

HIGHLIGHTS

- Drilling has identified a new lithium-bearing pegmatite dyke swarm at Adina, located in the footwall of the deposit below previous drilling.
- First results have been received as detailed in Table 1:
 - 2.44% Li₂O over 10.1m from 219.9m and
 1.10% Li₂O over 21.0m from 260.6m (AD-23-051),
 - 1.57% Li₂O over 15.4m from 221.5m (AD-23-073),
 - 1.29% Li₂O over 14.0m from 200.8m (AD-23-054), and
 - 1.02% Li₂O over 23.2m from 253.0m (AD-23-028).
- The discovery of a new zone of lithium mineralisation significantly changes the potential endowment at Adina and is anticipated to enhance the potential to develop a viable lithium operation.
- Strong high-grade lithium intersections continue from the Main Zone of lithium mineralisation at Adina, with new results presented in this release including:
 - o 2.25% Li₂O over 18.7m from 43.3m (AD-23-072),
 - 2.09% Li₂O over 10.0m from 35.2m (AD-23-028),
 - 1.71% Li₂O over 42.8m from 49.9m (AD-23-040),
 - 1.68% Li₂O over 34.0m from 126.0m (AD-23-060),
 - o 1.38% Li₂O over 44.1m from 49.9m (AD-23-073); and
 - 1.34% Li₂O over 32.6m from 65.5m (AD-23-057).
- A fourth drill rig is being mobilised to Adina for resource definition drilling.
- Continued flow of results ensures Winsome on track for maiden Adina Mineral Resource Estimate later in 2023.

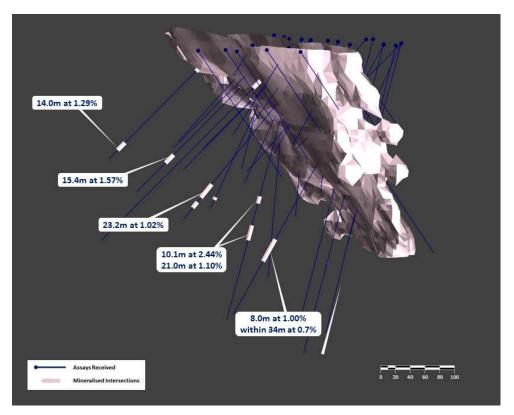
ASX:WR1 | FSE:4XJ | QTCQB:WRSLF

10 May 2023

Lithium exploration and development company Winsome Resources (ASX:WR1; "Winsome" or "the Company") is pleased to provide an update on exploration at its 100% owned projects in the James Bay region of Quebec, Canada. Intersections have confirmed the discovery of a new lithium-bearing pegmatite dyke swarm at Adina as summarised in Table 1. In addition, further results have been received from recent drilling at the Adina Main Zone, as summarised in Table 2, as well as from drilling at the Cancet Project.

WINSOME'S MANAGING DIRECTOR CHRIS EVANS SAID:

WINSOMERESOURCES


"The discovery of a new zone of mineralisation at Adina adds further evidence to our belief that this is a globally significant lithium project. This new zone is anticipated to contribute to our main resource estimate, due later in 2023, as well as enhancing the viability of the project, and further drilling is now underway to define its up-dip extent, closer to surface. Once again this is due to the good work of our dedicated team on the ground, and I am pleased to be in Canada again being part of the intensive drilling campaign that continues at Adina."

Hole	Intercepts	Setting
AD-23-028	1.02% Li ₂ O over 23.2m from 253.0m to 276.2m	West
AD-23-038A	1.00% Li ₂ O over 8.0m from 306.4m to 314.4 incl. 1.47% L _{i2} O over 4.8m from 318.8m to 323.6m	Central
AD-23-051	2.44% Li ₂ O over 10.1m from 219.9m to 230.0m	Central
	1.10% Li ₂ O over 21.0m from 260.6m to 281.6m	
AD-23-054	1.29% Li ₂ O over 14.0m from 200.8m to 214.8m	East
AD-23-072	1.46% Li ₂ O over 4.0m from 236.1m to 240.1m	East
AD-23-073	1.57% Li ₂ O over 15.4m from 221.5m to 236.9m	East

Table 1. Key mineralised intercepts, Adina Footwall Zone

Hole	Intercepts	Setting
AD-23-028	2.09% Li ₂ O over 10.0m from 35.2m to 45.2m	Up-dip of previous drilling
AD-23-038A	1.17% Li ₂ O over 10.0m from 152.0m to 162.0m	Central area of Main Zone
AD-23-040	1.71% Li ₂ O over 42.8m from 49.9m to 92.7m	Up-dip of previous drilling
AD-23-051	1.29% Li ₂ O over 15.2m from 15.9m to 31.1m	Central area of Main Zone
	1.50% Li ₂ O over 5.0m from 70.5m to 75.5m	
AD-23-053	0.83% Li ₂ O over 41.7m from 73.5m to 115.2m incl. 1.16% Li ₂ O over 18.6m from 80.6m to 99.2m	Eastern area of Main Zone
AD-23-057	1.34% Li ₂ O over 32.6m from 65.5m to 99.1m incl. 2.27% Li ₂ O over 11.7m from 66.5m to 78.2m	Eastern area of Main Zone
AD-23-060	1.68% Li ₂ O over 34.0m from 126.0m to 160.0m incl. 2.42% Li ₂ O over 18.8m from 139.2m to 158.0m	Eastern area of Main Zone
AD-23-071	1.41% Li ₂ O over 16.0m from 59.0m to 75.0m	Eastern area of Main Zone
AD-23-072	2.25% Li ₂ O over 18.7m from 43.3m to 62.0m	Eastern area of Main Zone
AD-23-073	1.38% Li ₂ O over 44.1m from 49.9m to 94.0m incl. 2.36% Li ₂ O over 11.4m from 49.9m to 61.6m	Eastern area of Main Zone

Table 2. Key mineralised intercepts, Adina Main Zone

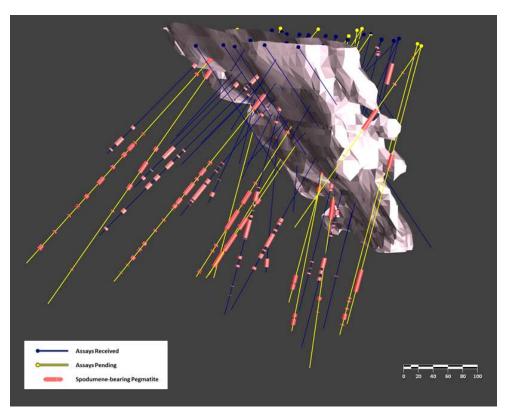
WINSOMERESQURCES

Figure 1: Drill Results from Adina Footwall Zone Drilling
Oblique view looking to north-east along conceptual model of Adina Main pegmatite

Commentary on Adina Footwall Zone

The Adina Footwall Zone was first detected in AD-23-054 when multiple spodumene-bearing pegmatite zones were logged¹. Drilling on adjacent sections was then deepened to investigate whether the intersections in AD-23-054 were from a new pegmatite body or from a repetition of the main body by folding (or other localised event).

As shown on Figures 1 and 2 and detailed in Tables 1 and 3 there are now sufficient intersections of spodumene-bearing pegmatites and supporting assays results to confirm that the Footwall Zone as a discrete zone of pegmatite mineralisation. Assays have been received from 6 intersections to date with assays from another 11 drillholes awaited. Full details of the drillholes can be found in the Appendices.


The Footwall Zone is generally thinner than the Main Zone however frequently more than one pegmatite dyke is intersected within the zone, with these noted to coalesce in certain locations leading to a thicker intersection. In addition the distance between the Main Zone and Footwall Zone is also observed to vary, likely relating to the structures along which the pegmatites were emplaced. Delineation and modelling of these zones will be important for project development as it will be advantageous in future mining to target locations where the two zones are in close proximity.

The Footwall Zone has now been intersected in drilling over a strike length of 760 metres (east-west). The lithium mineralisation in the Footwall Zone occurs as spodumene crystals hosted in pegmatite with no obvious visual differences to the Main Zone mineralisation observed during logging.

Outcrop of the Footwall Zone has not been identified at this time however with the advent of spring and improved access ground checking will be undertaken to confirm if the Footwall Zone does come to surface.

ASX:WR1 I FSE:4XJ I QTCQB:WRSLF

¹ "Further assays confirm Adina as a robust, high-grade lithium project" ASX Announcement 23 March 2023

Figure 2: Spodumene-bearing pegmatite intervals logged in Adina Footwall Zone Drilling Oblique view looking to north-east along conceptual model of Adina Main pegmatite

Hole	Intercepts	Setting
AD-23-022	215.3 – 232.6m pegmatite (17.3m interval) & 252.6 – 260.8m pegmatite (8.2m interval)	East
AD-23-023	345.2 – 365.6m pegmatite (20.4m interval)	Step-out to east of previous drilling
AD-23-025	255.5 – 279.6m pegmatite (24.1m interval) & 286.8 – 317.4m pegmatite (30.6m interval)	Central
AD-23-026	384.0 – 399.2m pegmatite (15.2m interval)	Central
AD-23-027	245.7 – 256.7m pegmatite (11.0m interval), 271.3 – 290.8m pegmatite (19.5m interval) & 298.0 – 336.7m pegmatite (38.7m interval)	Central
AD-23-029	271.3 – 278.7m pegmatite (7.4m interval), 302.8 – 320.9m pegmatite (18.1m interval), & 329.0 – 356.9m pegmatite (27.9m interval)	East
AD-23-033	378.2 – 386.8m pegmatite (8.6m interval)	Down-dip of previous drilling
AD-23-040	220.9 – 294.0m pegmatite (73.1m interval)	Central
AD-23-047	218.5 – 241.5m pegmatite (23.0m interval), 314.6 – 320.0m pegmatite (5.4m interval), & 410.2 – 417.7m pegmatite (7.5m interval)	East
AD-23-074	356.1 – 377.4m pegmatite (21.3m interval)	Step-out to east of previous drilling
AD-23-100	313.3 – 344.8m pegmatite (31.5m interval)	Step-out to west of previous drilling

Table 3. Drill observations, Adina Footwall Zone

The Company reminds investors that the presence of spodumene crystals within pegmatite does not necessarily equate to lithium mineralisation or indicate the percentage of lithium mineralisation, which can only be accurately confirmed by chemical assays. When such laboratory results become available, they will be reported in full in a future report.

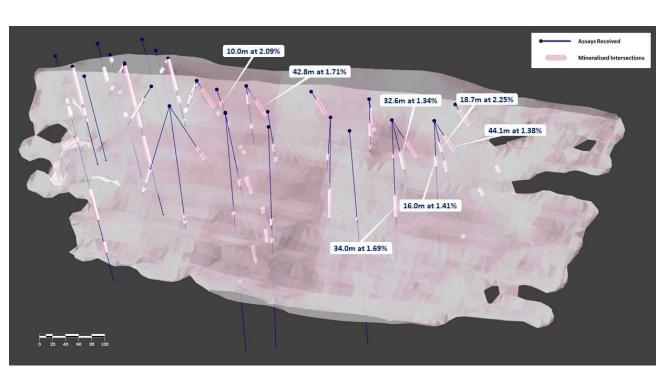
Commentary on Adina Main Zone

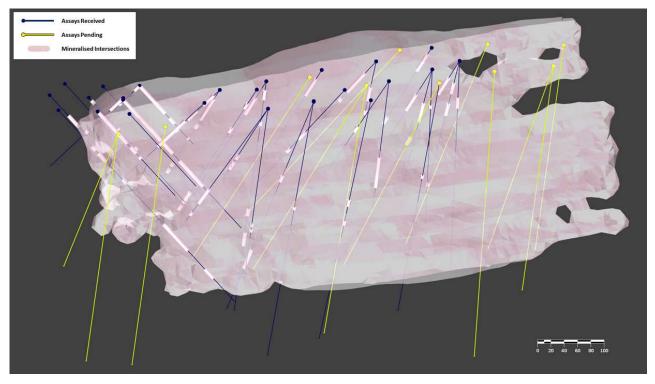
Since the last exploration update² drilling has focussed on testing the continuity of mineralisation within the Adina Main Zone, principally to the east of previously reported results and in the central portion of the Main Zone. Drilling has also tested up- and down-dip from previous intersections.

New results received are shown on Figure 3 and summarised in Table 2 with all data from the programme to date included in the Appendices.

The Main Zone has now been intersected in drilling over a strike length of 830 metres (east-west) and down to a depth of 300m from surface. The Main Zone remains open to the east, west and at depth with 3 rigs actively drilling on site. A fourth rig is now being mobilised to site to enable additional drilling to be completed to provide increased data to inform geological and resource modelling.

A total of 54 holes have been completed for 14,847 metres as at the end of April. Assays to date have been received for 40 of these drillholes. Several new zones of spodumene-bearing pegmatite have been logged and submitted for assay as detailed in Table 4 and Appendix 4. Figure 4 shows the location of these holes.




Figure 3: New Results from Adina Main Zone Drilling
Oblique view looking to west over conceptual model of pegmatite body

ASX:WR1 I FSE:4XJ I QTCQB:WRSLF

² "Further assays confirm Adina as a robust, high-grade lithium project" ASX Announcement 23 March 2023

Hole	Intercepts	Setting
AD-23-010	105.3m – 138.0m pegmatite (32.7m interval)	Step-out to west of previous drilling
AD-23-022	35.4 – 42.2m pegmatite (6.8m interval) & 52.0 – 77.5m pegmatite (25.5m interval)	Eastern area of Main Zone, up-dip of previous drilling
AD-23-023	126.3 – 134.5m pegmatite (8.2m interval) & 196.3 – 229.2m pegmatite (32.9m interval)	Step-out to east of previous drilling
AD-23-025	107.5 – 140.5m pegmatite (33.0m interval)	Infill central area of Main Zone
AD-23-026	128.7 – 172.7m pegmatite (44.0m interval)	Infill central area of Main Zone
AD-23-027	55.6 – 81.4m pegmatite (25.8m interval), 115.7 – 140.7m pegmatite (25.0m interval)	Central area of Main Zone, up-dip of previous drilling
AD-23-033	160.1 – 178.0m pegmatite (17.9m interval)	Down-dip of previous drilling
AD-23-047	17.8 – 64.3m pegmatite (46.5m interval)	Eastern area of Main Zone, up-dip of previous drilling
AD-23-068	193.8 – 226.4m pegmatite (32.6m interval) & 231.4 – 258.5m pegmatite (27.1m interval)	Eastern area of Main Zone, down-dip of previous drilling
AD-23-074	168.4 – 183.9m pegmatite (15.5m interval)	Step-out to east of previous drilling
AD-23-076	93.4 – 107.8m pegmatite (14.4m interval)	Step-out to east of previous drilling
AD-23-100	152.1 – 171.2m pegmatite (19.1m interval)	Step-out to west of previous drilling

Table 4. New drill observations, Adina Main Zone

Figure 4: Oblique view of drilling to date at Adina Main Zone showing conceptual model of pegmatite body and drillholes where assays are pending

The Company reminds investors that the presence of spodumene crystals within pegmatite does not necessarily equate to lithium mineralisation or indicate the percentage of lithium mineralisation, which can only be accurately confirmed by chemical assays. When such laboratory results become available, they will be reported in full in a future report.

Winsome carries out logging of all drill samples at its nearby exploration project base. Visual estimates of the pegmatite mineralogy - as a percentage range of spodumene content, textures, mineralogy and omnipresent structures - are recorded by project geologists and supervisors prior to sending samples to the laboratory. Strict handling procedures and QAQC protocols are followed.

Further drilling updates, including summaries of visual observations of core recovered from drilling, will be provided on an on-going basis to the market. Core samples from all prospective intervals continue to be dispatched to SGS in neighbouring Ontario for analysis. Results will be reported when they become available. The Adina program's full results to date are set out in the appendices below.

Commentary on Cancet

A short RC drilling programme was carried out at Cancet in December 2022 (22 holes for 3,137 metres). The programme focussed on better delineating the main pegmatite body and adding further assay data with a view to forthcoming resource estimation work. In addition, drilling was opportunistically carried out at targets away from the main body such as those defined by gravity data³ and mapping / sampling during the 2022 field season⁴ with a view to prioritising these targets for more thorough drilling in 2023. To date assays have been received from all holes with the following notable results:

- 2.91% Li₂O + 504ppm Ta₂O₅ over 18.3m from 3.0m to 21.3m (WCRC-22-004), including:
 - \circ 4.02% L_{i2}O + 728ppm Ta₂O₅ over 9.1m from 9.1m to 18.2m
- 0.99% Li₂O + 59ppm Ta₂O₅ over 15.2m from 1.5m to 16.8m (WCRC-22-006), including:
 - \circ 1.55% L_{i2}O + 70ppm Ta₂O₅ over 6.1m from 4.6m to 10.7m
- 0.49% Li₂O + 136ppm Ta₂O₅ over 12.2m from 4.6m to 16.8m (WCRC-22-005), including:
 - \circ 1.26% L_{i2}O + 308ppm Ta₂O₅ over 3.0m from 4.6m to 7.6m
- 0.46% Li₂O over 4.6m from 71.6m to 76.2m (WCRC-22-020) within a 106m pegmatite body;
- 0.31% Li₂O over 4.6m from 18.3m to 22.9m (WCRC-22-021) within a 46m pegmatite body;

The intersections in WCRC-RC-020 and 021 are significant since these holes tested a new pegmatite body ("Butte") some 4km north-east of the Cancet main pegmatite body (Figure 5). The pegmatite zones intersected are not mineralised across their entire thickness indicating fractionation of these bodies has occurred, a process which is key to the development of lithium mineralisation. Accordingly these results provide encouragement that further mineralisation may be present elsewhere in the Butte pegmatite.

³ Refer ASX Announcement 19 October 2022

⁴ Refer ASX Announcement 10 August 2022 and 5 October 2022

10 May 2023

Detailed ground gravity surveying was also conducted at Cancet while access was available, with the program extended following highly encouraging results obtained at Cancet in October last year (see ASX release on 19 October 2022). Geophysical work focused on structural corridors interpreted from public domain airborne magnetics data and deemed favourable for pegmatite emplacement. Interpretation and target generation was undertaken by Perth-based consultancy NewGen Geo Pty Ltd, which specialises in the application of geophysics to pegmatite exploration.

Results of the survey have highlighted a number of new target areas located between 2km and 7km west of the Cancet main pegmatite body and within 1km of the Trans-Taiga Road (Figures 5 and 6).

Diamond drilling at Cancet re-commenced in January and 44 holes for 7,690 metres have been completed. Drilling tested targets across the Cancet project generated from Winsome's gravity surveys as well as testing depth extensions to lithium mineralisation intersected in previous drilling⁵. Results are awaited from all drillholes.

The next exploration phase at Cancet will be implemented during the summer field season and will include a new phase of gravity surveying to the east of the Cancet main pegmatite body. The area to be surveyed includes traverses over the newly identified "Butte" pegmatite. The surveys will provide a substantial dataset to aid targeting of pegmatite bodies within the project area, which will be integrated with field mapping and sampling from both the 2022 field season as well as guide the forthcoming 2023 field season. Systematic exploration of this nature was not completed by previous explorers, and it is anticipated this disciplined approach will allow Winsome to unlock the potential of the Cancet project.

This announcement is authorised for release by the Board of Winsome Resources Limited.

For further information please contact:

INVESTORS

Chris Evans – Managing Director Winsome Resources

administration@winsomeresources.com.au

MEDIA

Josh Nyman – Senior Media Counsel Spoke Corporate

josh@hellospoke.com.au

+61 413 243 440

ASX:WR1 I FSE:4XJ I QTCQB:WRSLF

⁵ Refer ASX Announcement 14 July 2022, 14 June 2022 and prospectus dated 11 October 2021.

ABOUT WINSOME RESOURCES

Winsome Resources (ASX: WR1) is a Perth-based, lithium focused exploration and development company with five project areas in Quebec, Canada. Three of Winsome's projects – Cancet, Adina and Sirmac-Clappier are 100% owned by the Company. The Company also has exclusive option agreements to acquire and explore 669 claims totalling 385km² in Decelles and a further 259 claims totalling 149km² at Mazerac, located near the Quebec mining town of Val-d'Ór. Recently the Company acquired a further 47km² of claims at the Tilly Project, located near Adina.

The most advanced of Winsome's projects - Cancet and Adina, provide shallow, high grade lithium deposits and are strategically located close to established infrastructure and supply chains.

In addition to its impressive portfolio of lithium projects in Quebec, Winsome Resources owns 100% of the offtake rights for lithium, cesium and tantalum from Power Metals Corp (TSXV:PWM) Case Lake Project in Eastern Ontario, as well as a 10% equity stake in PWM.

Winsome is led by a highly qualified team with strong experience in lithium exploration and development as well as leading ASX listed companies.

More details: www.winsomeresources.com.au

CAUTION REGARDING FORWARD-LOOKING INFORMATION

This document contains forward-looking statements concerning Winsome. Forward-looking statements are not statements of historical fact and actual events and results may differ materially from those described in the forward-looking statements as a result of a variety of risks, uncertainties and other factors. Forward-looking statements are inherently subject to business, economic, competitive, political and social uncertainties and contingencies. Many factors could cause the Company's actual results to differ materially from those expressed or implied in any forward-looking information provided by the Company, or on behalf of, the Company. Such factors include, among other things, risks relating to additional funding requirements, metal prices, exploration, development and operating risks, competition, production risks, regulatory, including environmental regulation and liability and potential title disputes.

Forward-looking statements in this document are based on the Company's beliefs, opinions and estimates of Winsome as of the dates the forward-looking statements are made, and no obligation is assumed to update forward-looking statements if these beliefs, opinions and estimates should change or to reflect other future developments.

COMPETENT PERSON'S STATEMENT

The information in this report which relates to Exploration Results is based on, and fairly represents, information and supporting documentation prepared by Mr Carl Caumartin, General Manager Canada of Winsome Resources Ltd. Mr Caumartin is a member of the Quebec Board of Professional Engineers (OIQ, Canada), a Registered Overseas Professional Organisation as defined in the ASX Listing Rules, and has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity which has been undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves".

Mr Caumartin consents to the inclusion in this release of the matters based on the information in the form and context in which they appear. Mr Caumartin is a shareholder of Winsome.

The information in this announcement relating to the Geophysical component of the Exploration Results is based on information and supporting documentation compiled by Mr Regis Neroni, who is a Member of the Australian Institute of Geoscientists (AIG) and a Registered Professional Geoscientist (RPGeo) in the fields of Geophysics and Mineral Exploration. Mr Neroni is a Consulting Geophysicist with NewGen Geo Pty Ltd and has sufficient experience relevant to the style of mineralisation under consideration and to the activity which is being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves".

Mr Neroni consents to the inclusion in this release of the matters based on the information in the form and context in which they appear.

-ends-

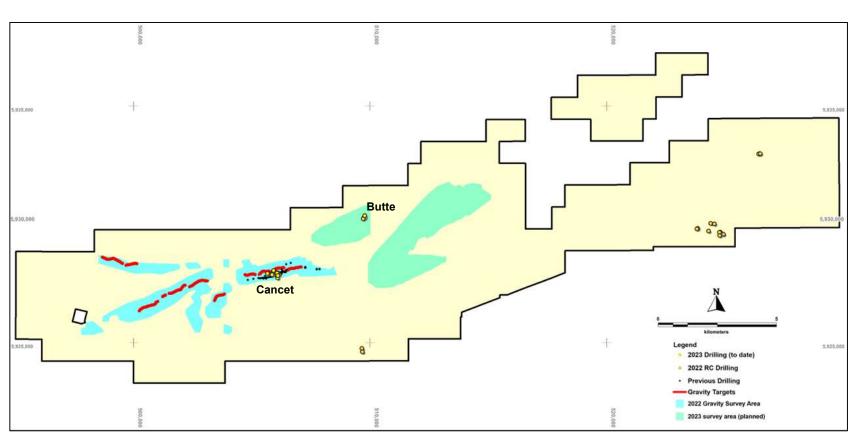
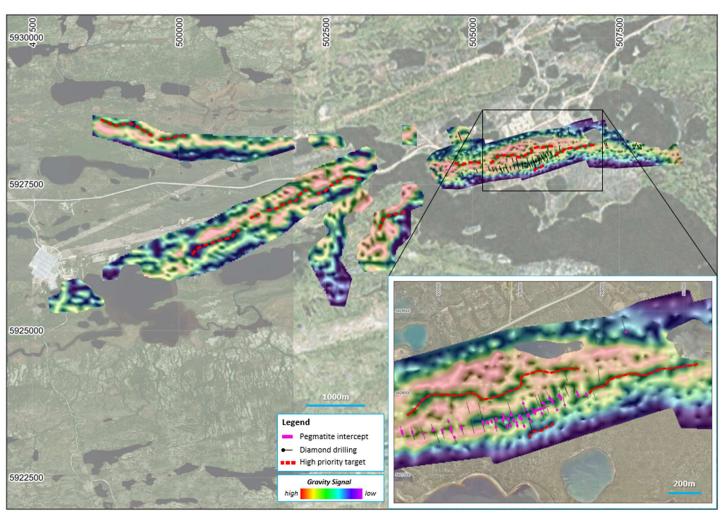



Figure 5: Cancet Project showing gravity targets, 2022 and 2023 drilling programmes and gravity surveys (completed and planned).

Figure 6: Cancet pegmatite intersections (magenta) in 2017 and 2022 drilling (black traces) shown with priority target zones (red) over composite ground gravity image.

Appendix 1: Significant Drillhole Lithium Intercepts - New Results Adina Main 6.

Hole ID	Easting	Northing	RL	Dip	Azimuth	From	То	Length	Li ₂ O	Zone
Hole ID	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
AD-23- 028	668735	5908748	518	-50	350	35.2	45.2	10	2.09	Main
						95.7	104.0	8.3	0.99	Main
						253.0	276.2	23.2	1.02	FW
						284.2	294	9.8	0.46	FW
AD-23- 030	668789	5908668	512	-60	350	161.2	178.5	17.3	0.46	Main
		including				174.4	178.5	4.1	1.24	Main
						204.6	210.5	5.9	0.67	Main
AD-23- 031	668789	5908668	512	-60	350	158	216.9	58.9	0.37	Main
		including				191.3	198.4	7.1	0.84	Main
		including				214.0	216.9	2.9	0.81	Main
AD-23- 038A	668789	5908668	512	-60	350	152	162	10.0	1.17	Main
						303.4	337.5	34.1	0.69	FW
		including				306.4	314.4	8.0	1.00	FW
		including				318.8	323.6	4.8	1.47	FW
AD-23- 040	668769	5908781	519	-45	360	49.9	92.7	42.8	1.71	Main
								Pending		FW
AD-23- 048	668789	5908668	512	-75	350	198.7	201.7	3.0	3.32	Main
						208	211	30.0	1.35	Main
AD-23- 050	668789	5908668	512	-75	350	181.5	184.5	30.0	1.14	Main
						307.4	317.9	10.5	0.90	FW
AD-23- 051	668769	5908781	519	-75	360	15.9	31.1	15.2	1.29	Main
						70.5	75.5	5.0	1.50	Main
						219.9	230	10.1	2.44	FW
						260.6	281.6	21.0	1.10	FW
AD-23- 053	669034	5908748	512	-45	360	73.5	115.2	41.7	0.83	Main
						80.6	99.2	18.6	1.16	Main
AD-23- 054	669090	5908854	512	-45	360	20.2	64.2	44.0	0.48	Main
						200.7	214.7	14.0.	1.29	FW

 $^{^{6}}$ Intercepts calculated using a 0.3 % Li₂O cut-off grade, minimum 5m thickness and widths including up to 7m internal dilution.

Hole ID	Easting	Northing	RL	Dip	Azimuth	From	То	Length	Li ₂ O	Zone
поје јо	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
AD-23- 057	669034	5908748	512	-65	360	66.5	99.1	32.6	1.34	Main
		including				66.5	78.2	11.7	2.27	Main
		including				86.9	94.9	8.0	1.61	Main
AD-23- 060	669034	5908748	512	-85	240	57.5	62.0	4.5	3.59	Main
						126.0	160.0	34.0	1.68	Main
						139.2	158.0	18.8	2.42	Main
AD-23- 071	669094	5908773	512	-85	360	59	75	16.0	1.41	Main
AD-23- 072	669094	5908773	512	-65	360	43.4	62	18.6	2.25	Main
						83.5	103.5	20.0	0.74	Main
						236.1	240.1	4.0	1.46	FW
AD-23- 073	669094	5908773	512	-45	360	49.9	94	44.1	1.38	Main
		including				49.9	61.3	11.4	2.36	Main
						221.5	236.9	15.5	1.57	FW

Appendix 2: Significant Drillhole Lithium Intercepts – Previous Results 7.

WINSOMERESQURCES

Hole ID	Easting (NAD83)	Northing (NAD83)	RL (m)	Dip (degrees)	Azimuth (degrees)	From (m)	To (m)	Thickness (m)	Li₂O %
AD-22- 001 ²	668477	5908772	511	-45	135	3.0	66.1	63.1	1.35
		including				3.0	11.0	8.0	1.61
		including				23.0	39.0	16.0	2.16
		including				60.4	66.1	5.7	2.37
		including				73.1	85.8	12.7	1.89
	furt	her including				73.1	77.2	4.1	4.19
AD-22- 002 ²	668503	5908851	511	-45	135	6.0	11.0	5.0	0.60
AD-22- 003 ³	668555	5908901	513	-45	135	85.0	89.0	4.0	2.08
AD-22- 004 ³	668513	5908739	512	-45	135	87.1	90.2	3.1	1.50
						93.0	96.0	3.0	1.18
AD-22- 005 ¹	668542	5908812	513	-45	135	2.3	109.9	107.6	1.34
		including				2.3	23.0	20.7	1.52
		including				23.0	41.0	18.0	0.68
		including				41.0	71.0	30.0	2.21
		including				71.0	97.5	26.5	1.05
		including				103.0	109.9	6.9	0.96

 $^{^7}$ Refer footnotes to table for announcement details. Intercepts calculated using a 0.3 % Li₂O cut-off grade, minimum 5m thickness and widths including up to 7m internal dilution.

Hole ID	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li ₂ O
	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%
AD-22- 005A ²	668542	5908812	513	-45	315	4.6	28.5	23.9	1.52
		including				4.6	18.5	13.9	2.04
						78.6	84.4	5.8	1.59
AD-22- 006 ³	668596	5908861	515	-45	135	2.2	57	54.8	1.14
		including				2.2	8	5.8	1.88
		including				10	20	10.0	1.69
		including				27	32	5.0	1.37
		including				45	51	6.0	1.54
						66.2	78	11.8	0.55
AD-22- 006B ³	668596	5908861	515	-45	315	1	11	10.0	0.89
						34.1	37.45	3.35	1.46
AD-22- 007 ²	668430	5908809	510	-45	135	88.6	105.6	17.0	1.56
		including				98.6	105.6	7.0	2.72
						141.9	151.4	9.5	0.69
						232.8	287.0	54.2	1.04
		including				232.8	238.8	6.0	2.14
		including				249.0	260.0	11.0	1.14
		including				275.3	287.0	11.7	1.77
						324.6	343.6	19.0	0.88
		including				324.6	329.6	4.6	2.01
AD-22- 008 ²	668460	5908892	510	-45	135	41.9	65.7	23.8	0.88
		including				41.9	48.9	7.0	1.31
		including				51.9	54.9	3.0	1.34
		including				60.5	63.5	3.0	1.89
AD-22- 009 ³	668512	5908942	511	-45	135	33.9	37.9	4.0	0.26
AD-22- 011 ³	668687	5908776	517	-45	320	13.6	37	23.4	0.88
		including				28	37	9.0	1.70
						51	72	21.0	0.82
		including				51	66	15.0	1.00
						94.8	102.2	7.4	0.53
AD-22- 034 ³	668852	5908687	517	-45	340	112.9	129.9	17.0	1.32
		including				112.9	117.9	5.0	1.93
		including				121.9	128.9	7.0	1.67
						156.9	164.4	7.5	1.28
AD-22- 035 ³	668634	5908726	519	-45	315	41.6	101	59.4	1.26
		including				41.6	63	21.4	1.71
		including				78	101	23.0	1.49

Hole ID	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li ₂ O
	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%
AD-22- 036 ³	668687	5908776	517	-45	360	28	83.5	55.5	1.35
		including				49	58	9.0	2.40
		including				62	71	9.0	1.51
		including				74	83.5	9.5	1.17
						101.8	107.7	5.9	0.36
						227.7	234.5	6.8	0.76
AD-22- 037 ³	668702	5908651	515	-55	315	162.3	190.7	28.4	1.12
		including				162.3	179.7	17.4	1.48
						207.7	213.1	5.4	1.75
AD-22- 039 ³	668702	5908651	515	-45	360	135	142	7.0	0.59
						154	160	6.0	2.37
						166	170.6	4.6	0.97
AD-22- 041 ³	668872	5908797	520	-45	360	26.3	71	44.7	1.56
		including				26.3	41.4	15.1	2.00
		including				48	66	18.0	1.92
AD-22- 042 ³	668968	5908803	520	-45	340	32.7	80.1	47.4	1.64
		including				32.7	47.3	14.6	2.15
		including				55.1	78.1	23.0	1.78
						100.4	104.65	4.25	1.39
AD-22- 046 ³	668968	5908803	520	-65	340	45	66	21.0	1.09
		including				45	49	4.0	1.20
		including				52	65	13.0	1.33
						84	90	6.0	2.82
AD-22- 055 ³	668944	5908718	512	-55	330	95.5	105.5	10	1.55
AD-22- 059 ³	668944	5908718	512	-82	330	123	167	44.0	1.08
		including				123	133	10.0	1.37
AD-22- 043 ⁴	670003	5909088	531	-45	340	62.3	74.5	12.2	1.50
		including				62.3	69.5	7.2	2.08
AD-23- 044 ⁴	670165	5909126	533	-45	340	83.4	89.4	6.0	1.77
		including				83.4	85.4	2.0	3.63
AD-23- 045 ⁴	670312	5909224	533	-45	330	47.4	62.4	15.0	1.26
-	1	including				50.4	54.4	4.0	2.51

WINSOMERESQURCES

¹ Assays previously reported. "Strong lithium mineralisation recorded from first Adina drill hole assays" ASX Announcement 6 January 2023

² Assays previously reported. "New assay results confirm strong lithium mineralisation at Adina" ASX Announcement 14 February 2023

³ Assays previously reported. "Assays confirm Adina as a robust, high-grade lithium project" ASX Announcement 23 March 2023

⁴ Assays previously reported. "Over 3km of lithium mineralisation confirmed at Adina" ASX Announcement 3 April 2023

Appendix 3: Diamond Drilling Summary for Winsome's drilling program at Adina.

	Easting	Northing	RL	Dip	Azimuth	Total Depth
Hole ID	(NAD83)	(NAD83)	(m)	(Degrees)	(Degrees)	(m)
AD-22-001	668477	5908772	511	-45	135	171.0
AD-22-002	668503	5908851	511	-45	135	213.0
AD-22-003	668555	5908901	513	-45	135	138.0
AD-22-004	668513	5908739	511	-45	135	147.0
AD-22-005	668542	5908812	513	-45	135	261.0
AD-22-005A	668542	5908812	513	-45	315	162.0
AD-22-006	668596	5908861	515	-45	135	118.0
AD-22-006B	668596	5908861	515	-45	315	56.5
AD-22-007	668430	5908809	510	-45	135	390.0
AD-22-008	668460	5908892	510	-45	135	210.2
AD-22-009	668512	5908942	511	-45	135	246.0
AD-22-011	668687	5908776	517	-45	320	150.0
AD-22-034	668688	5909055	519	0	135	196.4
AD-22-035	668634	5908726	519	-45	315	186.0
AD-22-036	668687	5908776	517	-45	360	243.0
AD-22-037	668702	5908651	515	-45	315	228.0
AD-22-039	668702	5908651	515	-45	360	201.0
AD-22-041	668872	5908797	520	-45	360	213.0
AD-22-042	668968	5908803	520	-45	340	150.0
AD-22-043	670003	5909088	531	-45	340	141.1
AD-22-046	668968	5908803	520	-75	340	186.0
AD-22-055	668944	5908718	512	-55	330	300.0
AD-22-059	668944	5908718	512	-82	330	204.0
AD-23-044	670165	5909126	533	-45	340	168.0
AD-23-045	670312	5909224	533	-45	330	114.0
AD-23-028	668735	5908748	518	-50	350	315.7
AD-23-030	668874	5908645	508	-75	340	402.0
AD-23-038A	668789	5908668	512	-60	350	420.0
AD-23-040	668769	5908781	519	-45	360	384.0
AD-23-048	668702	5908651	515	-75	360	297.0
AD-23-050	668789	5908668	512	-75	350	378.0
AD-23-051	668769	5908781	519	-75	360	392.5
AD-23-053	669034	5908748	512	-45	360	187.0
AD-23-054	669090	5908854	512	-45	360	231.0
AD-23-057	669034	5908748	512	-65	360	213.0
AD-23-060	669034	5908748	512	-85	240	240.0
AD-23-071	669094	5908773	512	-85	360	324.0
AD-23-072	669094	5908773	512	-65	360	252.0

Hole ID	Easting	Northing	RL	Dip	Azimuth	Total Depth
Hole ID	(NAD83)	(NAD83)	(m)	(Degrees)	(Degrees)	(m)
AD-23-073	669094	5908773	512	-45	360	292.1
AD-23-010	668441	5908641	511	-55	360	300.0
AD-23-022	669174	5908833	514	-55	360	450.0
AD-23-023	669195	5908663	517	-75	360	384.0
AD-23-025	668898	5908704	514	-55	340	396.0
AD-23-026	668898	5908704	514	-78	340	408.0
AD-23-027	668827	5908751	525	-50	350	444.4
AD-23-029	669002	5908666	514	-55	350	402.0
AD-23-033	668521	5908640	512	-75	360	408.0
AD-23-047	669031	5908845	520	-45	340	444.0
AD-23-068	669102	5908677	517	-82	360	462.0
AD-23-074	669195	5908663	517	-58	360	393.0
AD-23-076	669269	5908768	516	-75	360	350.0
AD-23-100	668441	5908641	511	-75	360	390.0

MINSOMERESOURCES

Appendix 4 – Visual estimates of mineralisation intersections in Adina diamond drill holes where assays are yet to be received (main sampling intervals).

The Company reminds investors that the presence of spodumene crystals within pegmatite does not necessarily equate to lithium mineralisation or indicate the percentage of lithium mineralisation, which can only be accurately confirmed by chemical assays. When such laboratory results become available, they will be reported in full in a future report.

Hala ID	From	То	Thickness	Visual Estimate
Hole ID	(m)	(m)	(m)	%
AD-23-010	62.1	64.2	2.1	Pegmatite – spodumene observed
	105.3	138	32.7	Pegmatite – spodumene observed
AD-23-022	35.4	42.2	6.8	Pegmatite – spodumene observed
	52.0	77.5	25.5	Pegmatite – spodumene observed
	191.3	197	5.7	Pegmatite – spodumene observed
	215.3	232.6	17.3	Pegmatite – spodumene observed
	252.65	260.85	8.2	Pegmatite – spodumene observed
AD-23-023	126.3	134.5	8.2	Pegmatite – spodumene observed
	196.3	229.1	32.8	Pegmatite – spodumene observed
	345.2	365.6	20.4	Pegmatite – spodumene observed
AD-23-025	107.55	140.55	33.0	Pegmatite – spodumene observed
	255.5	279.6	24.1	Pegmatite – spodumene observed
	286.8	317.4	30.6	Pegmatite – spodumene observed
AD-23-026	128.7	172.7	44.0	Pegmatite – spodumene observed
	384.0	399.2	15.2	Pegmatite – spodumene observed
	_	_		

	From	То	Thickness	Visual Estimate
Hole ID	(m)	(m)	(m)	%
AD-23-027	55.6	81.4	25.8	Pegmatite – spodumene observed
	115.7	140.7	25	Pegmatite – spodumene observed
	245.7	256.7	11.0	Pegmatite – spodumene observed
	271.3	290.8	19.5	Pegmatite – spodumene observed
	298.0	336.7	38.7	Pegmatite – spodumene observed
AD-23-029	271.3	278.7	7.4	Pegmatite – spodumene observed
	302.8	320.9	18.1	Pegmatite – spodumene observed
	329	356.9	27.9	Pegmatite – spodumene observed
AD-23-033	160.1	178.0	17.9	Pegmatite – spodumene observed
	378.2	386.8	8.6	Pegmatite – spodumene observed
AD-23-040	220.9	294.0	73.1	Pegmatite – spodumene observed Footwall zone intersection, assays received from Main Zone.
AD-23-047	17.8	64.3	46. 5	Pegmatite – spodumene observed
	218.5	241.5	23.0	Pegmatite – spodumene observed
	314.6	320.0	5.4	Pegmatite – spodumene observed
	410.2	417.7	7.5	Pegmatite – spodumene observed
AD-23-068	193.8	226.4	32.6	Pegmatite – spodumene observed
	231.4	258.5	27.1	Pegmatite – spodumene observed
AD-23-074	168.4	183.9	15.5	Pegmatite – spodumene observed
	356.1	377.4	21.3	Pegmatite – spodumene observed
AD-23-076	93.4	107.8	14.4	Pegmatite – spodumene observed
AD-23-100	152.1	171.2	19.1	Pegmatite – spodumene observed
	313.3	344.8	31.5	Pegmatite – spodumene observed

Visual estimates have been removed from this table for holes where assays have been received and reported (refer Appendices 1 and 2).

Legend for Appendices 3 and 4:

AD-22-005 Assays previously reported

AD-22-001 Assays reported in this announcement

AD-22-006 Assays awaited, collar/lithological data reported previously

AD-22-060 Assays awaited, collar/lithological data reported in this announcement

Appendix 5: Drilling Summary for Winsome's 2022-2023 drilling program at Cancet.

	Easting	Northing	RL	Dip	Azimuth	Total Depth
Hole ID	(NAD83)	(NAD83)	(m)	(Degrees)	(Degrees)	(m)
WCRC-22-001	526460	5932985	322	-90	000	100.6
WCRC-22-002	526428	5932977	324	-90	000	103.6
WCRC-22-003	526499	5932988	323	-90	000	103.6
WCRC-22-004	505969	5927873	280	-90	000	103.6
WCRC-22-005	506068	5927866	278	-90	000	103.6
WCRC-22-006	506121	5927940	283	-90	000	103.6
WCRC-22-007	524916	5929577	379	-90	000	103.6
WCRC-22-008	524889	5929585	371	-90	000	103.6
WCRC-22-009	524945	5929576	385	-90	000	103.6
WCRC-22-010	524807	5929669	367	-90	000	99.1
WCRC-22-011	524770	5929656	368	-90	000	100.6
WCRC-22-012	524787	5929527	338	-90	000	100.6
WCRC-22-013	523860	5929820	323	-90	000	152.4
WCRC-22-014	523823	5929807	340	-90	000	103.6
WCRC-22-015	524311	5929711	339	-90	000	103.6
WCRC-22-016	524405	5930036	347	-90	000	103.6
WCRC-22-017	524560	5930012	349	-90	000	103.6
WCRC-22-018	509658	5924746	337	-90	000	83.8
WCRC-22-019	509683	5924605	332	-90	000	86.9
WCRC-22-020	509743	5930257	340	-90	000	106.7
WCRC-22-021	509780	5930288	346	-90	000	100.6
WCRC-22-022	509718	5930231	362	-90	000	33.5
WC-23-001	507395	5928191	273	-45	180	144
WC-23-002	507487	5928089	276	-45	180	141
WC-23-003	507575	5928198	271	-45	180	150
WC-23-004	507660	5928108	277	-45	360	138
WC-23-008	506527	5927989	268	-45	360	141
WC-23-009	505898	5927989	275	-45	340	171
WC-23-010	505926	5928042	272	-45	160	150
WC-23-011	506296	5928088	274	-45	340	150
WC-23-012	506192	5928163	272	-45	160	87
WC-23-013	505332	5927807	276	-45	340	243
WC-23-015	504932	5927826	269	-45	340	150
WC-23-023	500367	5926543	264	-45	170	216
WC-23-024	499832	5926364	260	-45	350	201
WC-23-025	499495	5926373	265	-45	170	195
WC-23-029	499756	5926089	261	-45	170	192
WC-23-031	507295	5928400	271	-45	180	150

	Easting	Northing	RL	Dip	Azimuth	Total Depth
Hole ID	(NAD83)	(NAD83)	(m)	(Degrees)	(Degrees)	(m)
WC-23-032	508311	5927955	264	-45	180	144
WC-23-033	508495	5927871	264	-45	0	201
WC-23-034	506773	5928429	274	-45	180	127.4
WC-23-035	505666	5928025	272	-45	180	135
WC-23-036	506102	5927730	267	-45	0	135
WC-23-037	502703	5927071	264	-45	90	150
WC-23-038	502496	5927307	264	-45	340	201
WC-23-044	506795	5928063	269	-45	340	256.8
WC-23-045	506586	5928281	271	-45	340	135.7
WC-23-046	502726	5927461	264	-45	340	201
WC-23-048	501848	5927222	264	-45	170	150
WC-23-049	500141	5928009	264	-45	0	207
WC-23-050	499936	5928254	264	-45	340	147
WC-23-051	506076	5927929	282	-45	340	132
WC-23-052	505468	5927942	277	-45	0	144
WC-23-053	506107	5927829	272	-45	340	153
WC-23-054	506302	5928338	269	-45	340	135
WC-23-055	505863	5927863	278	-45	340	99
WC-23-056	505914	5927890	278	-45	340	93
WC-23-057	507901	5928103	272	-45	340	144
WC-23-058	505965	5927736	270	-45	340	156
WC-23-059	506228	5927996	271	-45	340	90
WC-23-060	509712	5930354	404	-45	180	363
WC-23-061	509784	5930363	349	-45	180	291
WC-23-062	509631	5930342	250	-45	180	309
WC-23-063	509784	5930363	349	-65	180	429
WC-23-064	508680	5927850	278	-45	20	192
WC-23-065	506065	5928400	272	-45	160	150

Legend for Appendix 5:

AD-22-005 Assays previously reported

AD-22-001 Assays reported in this announcement

AD-22-006 Assays awaited, collar/lithological data reported previously

AD-22-060 Assays awaited, collar/lithological data reported in this announcement

Appendix 6: Significant Drillhole Lithium Intercepts at Cancet8.

Hole ID	Easting (NAD83)	Northing (NAD83)	RL (m)	From (m)	To (m)	Thickness (m)	Li ₂ O %	Ta₂O ₅ ppm
WCRC- 22-004	505969	5927873	280	3.0	21.3	18.3	2.91	504
		including		9.1	18.2	9.1	4.02	728
WCRC- 22-005	506121	5927940	283	4.6	16.8	12.2	0.49	136
including				4.6	7.6	3.0	1.26	308
WCRC- 22-006	506121	5927940	283	1.5	16.8	15.2	0.99	59
including			4.6	10.7	6.1	1.55	70	
WCRC- 22-020	509743	5930257	340	71.6	76.2	4.6	0.46	10
WCRC- 22-021	509743	5930257	340	18.3	22.9	4.6	0.31	10

 $^{^8}$ Intercepts calculated using a 0.3 % Li $_2$ O cut-off grade, minimum 3m thickness and widths including up to 7m internal dilution.

JORC Code, 2012 edition Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	Explanation
Sampling techniques	 All core is NQ (76mm) in this program. Core sample intervals were geologically logged, measured for average length, photographed, and placed into numbered core trays.
	 RC drilling utilised face sampling hammers with samples split down to a 2kg sample size.
	 Samples from Adina were sent to SGS Minerals Geochemistry under standard preparation procedures.
	 Samples from Cancet were sent to AGAT Laboratories under standard preparation procedures.
	Gravity data obtained by ground measurements at regular intervals.
Drilling techniques	NQ diamond drilling was completed at Adina.
	RC percussion and NQ diamond drilling was completed at Cancet.
	 Oriented core drilling was not completed. Downhole surveying was conducted using a gyro-based system.
Drill sample recovery	The recovery of the diamond drilling samples was reported by the operators and supervised by our consulting geologist.
	No sample bias has been established.
Logging	 NQ core was logged and cut according to geological boundaries, with ~1 m intervals targeted for individual samples.
	 For RC and DD drilling features such as rock type, modal mineralogy, rock textures, alteration were recorded. Geological logging information was recorded directly onto the GeoticLog system and compiled onto Database platform, with weekly backups.
	The core is stored in the Geological consultants (Technominex) yard in Rouyn-Noranda which is a secure location.
	 Various qualitative and quantitative logs were completed. All core has been photographed.
	The logging database contains lithological data for all intervals in all holes in the database.
Sub-sampling techniques and sample preparation	 Adina drill core was split (sawn) at the Winsome core logging and cutting facility located at the project base in James Bay, with half core samples intervals submitted to SGS preparation facilities in Val-d'Or, Quebec.
	 Cancet drill core was split (sawn) at the Winsome core logging and cutting facility located at the project base in James Bay, with half core sample intervals submitted to AGAT Laboratories in Val-d'Or, Quebec.

Criteria	Explanation
	Half core NQ samples are believed to be representative of the mineralisation targetted. Sampling intervals are based on geological boundaries to aid representivity.
	 Samples are crushed, milled and split at the laboratory (SGS or AGAT) to achieve a 250g sub-sample for assay. Laboratory QC procedures for sample preparation include quality control on checks crushing and milling to ensure representivity.
	 Ground gravity data was collected by Abitibi Geophysics and Atlas Geophysics. Station spacing was 20m x 100m. Gravity data were acquired using Scintrex CG-5u and CG-6 gravimeters.
	 Gravity data QAQC, processing and interpretation were undertaken by NewGen Geo Pty Ltd. Gravimeters underwent routine calibration with base station measurements used to adjust for drift and other effects in processing.
Quality control & Quality of assay data and laboratory tests	 Assay and laboratory procedures have been selected following a review of techniques provided by laboratories in Canada. SGS and AGAT are both internationally certified independent service providers. Industry standard assay quality control techniques were used for lithium related elements.
	 Samples are submitted for multi-element ICP analysis by SGS or AGAT Laboratories which is an appropriate technique for high-grade lithium analysis
	 Sodium Peroxide Fusion is used followed by combined ICP-AES and ICP-MS analyses (56 elements). Li is reported by the lab and converted to Li₂O for reporting using a factor of 2.153
	No handheld instruments were used for analysis.
	 Comparison of results with standards indicate sufficient quality in data. No external laboratory checks have been used but are planned to be completed shortly.
	 Different grades of certified reference material (CRM) for lithium mineralisation were inserted, as well as field duplicates, and blanks. The CRM's submitted represented a weakly mineralised pegmatite (OREAS 750), and a moderate lithium mineralised pegmatite (AMIS 0341) to high grade lithium mineralised pegmatite (OREAS 752 & 753). Quality Assurance and Quality Control utilised standard industry practice, using prepared standards, field blanks (approximately 0.4 kg), duplicates sampled in the field and pulp duplicates at the lab.
	 Blank samples were submitted at a rate of approximately 5%, same for duplicates and repeat assay determinations, whereas standards were submitted at a rate of approximately 20%.
Verification of sampling and assaying	Significant intersections have been estimated by consultants to the company and cross checked.

Criteria	Explanation
	Hard copy field logs are entered into and validated on an electronic database, which is maintained by Winsome on site in James Bay and backed up regularly by the Company's IT consultants in Val D'Or.
	 Data verification is carried out by the Project Geologist on site, and a final verification was performed by the Senior Geologist and the geologist responsible for database management. An independent verification is carried out by consultants to the company.
	 No assays have been adjusted. A factor of 2.153 has been applied to the reported Li assays by the laboratory so to report as Li₂O.
Location of data points	The drill holes have been reported as being located by hand-held GPS. Historical drill holes have been verified by GPS.
	 Gravity stations were located using RTK GPS Leica ATX 1230GG and GS18 instrumentation.
	The grid datum is NAD83. Zone 18N.
	 Topographic elevation and landmarks are readily visible from a Digital Elevation Model with a 50cm grid resolution and orthophoto obtained from Lidar surveys performed in 2017 and 2022 over the property. Government topographic maps have been used for topographic validation. The GPS is otherwise considered sufficiently accurate for elevation data.
	 Down hole dip surveys were taken at approximately 30m intervals and at the bottom of the diamond drill holes.
Data spacing and distribution	 In this early delineation stage, drilling is largely set along sections at 100m spacing and aiming to intercept targeted horizon at 80-100m centres.
	 No assessment has been made regarding the current drill hole location and intersections with respect to resources or reserve estimation.
	Gravity stations spacing was 20m x 100m
	 No sample compositing has been completed. However, internal dilution of non-mineralised material into calculated grade over widths reported herein may occur but is not considerable.
Orientation of data in relation to geological structure	Drilling is designed to confirm the historical drilling results and test potential mineralisation. They were oriented sub-perpendicular to the potential mineralised trend and stratigraphic contacts as determined by field data and cross section interpretation. Intersection widths will therefore be longer than true widths.
	 No significant sample bias has been identified from drilling due to the optimum drill orientation described above. Where present, sample bias will be reported.
Sample security	The company takes full responsibility on the custody of the samples including the sampling process itself and transportation.

Criteria	Explanation			
	 Samples are shipped during the weekly supply run and delivered directly to the respective laboratories. 			
Audits or reviews	 No external audit of the database has been completed, apart from by consulting geologists acting on behalf of the company. 			

WINSOMERESOURCES

Section 2 Reporting of Exploration Results

(Criteria in the preceding section also apply to this section.)

Criteria	Explanation
Mineral tenement and land tenure	The Winsome Adina Lithium Project is 100% owned by Winsome Adina Lithium Inc.
status	The Winsome Cancet Lithium Project is 100% owned by Winsome Cancet Lithium Inc.
	All tenements are in good standing and have been legally validated by a Quebec lawyer specialising in the field.
Exploration done by	Initial Exploration and Review was undertaken by MetalsTech Limited.
other parties	Government mapping records multiple lithium bearing pegmatites within the project areas with only regional data available.
Geology	 The mineralisation encountered at the Adina project is typical of a Lithium-Caesium-Tantalum (LCT) type of pegmatite. The pegmatite body is oriented sub-parallel to the general strike of the host rocks. The host rocks are composed of Archean Lac Guyer greenstone rocks, which include mafic and ultramafic rocks interlayered with horizons of metasedimentary and felsic volcanic rocks
Drill hole Information	 For the current drill program, the following information has been included for all holes reported:
	easting and northing of the drill hole collar
	 elevation or RL (reduced level – elevation above sea level in metres) of the drill hole collar
	dip and azimuth of the hole
	down hole length and interception level
	hole length
	 A summary of drill hole information was included in the Independent Geologists Report prepared by Mining Insights within the Company's prospectus
Data aggregation methods	 No sample weighting or metal equivalent values have been used in reporting.
	Aggregation issues are not considered material at this stage of project definition. No metal equivalent values were used
Relationship between mineralisation widths and intercept lengths	The pierce angle of the drilling varies from hole to hole, in order to attempt, wherever possible, to represent true widths
Diagrams	See figures and maps provided in the text of the announcement.
Balanced reporting	Winsome Resources Ltd will endeavour to produce balanced reports accurately detailing the results from any exploration activities.

Criteria	Explanation
	All drillholes and intersections have been presented in this announcement and in previous announcements.
Other substantive exploration data	All substantive exploration data has been included in ASX Announcements. No other substantive exploration data is available at this time.
Further work	 Winsome Resources Ltd continues to complete further site investigations. Further work planned includes comprehensive data interpretation, field mapping and exploration drilling.