cutter East lithium soil anomaly is also shown⁵

Key Terms of the Acquisition Agreement

The Company has entered into an exclusive, conditional, binding agreement ("Agreement") with GAM under which GAM has agreed to sell 100% interest in the key WA mining tenements M45/354, M45/375, M45/376, M45/377, L45/323 and L45/329 ("Tabba Tabba Tenements"). Under the Agreement, GAM also has a reasonable endeavours obligation to transfer tenement M45/374 to

⁵ ASX announcement 29 June 2022: <u>https://www.investi.com.au/api/announcements/wc8/b56c1b41-9b7.pdf</u>

WILDCAT

ASX Announcement 17 May 2023

Wildcat if a legal or beneficial interest in that tenement is ultimately secured by GAM or a related party after settlement. This additional tenement is not considered material, does not form part of the Tabba Tabba Tenements, and if it is ultimately transferred to the Company under the Agreement, the transfer price would be nominal (\$1).

The consideration payable for the acquisition of the Tabba Tabba Tenements ("Consideration") comprises:

- a) Consideration securities to be issued to GAM comprising:
 - i) 186,660,512 Shares in Wildcat; and
 - ii) 62,220,171 Performance Rights that will vest and be capable of exercise into Shares (on a 1 for 1 basis) upon Wildcat announcing an Inferred Mineral Resource on the Tabba Tabba Project of equal to or greater than 100,000 tonnes of contained Li₂O, with a cut-off grade of 0.1% Li2O.
- b) In addition to the Consideration Securities, Wildcat will:
 - i) grant to GAM a 0.75% gross revenue royalty with respect to the sale of lithium products extracted from the Tabba Tabba Project;
 - ii) grant to GAM a 1% gross revenue royalty with respect to the sale of tantalum products extracted from the Tabba Tabba Project ("Tantalum Royalty"); and
 - iii) assume GAM's obligations under an existing 1% net smelter royalty with respect to the sale of tantalum products extracted from the Tabba Tabba Project granted in favour of RCF Management L.L.C ("RCF" and "RCF Royalty"),
 (together, the "Royalties").

(rogemer, me "koydifies").

Wildcat will grant first ranking security interests over the Tabba Tabba Project tenements to GAM and RCF to secure payment of each of the Royalties and GAM's other mineral rights that will each be subordinated in the event WC8 secures project financing via a senior loan ("Royalty Security")

GAM is granted a first right of refusal to purchase tantalum concentrate that is extracted from the Tabba Tabba Project at an agreed discount of 10% to market price in respect of secondary tantalum concentrate, and an agreed discount of 45% to market price of secondary tantalum concentrate in respect of primary tantalum concentrate.

GAM is granted an option to fund, build and own a tantalum recovery plant to extract the tantalum recovered from Tabba Tabba only if:

- a) Wildcat elects to carry out mining operations at the Tabba Tabba Project; and
- b) Wildcat elects to construct a processing and recovery plant on or around the Tabba Tabba Project that does not incorporate tantalum recovery capability (i.e. does not see commercial value in the tantalum).

In the above circumstance Wildcat will operate the Tantalum Circuit, and any tantalum product that is processed through the Tantalum Circuit will be owned by GAM although GAM will reimburse Wildcat for the cost of operating the Tantalum Circuit. The Tantalum Royalty will not apply with respect to any tantalum owned by GAM that is processed though the Tantalum Circuit. If Wildcat elects to process tantalum product produced from areas other than the Tabba Tabba Tenements through the Tantalum Circuit, Wildcat will pay GAM a usage charge.

Conditions Precedent

The agreement to sell the Tabba Tabba Tenements in return for the payment or issue of the Consideration, including the Shares in Wildcat and Performance Rights, is conditional upon and will not take effect until GAM obtains the necessary approvals under the Foreign Acquisitions and Takeover Act 1975 (Cth), or confirmation that such approvals are not required.

Completion of the transaction is conditional upon:

- a) Wildcat successfully completing a capital raising of at least \$5,000,000 and holding a minimum cash balance of \$10,000,000;
- b) Wildcat obtaining necessary shareholder approvals required by law or the ASX Listing Rules, which includes approval to issue the Consideration Shares, the Success Fee (defined below) and the Introduction Fee (defined below) under Listing Rule 7.1 in relation to the Consideration Shares and the Success Fee, Listing Rule 10.11 and section 208 of the Corporations Act (if required) in relation to the Introduction Fee, and approval under item 7 of section 611 of the Corporations Act (if required);
- c) Ministerial consent under the Mining Act (if required) to transfer the Tabba Tabba Tenements and to the registration of the Royalty Security following the transfer;
- d) RCF consenting to Wildcat as a transferee of the Tabba Tabba Tenements in accordance with the RCF Royalty;
- e) RCF and GAM making certain amendments to the RCF Royalty and agreeing the form of the Royalty Security, in each case in a form acceptable to, RCF, GAM and Wildcat; and
- f) Execution of a deed of assumption, assignment and release and deed of covenant in relation to the RCF Royalty (as amended), execution of each Royalty Security and execution of a priority deed, in each case in a form acceptable by all parties to them.

Appointment of Nominee Director

GAM will have a right to appoint a Nominee Director subject to GAM (and its associates) holding a relevant interest in Shares representing at least 10% of all Shares on issue.

Success Fee and Introductory Fee

Subject to Wildcat obtaining Shareholder approval, Wildcat has agreed to issue the following securities to Mr Alex Hewlett (non-executive director), or his nominee, upon completion of the transaction as an introduction fee ("Introduction Fee"):

- a. 10,000,000 options each exercisable into one Share at a zero-cent exercise price on or before 48 months from issue, subject to a vesting condition that WC8 obtains Ministerial consent under the Mining Act (if required) to transfer the Tabba Tabba Tenements;
- b. 6,666,666 options each exercisable into one Share at a zero-cent exercise price on or before 48 months from issue, subject to vesting conditions that: (1) WC8 obtains Ministerial consent under the Mining Act (if required) to transfer the Tabba Tabba Tenements; and (2) Wildcat's Share price exceeds a 30-day VWAP of A\$0.042 per Share;
- c. 6,666,667 options each exercisable into one Share at a zero-cent exercise price on or before 48 months from issue, subject to vesting conditions that: (1) WC8 obtains Ministerial consent under the Mining Act (if required) to transfer the Tabba Tabba Tenements; and Wildcat's Share price exceeds a 30-day VWAP of A\$0.056 per Share; and
- d. 6,666,667 options each exercisable into one Share at a zero-cent exercise price on or before 48 months from issue, subject to vesting conditions that: (1) WC8 obtains Ministerial consent under the Mining Act (if required) to transfer the Tabba Tabba Tenements; and (2) Wildcat's Share price exceeds a 30-day VWAP of A\$0.07 per Share
- b) Harvis Advisers Pty Ltd (Harvis) have been engaged as Wildcat's advisors in respect to the transaction. Upon completion of the transaction, Wildcat will issue Harvis a success fee of ("Success Fee"):
 - a. 10,000,000 Shares;
 - b. 10,000,000 options each exercisable into one Share at an exercise price of A\$0.040 on or before 36 months from issue subject to a vesting condition that the 30-day VWAP of Wildcat Shares exceeds A\$0.042 per Share;

ASX Announcement 17 May 2023

- c. 10,000,000 options each exercisable into one Share at an exercise price of A\$0.045 on or before 36 months from issue subject to a vesting condition that the 30-day VWAP of Wildcat Shares exceeds A\$0.056 per Share; and
- d. 10,000,000 options each exercisable into one Share at an exercise price of A\$0.06 on or before 48 months from issue subject to a vesting condition that the 30-day VWAP of Wildcat Shares exceeds A\$0.07 per Share.

Capital Raising and Use of funds

WC8 has firm bids for a capital raising of 200,000,000 Shares at an issue price of 3.5 cents per Share to raise up to \$7,000,000 before costs ("Capital Raising"). The issue of shares in connection with the Capital Raising will, consistent with the issue of the Consideration Shares the Success Fee, and the Introduction Fee, be subject to Wildcat obtaining shareholder approval under Listing Rule 7.1. The directors of Wildcat (and / or their related parties) have, subject to Wildcat obtaining shareholder approval, subscribed for \$750,000 in placement.

Wildcat has engaged advisors and brokers in respect of the Capital Raising and expects to pay fees of up to 5% of the amount raised under the Capital Raising, being a maximum of \$350,000 based on full subscription.

As at the end of March 2023, WC8 had approximately \$4.9m cash on hand. Upon receipt of funds, WC8 will have in excess of \$10,000,000 cash on hand on a fully subscribed basis.

Wildcat has obtained POW approval from DMIRS for 1,000 RC drill holes and 1,000 diamond drill holes and intends to drill an initial 6,000m of mixed RC and diamond drilling to define the lithium mineralised footprint of the Tabba Tabba pegmatite field. It will then commence infill drilling and work towards resource definition.

The Company is obliged to spend at least \$1m in ground in the first year of owning the project. Additionally, the Company will complete aircore drilling at Bolt Cutter and continue soil sampling to work up additional targets for initial aircore drilling. At Mt Adrah in NSW, the Company expects to drill approximately 5,000m of mixed RC and diamond drilling and continue its regional reconnaissance soil sampling and geophysics programs.

Indicative timetable for the Transaction and Capital Raise

Event	Timing
Announcement of Transaction and Capital Raise	17 May 2023
Release Notice of Meeting to ASX	29 May 2023
Extraordinary General Meeting (EGM) to be held to approve the	26 June 2023
Transaction and the Capital Raise	
Settlement in connection with the Capital Raise	3 July 2023
FIRB Approval obtained	21 July 2023
Completion of Acquisition and issue of Consideration Shares,	28 July 2023
Success Fee and Introductory Fee	

The above dates are indicative only and are subject to change. The Company reserves the right to amend this indicative timetable at any time without prior notice.

Proposed Changes to Wildcat's Capital Structure

The table below shows the effect that the transaction and Capital Raising will have on Wildcat's capital structure:

Shares	Number
Shares currently on issue	662,022,727
Shares to be issued under the Capital Raising	200,000,000

Shares on issue after the Capital Raising	862,022,727
Shares to be issued under the Proposed Transaction	186,660,512
Shares to be issued under the Success Fee	10,000,000
Shares on issue after the Proposed Transaction	1,058,683,239
Options	Number
Options currently on issue	41,000,000
Options to be issued under the Success Fee	30,000,000
Options to be issued under the Introduction Fee	30,000,000
Options on issue after the Proposed Transaction	101,000,000
Performance Rights	Number
Performance Rights currently on issue	134,000,000
Performance Rights to be issued under the Proposed Transaction	62,220,171
Performance Rights on issue after the Proposed Transaction	196,220,171

Tabba Tabba Resource

A 2012 JORC compliant tantalum mineral resource for the Tabba Tabba Project was announced by Pilbara Minerals in January 2015⁶. Wildcat Intends to re-estimate the tantalum resource should a maiden lithium resource be defined and announce both the tantalum and lithium resources. This is anticipated in 2024 to 2025. The combined measured, indicated and inferred resource currently stands at 318.1Kt at 950ppm Ta₂O₅ for 666,200lbs of contained Ta₂O₅ at a 400ppm Ta₂O₅ lower cut off grade and 6,000ppm Ta₂O₅ upper cut off grade. This uses a database of 154 drill holes and a geological model developed by Pilbara Minerals Ltd constrained by geological logging and assay data for Ta₂O₅. The resource calculation was carried out by an independent resource consultancy, Trepanier pty Itd. The resultant Measured, Indicated and Inferred Mineral Resource estimate is:

Measured	35.1kT @ 1,380ppm Ta ₂ O ₅	107,125 lb Ta ₂ O ₅
Indicated	187.0kT @ 1,020ppm Ta ₂ O ₅	418,925 lb Ta ₂ O ₅
Inferred	96.0kT @ 660ppm Ta2O5	140,150 lb Ta ₂ O ₅
Combined	318.1Kt @ 950ppm Ta₂O₅	666,200 lb Ta ₂ O ₅

Summary of resource estimate and reporting criteria

As per ASX Listing Rule 5.8 and the 2012 JORC reporting guidelines, a summary of the material information used to estimate the Mineral Resource is detailed below (for more detail please refer to Table 1, Table 3, and Sections 1 to 3 included below following Appendix 1).

Geology and geological interpretation

The Tabba Tabba pegmatites are part of the later stages of intrusion of Archaean granitic batholiths into Archaean metagabbros and metavolcanics. Tantalum mineralisation occurs in zoned pegmatites that intruded a sheared Archaean metagabbro. The pegmatite contains in outcrop a symmetrically disposed outer cleavlandite zone, mica zone and a megacrystic K feldspar zone with a centrally disposed quartz zone associated with an albitic replacement unit. The zones generally dip in sympathy with pegmatite margins. The Main Tabba Tabba pegmatite is a thick (frequently greater than 20m) funnel-shaped dyke which strikes northwest and dips 30°-40° NE. It can be followed in outcrop along strike for at least 400m and historical drilling has intercepted it up to 80 m down dip. The pegmatite is thickest at surface, thinning and bifurcating at depth, and is mineralogically zoned. Three distinct Quartz Cores have been recognised, and tantalum mineralization is mainly restricted to the Albite replacement and Lithium alteration zones and is composed of tantalite, wodginite and

17 May 2023

WILDCAT

(in the Lithium alteration zone) microlite. Three distinct mineralized zones occur as sheets which average 2m to 3m in thickness, but may be up to 6 m thick, which strike and dip in sympathy with the pegmatite margins.

Drilling techniques and hole spacing

The deposit was sampled using a series of Airtrac open hole percussion ("OHP"), reverse circulation ("RC") and PQ diamond drill holes ("DD"). Goldrim Mining Ltd and Pancontinental Mining Ltd ("PanCon") completed 24 OHP, 60 RC and 3 DD holes between 1984 and 1991. Five OPH holes drilled in 1984 were sited outside of the resource area and therefore have not been used in this estimate. Global Advanced Metals ("GAM") completed 29 infill and extensional RC holes in March 2013. Pilbara Minerals ("PLS") completed 4 infill and 1 extensional DD holes in November 2013 and a further 38 RC holes (1,386m) in September/October 2014. Sections are generally spaced 10m to 20m (Local Northing), while holes on section were spaced 5m to 20m apart (see Figures 2 and 3 above). Sampling and sub-sampling techniques Sample information used in resource estimation was derived primarily from RC drilling with limited diamond core drilling. The drill samples have been geologically logged and sub-sampled for lab analysis.

Sample analysis method

Historical assays were analysed by SGS Laboratories using low dilution fusion XRF. The GAM samples were assayed by GAM's Wodgina Site Laboratory for a 36 element suite using XRF on fused beads. Nagrom checks were undertaken using ICP and included Li together with Ta 2 O5, Nb₂O₅ and Sn. The recent PLS holes were sampled and analysed by Nagrom by both fused bead XRF and ICP. No geophysical tools were used to determine any element concentrations used in the resource estimate.

Cut-off grades

Grade envelopes have been wireframed to a 0.04% Ta 2 O5 cut-off with allowance for geological continuity of the higher-grade zone. Mining, metallurgical and economic parameters were considered for determining the cut-off grade used for reporting. The 0.04% Ta₂O₅ cut-off grade used is based on the application of a simple economic model (in AUD\$ - Ta₂O₅ price of \$80/lb, open-cut mine operating costs of \$3.33/t, processing costs of \$44.50/t ore based on annualised mining and processing of 93,600 tonnes ore, with 82% Ta₂O₅ processing recovery). Based on visual and statistical analysis of the drilling results and geological logging of the pegmatite zoning, this cut-off tends to be exactly the same or very close to the natural geological cleavelandite zone in the pegmatite.

Estimation Methodology

Grade estimation was by Ordinary Kriging ("OK") for Ta₂O₅ using GEOVIA Surpac[™] software. The estimate was resolved into 5m (E) x 5m (N) x 2.5m (RL) parent cells that had been sub-celled at the domain boundaries for accurate domain volume representation. Estimation parameters were based on the variogram models, data geometry and kriging estimation statistics. Based on statistical analysis of the data population, an upper cut (top-cut) grade of 6,000ppm Ta₂O₅ was applied prior to estimation.

Classification criteria

The Tabba Tabba Mineral Resource has been classified as a combination of Measured, Indicated and Inferred according to JORC 2012. Reclassification from the resource published in December 2013 was facilitated by the drilling of 38 RC holes targeting along strike and down-dip positions, and considering the drill spacing of 10m to 20m (Local Northing), and 5m to 20m on section, has allowed the re-classification of significant portions of the previous Inferred resource to Indicated. Drill spacing for Measured is generally 10m (Local Northing) by 5 to 10m (Local Easting) and Indicated is 20m (Local Northing) by 15 to 20m (Local Easting). The fringes of the resource, with typical drill spacing of 40m (Local Northing) by 20m (Local Easting), remain in the Inferred category.

Mining and metallurgical methods and parameters

The expected mining method is open pit mining with 15% dilution allowed in pit optimization work. A combination of historical plus more recent metallurgical testwork by Nagrom indicates that the assumption for potential successful processing of Tabba Tabba ore is reasonable.

- ENDS -

This announcement has been authorised by the Board of Directors of the Company.

FOR FURTHER INFORMATION, PLEASE CONTACT:

Mr. Samuel Ekins	Mr. Matthew Banks
Managing Director	Executive Director
Tel: +61 (8) 6555 2950	Tel: +61 (8) 6555 2950
info@wildcatresources.com.au	info@wildcatresources.com.au

Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Wildcat Resources Limited's planned exploration programme and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "estimate," "expect," "intend," "may", "potential," "should," and similar expressions are forward-looking statements. Although Wildcat Resources Limited believes that its expectations reflected in these forward-looking statements are reasonable, such statements involve risks and uncertainties and no assurance can be given that actual results will be consistent with these forwardlooking statements.

Competent Person's Statement

The information in this announcement that relates to Exploration Results for Tabba Tabba Project is based on, and fairly represents, information compiled by Mr Samuel Ekins, a Competent Person who is a Member of the Australian Institute of Mining and Metallurgy (AusIMM). Mr Ekins is a fulltime employee of Wildcat Resources Limited. Mr Ekins has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration, and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the JORC Code. Mr Ekins consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this announcement that relates to the Tabba Tabba Mineral Resources is based on and fairly represents information compiled by Mr Samuel Ekins, a full-time employee of Wildcat Resources Ltd and a member of the Australasian Institute of Mining and Metallurgy. Mr Ekins has sufficient experience of relevance to the styles of mineralisation and types of deposits under consideration, and to the activities undertaken to qualify as Competent Persons as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Ekins consents to the inclusion in this announcement of the matters based on his information in the form and context in which they appear.

The information in this announcement that relates to the reported tantalum resource for the Tabba Tabba Project is extracted from the report entitled "Pilbara Reports Updated Mineral Resource for Tabba Tabba Tantalum Project, WA created on 19th January 2015 and is available to view on https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2995-01591791-

<u>6A706666?access token=83ff96335c2d45a094df02a206a39ff4</u>. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and, in the case of Code is in normal typeface, guidelines are in indented italics, definitions are in bold. 43 JORC Code, 2012 Edition estimates of Mineral Resources or Ore Reserves, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

<u>No New Information or Data</u>: This announcement contains references to exploration results, Mineral Resource estimates, Ore Reserve estimates, production targets and forecast financial information

derived from the production targets, all of which have been cross-referenced to previous market announcements by the relevant Companies. Wildcat confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements. In the case of Mineral Resource estimates, Ore Reserve estimates, production targets and forecast financial information derived from the production targets, all material assumptions and technical parameters underpinning the estimates, production targets and forecast financial information derived from the production targets contained in the relevant market announcement continue to apply and have not materially changed in the knowledge of Wildcat.

This document contains exploration results and historic exploration results as originally reported in fuller context in Wildcat Resources Limited ASX Announcements - as published on the Company's website. Wildcat confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements. In the case of Mineral Resource estimates, Ore Reserve estimates, production targets and forecast financial information derived from the production targets, all material assumptions and technical parameters underpinning the estimates, production targets and forecast financial information targets contained in the relevant market announcement continue to apply and have not materially changed in the knowledge of Wildcat.

Appendix 1

Table 1: JORC 2012 Tabba Tabba Tantalum Mineral Resource estimate⁷

Category	Tons ('000)	Ta₂O₅ (ppm)	Ta ₂ O ₅ (lb)
Measured	35.1	1,380	107,125
Indicated	187.0	1,020	418,925
Inferred	96.0	660	140,150
Combined	318.1	950	666,200

Table 2: Exploration results from 2013 drill program – Downhole intercepts (to be read in conjunction with JORC Table 1)

*Note that no attempt has been made to estimate true width

Hole ID	Hole Type	MGA East (m)	MGA North (m)	RL (m)	Dip (Deg)	MGA Azimuth (deg)	Hole Depth (m)	Depth From (m)	Intercept Length (m)	Li ₂ O (%)
TDRC01	RC	700,681	7,714,488	101	-90	N/A	41	N/A	N/A	NSI
TDRC02	RC	700,739	7,714,513	101	-90	N/A	41	4	8	1.42
TDRC03	RC	700,747	7,714,587	102.7	-90	N/A	41	10	16	0.90
TDRC04	RC	700,796	7,714,553	101.4	-90	N/A	41	40	1	2.00

Table 3: Exploration results - Downhole intercepts (to be read in conjunction with JORC Table 1)

Hole ID	Hole Type	MGA East (m)	MGA North (m)	RL (m)	Dip (Deg)	MGA Azimuth (deg)	Hole Depth (m)	Depth From (m)	Intercept Length (m)	Ta2O5 (ppm)
DDHA	DD	700253.0	7713606.9	106.3	-90	0	22.7	7.6	4.4	3,934
								21.0	1	250
DDHB	DD	700185.7	7713642.4	110.6	-90	0	24.8	0.0	4.8	368
								13.3	4	1,148
DDHC	DD	700293.2	7713549.3	108.4	-60	231	12.7	5.0	2.8	1,686
GT01	DD	700238.0	7713671.0	105.7	-59.8	232.8	51.8	43.0	2	165
GT03	DD	700381.0	7713604.0	102.0	-50.5	235.9	81.0	54.4	1.8	104
MET01	DD	700192.0	7713658.0	108.4	-60.6	227.4	27.6	8.2	2.8	906
								15.0	2	3,145

⁷ Pilbara; Minerals Ltd ASX announcement 19th January 2015: <u>https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2995-01591791-6A706666?access_token=83ff96335c2d45a094df02a206a39ff4</u>

17 May 2023

	Hole ID	Hole Type	MGA East (m)	MGA North (m)	RL (m)	Dip (Deg)	MGA Azimuth (deg)	Hole Depth (m)	Depth From (m)	Intercept Length (m)	Ta2O5 (ppm)
	MET02	DD	700281.0	7713592.0	105.9	-59.8	224.7	30.3	6.0	3	300
									22.0	2	240
	MET03	DD	700339.0	7713579.0	102.6	-60.1	229.5	51.7	26.0	1	230
	TAT001	OHP	700175.6	7713686.7	108.2	-90	0	35.0	21.0	1	501
									32.0	1	317
	TAT002	OHP	700184.3	7713668.0	108.1	-90	0	29.0	12.0	1	330
									21.0	1	1,465
	TAT003	OHP	700200.9	7713655.6	107.8	-90	0	37.0	22.0	7	2,111
	TAT004	OHP	700221.3	7713646.3	106.1	-90	0	29.0	21.0	6	3,107
	TAT005	OHP	700242.6	7713637.7	104.2	-90	0	30.0	16.0	2	1,494
									27.0	1	220
	TAT006	OHP	700265.5	7713604.6	106.6	-90	0	24.0	13.0	4	1,568
									20.0	2	378
	TAT007	OHP	700278.8	7713615.3	104.6	-90	0	26.0	15.0	3	948
	TAT008	OHP	700292.4	7713574.7	105.6	-90	0	22.0	8.0	4	1,117
	TAT009	OHP	700318.4	7713544.1	105.4	-90	0	23.0	17.0	2	2,252
	TAT010	OHP	700344.2	7713510.8	101.7	-90	0	14.0	3.0	1	1,465
	TAT011	OHP	700368.2	7713481.1	100.0	-90	0	18.0	NSI ⁴		
	TAT012	OHP	700146.4	7713714.7	110.3	-90	0	24.0	14.0	4	1,035
	TAT013	OHP	700132.8	7713755.4	111.7	-90	0	38.0	27.0	1	268
	TAT014	OHP	700125.0	7713749.1	111.8	-90	0	23.0	19.0	2	488
	TAT015	OHP	700107.5	7713786.6	108.1	-90	0	26.0	19.0	1	1,587
	TAT016	OHP	700106.6	7713811.7	105.2	-90	0	21.0	NSI4		
	TAT017	OHP	700105.6	7713836.7	102.9	-90	0	21.0	18.0	1	513
	TAT018	OHP	700091.5	7713838.2	102.2	-90	0	19.0	11.0	1	317
									17.0	1	232
	TAT019	OHP	700086.6	7713860.1	102.8	-90	0	19.0	14.0	1	488
	TAT020	OHP	700074.0	7713875.7	102.4	-90	0	17.0	11.0	1	317
									14.0	1	769
	TAT021	OHP	700055.0	7713899.1	101.6	-90	0	13.0	NSI ⁴		
	TAT022	OHP	700062.8	7713905.4	101.8	-90	0	17.0	NSI ⁴		
	TAT023	OHP	700042.4	7713914.7	101.1	-90	0	17.0	NSI ⁴		
	TAT024	OHP	700248.8	7713485.0	113.8	-90	0	21.0	NSI ⁴		
1	TRC001	RC	700367.9	7713532.6	100.8	-90	0	33.0	24.0	2	1,636
	TRC002	RC	700336.4	7713558.7	103.0	-90	0	35.0	23.0	2	4,152
	TRC003	RC	700308.0	7713587.3	104.7	-90	0	33.0	19.0	3	3,793
	TRC004	RC	700286.6	7713621.7	103.5	-90	0	30.0	24.0	2	287
	TRC005	RC	700264.2	7713606.1	106.4	-90	0	33.0	12.0	7	2,069
									21.0	2	274
	TRC006	RC	700257.4	7713649.7	103.7	-90	0	39.0	26.0	1	427
									34.0	1	122
	TRC007	RC	700191.2	7713699.4	107.5	-90	0	51.0	39.0	2	2,064
	TRC008	RC	700161.2	7713726.8	110.5	-90	0	42.0	28.0	2	250
	TRC009	RC	700212.6	7713665.0	106.1	-90	0	45.0	33.0	1	293
	TRC010	RC	700230.7	7713653.9	105.0	-90	0	19.0	17.0	2	574
	TRC011	RC	700326.4	7713524.7	104.9	-90	0	19.0	8.0	2	501
	TRC012	RC	700357.6	7713550.0	101.6	-90	0	38.0	28.0	1	208
	TRC013	RC	700348.8	7713568.8	102.0	-90	0	43.0	37.0	2	1,404
	TRC014	RC	700332.3	7713581.2	102.0	-90	0	45.0	33.0	1	293
	TRC014	RC	700292.2	7713600.4	104.4	-90	0	33.0	15.0	1	147
			,		207.7	50	Ŭ	33.0	25.0	1	147
	TRC016	RC	700244.7	7713665.3	105.6	-90	0	44.0	27.0	1	256
		ne -	,00244./	,,13003.5	100.0	50	Ū		39.0	1	208
	TRC017	RC	700250.5	7713618.3	104.8	-60	226	33.0	9.0	2	6,776
	INCU1/	n.	100230.3	//13010.3	104.0	-00	220	35.0	9.0 19.0	2	305
	TRC018	RC	700193.1	7713649.2	109.0	-60	236	28.0	6.0	2	305 7,387
	110010	nc.	/00133.1	//13043.2	109.0	-00	230	20.0	15.0	3	7,387
		I		l	I			l	13.0		773

For personal use only

17	N / a.	2022	
1/	iviav	2023	

	Hole ID	Hole Type	MGA East (m)	MGA North (m)	RL (m)	Dip (Deg)	MGA Azimuth (deg)	Hole Depth (m)	Depth From (m)	Intercept Length (m)	Ta2O5 (ppm)
ĺ									25.0	1	159
	TRC019	RC	700213.5	7713640.0	107.1	-60	236	28.0	17.0	3	2,031
									24.0	1	562
	TRC020	RC	700234.0	7713630.7	104.6	-60	226	22.0	9.0	1	220
									18.0	1	928
	TRC021	RC	700259.3	7713599.5	106.5	-60	236	22.0	5.0	2	525
									12.0	2	1,722
	TRC022	RC	700275.8	7713587.1	105.5	-60	236	17.0	3.0	3	334
	TRC023	RC	700279.1	7713563.9	106.1	-60	236	22.0	2.0	2	1,586
									12.0	2	494
	TRC024	RC	700297.2	7713552.8	108.0	-60	226	20.0	6.0	3	753
	TRC025	RC	700306.0	7713534.0	107.5	-60	226	22.0	9.0	2	1,832
	TRC026	RC	700326.4	7713524.7	104.9	-60	226	24.0	6.0	3	1,798
	TRC027	RC	700275.8	7713587.1	105.5	-60	226	28.0	3.0	2	494
									15.0	1	220
	TRC028	RC	700342.0	7713537.4	102.4	-90	0	30.0	17.0	1	317
	TRC029	RC	700314.7	7713515.3	105.4	-60	231	11.0	5.0	2	543
	TRC030	RC	700294.3	7713524.5	110.1	-90	0	16.0	7.0	4	2,024
	TRC031	RC	700285.5	7713543.3	109.4	-60	231	19.0	4.0	5	2,003
	TRC032	RC	700285.3	7713581.8	105.5	-60	231	29.0	2.0	4	992
									17.0	1	293
	TRC033	RC	700265.6	7713591.7	106.9	-60	231	25.0	6.0	1	634
									11.0	1	427
	TRC034	RC	700247.6	7713590.0	109.3	-60	231	18.0	1.0	3	1,653
									10.0	3	594
	TRC035	RC	700238.8	7713608.8	107.0	-60	231	18.0	3.0	1	232
									13.0	1	1,954
	TRC036	RC	700253.0	7713607.3	106.2	-60	231	22.0	6.0	4	2,221
									17.0	1	293
	TRC037	RC	700237.9	7713633.9	104.5	-90	0	27.0	12.0	2	1,172
	TRC038	RC	700249.6	7713643.4	103.7	-90	0	36.0	21.0	3	1,746
	TRC039	RC	700233.0	7713655.8	105.0	-90	0	39.0	16.0	4	1,920
									25.0	1	379
	TRC040	RC	700218.9	7713657.2	105.9	-90	0	42.0	33.0	3	204
	TRC041	RC	700207.2	7713647.8	107.4	-60	231	34.0	14.3	3	549
									22.3	1	195
									29.3	1	269
	TRC042	RC	700207.2	7713647.8	107.4	-90	0	37.0	20.0	8	2,953
	TRC043	RC	700195.5	7713638.3	109.2	-60	231	25.0	7.0	7	760
	TRC044	RC	700185.3	7713642.9	110.6	-60	231	20.0	0.0	7.5	1,404
	TRC045	RC	700198.0	7713627.3	109.8	-60	231	25.0	3.7	3	2,796
									14.7	3	684
	TRC046	RC	700194.6	7713663.4	107.8	-60	231	36.5	12.5	3	1,587
									17.5	3	928
							_		30.5	2	293
	TRC047	RC	700194.6	7713663.4	107.8	-90	0	39.5	17.5	3	7,570
	TRC048	RC	700262.2	7713627.8	103.8	-90	0	35.5	16.5	7	1,232
	TROAM	DC.	7002025	7712620.0	104 7	00	0	24.2	29.5	1	171
	TRC049	RC	700268.5	7713620.0	104.7	-90	0	31.3	17.3	2	1,893
	TROOPA	DC.	700240.0	7712506.0	102.2	00	0	25.0	28.3	1	195
	TRC050	RC	700319.6	7713596.8	103.2	-90	0	35.0	30.0	1	415
	TRC051	RC	700320.6	7713571.7	104.4	-90	0	32.0	26.0	3	2,296
	TRC052	RC	700297.7	7713592.0	104.7	-90	0	25.0	16.0	1	391 872
	TRC053 TRC054	RC RC	700308.9 700273.4	7713562.2 7713598.1	106.1 106.5	-90 -90	0	31.0 29.0	17.0 8.0	4 3	873 501
		ne	, 552 / 5.4	,,13330.1	100.5	50	Ŭ	25.0	23.0	3 1	317
	TRC055	RC	700180.5	7713664.8	108.6	-60	231	30.0	7.0	5	1,187
ļ											.,,

17 May 2023	
-------------	--

Hole ID	Hole	MGA	MGA	RL	Dip	MGA	Hole	Depth	Intercept	Ta2O5
	Туре	East (m)	North (m)	(m)	(Deg)	Azimuth (deg)	Depth (m)	From (m)	Length (m)	(ppm)
						(8)	(,	24.0	1	452
TTRC1301	RC	700284.5	7713644.3	103.4	-90	0	52.0	32.0	2	223
								41.0	1	243
TTRC1302	RC	700189.1	7713658.6	108.5	-60	230	39.0	7.0	2	1,806
								14.0	3	1,094
								27.0	2	334
TTRC1303	RC	700357.3	7713525.5	101.2	-90	0	28.0	16.0	2	2,352
TTRC1304	RC	700339.5	7713578.6	102.6	-90	0	52.0	29.0	2	7,737
TTRC1305	RC	700310.9	7713550.9	106.2	-60	230	57.0	13.0	2	905
TTRC1306	RC	700169.6	7713606.5	111.0	-60.5	197.4	21.0	7.0	2	1,087
TTRC1307	RC	700209.8	7713675.8	105.8	-90	0	56.0	37.0	6	387
TTRC1308	RC	700291.2	7713590.8	105.0	-90	0	28.0	14.0	1	350
TTRC1309	RC	700260.3	7713578.2	109.8	-90	0	28.0	1.0	1	207
	-					-		15.0	1	456
TTRC1310	RC	700167.8	7713712.7	109.4	-90	0	23.0	NSI ⁴	1	450
TTRC1311	RC	700098.7	7713800.3	106.3	-89.8	322.9	58.0	11.0	2	1,188
TTRC1312	RC		7713501.5	100.2	-90	0	34.0	NSI ⁴	_	_,
		700370.2							_	
TTRC1313	RC	700164.6	7713539.0	113.3	-60.4	326	33.0	15.0	3	14,081
TTRC1314	RC	700179.4	7713597.5	111.0	-60	325.8	45.0	12.0	2	171
TTRC1315	RC	700159.2	7713576.8	109.0	-60	320	33.0	0.0	3	416
TTRC1316	RC	700171.4	7713618.1	111.5	-60.5	324	39.0	11.0	2	159
TTRC1317	RC	700156.5	7713605.8	108.9	-79.8	339.7	39.0	1.0	2	174
TTRC1318	RC	700135.8	7713589.7	105.9	-60	320	21.0	NSI ⁴		
TTRC1319	RC	700161.8	7713636.1	110.7	-60.3	326.5	27.0	14.0	1	421
TTRC1320	RC	700173.4	7713714.4	109.2	-61	217.5	45.0	27.0	3	198
TTRC1321	RC	700143.0	7713528.3	112.5	-60.3	317.7	33.0	10.0	1	388
									1	500
TTRC1322	RC	700210.2	7713594.8	108.7	-60	320	63.0	NSI ⁴		
TTRC1323	RC	700182.2	7713570.0	112.1	-60	320	60.0	11.0	1	1,850
TTRC1324	RC	700280.2	7713579.4	105.5	-60	230	33.0	4.0	3	1,073
								17.0	2	379
TTRC1325	RC	700273.0	7713589.4	106.0	-60	230	33.0	4.0	3	415
								18.0	1	237
TTRC1326	RC	700279.6	7713595.8	105.9	-60	230	52.0	7.0	5	1,550
								19.0	2	384
TTRC1327	RC	700264.6	7713597.5	106.6	-60	230	33.0	7.0	4	725
TTDC1228	RC	700174.0	7712672.0	109 F	60.5	221.0	27.0	13.0	1	283
TTRC1328	ĸĊ	700174.0	7713673.9	108.5	-60.5	221.8	27.0	9.0	2	815
TTRC1329	RC	700181.2	7713678.8	107.9	-60.2	223.3	39.0	16.0 15.0	1	510 233
11101325	ne	700101.2	,,,150,0.0	107.5	00.2	223.5	55.0			
TTRC1400	RC	700407.0	7713513.0	99.7	-90	0	54.0	21.0 NSI ⁴	1	202
TTRC1401	RC	700394.0	7713528.0	100.1	-90	0	54.0	NSI ⁴		
									_	
TTRC1402	RC	700381.0	7713544.0	100.7	-90	0	42.0	35.0	1	760
TTRC1403	RC	700373.0	7713562.0	101.1	-90	0	42.0	35.0	1	190
I	1	1	I	1	1	I		1	I	ı 1

	Hole ID	Hole Type	MGA East (m)	MGA North (m)	RL (m)	Dip (Deg)	MGA Azimuth (deg)	Hole Depth (m)	Depth From (m)	Intercept Length (m)	Ta2O5 (ppm)
	TTRC1404	RC	700364.0	7713581.0	101.0	-90	0	60.0	49.0	1	1,910
	TTRC1405	RC	700352.0	7713597.0	102.1	-90	0	60.0	51.0	2	250
	TTRC1406	RC	700335.0	7713609.0	102.1	-90	0	60.0	46.0	2	725
	TTRC1407	RC	700261.0	7713549.0	111.3	-90	0	18.0	6.0	2	495
	TTRC1408	RC	700303.0	7713609.0	103.3	-90	0	42.0	22.0	2	230
									32.0	1	70
	TTRC1409	RC	700249.0	7713565.0	113.0	-90	0	18.0	5.0	2	310
	TTRC1410	RC	700244.0	7713586.0	110.0	-50	231.7	18.0	0.0	5	1,836
	TTRC1411	RC	700302.0	7713634.0	103.1	-90	0	54.0	9.0 35.0	1 3	320 467
	11101411	inc.	700302.0	7713034.0	103.1	-30	0	54.0	46.0	1	230
	TTRC1412	RC	700191.0	7713557.0	114.4	-90	0	30.0	5.0	1	820
	TTRC1413	RC	700206.0	7713569.0	111.5	-90	0	36.0	9.0	1	210
	TTRC1414	RC	700188.0	7713528.0	118.4	-90	0	24.0	NSI ⁴		
	TTRC1415	RC	700203.0	7713541.0	116.0	-90	0	36.0	18.0	1	240
	TTRC1416	RC	700219.0	7713554.0	112.5	-90	0	36.0	NSI ⁴		
	TTRC1417	RC	700195.0	7713599.0	110.8	-90	0	24.0	14.0	2	165
	TTRC1418	RC	700175.0	7713608.0	111.3	-60	51.7	36.0	25.0	1	1,260
	TTRC1419	RC	700204.0	7713683.0	106.1	-90	0	54.0	34.0	2	350
	TTRC1420	RC	700164.0	7713677.0	108.3	-90	0	48.0	8.0	3	390
									19.0	2	120
	TTRC1421	RC	700156.0	7713695.0	108.9	-90	0	30.0	10.0	7	859
	TTRC1422	RC	700135.0	7713705.0	109.7	-90	0	15.0	4.0	1	70
	TTRC1423	RC	700131.0	7713726.0	110.8	-90	0	15.0	6.0	2	65
	TTRC1424	RC	700146.0	7713739.0	111.7	-90	0	42.0	30.0	1	350
	TTRC1425	RC	700109.0	7713761.0	110.6	-90	0	30.0	10.0	1	210
	TTRC1426	RC	700125.0	7713773.0	110.4	-90	0	42.0	25.0	1	620
	TTRC1427	RC	700097.0	7713776.0	108.9	-90	0	24.0	3.0	1	2,340
	TTRC1428	RC	700092.0	7713798.0	106.4	-90	0	24.0	8.0	1	240
	TTRC1429	RC	700095.0	7713826.0	103.3	-90	0	30.0	10.0	1	120
									18.0	1	380
	TTRC1430	RC	700082.0	7713842.0	101.8	-90	0	24.0	7.0	1	200
	TTRC1431	RC	700077.0	7713864.0	102.5	-90	0	18.0	12.0 9.0	2 1	285 430
									15.0	1	800
	TTRC1432	RC	700131.0	7713495.0	116.0	-90	0	54.0	NSI ⁴	-	
	TTRC1433	RC	700127.0	7713460.0	117.8	-90	0	54.0	NSI ⁴		
	TTRC1434	RC	700349.0	7713543.0	101.7	-90	0	36.0	17.0	3	853
	TTRC1435	RC	700298.0	7713525.0	110.1	-50	231.7	24.0	7.0	3	2,860
	TTRC1436	RC	700118.0	7713742.0	111.5	-90	0	24.0	13.0	2	615
	TTRC1437	RC	700412.2	7713497.7	99.2	-90	0	54.0	NSI ⁴		
ļ							l				

17 May 2023

1. Hole prefixed DDH, TAT or TRC are historic holes drilled by Goldrim Mining Ltd and Pancontinental Mining Ltd between 1984 and 1991. Holes prefixed TTRC were drilled by Global Advanced Metals in March 2013. Holes prefixed GT and MET were drilled by PLS in Oct 2013.

2. Holes types are Airtrac open hole percussion ("OHP"), reverse circulation ("RC") and PQ diamond drill holes ("DD"). 3. All coordinates are reported in projection Map Grid of Australia (MGA) Zone 50, Geodetic Datum of Australia 1994 (GDA94).

4. NSI is No Significant Intersection.

5. Intercepts with grades below 400ppm Ta_2O_5 included to allow for geological continuity within the pegmatite

ASX Announcement 17 May 2023

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	Criteria	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialized industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and' the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 The deposit was sampled using a series of Airtrac open hole percussion ("OHP"), reverse circulation ("RC") and PQ diamond drill holes ("DD"). Goldrim Mining Ltd and Pancontinental Mining Ltd ("PanCon") completed 24 OHP, 59 RC and 3 DD holes between 1984 and 1991. Five OPH holes drilled in 1984 were sited outside of the resource area and therefore have not been used in this estimate. Sections were spaced 10m to 20m (Local Northing), while holes on section were spaced 5m to 20m apart. Global Advanced Metals ("GAM") completed 29 infill and extensional RC holes in early 2013 (including the TDR series holes with lithium assays listed in Appendix 1, Table 2). Pilbara Minerals Limited ("PLS") completed 5 infill and extensional RC holes in September 2014. Sampling of RC drill holes was completed on 1m intervals. With the exception of one historical report noting that samples were split at the rig, there is little information relating to the specific sampling methods used by PanCon. GAM RC holes were sampled every metre, with samples split on the rig using a cyclone splitter. PLS diamond holes were sampled within the pegmatite zone (geological control for contacts) and internally within this zone on a metre interval basis. Samples were comprised of half HQ core cut using a diamond saw. PLS RC holes were sampled every metre with the pegmatite zone, with samples split on the rig using a cyclone splitter. Samples were a consistent 3-5kg. The majority of PanCon samples were generated using RC drilling. Samples were split on site and sent to the laboratory for analyses by XRF fusion methods. Widths and grades intersected by OHP holes were confirmed by RC drilling. Three diamond holes were drilled which showed good agreement with previous RC holes and confirmed mineralised widths and grades. GAM holes were all RC, with samples split at the rig samples sent to the Wodgina site laboratory. The GAM samples were check assayed indepe

17 May 2023		
		PLS RC samples were check assayed independently by Nagrom. 1 metre duplicates, blanks and Standards were inserted independently by Nagrom. These samples were assayed by both fused bead XRF and ICP
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 A total of 24 OHP, 122 RC, 5 HQ DD and 3 PQ DD holes have been completed with depths between 10m and 81m. For the historic DD holes, only one was drilled at 600. It is unknown whether the core was oriented and whether standard tubes or triple tubes were used. 4 of the 5 recent PLS DD holes were drill at 600 and one at 500. For all 5 holes, the core was oriented using a Reflex ACT digital core orientation instrument. Reverse circulation drilling of the 2013 drill holes and the September 2014 holes was undertaken using a track mounted Schramm 450 drill rig with booster compressor, using face sampling 5 ½ inch bit.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Sample recovery was recorded for GAM and PLS RC holes, with the majority being reported as "good". No information for historical holes has been uncovered. Core recovery for the 5 PLS DD holes was excellent Whilst drilling through the pegmatite, rods were flushed with air after each metre drilled (GAM and PLS RC holes). No information is available for previous drilling. For the 5 PLS DD holes, core recovery was excellent and half (HQ sized) core was submitted for analysis. Recoveries for the majority of the historical holes are not known, while recoveries for GAM and PLS RC holes were overwhelmingly logged as "good." Whilst weights of all GAM bulk residues were not available, weights of the mineralized zones' bulk residue samples sent from GAM to Nagrom (for metallurgical testwork) were recorded. These weights were compared to the expected sample weight for 5.5 inch diameter RC holes using a bulk density of 2.6 (see bulk density section below) and recoveries were deemed acceptable.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	Detailed lithological logs exist for all holes in the database. Fields captured include
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	 It is not known which sampling techniques were employed for OHP holes. While a historical report mentions that RC samples were split, no further information is available on sampling techniques employed by PanCon. It is unknown what size core fraction was submitted for geochemical analysis. Core was primarily used for historical metallurgical test work.

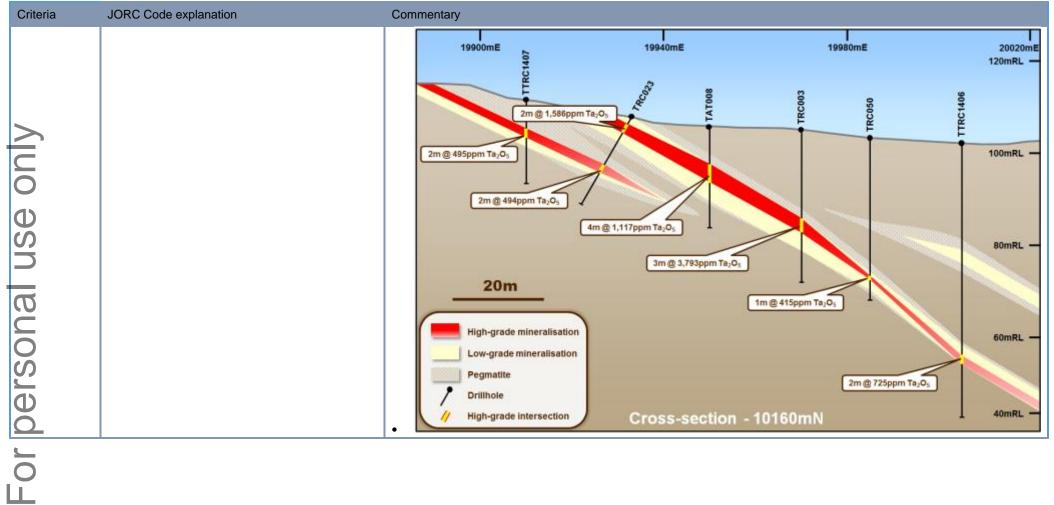
	17 May 2023	nen	ι		RESOURCES
		•	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	•	RC samples collected by GAM and PLS were generally dry and split at the rig using a cyclone splitter.
		•	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half	•	Laboratory samples for the PLS RC holes were sorted, dried, crushed to - 6.3mm, samples in excess of 2kg were riffle split and then pulversied to 80% passing -75um.
		•	 sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	•	The 5 PLS DD holes were cut using a diamond saw and half core (HQ size) submitted for analysis
	P			•	Laboratory standards were used by the lab at a rate of approximately one sample per 100 assays and blanks and assay repeats were completed at a rate of approximately one per 100 assays. No major issues were encountered with the quality control sampling.
				•	Historical samples have some repeat assays (some 32 samples or about 4 % of these data). It was found that 80% of these repeats were within 15% tolerances.
				٠	GAM samples have field duplicates as well as laboratory splits and repeats.
Ð				•	PLS DD and RC samples have regular coarse crush duplicates as well as laboratory splits and repeats.
rsonal use or				•	Historical samples have some repeat assays for approximately 4% of the data. The nature of these QC samples (i.e. whether field duplicate or laboratory repeat) is unknown.
g				•	For the GAM drilling, field duplicates were taken approximately every 20m, and splits were undertaken at the sample prep stage on every other 20m.
				•	GAM and PLS RC samples have field duplicates as well as laboratory splits and repeats.
$\tilde{\mathbf{O}}$				•	PLS DD samples have regular coarse crush duplicates
)er:				•	The GAM and PLS drilling sample sizes are considered to be appropriate to correctly represent the tantalum mineralization at Tabba Tabba based on the style of mineralization (pegmatite) and the thickness and consistency of mineralization
\mathbf{O}	Quality of assay data and laboratory tests	•	The nature, quality and appropriateness of the assaying and laboratory	•	Historical assays were analysed by SGS using low dilution fusion XRF.
J		•	procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the	•	The GAM samples were assayed by the Wodgina Laboratory, for a 36 element suite using XRF on fused beads.
Ц	16515	•	 parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	•	Nagrom checks were undertaken using ICP and included Li together with Ta ₂ O ₅ , Nb ₂ O ₅ and Sn .
				•	Historical samples have some repeat assays for approximately 4% of the data. The nature of these QC samples (i.e. whether field duplicate or laboratory repeat) is unknown.
				•	For the GAM drilling, field duplicates were taken approximately every 20m, and splits were undertaken at the sample prep stage on every other 20m.
				•	GAM and PLS RC samples have field duplicates as well as laboratory splits and repeats.
				•	The PLS core samples were assayed by Nagrom, for a 36 element suite using XRF on fused beads with checks using ICP

17 May 2023		
		PLS RC samples were analysed by Nagrom using their standard tin suite by XRF analysis and mixed acid digest with ICP finish.
		• Assays from hard copy logs of historical drilling shows some laboratory checks were undertaken, although the specific repeat type (e.g. field duplicate vs. laboratory split) is not described.
		• The GAM drilling contains QC samples (field duplicates and laboratory pulp splits, GAM internal standard).
		GAM pulps were independently analysed by Nagrom metallurgical consultants and confirmed results obtained by the Wodgina laboratory. The Nagrom Laboratory is ISO9001 accredited by Bureau Veritas.
0		• The PLS sample batches contain QC samples (coarse crush duplicates and laboratory pulp splits, blanks and two different Certified Reference Materials – both lower and upper range).
2		All results from QC samples have produced results deemed acceptable.
Verification of sampling and	• The verification of significant intersections by either independent or alternative company personnel.	 OHP hole TAT006 was twinned by RC hole TRC005 with a separation of 2m. Grades and widths were comparable, but somewhat biased towards the RC hole.
assaying	 The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data 	 Limited infill drilling completed by GAM in 2013 confirmed the approximate width and grade of historical drilling.
2	 Discuss any adjustment to assay data. 	• The assay results for the 5 PLS drill-holes generally were consistent with the interpreted model, although the assay results from MET holes 2 and 3 were lower than expected.
		• The assay results for the 38 PLS RC holes are generally consisted with the interpreted model Location of sample sites of rock chip sampling program recorded by hand-held GPS.
2		All current data is in MGA94 (Zone 51).
		• The area is generally flat and sample elevation has not been estimated.
-		 An electronic database containing collars, surveys, assays and geology was provided by GAM. Data verification was undertaken by checking all 700 historical assays and collars against hard copy logs.
		All GAM assays were sourced directly from Wodgina internal laboratory files.
-		 Nagrom checks (GAM holes) and results (PLS holes) were supplied by certified PDF and Excel spreadsheet.
		 Historical reports listed primarily Ta ppm. Ta was converted to Ta₂O₅ for the purpose of the resource estimation. The conversion used was Ta₂O₅ = Ta x 1.2211
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 	Historical drill holes were located on a local grid that was established by previous operators. Local grid coordinates in the database were verified against hard copy logs. A small number of data entry errors were corrected.
	Specification of the grid system used.	GAM holes were surveyed using DGPS. Local grid coordinates were calculated using
1	Quality and adequacy of topographic control.	the re-calculated grid conversion.

17 May 2023		
17 May 2023		 John Young (Pilbara Minerals) successfully verified the location of 2 historical and 16 GAM holes in a field visit conducted in September 2013. All holes were found to be within handheld GPS error (the majority are less than 2.5m). The database supplied by GAM only contained planned surveys for the majority of historical holes. Due to the shallow termination depths (average 27m), the lack of downhole surveys are not deemed material. Planned and downhole surveys were supplied for GAM holes. The average depth of GAM holes was 39m. Planned and downhole surveys show satisfactory correlation. PLS holes have been surveyed by handheld GPS and checked by measurement against GAM hole collars. The resource was calculated using a local grid originally established by previous operators. The grid conversion was calculated using local coordinates and corresponding MGA (GDA94, Zone 50) coordinates provided by GAM. Local coordinates were calculated for GAM and PLS holes.
		 The topographic surface used was supplied by GAM and was generated by Wodgin mine surveyors.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Historical holes were completed on 10 to 20m sections (Local Northing), while holes on section were spaced 5m to 20m apart. GAM completed 29 infill and extensional RC holes in March 2013. PLS completed 4 infill and 1 extensional DD holes in October 2013. PLS Completed 38 infill and extensional holes in September 2014 The interpretation of the mineralised domains are supported by a tight drill spacing, plus both geological zones and assay grades, and are appropriate for use in a resource estimation procedure 99.4% of OHP and RC holes were sampled at 1m intervals. The majority of DD holes were sampled at intervals between 0.3m and 1m. A small number of composites in excess of 1m were collected near surface where holes we being established. RC holes were sampled at 1m intervals. For the purpose of resource estimation all samples were composited to 1m with a minimum sample length of 0.5m
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 102 out of 154 holes are drilled vertically (66%). The majority of the remaining holes are drilled at 60° with azimuths of between 320° and 325° and 225° and 235°., and one with an azimuth of 0500. The mineralisation dips approximately 35 degrees at a dip direction of 50 degrees (9 degrees Local Grid). The drilling orientation and the intersection angles are deemed appropriate No orientation-based sampling bias has been identified

1	7 IVIAY 2023		
	Sample	The measures taken to ensure sample security.	Historical sampling security measures (if any) are unknown.
	security		Chain of custody for GAM holes were managed by GAM personnel. Samples were delivered to the Wodgina laboratory by GAM personnel where samples were analysed.
			Chain of custody for PLS holes were managed by PLS personnel. Samples were delivered to the Nagrom laboratory by PLS personnel where samples were analysed.
	Audits or	The results of any audits or reviews of sampling techniques and data.	Sampling techniques for historical assays have not been audited.
λ Π	reviews		• The collar and assay data have been reviewed by checking all of the data in the supplied digital database against hard copy logs.
			All GAM assays were sourced directly from the laboratory (Wodgina laboratory).
)			All Nagrom Assays were sourced directly from Nagrom as certified PDF and Excel files.

ASX Announcement 17 May 2023 **Section 2 Reporting of Exploration Results**


(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 GAM owns 100% of the Mining Leases (M45/354; M45/375; M45/376 and M45/377) An agreement is in place between GAM and Nagrom for mining and offtake. PLS have purchased 50% of the Nagrom Mining Ltd. No known impediments.
exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Goldrim Mining Ltd and Pancontinental Mining Ltd ("PanCon") completed 24 OHP, 59 RC and 3 DD holes between 1984 and 1991. Gam drilling of 29 RC holes in 2013. PLS completed 5 diamond holes in November 2013.
	 Deposit type, geological setting and style of mineralisation. 	• The Tabba Tabba pegmatites are part of the later stages of intrusion of Archaean granitic batholiths into Archaean metagabbros and metavolcanics. Tantalum mineralisation occurs in zoned pegmatites that intruded a sheared Archaean metagabbro. The pegmatite contains in outcrop a symmetrically disposed outer cleavlandite zone, mica zone and a megacrystic K feldspar zone with a centrally disposed quartz zone associated with an albitic replacement unit. The zones generally dip in sympathy with pegmatite margins. (Sourced from PanCon historical reports).
	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract 	Refer to Appendix 1 of this announcement, specifically table 2 and table 3.

Criteria	JORC Code explanation	Commentary
	from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Length weighted averages used for exploration results reported in Section 3. Cutting of high grades was not applied in the reporting of intercepts in Section 3. In the estimation of the resource, an upper cut (top cut) grade of 6,000ppm Ta₂O₅ was used. Length weighted averages are reported for exploration drill holes listed in Appendix 1, table 2 with a cut off grade of 0.2% Li₂O and no more than 1m of internal dilution. Sample recovery was recorded for GAM and PLS RC holes, with the majority being reported as "good". No information for historical holes has been uncovered. Core recovery for the 5 PLS DD holes was excellent. A lower cut off of 400ppm Ta₂O₅ was used. An upper cut off of 6,000ppm Ta₂O₅ was used. No metal equivalent values are used.
Relationship between mineralization widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Downhole lengths are reported in Section 3 reported within the wireframed 400ppm cut off Ta₂O₅ zone. Note that some lower grade zones are included for purposes of geological continuity within the pegmatite.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	See this announcement, Figure 2.

Criteria	JORC Code explanation	Commentary
rsonal use only		West 1980mE 1990mE 1990mE East Junce 1990mE 1990mE East Junce Junce 1990mE 1990mE East Junce Junce Junce 1990mE East Junce Junce Junce 1990mE Integer 1990mE East Junce Jun
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but n limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test resul bulk density, groundwater, geotechnical and 	ts;

17 May 2023

Criteria	JORC Code explanation	Commentary
	rock characteristics; potential deleterious or contaminating substances.	
Further work	• The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	• An initial campaign of 6,000m of RC drilling to confirm the nature, orientation and extent of lithium mineralisation throughout the Tabba Tabba pegmatite field.
NIN	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	

Section 3 Estimation and Reporting of Mineral Resources (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	• Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.	• The original database was maintained by GAM using AcQuire database software. Drilling data was exported and supplied as csv files and compiled into a Microsoft Access Database.
SOS	Data validation procedures used.	• The database has then been imported into DataShed™ (industry standard drillhole database management software).
		 All new has been imported directly into DataShed[™].
0 O O		Normal data validation checks were completed once the Access database was compiled.
		Historical data was checked against original hard copies sourced directly
5		from the Dept. of Mines and Petroleum WAMEX reporting system.
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	 John Young (Executive and Chief Geologist - Pilbara Minerals and Competent Person) completed two site visits – one on 16th September 2013 and a second over two days during diamond core drilling in November 2013. During the site visit the deposit area was inspected and the locations of GAM drilling and a limited number of historical holes were verified. Limited surface excavation was also noted. This is accounted for in the current surface DEM. Samuel Ekins, Torrin Rowe, Matthew Banke, Alex Hewlette and Jeff Elliott undertook DD, mapping and sampling on 5th of December 2022.

Criteria	JORC Code explanation	Commentary
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource Estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology 	 The confidence in the geological interpretation is considered robust. Tantalum is hosted within a zoned pegmatite hosted by a sheared Archaean metagabbro. Tantalum mineralization is mainly restricted to the Albite replacement and Lithium alteration zones that can be traced both along the dip and strike of the pegmatite. The geological interpretation is supported by drill hole logging and mineralogical studies completed in 1991 by PanCon. No alternative interpretations have been considered at this stage. Grade wireframes correlate well with the logged Albite replacement and Lithium alteration zones. The key factor affecting continuity is the presence of pegmatite.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource	The main mineralised zone has dimensions of 470m (local grid north-south) averaging 75m down-dip (local Grid east-west) and ranging between 50m and 120m RL
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	 Grade estimation using Ordinary Kriging (OK) was completed using Gemcom Surpac[™] software. Drill spacing typically ranges from 10m to 40m. Drillhole samples were flagged with wireframed domain codes. Sample data was composited for Ta₂O₅ to 1m using a best fit method. The very minor number of residuals were considered immaterial and were excluded. Influences of extreme sample distribution outliers were reduced by top- cutting on a domain basis. Top-cuts were decided by using a combination of methods including grade histograms, log probability plots and statistical tools. Based on this statistical analysis of the data population, an upper cut (top-cut) grade of 5,500ppm Ta₂O₅ was applied prior to estimation. Directional variograms were modelled by domain using traditional variograms. Nugget values are moderate and grade ranges generally short (approximately 50- 60m). Domains with limited samples used variography of geologically similar, adjacent domains. Limited surface alluvial mining activity is evident and was undertaken before the most recent surface topographic surveying. Hence the surface DEM used in this resource excludes these mined zones. Nb₂O₅ has also been estimated into the model. Block model was constructed with parent blocks of 5m (E) by 5m (N) by 2.5m (RL) and sub-blocked to 2.5m (E) by 2.5m (N) by 1.25m (RL). All estimation was completed to the parent cell size. Discretisation was set to 5 by 5 by 2 for all domains.

Criteria	JORC Code explanation	Commentary
		• Three estimation passes were used. The first pass had a limit of 15m, the second pass 30m and the third pass searching a large distance to fill and blocks within the wireframed zones. Each pass used a maximum of 12 samples, a minimum of 6 samples and maximum per hole of 4 samples.
		• Search ellipse sizes were based primarily on a combination of the variography and the trends of the wireframed mineralized zones. Hard boundaries were applied between all estimation domains.
luo		 Validation of the block model included a volumetric comparison of the resource wireframes to the block model volumes. Validation of the grade estimate included comparison of block model grades to the de-clustered input composite grades plus swath plot comparison by easting, northing and elevation. Visual comparisons of input composite grades vs. block model grades were also completed
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content 	Tonnes have been estimated on a dry basis.
parameters	The basis of the adopted cut-off grade(s) or quality parameters applied	• Grade envelopes have been wireframed to a 350ppm to 400ppm Ta ₂ O ₅ cut-off allowing for continuity of the higher-grade zone. Based on visual and statistical analysis of the drilling results and geological logging of the pegmatite zone, this cut-off tends to be exactly the same or very close to the natural geological Albite replacement and lithium alteration zones in the pegmatite. To assist with pit optimization work and dilution issues, a lower grade halo zone generally over 150ppm Ta ₂ O ₅ cut-off is applied. This zone is separated from the higher-grade zone by hard boundaries and is not reported as resource.
Mining factors	• Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made	 The expected mining method is open pit ining with 15% dilution allowed in pit optimization work.
Metallurgical factors or assumptions	• The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	A combination of historical plus more recent metallurgical testwork by Nagrom indicates that the assumption for potential successful processing of Tabba Tabba ore is reasonable.

Criteria	JORC Code explanation	Commentary
Environmen- tal factors or assumptions	• Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	 Waste ore from mining will be located in a proposed waste rock dump (WRD) facility located within 200m northwest of the proposed pit area, sterilisation drilling of the WRD facility is planned. A Tailings Storage Facility (TSF) has been designed by Coffey Mining Based on a proposed tailings infill for a minimum of 200,000 tonnes. Two environmental studies have been completed by K Lindbeck and Associates and concluded no identifiable Flora concerns within the proposed disturbance footprint areas. The Fauna survey identified possibly Quoll, Pebble Mound mouse and Mulgara habitats which again due to the footprint do not raise concerns.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 Bulk density was previously estimated from measurements carried out by PanCon drilling on samples obtained from 3 PQ sized diamond cored holes completed in 1991. No specific information is documented in any of the PanCon reports (i.e. procedures, analysis methods or results) other than mention in the mining evaluation section of the report where it is stated that 'the specific gravity estimate has been made recently from values. Five cored holes were drilled in November 2013 to provide for test work to substantiate the bulk density number used. 101 measurements were completed on the new non-porous core with 76 on the mineralisation host (pegmatite) and 25 on waster zones (mafic rock) with SG determinations completed by the hydrostatic weighting (uncoated) method. Analysis of the 101 measurements confirmed the previously used 2.6t/m³ result to be slightly conservative. Final bulk density factors applied to the current resource estimate include 2.64 (mineralised pegmatite ore), 2.67 (pegmatite waste) and 3.01 (mafic rock waste).
	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 The Mineral Resource has been classified on the basis of confidence in the geological model, continuity of mineralized zones, drilling density, confidence in the underlying database and the available bulk density information. All factors considered, with primary considerations being recent confirmation of bulk density plus drill spacing, Measured and Indicated classification has been possible for a significant portion of the resource. Drill spacing for Measured is generally 10m (Local Northing) by 5m to10m (Local Easting) and Indicated is 20m (Local Northing) by 15m to 20m (Local Easting). The fringes of the resource, with typical drill spacing of 40m (Local Northing) by 20m (Local Easting), remain in the Inferred category.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	No third-party review has been considered.

Criteria	JORC Code explanation	Commentary
Discussion of Relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence	 The relative accuracy of the Mineral Resource estimate is reflected in the reporting of the Mineral Resource as per the guidelines of the 2012 JORC Code. The statement relates to global estimates of tonnes and grade.

ASX Announcement 17 May 2023

Appendix 2: Due diligence results

Table 2: Due diligence sample results

]	SAMPLE ID	MGA Easting	MGA Northing	Sample Type	Be (ppm)	Cs (ppm)	K (%)	Li	Li2O (%)	Nb (ppm)	Rb (ppm)	Sn (ppm)	Ta (ppm)	Comments
	BCPP020	699,343	7,711,798	Rock Chip	2.28	17.8	2.06	115.5	0.02	9.3	75.4	0.8	0.81	Fine grey granite
	BCPP021	699,328	7,712,045	Rock Chip	16600	995	3.05	6410	1.38	25.1	2410	63.3	17.4	Pegmatite float in meta gabbro
	BCPP022	699,310	7,712,059	Rock Chip	48.7	8.91	0.29	53.3	0.01	0.9	114.5	2.6	9.94	Small fine pegmatite pod
	BCPP023	699,306	7,712,146	Rock Chip	20.9	25.3	3.14	55.9	0.01	1.6	505	1.8	0.38	Garnet, cream mineral, qtz pegmatite or laminated vein. East west oriented. Possibly some breccia.
	BCPP024	699,343	7,712,161	Rock Chip	125.5	99.2	5.3	81.2	0.02	16.6	1530	27.7	106.5	Qtz, creamy mineral, minor mica
	BCPP026	700,396	7,714,688	Rock Chip	91.6	30.4	1.21	190.5	0.04	43.7	1000	82.1	10.85	5m x 1m coarse pegmatite
	BCPP027	700,635	7,714,790	Rock Chip	56	112.5	1.47	144.5	0.03	66.6	1725	41.9	110	Tailings grab sample
	BCPP028	700,741	7,714,749	Rock Chip	33.8	20.1	0.6	17000	3.66	38.5	647	38.6	12.35	Oversize waste rock
	BCPP029	700,645	7,714,617	Rock Chip	63.9	55.9	5.55	4150	0.89	61.1	3340	14.9	14.3	Massive, coarse pegmatite
U	BCPP030	700,653	7,714,562	Rock Chip	64.6	39.8	0.33	17800	3.83	50.4	377	19.4	28.7	Massive, coarse pegmatite
()	BCPP031	700,736	7,714,525	Rock Chip	157.5	45.5	1.78	5470	1.18	79	1405	19.5	27.4	RC cuttings
	BCPP032	700,757	7,714,486	Rock Chip	120	134	5.93	532	0.11	65.4	7030	25.6	56.8	Massive pegmatite
	BCPP033	699,741	7,712,696	Rock Chip	751	330	2.58	879	0.19	48.1	4700	92.1	115.5	Coarse pegmatite subcrop, green weathering possible smectite
	BCPP034	699,740	7,712,700	Rock Chip	18.25	218	2.77	447	0.10	19.4	3990	64.6	35.4	Qtz mica feldspar pegmatite
	BCPP035	699,622	7,712,562	Rock Chip	14.9	757	8.19	865	0.19	>500	9340	>500	4900	Qtz feldspar pegmatite with micaceous zones. In a 1.5mx1.5m excavation
$\boldsymbol{\omega}$	BCPP036	699,616	7,712,454	Rock Chip	11.2	254	6.08	180.5	0.04	24.9	7700	42.9	89	Massive zoned qtz pegmatite
	BCPP037	699,623	7,712,423	Rock Chip	168	123	2.76	405	0.09	78.6	2560	64.7	48.3	Massive pegmatite weathered
	BCPP038	699,565	7,712,386	Rock Chip	11.85	300	7.44	132	0.03	16.2	7500	24.1	32.3	Massive pegmatite
	BCPP039	700,512	7,714,545	Rock Chip	67.6	90	1.47	12100	2.61	45.5	1545	36.9	20.8	Medium pegmatite
	BCPP040	700,532	7,714,528	Rock Chip	34.8	92.1	7.32	3890	0.84	20.8	5000	7.2	10.2	Coarse pegmatite
()	BCPP041	700,532	7,714,514	Rock Chip	21.7	25.1	0.66	17850	3.84	19.3	706	14.3	13	Pegmatite
	BCPP042	700,319	7,714,251	Rock Chip	38.3	111	4.36	239	0.05	17.2	3560	42	7.66	Coarse pegmatite
(1)	BCPP043	700,243	7,714,293	Rock Chip	23	289	6.86	173.5	0.04	11.4	5710	54.2	24.7	Feldspar rich pegmatite, locally micaceous
Y	BCPP044	700,372	7,713,974	Rock Chip	59.7	39.3	2.52	125	0.03	12.8	1850	32	6.44	Pegmatite
\mathbf{O}	BCPP045	699,726	7,712,937	Rock Chip	101	202	5.42	133	0.03	43	4650	11.4	58.2	Feldspar rich pegmatite
	BCPP046	699,684	7,712,860	Rock Chip	17.7	328	6.95	111	0.02	5.7	7200	12.9	15.8	Micaceous pegmatite
	BCPP047	699,625	7,712,690	Rock Chip	262	107	2.59	224	0.05	7.8	2470	13.9	16.35	Massive pegmatite
	BCPP048	699,592	7,712,640	Rock Chip	62.6	34.4	1.59	90.6	0.02	24.8	880	6.8	17.45	Megacrystic pegmatite
	BCPP049	699,429	7,712,281	Rock Chip	94	40.7	2.3	101.5	0.02	37.9	1420	26.8	108.5	Kaolinitised pegmatite in weathered andesitic host
	BCPP050	699,609	7,712,430	Rock Chip	86.8	74.3	1.4	271	0.06	14.9	1435	61	12.8	Possibly spodumene textures in 30cm wide zone trending at 240
	BCPP051	699,511	7,712,257	Rock Chip	51.8	52.7	3.81	148	0.03	6.9	2220	38.1	12.85	large green crystals overgrowing one another . Striations 90 to crystals long edge
	BCPP052	699,700	7,712,517	Rock Chip	109.5	218	3.62	433	0.09	71.9	3690	193	45.1	Pegmatite with some brecciated crystals
	BCPP053	700,030	7,713,042	Rock Chip	33.2	70.6	2.28	102	0.02	16	1495	24.9	20.2	Coarse pegmatite crystals up to 60cm
	BCPP054	699,925	7,713,263	Rock Chip	68.9	111	1.65	243	0.05	16.8	1745	36	10.45	Large green-tinge crystals zone
	BCPP055	699,910	7,713,361	Rock Chip	137	119	2.87	556	0.12	101	2880	201	25.1	More large green crystals in pegmatite
	BCPP056	700,075	7,713,857	Rock Chip	41600	14850	0.13	2850	0.61	2.5	1335	9.7	11.9	Suspected petalite
	BCPP057	700,073	7,713,855	Rock Chip	256	7420	5.41	13300	2.86	33.7	30700	141.5	368	Lepidolite grab sample
	BCPP063	700,108	7,713,346	Rock Chip	15.2	1365	5.35	1375	0.30	19.6	10700	105.5	439	Lepidolite pegmatite
	TDRC02GB	700,738	7,714,524	Drill spoil	282	87.6	3.66	359	0.08	29.2	2280	13.7	11.75	Sample of pegmatite from drillhole spoils at unknown depth
	TDRC03GB	700,734	7,714,590	Drill spoil	103	53	2.15	5690	1.23	60.1	1590	48.8	20.6	Grab sample from old drillhole TDRC03

ASX Announcement 17 May 2023

Table 1 for reporting in accordance with JORC Code

Section 1 Sampling Techniques and Data

Criteria in this section apply to all succeeding sections.)

	Criteria	Criteria	Commentary
Se ol	Sampling techniques	• Nature and quality of sampling (eg cut channels, random chips, or specific specialized industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	 Rock chip samples were collected at the discretion of the field geologist from outcrops of variably weathered rock. Rock chips were submitted to ALS Laboratories, and the entire sample submitted were pulverised. Samples were analysed for gold by low level aqua regia digest of 25g, and a four-acid digest analysis for 48 element multielement suite by ICP-MS method.
D		• Include reference to measures taken to ensure sample representivity and' the appropriate calibration of any measurement tools or systems used.	
a		Aspects of the determination of mineralisation that are Material to the Public Report.	
SON		• In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	
r de	Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Not applicable to sampling program
	Drill sample recovery	• Method of recording and assessing core and chip sample recoveries and results assessed.	Not applicable to sampling program
_		 Measures taken to maximise sample recovery and ensure representative nature of the samples. 	
		 Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	
	Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. 	Not applicable to sampling program

17 May 2023		
	• Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	
	 The total length and percentage of the relevant intersections logged. 	
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Sample preparation by accredited laboratory. High quality and appropriate preparation technique for assay methods in use. Sample sizes are appropriate to the grain size of the material being sampled.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	• Laboratory standards were used by the lab at a rate of approximately one sample per 100 assays and blanks and assay repeats were completed at a rate of approximately one per 100 assays. No major issues were encountered with the quality control sampling.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Analytical results for the sampling were received by multiple personnel and compiled into a central database. Results from all samples collected have been reported. No adjustments were made to any sampling assay data At this time there are no processes or procedures guiding data collection, collation, verification and storage. Implementation and development of procedures and documentation are currently being planned. There are no adjustments to the assay data. The data are received from the lab and sent unedited to a consultant database administrator.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Location of sample sites of rock chip sampling program recorded by hand-held GPS. All current data is in MGA94 (Zone 51). The area is generally flat and sample elevation has not been estimated.

ASX Announcement

Data spacing and	•	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree	•	Rock chips were completed where out crop was encountered by the field geologist and at the geologist's discretion.
distribution	•	of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	•	There is insufficient data, and it is insufficiently closely spaced to establish a reasonable geological interpretation in the area of interest. The data available do provide continuity of mineralization at a local scale. No compositing has been applied.
Orientation of data in relation to geological structure	•	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	•	Rock chips are collected at the geologists discretion. Limited structural data has been considered in the sampling.
Sample security	•	The measures taken to ensure sample security.	•	Samples were escorted by the field geologist to Perth and then sent by courier to ALS laboratories.
Audits or reviews	•	The results of any audits or reviews of sampling techniques and data.	•	No audit has been completed on the sampling campaigns.

ASX Announcement 17 May 2023 Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

	Criteria	JC	RC Code explanation	Com	nmentary
For personal use only	Mineral tenement and land tenure status	•	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.		Rock chips were obtained from tenements wholly owned by GAM as part of Wildcat's due diligence process. The tenements where samples were obtained are M45/354, M45/375, M45/376, M45/377.
		•	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.		
	Exploration done by other parties	•	Acknowledgment and appraisal of exploration by other parties.	•	Previous work is described under the History section in the body of this document.
	Geology	•	Deposit type, geological setting and style of mineralisation.		The Tabba Tabba pegmatite field comprises approximately 40 mapped outcropping pegmatite bodies. Only one of these has been systematically drill tested and contains a JORC 2012 tantalum resource hosted by a lithium-caesium-tantalum (LCT) type pegmatite. Further work is required to confirm the nature of potential mineralisation associated with the remaining pegmatite bodies in the field.
	Drill hole information	•	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	•	These are reported in Appendix 2 as they apply to rock chips obtained by Wildcat.
	Data aggregation methods	•	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.		The reported intersections are uncut as the nature of the mineralization is not yet well defined. No metal equivalent values used

	Criteria JORC Code explanation Commentary		Commentary
		 The assumptions used for any reporting of metal equivalent values should be clearly stated. 	
λlγ	Relationship between mineralization widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 The orientation of mineralisation and hence true widths and depth potential of the high-grade reef mineralization is not yet known. The geometry is not currently known.
e or	Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	See this announcement.
NS	Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All results described in this announcement have been reported.
onal	Other substantive exploration data	• Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All substantive data has been disclosed.
pers	Further work	 The nature and scale of planned further work (eg tests for lateral extensions of depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 An initial campaign of 6,000m of RC drilling to confirm the nature, orientation and extent of lithium mineralisation throughout the Tabba Tabba pegmatite field.
For			