

SIGHTER METALLURGY TEST WORK PRODUCES LITHIUM CONCENTRATE AT MT DEANS PROJECT

Highlights

- Initial processing of Mt Deans pegmatites test work delivers promising results
- Highlight outcomes include:
 - Lithium concentrate produced via simple (unrefined) flotation
 - Recoveries of 80% Li₂O into 25% of the mass
 - 3-times upgrade to original feed-grade expected to be improved upon
 - Tantalum and Tin separated and accumulated by flotation, which would then be upgraded by simple gravity methods
 - Other metals also captured K₂O, Rb₂O, Cs, Sn and Ta highlighting potential for valuable additional product streams
- Initial results delivered from test work on pulverised RC drill chips which are not optimal for flotation test work
 - New test-work on fresh outcropping pegmatite samples now underway which is expected enhance initial promising results

Aruma Resources Limited (ASX: AAJ) (**Aruma** or the **Company**) is pleased to announce initial positive results of sighter metallurgical test-work at its Mt Deans Lithium Project near Norseman, in the lithium corridor of south-eastern Western Australia (Figure 4).

The aim of the sighter test work was to establish what kind of product(s) may be produced from the Mt Deans pegmatites and provide a first step in a pathway for potential project development.

Two flotation tests were conducted. Initial results have confirmed that a lithium concentrate can be produced, with a concentrate grade of 3.1 times Li₂O feed grade returned from the flotation tests. Recoveries of 80% into 25% of the mass were achieved.

In addition, the initial float results also delivered promising upgrades relative to original feed grade for other metals; potassium (K₂O) rubidium (Rb₂O), cesium (Cs), tin (Sn) and tantalum (Ta).

The program also highlighted the potential value of the tin and tantalum at Mt Deans, with both being able to be separated in the flotation process.

Importantly, these positive initial results have been delivered from test-work on pulverised RC drill chips, which are acknowledged as being sub-optimal for flotation test work. It is anticipated that test-work utilising a crushed rock feed are expected to deliver a higher-grade concentrate and higher recoveries.

Aruma Resources Ltd ACN 141 335 364 ASX: AAJ **Issued Capital** 156,961,503 Shares 9,066,669 Options Principal Office

1st Floor, 2 Richardson Street West Perth WA 6005 T: + 61 8 9321 0177 E: info@arumaresources.com **Board and Management**

JAMES MOSES – Non-Executive Chairman GLENN GRAYSON – Managing Director PETER SCHWANN – Non-Executive Director BRETT SMITH – Non-Executive Director

With this in mind, a next phase of test work utilising fresh outcropping pegmatite samples from Mt Deans is now underway, and results will be reported when available.

Aruma's Managing Director Glenn Grayson commented:

"These sighter test-work results give us a great deal of confidence in the potential value we see at Mt Deans. To deliver a first pass concentrate of 2.64% Li₂O with another 0.6% Li₂O in the slimes, provides confidence that flotation works and that Mt Deans could deliver a typical lepidolite concentrate of around 4% Li₂O. The upgrade in the grade of all metals from this very early-stage testing shows us that further work to establish what may be achieved with the Mt Deans pegmatite is the key to realising the Project's full potential.

"Mt Deans was historically a tin mine in the 1940's, and a tantalum project 15 years ago. This, in conjunction with the potential lithium value, plus rubidium and cesium, make Mt Deans a high-potential project for Aruma."

Metallurgy Test Work Details

The initial float test results achieved high recoveries with 80% recovered in the first two concentrates. The test had a long duration and *Figure 1* shows that recoveries did not increase past six minutes.

56	We	ight	Li	₂ 0	C	Cs	Rb	2 0	S	n	Т	a	K ₂	<u>,</u> 0	N	lb
Product	a	%	Assay	Dist'n	Assay	Dist'n	Assay	Dist'n	Assay	Dist'n	Assay	Dist'n	Assay	Dist'n	Assay	Dist'n
n	б	70	%	%	ppm	%	%	%	ppm	%	ppm	%	%	%	ppm	%
Ro con 1	235	23.9%	2.51	72.7%	5,751	76.7%	1.99	78%	277	25.1%	114	16.6%	5.70	69.4%	46	36.9%
Ro con 2	45.5	4.6%	1.21	6.8%	3,178	8.2%	1.83	6%	577	10.1%	127	3.6%	2.61	6.2%	26	4.0%
Ro con 3	24	2.4%	0.44	1.3%	532	0.7%	1.54	1%	1,432	13.2%	28	3.1%	0.89	1.1%	27	2.2%
Ro con 4	18.6	1.9%	0.31	0.7%	257	0.3%	0.27	0%	1,813	13.0%	751	2.9%	0.73	0.7%	33	2.1%
Ro tail	459	46.7%	0.05	2.7%	49	1.3%	0.04	3%	93	16.4%	157	47.4%	0.38	9.1%	20	31.4%
Deslime O/F	201	20.5%	0.63	15.8%	1,118	12.8%	0.32	11%	25	22.1%	21	26.5%	1.30	13.6%	34	23.4%
Calculated Grade	983	100%	0.82	100%	1,790	100%	0.59	100%	264	100%	164	100%	1.96	100%	30	100%
Assay Grade			0.82		1,753		0.57		323		165		2.00		28	
Φ																
Õ			10	0.0%												
			9	0.0%									_			
<u> </u>			0	0.0%												
0		_	•	0.0%							Ī					
			%) 7	0.0%												
			> ~	0.00/												

 Table 1. Initial float test results.

Figure 1. Duration times of the flotation showing that recoveries did not increase past 6 minutes.

The second flotation test managed to increase the Li₂O grades by an average of 3.1 times to a grade of up to 2.64% Li₂O. Using a higher-grade sample of 1.2% Li₂O may produce a flotation concentrate above 3.5% (3.1 times increase in grade). It is noted that rubidium grades are high in the concentrate, at close to 2% Rb₂O. Potassium (K₂O) has been concentrated to 5.88%, almost a 3-times increase in grade, as can be seen in Table 2.

	Weight	Li _z	20	C	Cs	Rb	2 0	S	n	Т	a	K ₂	0	N	b
Product	9/	Assay	Dist'n	Assay	Dist'n	Assay	Dist'n	Assay	Dist'n	Assay	Dist'n	Assay	Dist'n	Assay	Dist'n
	70	%	%	ppm	%	%	%	ppm	%	ppm	%	%	%	ppm	%
Cleaner Con 1	19.4%	2.64	60.8%	5,986	64.1%	1.99	65.3%	264	17.1%	109	11.2%	5.88	58.1%	41	21.5%
Cleaner Con 2	5.2%	2.51	15.4%	5,782	16.5%	1.83	16.0%	252	4.3%	107	3.0%	5.61	14.8%	45	6.3%
Cleaner Con 3	0.7%	2.15	1.8%	5355	2.1%	1.54	1.8%	214	0.5%	97	0.4%	4.71	1.7%	42	0.8%
Cleaner Tail	4.5%	0.50	2.6%	1185	2.9%	0.27	2.0%	415	6.2%	148	3.5%	1.10	2.5%	26	3.1%
Ro tail	49.7%	0.07	4.0%	64	1.7%	0.04	3.7%	316	52.4%	222	58.7%	0.37	9.4%	37	49.6%
Deslime O/F	20.5%	0.63	15.4%	1,118	12.7%	0.32	11.1%	285	19.5%	213	23.2%	1.30	13.6%	34	18.8%
Calculated Grade	100%	0.84	100%	1,814	100%	0.59	100%	300	100%	188	100%	1.97	100%	37	100%
Assay Grade		0.82		1,753		0.57		323		165		2.00		28	

Table 2. 2nd float test results

Also of note was that the de-slime also contained lithium, with a grade of 0.63% Li₂O. Initial assumptions for this are two-fold; RC drilling generated additional fines which reported to the de-slime overflow, and the fluids used by the drillers has affected how the micas have reacted to the reagents in the flotation.

Figure 2. Mt Deans sample undergoing flotation test.

The first float test showed that cesium may be concentrated through flotation to more than 0.5% Cs, and that tin and tantalum may also be very valuable metals at Mt Deans. In excess of 50% of the tin and tantalum were present in the rougher tails for the second flotation test, indicating their potential amenability for gravity separation.

Next Steps

Based on the positive initial results, Aruma is now in process of conducting a third flotation test, and subsequent gravity separation test, utilising sample that has not been RC drilled. Pegmatite sample from outcrop at Mt Deans has been collected for this purpose, and this next phase of test work will commence immediately.

Figure 3. Mt Deans outcrop sample will be put through the floatation testing and then gravity separation. This additional sample will confirm that a detailed sampling program and test work

Background to Metallurgical Test Work Program

The metallurgical sighter test-work was undertaken at Independent Metallurgical Operations Pty Ltd.

The metallurgical sighter program was conducted utilising composite samples from Aruma's most recent phase reverse circulation (RC) drilling at Mt Deans plus some sample from Tantalum Australia drilling in 2007. Assay results for the selected samples are shown in Table 3.

Table 3. Drill hole assay results for samples used for metallurgical sighter test-work. Calculated grades are from IMO calculations

Hole Id	From	То	Li₂O %	Cs ppm	Rb ₂ 0 %	Sn ppm	Ta ppm	K ₂ O %	Nb ppm
MDC048	15	16	0.84	2190	0.21	32	78	0.92	10
	16	17	0.50	1485	0.31	164	280	1.07	32
	17	18	1.12	6350	1.40	201	345	3.05	41
MDRC014	56	57	0.85	5870	0.96	147	169	3.25	27
	57	58	0.60	3520	0.62	115	361	2.35	42
MDRC018	33	34	0.73	259	0.50	286	61	2.11	23
	34	35	1.12	523	0.76	418	330	2.56	39
	35	36	1.02	310	0.64	486	107	2.32	39
	36	37	0.96	330	0.59	473	86	2.30	27
	37	38	1.37	629	0.89	601	184	2.90	42
Average Grades			0.91	2147	0.69	292	200	2.28	32
Calculated Grades			0.82	1753	0.57	323	165	2.00	28

Results of RC Programs 1 and 2 at Mt Deans

	Hole Id	From	То	Interval	Li ₂ O	Cs	Rb ₂ O	Sn	Та	K₂O	Nb
	MDRC006	36	37	1	1.14	468	0.84	236	137	3.06	34
	MDRC011	27	34	7	1.21	1167	0.80	202	378	2.40	46
	MDRC014	36	37	1	1.12	1330	0.95	144	451	3.28	56
	MDRC018	34	38	4	1.12	448	0.72	495	177	2.52	37
	MDRC019	55	59	4	1.10	292	0.57	354	184	2.35	43
	MDRC022	19	20	1	1.20	473	0.84	265	206	3.20	42
	MDRC024	68	69	1	1.05	566	0.85	207	121	3.28	40
		75	76	1	1.08	893	0.70	173	127	2.73	24
	MDC0048	13	15	2	1.00	1050	0.86	286	333	2.71	72
>		17	18	1	1.12	6350	1.40	201	345	3.05	41
		23	24	1	1.88	1110	0.69	153	234	1.93	32
	MDC0049	5	8	3	1.23	1136	0.87	211	404	2.37	66
\mathbf{O}	MDC0050	11	12	1	1.06	950	0.79	170	433	2.42	50
()	MDC0052	21	28	7	0.97	615	0.67	236	218	2.25	32
US	The results show the lithium grades in the Aruma drilling are some four metres thick and consistently grade over 1.0% Li ₂ O. Drill hole details are included in Table 5.										

Table 4 Assays of the Mt Deans intercepts over 1.0% Li₂O

This announcement has been authorised for release by the Board of Aruma Resources Ltd.

ENDS

For further information, please contact:

Glenn Grayson Managing Director Aruma Resources Limited Telephone: +61 8 9321 0177 Mobile: +61 408 596 374 E: info@arumaresources.com

James Moses Investor Relations

Mandate Corporate Mobile: +61 420 991 574 E: james@mandatecorporate.com.au

About Aruma Resources

Aruma Resources Limited (ASX: AAJ) is an ASX-listed minerals exploration company focused on the exploration and development of a portfolio of prospective gold and lithium projects, strategically located in major, active mineralised belts in Western Australia. Its core assets include the Mt Deans Lithium Project in the lithium corridor of south-eastern WA, the Salmon Gums Gold Project in the Eastern Goldfields and the multi-commodity Saltwater Project in the Pilbara region.

Figure 4: Mt Deans Project location in the Eastern Goldfields lithium corridor

Hole ID	East	North	RL	Dip	Azimuth	Depth
MDRC0001	385477	6427089	396	-90	0	156
MDRC0002	385401	6427083	385	-90	0	156
MDRC0003	385330	6427101	381	-90	0	108
MDRC0004	385525	6427091	395	-90	0	143
MDRC0005	385554	6427099	396	-90	0	150
MDRC0006	385588	6427117	394	-60	270	150
MDRC0007	385640	6427102	396	-60	270	150
MDRC0008	385598	6427105	395	-90	0	143
MDRC0009	385569	6427101	395	-90	360	84
MDRC0010	385774	6427633	423	-60	270	22
MDRC0011	385761	6427632	424	-70	270	97
MDRC0012	385692	6427387	412	-60	90	20
MDRC0013	385709	6427630	425	-60	90	78
MDRC0014	385738	6427517	426	-60	278	77
MDRC0015	385680	6427316	408	-60	278	80
MDRC0016	385330	6426885	375	-60	271	46
MDRC0017	385366	6426886	379	-60	271	90
MDRC0018	385462	6426881	380	-60	270	48
MDRC0019	385500	6426884	377	-60	270	91
MDRC0020	385361	6426719	371	-60	270	83
MDRC0021	385339	6426563	366	-60	270	90
MDRC0022	385256	6426554	373	-60	271	30
MDRC0023	385248	6426403	361	-60	273	78
MDRC0024	385301	6426378	357	-60	273	90
MDRC0025	385375	6426399	354	-57	273	120
MDRC0026	385198	6426235	362	-60	272	38
MDRC0027	385261	6426231	357	-60	275	60
MDRC0028	385336	6426230	356	-60	275	40
MDRC0029	385426	6426584	362	-60	270	47
MDC047	385738	6427635	426	-60	270	30
MDC048	385753	6427634	425	-60	270	30
MDC049	385731	6427559	426	-60	270	20
MDC050	385649	6427321	402	-60	270	30
MDC051	385673	6427320	406	-60	270	53
MDC052	385647	6427282	401	-60	270	33
MDC053	385660	6427280	402	-60	270	55

Table 5: Drill hole details of Phase 1 and 2 Mt Deans drilling program (Grid is GDA94 Z51). Also included arehole details for the resampled historic Tantalum Australia drilling.

Competent person statement

The information in this release that relates to Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Glenn Grayson who is a Member of the Australian Institute of Geoscience (AIG). Mr Grayson is Managing Director and a full-time employee of the Company. Mr Grayson has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserve'. Mr Grayson consents to the inclusion in the release of the matters based on his information in the form and context in which it appears. All exploration results reported have previously been released to ASX and are available to be viewed on the Company website www.arumaresurces.com.au . The Company confirms it is not aware of any new information that materially affects the information included in the original announcement. The Company confirms that the form and context in which the form and context in which the original announcement.

Information in this release that relates to metallurgy and metallurgical test work is based on information reviewed and compiled by Mr Alex Borger, BSc Extractive Metallurgy and BSc Chemistry, a Competent Person who is a member of the Australian Institute of Mining and Metallurgy (AusIMM). Mr Borger is a full time employee of Independent Metallurgical Operations Pty Ltd who has been engaged by Aruma Resources to provide metallurgical consulting services. Mr Borger consents to the inclusion in the release of the matters based on his information in the form and context in which it appears.

Forwood Looking Statement

Certain statements contained in this document constitute forward looking statements. Such forward-looking statements are based on a number of estimates and assumptions made by the Company and its consultants in light of experience, current conditions and expectations of future developments which the Company believes are appropriate in the current circumstances. These estimates and assumptions while considered reasonable by the Company are subject to known and unknown risks, uncertainties and other factors which may cause the actual results, achievements and performance of the Company to be materially different from the future results and achievements expressed or implied by such forward-looking statements. Forward looking statements include, but are not limited to, statements preceded by words such as "planned", "expected", "projected", "estimated", "may", "scheduled", "intends", "anticipates", "believes", "potential", "could", "nominal", "conceptual" and similar expressions. There can be no assurance that Aruma plans to develop exploration projects that will proceed with the current expectations. There can be no assurance that Aruma will be able to conform the presence of Mineral Resources or Ore Reserves, that any mineralisation will prove to be economic and will be successfully developed on any of Aruma's mineral properties. Investors are cautioned not to place undue reliance on these forward-looking statements.

Mt Deans JORC Table 1

Section 1 Sampling Techniques and Data

The following data is in relation to Drill Holes in the announcement and the individual holes are listed in the Announcement.

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 RC drill samples are taken from various depth holes and sampled in 1m intervals Samples are listed from depth down hole. Samples were rotary split into calico bags for assay with the 1m bulk samples left on site Samples were assayed by sodium peroxide fusion followed by ICP- AES and ICP-MS
Drilling techniques	• Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	 Drilling was done with a track mounted RC rig using industry standard sampling methods.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 The best endeavours were used to ensure sample recovery and splitting gave the best quality possible. Sample weights are issued by the laboratory with assays.
Logging	• Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical	 All samples were logged geologically and qualitatively.

Criteria	JORC Code explanation	Commentary
	 studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 All samples cone split and noted wet or dry. Holes were stopped when samples were wet. The sample size satisfied the Gy size requirements.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Laboratory standards and methods will be industry standards. Duplicate field samples were at 20m intervals All sample batches were run with Laboratory Standards and Blanks All samples were weighed prior to splitting for assay Range was 0.60 to 3.75kg Average was 1.94kg with SD of 0.6kg The assays from 750g Split and pulverized to >85% <75um
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All significant intersections were inspected by at least two competent and relevant geologists. No current holes were twinned as this is not required in grass roots exploration.

Criteria	JORC Code explanation	Commentary
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	• Initial hole layout was by GPS. All locations are GDA94.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The hole spacing was done to intersect all pegmatites and follow up previous intersections The sections were nominally 100m apart and the infill holes 50m apart. Compositing was not done on any samples.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drill holes were sited and oriented to best intersect steep subvertical pegmatites
Sample security	• The measures taken to ensure sample security.	• All samples logged and numbered on site and checked as drilled, as logged, as loaded to laboratory and as submitted.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	No audits were done.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 All tenements and issues required are detailed in the reports. All work done under PoWs. All work was done in heritage cleared and permitted areas All work was done adhering to the DBCA Environmental Management Procedures
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	Previously reported (ASX: 11/01/2023)
Geology	• Deposit type, geological setting and style of mineralisation.	 Pegmatite "Tree" and "Cauldron" model published by Aruma in previous announcements and presentations.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	• All drill holes tabled in the Report and used GDA94 grid
Data	• In reporting Exploration Results, weighting averaging techniques,	• No cut-off grades or data aggregation methods have been utilised.
aggregation methods	maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	
	• Where aggregate intercepts incorporate short lengths of high grade	
	results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of	

Criteria	JORC Code explanation	Commentary
	 such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Mineralisation widths are being generated by best fit on sections.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	As done
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 This is an interim report to announce significant intersections as received The proportion of mineralised and unmineralized holes are clearly stated in the report
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 All material data available is reported for test-work conducted on the flotation of lithium. IMO conducted tests on composited material from previously reported exploration drilling campaigns. The metallurgical samples that have been provided to the laboratory for flotation assessment are detailed within the report.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	• Further work will include additional flotation testing on additional samples sourced.