

> ASX ANNOUNCEMENT

22 August 2022

ASX:TYX

Issued Capital

2,337,360,667 shares 632,500,000 @ 0.01 options 700,000,000 performance shares

Directors

Joe Graziano Paul Williams Peter Spitalny David Wheeler

Company Secretary Tim Slate

About Tyranna Resources Ltd

TYX is an Australian ASX Listed explorer focused on discovery and development of battery and critical minerals in Australia and Overseas.

It owns 80% of a 207km² lithium exploration project in the emerging Giraul pegmatite field located east of Namibe, Angola, Africa. It further holds potential nickel and gold tenements primarily in Western Australia.

Tyranna Resources Ltd ACN: 124 990 405

L3, 101 St Georges Terrace Perth WA 6000 Telephone: +61 (08) 6558 0886

info@tyrannaresources.com tyrannaresources.com

Further outstanding results from Namibe Lithium Project

Key highlights

- > Average grade of 50 samples = 3.21% Li₂O, including maximum of 9.74% Li₂O
- > High grade spodumene present; average grade 7.49% Li₂O, maximumof 7.88% Li₂O
- > High quality spodumene; undegraded and very low concentrations of contaminants
- > Widespread occurrence of spodumene at site 21n confirms the potential for economically significant lithium mineralisation

Tyranna executive director Paul Williams commented: "We are very excited by these results which provide further encouragement and confirmation that the Namibe Lithium Project contains substantial high grade spodumene mineralisation and justifies Tyranna's acquisition of what is proving to be a valuable project. We have defined a larger drill- target area at the site known as 21n, and these results in particular provide further confidence in designing our maiden drilling program. We are looking forward to the next phase of exploration to test these areas at depth."

Summary

Tyranna Resources Ltd (**ASX: TYX**) is very pleased to inform investors of the assay results from the 50 rock-chip samples collected in July. A summary of the key results is:

- > Majority of samples (46) collected to assess visible Li-mineralisation
- > Of these samples, the range of grade was 0.10% 9.74% Li₂O, averaging 3.21% Li₂O
- > 25 of the samples contained spodumene
- 3 13 spodumene-bearing samples comprised a mixture of minerals, averaging 3.40% Li₂O
- > 12 monomineralic spodumene samples, averaging 7.49% Li₂O; very low Fe, Mg & P

These results confirm that high quality lithium mineralisation is present within the Namibe Lithium Project with sufficient abundance to warrant continued investigation of the rest of the pegmatite field, which is greatly underexplored.

TYX

Rock-chip sampling results

A key objective of the recently completed fieldwork was a more in-depth investigation of the currently known sites of lithium mineralisation, focussing upon sites 19a, 19b, 21g, 21k and 21n. While travelling to reach site 21g, a small beryl-rich pegmatite was seen and sampled, and this site has been allocated site code 22a.

A total of 50 samples were collected. The sampling strategy is detailed in Appendix 1, with sample location and nature included at Appendix 2 and all assay results included at Appendix 3. The results for each site are summarised in Table I and the average lithia concentration (% Li₂O) of lithium mineral samples for each site is displayed in Figure 1.

	Table 1: Summary of results for sites 19a, 19b, 21g, 21k, 21n and 22a									
\bigcirc	Site	Samples	Diagnostic samples	Samples with Li minerals	Li minerals present in samples	Range % Li ₂ O in Li samples	Average % Li ₂ O of Li samples			
	19a	6		6	LiFeMn phosphate*1	0.21– 1.45	0.73			
(115	19b	4		4	spodumene	5.11– 7.88	6.71			
QP	21g	1		1	LiFeMn phosphate*1	0.17	0.17			
26	21k	8	3	5	LiFeMn phosphate*1	0.12-0.94	0.60			
	21n	30		30	spodumene , LiMnFe phosphate*1, elbaite*2, lepidolite, amblygonite*3	0.03– <mark>9.74</mark>	4.18			
	22a	1	1	nil	N/A	0.09*4	0.09*4			

Table 1: Summary of results for sites 19a, 19b, 21g, 21k, 21n and 22a

*1 triphylite-lithiophilite, *2 elbaite = Li-enriched variety of tourmaline, *3 amblygonite-montebrasite, *4 the Li is contained in beryl, which is not a Li mineral but can contain Li and other elements

Figure 1: Location of sites sampled in July 2022; pegmatites red, access track magenta. Note that the majority of the pegmatites in the project remain to be inspected and sampled.

The presence of lithium phosphate minerals at all the sites sampled, except for site 19b where it has not yet been observed but is expected to be present, suggests a compositional link between the pegmatites that is significant. As an example:

- Site 21n; triphylite-lithiophilite (lithium iron manganese phosphate) is common, peak assay result = 1.47% Li₂O, and spodumene is abundant
- Site 19a; triphylite-lithiophilite (lithium iron manganese phosphate) is common, peak assay result = 1.45% Li₂O, and spodumene not yet observed ... BUT is it present at depth?

The results from Site 19a are important because they confirm that lithium enrichment is widely distributed in this large pegmatite. Given the occurrence of triphylite-lithiophilite at both Site 21n, which contains spodumene, and site 19a, it is possible that spodumene may occur in an unexposed part of Site 19a. Further investigation of the possibility of an unexposed spodumene-bearing zone at Site 19a is warranted.

Although Site 21n has the most abundant occurrences of lithium minerals known to-date within the project area, it must be remembered that more than 95% of the pegmatites in the project area remain to be inspected and sampled!

Site 21n is comprised of a swarm of close-spaced pegmatite dykes and it was apparent that lithium minerals were present at numerous locations, e.g. Figure 2, so detailed sampling was completed to establish the abundance and grade of the lithium mineralisation. Results confirmed that high-grade lithium mineralisation is present across a substantial area of site 21n (Figure 3).

Figure 2: Spodumene crystal (labelled spd) in small pit at 221551mE/8322676m and sampled as NR 016, which assayed 7.76% Li₂O. Angolan field/logistics assistant Joao Paul Boy provides scale.

Figure 3: Location and assay results (% Li₂O) of samples collected from Site 21n

Although spodumene is the dominant lithium mineral at Site 21n, several other lithium minerals are also present. Lithium iron manganese phosphate occurs in the wall zone of many of the pegmatites, but the interior zones are more important, containing spodumene and other lithium minerals, associated with enrichment of other elements (Table 2).

Table 2: Summary of composition of mixed Li-mineral samples from sites 21n and 19b

19 4 4
4
4
15
24
27
5
<1
12
27963
4
4
12
22
21

qtz = quartz, alb = albite, mic = microcline, musc = muscovite, spd = spodumene, lep = lepidolite, elb = elbaite (tourmaline variety), tant = tantalite, be = beryl, spes = spessartite (garnet variety)

It is important to note that many LCT pegmatites produce products in addition to lithium minerals, e.g., Greenbushes; Tin (Sn), Bernic Lake (aka "Tanco"); Tantalum (Ta) and pollucite (a Caesium (Cs) mineral); and Bikita; beryl (a Beryllium (Be) mineral). It is clear from the results in Table 2 that the pegmatites at Site 21n may contain economically significant quantities of other minerals in addition to the more abundant spodumene.

The spodumene observed to-date at both site 21n and site 19b appears unaltered by post-consolidation fluids, which is confirmed by the assay results (Table 3), in which the average concentration of Li₂O in the spodumene is 7.49%. Furthermore, the concentration of deleterious elements, or contaminants, specifically Iron (Fe), Potassium (K), Calcium (Ca), Phosphorus (P) and Magnesium (Mg) within the spodumene is very low, highlighting the exceptionally high quality of the spodumene.

	Site code	Sample I.D.	Li ₂ O (%)	Fe (ppm)	K (ppm)	Ca (ppm)	P (ppm)	Mg (ppm)
2	21n	NR003	7.54	6300	<1000	<1000	<100	300
	21n	NR007	7.46	6200	3000	<1000	200	<100
5	21n	NR008	6.52	6700	5000	1000	100	200
\cup	21n	NR011	7.86	9100	<1000	<1000	<100	<100
2	21n	NR016	7.76	6400	<1000	<1000	<100	100
())	21n	NR017	7.86	6600	<1000	<1000	<100	200
Ч	21n	NR019	7.63	5300	<1000	<1000	300	100
\sum	21n	NR022	8.10*	7400	<1000	<1000	100	200
2	21n	NR023	7.40	5300	<1000	<1000	<100	<100
	19b	NR042	7.88	6700	1000	<1000	200	<100
	19b	NR043	6.45	9100	1000	<1000	300	200
7	19b	NR044	7.40	7300	2000	<1000	1100	200

 Table 3: Summary of composition of spodumene specimens from sites 21n and 19b

Repeat assay result for NR022 = 7.78% Li₂O. Theoretical spodumene maximum concentration = 8.03% Li₂O

These results are important because they confirm that the spodumene is of a high quality which has the potential to be processed to yield a high quality, high value spodumene concentrate.

Although most of the spodumene observed (and sampled) at site 21n occurred as very coarse-grained giant crystals, sample NR013 (3.39% Li₂O) was comprised of fine-grained spodumene intergrown with quartz and feldspar (?albite) in a cresscumulate (i.e. unidirectional crystal growth habit). This proves that the pegmatites contain spodumene in more than 1 form, which is common in these types of zoned complex pegmatites. This occurrence of fine-grained growth habit is important because:

a) Spodumene in this form is very easily overlooked or not recognised

b) Spodumene in this form is more easily weathered

c) Spodumene in this form is likely to be obscured by soil and rubble, especially on slopes

These points suggest that spodumene is likely to be present to a greater extent than sampling to-date has demonstrated, both within individual pegmatites and in those poorly exposed pegmatites that present a sampling challenge.

Next steps

In accordance with the project plan the Company will commence its maiden drilling campaign in the next quarter and will continue to provide market updates leading up to and during the course of the campaign.

Authorised by the Board of Tyranna Resources Ltd Joe Graziano Director

Competent Person's Statement

The information in this report that relates to exploration results for the Namibe Lithium Project is based on, and fairly represents, information and supporting geological information and documentation that has been compiled by Mr Peter Spitalny who is a Member of the AusIMM. Mr Spitalny is employed by Han-Ree Holdings Pty Ltd, through which he provides his services to Tyranna as an Executive Director; he is a shareholder of the company. Mr Spitalny has more than five years relevant experience in the exploration of pegmatites and qualifies as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (the JORC Code). Mr Spitalny consents to the inclusion of the information in this report in the form and context in which it appears.

Forward Looking Statement

This announcement may contain some references to forecasts, estimates, assumptions and other forward-looking statements. Although the company believes that its expectations, estimates and forecast outcomes are based on reasonable assumptions, it can give no assurance that they will be achieved. They may be affected by a variety of variables and changes in underlying assumptions that are subject to risk factors associated with the nature of the business, which could cause actual results to differ materially from those expressed herein. All references to dollars (\$) and cents in this presentation are to Australian currency, unless otherwise stated. Investors should make and rely upon their own enquires and assessments before deciding to acquire or deal in the Company's securities.

Appendix 1: Rock-chip sampling strategy

Sampling at each site targeted in-situ mineralisation, with the intent to confirm the extent and composition of lithium mineralisation at each site. The type of samples collected was dictated by the nature of the mineral occurrence at each sampling location, along with practical limitations in the actual collection of the sample in a time and cost-effective manner. They represent the mineralisation present at the sampling point and collectively provide a guide to the mineralisation within the pegmatite but considered in isolation are not representative of the entire pegmatite.

Although channel-sampling across entire rock-faces or outcrops would yield samples that better represent the composition of the entire pegmatite, this was not possible as a channel saw was not available. Furthermore, channel-sampling is a very slow sampling method and coverage of individual sites and the number of sites able to be assessed would have been greatly reduced in the time that was available.

Within the small workings where giant spodumene crystals locked in a solid matrix are exposed (Figure 4), sampling was achieved through chipping-off fragments of the giant crystals to collect monomineralic spodumene specimens.

Figure 4: Pit wall exposing a pegmatite at site 21n from which sample NR003 was collected; spodumene crystals indicated by spd label. Geopick provides scale.

Also, in some instances (e.g., NR022, NR023, NR042) residual in-situ spodumene crystals occur surrounded by weathered material derived from the matrix that formerly enclosed the spodumene crystal (Figure 5). In this situation the most practical sampling method is also collection of monomineralic spodumene specimens.

Figure 5: Spodumene crystals (labelled spd) in weathered ground; sample NR022

Apart from the practical sampling limitations mentioned above, monomineralic specimens were also collected for the following reasons:

to assist characterisation of the Li mineralisation (samples of spodumene, lithium phosphates and lepidolite), including purity, alteration, and trace-element signature

interpretation of Li mineralisation potential where outcrop was limited (NR034, NR037, NR039 and NR045)

to confirm the identity of some minerals that were difficult to identify in the field, i.e., NR018, suspected to be amblygonite-montebrasite and confirmed as such through the assay results; very high Li₂O (9.74%) which is greater than possible in spodumene, along with very high P, confirming it to be a phosphate mineral and not eucryptite.

However, in the majority of cases the material sampled was of pegmatite comprised of a mixture of minerals. This was a natural consequence of mineral occurrences that were more fine-grained rather than giant crystals but also applies to samples NR0047–NR050, which were fragments of very coarse-grained pegmatite broken out of small workings. These samples have a varied and mixed composition that represents the range of minerals present in the adjacent pegmatite and were collected for that reason.

Appendix 2: Rock-chip sample register

	Site Code	Sample I.D.	Easting (mE)	Northing (mN)	Grid	Sample source	Composition
	21n	NR001	221550	8322810	WGS-84 z33L	lag adjacent to outcrop	spd-qtz-lep-alb
	21n	NR002	221570	8322805	WGS-84 z33L	lag adjacent to outcrop	spd-alb-qtz-lep
	21n	NR003	221586	8322796	WGS-84 z33L	exposure in pit	spd
\rightarrow	21n	NR004	221590	8322794	WGS-84 z33L	exposure in pit	spd-alb-qtz-lep
	21n	NR005	221596	8322782	WGS-84 z33L	exposure in pit	weathered Li-FeMn phosphate, qtz
	21n	NR006	221619	8322744	WGS-84 z33L	outcrop	qtz-alb-lep
	21n	NR007	221621	8322744	WGS-84 z33L	lag adjacent to outcrop	spd
10	21n	NR008	221618	8322729	WGS-84 z33L	exposure in trench	spd
	21n	NR009	221616	8322728	WGS-84 z33L	exposure in trench	qtz-alb-lep-spd (-tant?)
	21n	NR010	221615	8322725	WGS-84 z33L	outcrop	lep (massive)
\subseteq	21n	NR011	221641	8322737	WGS-84 z33L	lag adjacent to outcrop	spd
	21n	NR012	221622	8322677	WGS-84 z33L	exposure in pit	weathered Li-FeMn phosphate (-qtz-spes-elb-alb)
al	21n	NR013	221620	8322680	WGS-84 z33L	outcrop	qtz-spd-fsp (-clay)
	21n	NR014	221588	8322665	WGS-84 z33L	exposure in pit	weathered Li-FeMn phosphate, qtz-musc
<u>E</u>	21n	NR015	221563	8322677	WGS-84 z33L	exposure in pit	weathered Li-FeMn phosphate, qtz-musc
RA	21n	NR016	221551	8322676	WGS-84 z33L	exposure in pit	spd
O5	21n	NR017	221549	8322687	WGS-84 z33L	exposure in trench	spd (-clay)
	21n	NR018	221550	8322684	WGS-84 z33L	exposure in pit	amblygonite-montebrasite
	21n	NR019	221538	8322700	WGS-84 z33L	exposure in pit	spd
	21n	NR020	221570	8322688	WGS-84 z33L	exposure in trench	weathered Li-FeMn phosphate
	21n	NR021	221576	8322752	WGS-84 z33L	exposure in pit	weathered Li-FeMn phosphate, qtz-musc
	21n	NR022	221565	8322768	WGS-84 z33L	outcrop	spd
ad	21n	NR023	221560	8322757	WGS-84 z33L	outcrop	spd
UU	21n	NR024	221485	8322772	WGS-84 z33L	lag adjacent to outcrop	spd (-mic)
	21n	NR025	221451	8322754	WGS-84 z33L	exposure in pit	weathered Li-FeMn phosphate
	21n	NR026	221449	8322753	WGS-84 z33L	exposure in pit	qtz-spd-mic-be-elb
	19a	NR027	225378	8320766	WGS-84 z33L	exposure in pit	weathered Li-FeMn phosphate
\square	19a	NR028	225412	8320745	WGS-84 z33L	exposure in pit	weathered Li-FeMn phosphate
	19a	NR029	225438	8320742	WGS-84 z33L	exposure in pit	weathered Li-FeMn phosphate
26	19a	NR030	225414	8320740	WGS-84 z33L	exposure in pit	weathered Li-FeMn phosphate
$\left(\left(\right) \right)$	19a	NR031	225372	8320724	WGS-84 z33L	exposure in pit	weathered Li-FeMn phosphate (-heterosite)
T	19a	NR032	225391	8320755	WGS-84 z33L	exposure in pit	weathered Li-FeMn phosphate
	21k	NR033	225493	8323119	WGS-84 z33L	lag adjacent to outcrop	weathered Li-FeMn phosphate
615	21k	NR034	225516	8323146	WGS-84 z33L	outcrop	musc (massive)
	21k	NR035	225491	8323160	WGS-84 z33L	lag adjacent to outcrop	weathered Li-FeMn phosphate
\sim	21k	NR036	225440	8323172	WGS-84 z33L	exposure in trench	weathered Li-FeMn phosphate, qtz
	21k	NR037	225437	8323174	WGS-84 z33L	small dump	be (white)
	21k	NR038	225426	8323189	WGS-84 z33L	exposure in trench	weathered Li-FeMn phosphate, qtz
	21k	NR039	225417	8323182	WGS-84 z33L	exposure in trench	musc (massive)
(21k	NR040	225403	8323237	WGS-84 z33L	exposure in trench	weathered LI-FeMn phosphate, qtz
	_19b	NR041	226120	8323022	WGS-84 z33L	outcrop	spd
$(\bigcirc$	19b	NR042	226113	8323014	WGS-84 z33L	outcrop	spd
	196	NR043	226106	8323000	WGS-84 z33L	outcrop	spd
	190	NR044	226109	8323026	WGS-84 Z33L	exposure in trench	spa
	22a	NRU45	228416	8318692	WGS-84 Z33L	stockpile next to pit	be (pale green)
	21g		229010	0318845	WGS-84 Z33L	exposure in trench	weathered LI-Fewin phosphate, qtz-musc
	21n	NRU4/	221565	8322795	WGS-84 Z33L	large dump	50% spd, 35% alb, 5% qtz, 10% elb
	210		221365	0322/95	WGS-84 Z33L	large dump	15% spq, 10% alp, 70% qtz, 5% musc
	21n	NR049	221565	8322795	WGS-84 Z33L	large dump	10% spd, 20% alb, 60% qtz, 5% lep, 5% elb
	21n	NR050	221565	8322795	WGS-84 z33L	large dump	15% spd, 75% alb, 9% qtz,1% elb

qtz = quartz, alb = albite, mic = microcline, musc = muscovite, spd = spodumene, lep = lepidolite, elb = elbaite (tourmaline variety), tant = tantalite, be = beryl, spes = spessartite (garnet variety), Li-FeMn phosphate = triphylite-lithiophilite

Appendix 3: Rock-chip sample assay results

	KM-2208-		De	0.0	NIL	41	В	Do	00	Fe	V	Dh	C =	Та	v	Ma	Ma	D	e:	-
	063597 Mothod		Be	CS	ND	AI	B	Ва	Са	Fe	K	KD ICD005	Sn		Y ICDOOF	Mg	Mn		SI	
	Unite	1CP005 %	ICP005	ICP005	ncP005	ICP005	DDm	ICP005	ICP005	ICP005	DDm	DDDD	DDm	ICP005	DDDD	ICP005	ICP005	10P005	ICP005	nom
		0.001	1 1	1 1	5	100	50	50 ppm	1000	100	1000	5	1 ppm	ppm 1	2 ppm 1	100	10	100	100	100
	NB001	4.085	19	1145	75	120000	750	<50	<1000	5200	32000	3610	504	59	10	100	1380	100	290500	<100
	NR002	2.506	4	466	35	104900	<50	<50	<1000	3200	9000	1065	89	51	<1	100	250	300	323900	1000
	NR003	7.539	1	305	10	137900	250	<50	<1000	6300	<1000	45	376	7	1.0	300	710	<100	300800	<100
	NR004	5.571	4	288	80	123900	500	<50	<1000	4400	4000	490	751	89	1.0	300	530	1100	322000	200
F	NR005	0.833	21	183	5	68900	4700	200	32000	52200	5000	285	705	6	5.0	700	60030	60300	157800	<100
((NR006	1.705	15	2644	60	125900	350	<50	<1000	5600	70000	5485	654	102	<1	800	1460	400	269400	200
	NR007	7.462	<1	61	10	137100	<50	<50	<1000	6200	3000	165	206	3	1.0	<100	590	200	296400	<100
6	NR008	6.522	3	176	15	134100	<50	<50	1000	6700	5000	575	116	13	<1	200	680	100	305300	<100
$\left(\left(\right) \right)$	NR009	3.954	24	2812	125	140000	250	<50	<1000	1300	70000	8885	1721	155	<1	200	1950	100	250100	<100
0	NR010	3.888	27	4254	150	144900	350	<50	<1000	1000	84000	11320	263	132	<1	200	2220	200	235400	<100
	NR011	7.862	2	16	5	142200	<50	<50	<1000	9100	<1000	20	264	2	<1	<100	870	<100	308900	<100
6	NR012	1.061	8	772	15	58800	5550	1000	38000	59000	10000	830	151	14	<1	1600	82270	72800	144300	100
((NR013	3.393	5	48	20	72200	50	100	136000	10900	2000	55	82	17	3.0	9000	420	700	202000	1200
6	NR014	0.029	29	20	10	49000	<50	250	40000	36100	4000	120	23	5	<1	500	29470	46400	239500	<100
0	NR015	0.711	6	33	<5	38700	100	450	70000	55000	5000	150	128	3	<1	1300	116350	104500	120500	<100
$\left(\left(\right) \right)$	NR016	7.759	<1	190	15	140600	<50	<50	<1000	6400	<1000	95	144	13	<1	100	500	<100	303700	<100
C	NR017	7.863	<1	80	10	141600	<50	<50	<1000	6600	<1000	25	253	12	<1	200	300	<100	304300	100
	NHU18	9.735	<i< th=""><th>10</th><th><5</th><th>1/8300</th><th><50</th><th>150</th><th>1000</th><th>5200</th><th><1000</th><th><5 60</th><th>86</th><th><1</th><th>ا> د</th><th><100</th><th>200</th><th>206900</th><th>0000</th><th>1300</th></i<>	10	<5	1/8300	<50	150	1000	5200	<1000	<5 60	86	<1	ا> د	<100	200	206900	0000	1300
	NR019	0.265	<1	320	10	21200	<50	2600	54000	94300	<1000	60	346	9	1>	1900	147450	109800	296100	<100
	NR020	0.205	22	111	10	32700	1550	2000	32000	71500	5000	280	61	1	9.0	1600	117520	11/100	127000	<100
	NR021	8 102	1	14	<5	143000	<50	<50	<1000	7400	<1000	200	332	2	<1	200	820	100	311700	<100
	NR023	7.396	<1	11	<5	138500	<50	<50	<1000	5300	<1000	20	184	4	<1	<100	1330	<100	296200	100
_	NR024	4.639	12	199	5	125700	<50	100	<1000	6000	46000	1680	123	4	1.0	<100	530	800	311200	<100
$\left(\right)$	NR025	1.466	40	14	<5	6600	<50	1100	20000	128300	9000	80	9	<1	4.0	1300	220540	147200	14600	<100
9	NR026	0.719	27963	3927	10	100700	1800	<50	<1000	11200	11000	760	30	6	<1	<100	690	300	301400	<100
	NR027	0.213	140	15	<5	9900	<50	450	37000	238900	4000	50	5	<1	6.0	3000	79030	151900	33800	<100
(((NR028	0.570	16	6	<5	2300	<50	650	40000	255500	3000	20	3	<1	1.0	8400	70040	173000	7100	<100
\geq	NR029	1.454	60	11	<5	6900	450	200	25000	237700	1000	10	32	<1	3.0	8300	60220	165100	26500	500
6	NR030	0.635	14	6	<5	2500	<50	200	22000	239700	3000	25	7	<1	3.0	7600	64810	180600	22000	<100
((NR031	0.613	8	6	<5	3200	150	50	36000	232100	2000	15	3	<1	<1	4600	72310	160900	40300	<100
6	NR032	0.873	28	14	<5	2800	<50	50	19000	244100	2000	50	16	<1	<1	3900	77630	175200	25700	<100
0	NR033	0.769	11	8	<5	5600	<50	200	23000	264700	5000	65	6	<1	4.0	6200	50610	171200	27300	<100
$(\cup$	NR034	0.097	21	48	200	140100	250	100	1000	15700	62000	1280	77	21	4.0	1700	390	800	263800	500
$\widetilde{\alpha}$	NR035	0.937	5	2	<5	5900	<50	300	30000	255000	5000	20	2	<1	6.0	4400	54500	169900	26000	<100
2	NRU30	0.256	20	024	70	06000	<50	500	<1000	231600	1000	115	0	5	7.0	100	41/70	126500	207000	100
6	NR037	0.340	44002	934	-5	3800	<50	500	28000	148300	3000	30	~1	<1	9.0	2000	25910	166400	297000	<100
$\left(\left(\right) \right)$	NR039	0.122	39	297	130	174100	350	100	20000	12300	73000	1610	220	114	10.0	1500	20910	3000	215300	300
6	NB040	0.924	22	7	<5	16100	<50	150	24000	233400	5000	60	6	<1	4.0	4100	50100	170900	48500	<100
6	NR041	5,109	21	576	<5	85800	<50	<50	9000	102400	2000	65	139	<1	<1	1700	31410	70900	176400	<100
((NR042	7.878	108	887	10	143300	<50	<50	<1000	6700	1000	120	187	12	1.0	<100	440	200	305600	<100
\geq	NR043	6.450	16	1149	15	129000	400	<50	<1000	9100	1000	75	128	122	1.0	200	340	300	303300	<100
	NR044	7.396	4	368	25	137200	<50	<50	<1000	7300	2000	85	175	7	<1	200	400	1100	295600	<100
$\overline{\Omega}$	NR045	0.092	40265	415	10	85400	<50	<50	<1000	11500	2000	45	8	1	1.0	400	160	200	320800	100
2	NRO46	0.173	12	9	15	4100	<50	400	58000	249700	2000	50	2	<1	6.0	2200	79880	153100	20800	<100
6	NR047	5.547	4	284	25	135600	1700	<50	<1000	6900	5000	510	282	20	<1	300	800	100	291900	600
$\left(\left(\right) \right)$	NR048	0.691	4	125	20	40200	100	<50	<1000	6600	5000	440	119	7	<1	100	1640	1300	388100	<100
6	NR049	2.368	12	852	105	116600	700	<50	<1000	2600	21000	2395	135	100	<1	200	850	300	297500	<100
	NR050	3.884	22	144	40	117200	300	<50	<1000	4000	3000	290	226	63	<1	100	300	200	314100	<100
	NR022 REP	7.782	1	13	<5	144100	<50	<50	<1000	7700	<1000	20	322	2	<1	200	860	100	302200	<100
-	NR046 REP	0.169	12	9	15	4100	<50	400	57000	242100	2000	55	2	<1	6.0	2100	79380	153100	19900	<100
				5			00		2.000			00	-		0.0	2.00				

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

2	Criteria	JORC Code explanation	Commentary
((((((((Sampling techniques	 Nature and quality of sampling (eg. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg. submarine nodules) may warrant disclosure of detailed information. 	 Rock-chip samples. Samples collected were around 2–3kg and comprised of grab samples of rock or of mineral specimens, mostly collected from pegmatite outcrop. Samples included grab samples of rock from random outcrops along with selected mineral specimens chosen to enable determination of fractionation indices or confirm presence of diagnostic LCT enrichment and enable geochemical characterisation of individual pegmatites. Specimens of suspected lithium minerals are a valid means of assessing the tenor and quality of lithium mineralisation and may enable verification of mineral species. An explanation of the sampling methods is included as Appendix 1. A total of 50 samples were collected by an experienced field geologist and sent to Geoangol Laboratories (Angola) for processing to pulps, with pulps then exported to Nagrom Laboratory in Perth, Western Australia, for analyses. Laboratory QAQC duplicates and blanks were inserted.
	Drilling techniques	 Drill type (eg. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (eg. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.). 	Not applicable; no drilling results discussed.
	Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Not applicable; no drilling results discussed.
])	Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 Rock-chip samples are not logged, however basic topography, environment, sample nature and geological, mineralogical, and petrographic details are recorded.

Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Not applicable; drilling results not discussed. All samples dry. Laboratory standards, splits and repeats will be used for quality control. The sample type and method are of acceptable standard for first pass pegmatite mapping or sampling and represents standard industry practice at this stage of investigation.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc Nature of quality control procedures adopted (eg. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Sample preparation is integral to the analysis process as it ensures a representative sample is presented for assay. The preparation process includes sorting, drying, crushing, splitting, and pulverising. Rock Chip samples were assayed by Nagrom Perth Laboratory for multi-elements using Sodium Peroxide Fusion and ICPMS analysis for Li₂O(%), Be, Cs, Nb, Rb, Sn, Ta & Y, and ICPOES analysis for Al, B, Ba, Ca, Fe, K, P, Si, & Ti. Laboratory standards, splits and repeats were used for quality control.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Assay results have been checked and validated by Tyranna, utilising their Competent Person, who has sufficient experience to complete this task reliably. Data entry carried out by field personnel thus minimizing transcription or other errors. Careful field documentation procedures and rigorous database validation ensure that field and assay data are merged accurately. Data has been checked. No adjustments are made to assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Sample locations picked up with handheld Garmin <i>GPSmap64</i>, having an accuracy of approximately +/- 3m. (sufficient for first pass pegmatite mapping). All locations recorded in WGS-84 Zone 33L Topographic locations interpreted from GPS pickups (barometric altimeter) and field observations. Adequate for first pass pegmatite mapping.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Samples were selected by the geologist to assist with identification of the nature of the mineralisation present at each location. No set sample spacing was used and samples were taken based upon geological variation at the location. Sample compositing was not applied.

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Surface samples of "points" only. Does not provide orientation, width information. Associated structural measurements and interpretation by geologist can assist in understanding geological context.
Sample security	The measures taken to ensure sample security.	 Samples were securely packaged when transported to ensure safe arrival at assay facility.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Not necessary at this stage of the exploration.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Namibe Lithium Project is comprised of a single licence, Prospecting Title No. 001/02/01/T.P/ANG-MIREMPET/2022, held 100% by VIG World Angola LDA, who have signed a legally binding agreement with Angolan Minerals Pty Ltd, such that Angolan Minerals Pty Ltd will purchase the licence to acquire 100% ownership. Tyranna has signed a legally binding agreement in which it acquires 80% ownership of Angolan Minerals Pty Ltd and thus has an 80% ownership of the Namibe Lithium Project. The project is located in an undeveloped land east of the city of Namibe, provincial capital of Namibe Province in southwest Angola. The project area is not within reserves or land allocated to special purposes and is not subject to any operational or development restrictions. The granted licence (Prospecting Title) was granted 25/02/2022 and is valid until 25/02/2024, at which time the term may be extended for an additional 5 years. The licence is maintained in good-standing
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Historical exploration was completed in the late 1960's until 1975 by The Lobito Mining Company, who produced feldspar and beryl from one of the pegmatites. Another company, Genius Mineira LDA was also active in the area at this time. There was no activity from 1975 until the mid-2000's because of the Angolan Civil War. There has been very little activity since that time, with investigation restricted to academic research, re-mapping of the region as part of the Planageo initiative and an assessment by VIG World Angola LDA in 2019 of the potential to produce feldspar from the pegmatite field. Exploration by VIG World focussed upon mapping of some pegmatites and selective rock-chip sampling to determine feldspar quality.

Criteria	JORC Code explanation	Commentary
Geology	Deposit type, geological setting and style of mineralisation.	 The Giraul Pegmatite Field is comprised of an estimated 600 pegmatites that have chiefly intruded metamorphic rocks of the Paleoproterozoic Namibe Group. The pegmatites are also of Paleoproterozoic age and their formation is related to the Eburnean Orogeny. The pegmatite bodies vary in orientation, with some conformable with the foliation of enclosing metamorphic rocks while others are discordant, cross-cutting lithology and foliation. The largest pegmatites are up to 1500m long and outcrop widths exceed 100m. Pegmatites within the pegmatite field vary in texture and composition, ranging from very coarse-grained through to finer-grained rocks, with zonation common. Some of the pegmatites contain lithium minerals although no clear control upon the location of the lithium pegmatites is known at present and the distribution of the lithium pegmatites of the Lithium-Caesium-Tantalum (LCT) family and include LCT-Complex spodumene pegmatites.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Not applicable; drilling results not included in the announcement. The location and description of samples is included in the report as Appendix 2.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/ or minimum grade truncations (eg. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Rock chip sample results are reported as individual surface samples from a specific sample point. In addition, an average for all sample sites is also reported, with the average being the mean of all sample results for % Li₂O, i.e. sum of 50 assays/50. An average was also reported for each of the 6 sites/ prospects sampled, being the mean % Li₂O, calculated as the sum of assays of samples containing Li minerals/number of samples containing Li minerals. An average % Li₂O (mean % Li₂O) was calculated for spodumene as the sum of % Li₂O for all the monomineralic spodumene samples/number of monomineralic spodumene samples. In all cases where a mean has been calculated, no weightings or maximum or minimum cut-offs were utilised.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg.'down hole length, true width not known'). 	 Not applicable as drilling is not being reported. Rock chip sample results of individual samples from the surface have been reported as point data.

Criteria	JORC Code explanation	Commentary
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Drilling is not discussed in the report, so drill plans and cross-sections are not included. Maps displaying locations of mineralised samples collected from the surface are included in the report.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	Results of all assays are included as Appendix 3.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	All meaningful & material exploration data has been reported
Further work	 The nature and scale of planned further work (eg. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 At the time of reporting, the results were still being evaluated but it is envisaged that in the short term further mapping and sampling is warranted to investigate potential additional lithium pegmatites. In the longer term, drilling to test extensions at depth will be required.