LATIN RESOURCES LIMITED ACN: 131 405 144 Unit 3, 32 Harrogate Street, West Leederville, WA 6007 P +61 8 6117 4798 E info@latinresources.com.au W www.latinresources.com.au 27 July 2022 # COLINA LITHIUM UPDATE RESOURCE DRILLING CONTINUES TO SHOW CONSISTENT HIGH-GRADE LITHIUM UP TO 4.22% Li₂O #### **HIGHLIGHTS** - Resource definition diamond drilling at Colina progressing well, approximately one quarter of planned 100 drill holes completed, total of approximately 5,890m. - The program continues to ramp up to accelerate the maiden resource estimate, with a fourth diamond drill rig on site and drilling. - Latest assay results continue to show strong down dip continuity of both grade and thickness of the logged pegmatites, peak grade of 4.22% lithium. Results include: SADD017: 8.87m @ 1.09% Li₂O from 137.00m Inc: 1.00m @ 2.02% Li₂O from 137.00m 13.86m@ 1.33% Li₂O from 173.29m Inc: 7.00m @ 1.93% Li₂O from 178.00m SADD018: 9.16m @ 1.68% Li₂O from 133.84m Inc: 6.00m @ 2.16% Li₂O from 135.0m Inc: 1.00m @ 3.52% Li₂O from 137.00m 16.00m@ 1.29% Li₂O from 189.00m Inc: 1.00m @ 3.06% Li₂O from 190.00m and: 1.00m @ 4.22% Li₂O from 196.00m SADD019: 11.96m@ 1.64% Li₂O from 206.24m Inc: 8.20m @ 1.82% Li₂O from 210.00m SADD020: 2.35m @ 3.57% Li₂O from 120.33m 7.58m @ 1.45% Li₂O from 143.77m Inc: 1.60m @ 2.45% Li₂O from 144.40m Regional mapping teams recommenced field work in the area immediately to the west of Colina targeting a parallel pegmatite system; and further to the south-east at the Salinas South tenement area, where previous work identified a 'lithium corridor' over a distance of 4.0km. Latin Resources Limited (ASX: LRS) ("Latin" or "the Company") is pleased to provide the following update on resource definition drilling and other studies currently ongoing at the Company's 100% owned high-grade Colina Lithium Prospect ("Colina") (Appendix 1 and Figure 1). #### Latin Resources' Exploration Manager, Tony Greenaway, commented: "We are very pleased with the progress being made on site in Brazil, with activity on multiple fronts including the systematic resource definition diamond drilling, and our latest results continuing to show excellent high-grade lithium intersections and continuity of the pegmatites along strike and down dip. "We now have our fourth drill rig operational on site, so we are up and running at full speed. We have a first-class drilling crew on site, who are maintaining high drilling production rates, and more importantly, excellent core quality coming out of the ground. With around one quarter of the holes now completed, we are well on track to deliver our maiden JORC Resource Estimate by the end of CY22. "I am also pleased to have our regional teams out mapping to the west of Colina and at Salinas South where we know we have more outcropping pegmatites. Our plan is to work-up these areas to drillready status, and then in the near term commence drilling to begin testing these new areas." Figure 1: Colina Prospect area showing completed drill collars¹ and significant intersections received to date #### **Colina Prospect - Resource Definition Drilling** **SADD020:** Latest assay results from diamond drilling at the Company's 100% owned Colina Prospect, part of the broader Salinas Lithium Project in Brazil, continue to confirm the continuity of grade and thickness of the high-grade Colina pegmatites at depth. Latest results include²: SADD017: 8.87m @ 1.09% Li₂O from 137.00m Inc: 1.00m @ 2.02% Li₂O from 137.00m 13.86m 1.33% Li₂O from 173.29m Inc: 7.00m @ 1.93% Li₂O from 178.00m SADD018: 9.16m @ 1.68% Li₂O from 133.84m Inc: 6.00m @ 2.16% Li₂O from 135.0m Inc: 1.00m @ 3.52% Li₂O from 137.00m 16.00m 1.29% Li₂O from 190.00m Inc: 1.00m @ 3.06% Li₂O from 190.00m 3.00m 2.22% Li₂O from 196.00m 3.00m 2.22% Li₂O from 206.24m 3.00m 2.82% Li₂O from 210.00m 7.58m @ 1.45% Li₂O from 143.77m Inc: 1.60m @ 2.45% Li₂O from 144.40m 2.35m @ 3.57% Li₂O from 120.33m Figure 2: Drill section A showing completed and planned drill holes, and logged pegmatites and new assay results for hole SADD018 ² Refer to Appendix 1 Table 3 for a full details of significant intersections The Company has completed 29 holes for a total of approximately 5,890m of the estimated 25,000m resource definition drilling program. With the arrival of the fourth diamond drill rig on site (*Figure 3*), the resource definition drilling campaign is at full speed and on track to complete a maiden JORC Mineral Resource Estimate (MRE), for the Colina Prospect by the end of the year. Figure 3: New diamond drilling rig on site at Colina Prospect lay-down area In addition to the current resource definition drilling campaign, Latin has recommenced regional mapping activities focused on the area immediately to the west of Colina resource definition drilling. Preliminary work completed in this area during the previous mapping season identified highly weathered west dipping pegmatites. The new field mapping program will focus on better defining the known pegmatite occurrences and extend mapping coverage further out to the west looking for additional parallel systems. The Company controls a significant tenement package in the area, with the prospective stratigraphy extending across strike approximately 2.1km to the west and 1.0km to the south of Colina. Latin will send a separate regional exploration team to the Salinas South tenement area located approximately 17.0km to the south-west of Colina (*Figure 6, Appendix 1*), where the previous seasons' exploration work identified a 'lithium corridor' extending across 4.0km. Soil sampling completed toward the end of the previous campaign highlighted an area of anomalous lithium in the northeast of the tenement (*Figure 4*). New mapping will focus in this area to refine the initial drill targets as well as extending geochemical sampling along the full extent of the mapped prospective corridor. Figure 4: Salinas South tenement package, highlighting the mapped 'Lithium Corridor' and initial target areas #### **Monte Alto Prospect** Results from drilling of nine holes (Figure 5, Appendix 1 Table 4) at the Monte Alto Prospect have now been returned. While logging of these holes indicated that the pegmatites mapped at surface were somewhat continuous at depth, no material spodumene occurrences were logged in the core. This outcome has led to the interpretation that the Monte Alto pegmatites may represent a zoned heterogeneous pegmatite; an interpretation that is supported by the presence of some exotic minerals. Assay results from sampling did not return any significant results (*Appendix 1 Table 5*), consistent with the lack of spodumene logged in the drill core. Figure 5: Monte Alto Prospect drill collar plan #### This Announcement has been authorised for release to ASX by the Board of Latin Resources. For further information please contact: Chris Gale Executive Director Latin Resources Limited +61 8 6117 4798 info@latinresources.com.au www.latinresources.com.au Fiona Marshall Senior Communications Advisor White Noise Communications +61 400 512 109 #### **About Latin Resources** Latin Resources Limited (ASX: LRS) is an Australian-based mineral exploration company, with projects in Australia and South America, that is developing mineral projects in commodities that progress global efforts towards Net Zero emissions. In Latin America the Company focus is on its two Lithium projects, one in the state of Minas Gerais, Brazil and the other, the Catamarca Lithium Project in Argentina in which lithium is highly sought after as a critical mineral for electric vehicles and battery storage. The Australian projects include the Cloud Nine Halloysite-Kaolin Deposit. Cloud Nine Halloysite is being tested by CRC CARE aimed at identifying and refining halloysite usage in emissions reduction, specifically for the reduction in methane emissions from cattle. #### **Forward-Looking Statement** This ASX announcement may include forward-looking statements. These forward-looking statements are not historical facts but rather are based on Latin Resources Ltd.'s current expectations, estimates and assumptions about the industry in which Latin Resources Ltd operates, and beliefs and assumptions regarding Latin Resources Ltd.'s future performance. Words such as "anticipates", "expects", "intends", "plans", "believes", "seeks", "estimates", "potential" and similar expressions are intended to identify forward-looking statements. Forward-looking statements are only predictions and are not quaranteed, and they are subject to known and unknown risks, uncertainties and assumptions, some of which are outside the control of Latin Resources Ltd. Past performance is not necessarily a quide to future performance and no representation or warranty is made as to the likelihood of achievement or reasonableness of any forward-looking statements or other forecast. Actual values, results or events may be materially different to those expressed or implied in this ASX announcement. Given these uncertainties, recipients are cautioned not to place reliance on forward looking statements. Any forward-looking statements in this announcement speak only at the date of issue of this announcement. Subject to any continuing obligations under applicable law and the ASX Listing Rules, Latin Resources Ltd does not undertake any obligation to update or revise any information or any of the forward-looking statements in this announcement or any changes in events, conditions or circumstances on which any such forward looking statement is based. #### **Competent Person Statement** The information in this report that relates to Geological Data and Exploration Results is based on information compiled by Mr Pedro Fonseca, who is an employee of Latin resources and a Member of the Australian Institute of Mining and Metallurgy. Mr Fonseca sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify
as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Fonseca consents to the inclusion in this report of the matters based on his information, and information presented to him, in the form and context in which it appears. #### **APPENDIX 1** ### FIGURE 6 SALINAS LITHIUM PROJECT TENURE TABLE 1 COLINA PROSPECT DRILL COLLAR TABLE | Hole
ID | Easting
(m) | Northing
(m) | RL
(m) | Azi
(deg) | Dip
(deg) | EOH
Depth
(m) | Hole
Status | |------------|----------------|-----------------|-----------|--------------|--------------|---------------------|----------------| | SADD001 | 807785 | 8214946 | 725 | 240 | -84 | 120.68 | Complete | | SADD002 | 807786 | 8214947 | 725 | 60 | -65 | 170.42 | Complete | | SADD003 | 807837 | 8214790 | 770 | 240 | -65 | 157.25 | Complete | | SADD004 | 807903 | 8214822 | 765 | 240 | -65 | 170.00 | Complete | | SADD005 | 807911 | 8214610 | 783 | 240 | -80 | 201.60 | Complete | | SADD006 | 807845 | 8214448 | 813 | 240 | -84 | 265.85 | Complete | | SADD007 | 808003 | 8215500 | 582 | 240 | -80 | 173.92 | Complete | | SADD008 | 807957 | 8215458 | 584 | 230 | -80 | 62.82 | Complete | | SADD009 | 808004 | 8215400 | 603 | 230 | -80 | 59.77 | Complete | | SADD010 | 807923 | 8215567 | 564 | 230 | -80 | 81.12 | Complete | | SADD011 | 807936 | 8215139 | 688 | 290 | -84 | 160.42 | Complete | | SADD012 | 808004 | 8215155 | 690 | 230 | -80 | 134.50 | Complete | | SADD013 | 807998 | 8215283 | 629 | 230 | -65 | 131.45 | Complete | | SADD014 | 807796 | 8214496 | 799 | 320 | -75 | 169.35 | Complete | | SADD015 | 807778 | 8214377 | 800 | 320 | -65 | 216.30 | Complete | | SADD016 | 807905 | 8214700 | 773 | 240 | -80 | 300.70 | Complete | | SADD017 | 807986 | 8214714 | 783 | 260 | -70 | 229.05 | Complete | | SADD018 | 808008 | 8214821 | 780 | 260 | -70 | 271.65 | Complete | | SADD019 | 808002 | 8214979 | 767 | 260 | -70 | 275.60 | Complete | | SADD020 | 807886 | 8214958 | 742 | 260 | -80 | 261.10 | Complete | | SADD021 | 807925 | 8214865 | 754 | 260 | -65 | 267.60 | Complete | | SADD022 | 807884 | 8214693 | 770 | 240 | -80 | 141.70 | Complete | | SADD023 | 807901 | 8214706 | 773 | 260 | -70 | 133.05 | Complete | | SADD024 | 807843 | 8214294 | 829 | 260 | -70 | 331.90 | Complete | | SADD025 | 807747 | 8214275 | 828 | 260 | -67 | 283.94 | Complete | | SADD026 | 808102 | 8214735 | 791 | 260 | -70 | 360.35 | Complete | | SADD027 | 807875 | 8214394 | 822 | 260 | -70 | 325.90 | Complete | | SADD028 | 807766 | 8214376 | 810 | 260 | -70 | 198.40 | Complete | | SADD029 | 807797 | 8214480 | 801 | 260 | -65 | 233.60 | Complete | TABLE 2 COLINA PROSPECT SIGNIFICANT DIAMOND DRILL RESULTS | Hole ID | From | То | Interval | Li ₂ O | | |------------|--------------------------------|--------|----------|-------------------|--| | | (m) | (m) | (m) | (%) | | | SADD001 | 24.22 | 26.22 | 2.00 | 0.56 | | | SADD001 | 83.82 | 88.13 | 4.31 | 2.22 | | | SADD002 | 48.50 | 54.95 | 6.45 | 0.78 | | | SADD002 | 111.30 | 119.43 | 8.13 | 2.00 | | | Including: | 112.30 | 113.3 | 1.00 | 3.22 | | | | 115.30 | 118.30 | 3.00 | 2.20 | | | SADD003 | 65.65 | 82.70 | 17.05 | 0.95 | | | Including: | 69.65 | 73.65 | 4.00 | 1.96 | | | | 98.35 | 103.50 | 5.15 | 1.31 | | | Including: | 98.35 | 100.25 | 1.90 | 2.13 | | | SADD004 | 119.80 | 137.18 | 17.38 | 1.46 | | | Including: | 120.95 | 131.15 | 10.20 | 2.05 | | | Including: | 120.95 | 124.00 | 3.05 | 2.26 | | | | 127.00 | 129.00 | 2.00 | 3.07 | | | SADD005 | 125.4 | 129.65 | 4.25 | 1.32 | | | Including: | 127.55 | 128.60 | 1.05 | 2.65 | | | | 159.10 | 163.10 | 4.00 | 1.36 | | | Including: | 161.10 | 162.10 | 1.00 | 1.92 | | | SADD006 | 208.80 | 229.90 | 21.10 | 1.26 | | | Including: | 210.90 | 224.90 | 14.00 | 1.69 | | | Including: | 214.90 217.90 3.00 2.28 | | | | | | SADD007 | No Significant res | | | | | | SADD008 | No Significant res | | | | | | SADD009 | No Significant res | | | | | | SADD010 | No Significant res | | T | | | | SADD011 | 49.90 | 51.00 | 1.10 | 1.15 | | | | 60.82 | 63.95 | 3.13 | 1.48 | | | including: | 60.82 | 61.95 | 1.13 | 1.73 | | | SADD012 | 64.80 | 69.03 | 4.23 | 1.52 | | | Including: | 64.80 | 66.90 | 2.10 | 2.27 | | | | 97.95 | 102.50 | 4.55 | 0.98 | | | Including: | 98.86 | 101.59 | 2.73 | 1.32 | | | | 110.05 | 111.60 | 1.55 | 1.37 | | | Including: | 110.05 | 110.85 | 0.80 | 2.12 | | | SADD013 | 36.75 | 41.10 | 4.35 | 1.76 | | | Including: | 36.75 | 40.05 | 3.30 | 2.08 | | | SADD014 | No Significant res | | 2.00 | 0.53 | | | SADD015 | 97.87 | 100.87 | 3.00 | 0.53 | | | | 183.53 | 184.50 | 0.97 | 1.57 | | | CARROLL | 189.78 | 192.88 | 3.10 | 0.70 | | | SADD016 | 94.14 | 119.38 | 25.24 | 1.25 | | | Including: | 97.00 | 104.00 | 7.00 | 1.52 | | | And: | 109.00 | 118.19 | 9.19 | 1.51 | | | SADD017 | 133.00 | 141.87 | 8.87 | 1.09 | | | Including: | 137.00 | 138.00 | 1.00 | 2.02 | | | Hole ID | From | То | Interval | Li₂O | |------------|--------|--------|----------|------| | | (m) | (m) | (m) | (%) | | And: | 144.00 | 145.00 | 1.00 | 1.85 | | | 173.29 | 187 | 13.86 | 1.33 | | Including: | 178.00 | 185.00 | 7.00 | 1.93 | | SADD018 | 133.84 | 143.00 | 9.16 | 1.68 | | Including: | 135.00 | 141.00 | 6.00 | 2.16 | | Including: | 137.00 | 138.00 | 1.00 | 3.52 | | | 146.00 | 147.00 | 1.00 | 0.75 | | | 149.00 | 150.00 | 1.00 | 1.30 | | | 189.00 | 205.00 | 16.00 | 1.29 | | Including: | 190.00 | 198.00 | 8.00 | 1.98 | | Including: | 190.00 | 191.00 | 1.00 | 3.06 | | And: | 196.00 | 197.00 | 1.00 | 4.22 | | SADD019 | 117.12 | 119.73 | 2.61 | 0.80 | | | 140.94 | 146.78 | 5.84 | 1.88 | | | 164.57 | 166.15 | 1.58 | 0.77 | | | 185.13 | 187.44 | 2.31 | 2.02 | | Including: | 186.00 | 187.44 | 1.44 | 2.66 | | | 206.24 | 218.20 | 11.96 | 1.62 | | Including | 210.00 | 218.20 | 8.20 | 1.82 | | | 237.30 | 246.73 | 9.43 | 1.56 | | Including | 240.00 | 244.00 | 4.00 | 2.42 | | SADD020 | 94.05 | 95.10 | 1.05 | 0.74 | | | 97.97 | 100.00 | 2.03 | 0.98 | | | 120.33 | 122.68 | 2.35 | 3.57 | | | 143.77 | 151.35 | 7.58 | 1.45 | | Including: | 144.40 | 146.00 | 1.60 | 2.45 | | | 207.08 | 214.54 | 7.46 | 1.19 | TABLE 3 COLINA PROSPECT DIAMOND DRILLING ASSAY RESULTS | HOLEID | FROM | то | Interval | LITUO | Li ₂ O | |---------|--------|--------|----------|-------|-------------------| | HOLE ID | (m) | (m) | (m) | LITHO | (%) ³ | | SADD017 | 78.17 | 79.30 | 1.13 | PEG | 0.04 | | SADD017 | 79.30 | 80.40 | 1.10 | PEG | 0.01 | | SADD017 | 134.10 | 135.10 | 1.00 | SCH | 0.23 | | SADD017 | 135.10 | 136.11 | 1.01 | SCH | 0.33 | | SADD017 | 136.11 | 137.00 | 0.89 | SCH | 0.02 | | SADD017 | 137.00 | 138.00 | 1.00 | PEG | 2.02 | | SADD017 | 138.00 | 139.00 | 1.00 | PEG | 1.52 | | SADD017 | 139.00 | 140.00 | 1.00 | PEG | 1.56 | | SADD017 | 140.00 | 141.00 | 1.00 | PEG | 1.35 | | SADD017 | 141.00 | 142.00 | 1.00 | PEG | 0.65 | | SADD017 | 142.00 | 143.00 | 1.00 | PEG | 0.03 | | SADD017 | 143.00 | 144.00 | 1.00 | PEG | 0.05 | | SADD017 | 144.00 | 145.00 | 1.00 | PEG | 1.85 | | SADD017 | 145.00 | 145.87 | 0.87 | PEG | 0.77 | | SADD017 | 145.87 | 147.00 | 1.13 | SCH | 0.33 | | SADD017 | 147.00 | 148.00 | 1.00 | SCH | 0.24 | | SADD017 | 171.30 | 172.30 | 1.00 | SCH | 0.29 | | SADD017 | 172.30 | 173.29 | 0.99 | SCH | 0.34 | | SADD017 | 173.29 | 174.20 | 0.91 | PEG | 1.20 | | SADD017 | 174.20 | 175.08 | 0.88 | PEG | 0.84 | | SADD017 | 175.08 | 176.05 | 0.97 | SCH | 0.66 | | SADD017 | 176.05 | 177.06 | 1.01 | PEG | 1.08 | | SADD017 | 177.06 | 178.00 | 0.94 | SCH | 0.09 | | SADD017 | 178.00 | 179.00 | 1.00 | PEG | 1.26 | | SADD017 | 179.00 | 180.00 | 1.00 | PEG | 2.64 | | SADD017 | 180.00 | 181.00 | 1.00 | PEG | 2.32 | | SADD017 | 181.00 | 182.00 | 1.00 | PEG | 1.95 | | SADD017 | 182.00 | 183.00 | 1.00 | PEG | 2.13 | | SADD017 | 183.00 | 184.00 | 1.00 | PEG | 1.86 | | SADD017 | 184.00 | 185.00 | 1.00 | PEG | 1.32 | | SADD017 | 185.00 | 186.00 | 1.00 | PEG | 0.41 | | SADD017 | 186.00 | 187.15 | 1.15 | PEG | 0.75 | | SADD017 | 187.15 | 188.30 | 1.15 | PEG | 0.27 | | SADD017 | 188.30 | 189.30 | 1.00 | SCH | 0.34 | | SADD017 | 189.30 | 190.30 | 1.00 | SCH | 0.20 | | SADD017 | 205.11 | 205.54 | 0.43 | SCH | 0.04 | | SADD018 | 131.84 | 132.84 | 1.00 | SCH | 0.32 | | SADD018 | 132.84 | 133.84 | 1.00 | SCH | 0.22 | | SADD018 | 133.84 | 135.00 | 1.16 | PEG | 0.41 | | SADD018 | 135.00 | 136.00 | 1.00 | PEG | 2.08 | For personal use only ³ Reader should consider that surface weathering normally decreases the lithium content, with spodumene minerals tending to become kaolinized at shallow depths which may reduce the grade at this level. | HOLE ID | FROM | ТО | Interval | LITHO | Li₂O | |---------|--------|--------|----------|-------|------------------| | HOLLID | (m) | (m) | (m) | Lillo | (%) ³ | | SADD018 | 136.00 | 137.00 | 1.00 | PEG | 2.08 | | SADD018 | 137.00 | 138.00 | 1.00 | PEG | 3.52 | | SADD018 | 138.00 | 139.00 | 1.00 | PEG | 2.52 | | SADD018 | 139.00 | 140.00 | 1.00 | PEG | 1.24 | | SADD018 | 140.00 | 141.00 | 1.00 | PEG | 1.53 | | SADD018 | 141.00 | 142.00 | 1.00 | PEG | 1.01 | | SADD018 | 142.00 | 143.00 | 1.00 | PEG | 0.89 | | SADD018 | 143.00 | 144.00 | 1.00 | PEG | 0.05 | | SADD018 | 144.00 | 145.00 | 1.00 | PEG | 0.02 | | SADD018 | 145.00 | 146.00 | 1.00 | PEG | 0.10 | | SADD018 | 146.00 | 147.00 | 1.00 | PEG | 0.75 | | SADD018 | 147.00 | 148.00 | 1.00 | PEG | 0.05 | | SADD018 | 148.00 | 149.00 | 1.00 | PEG | 0.11 | | SADD018 | 149.00 | 150.00 | 1.00 | PEG | 1.30 | | SADD018 | 150.00 | 151.15 | 1.15 | PEG | 0.01 | | SADD018 | 151.15 | 152.15 | 1.00 | SCH | 0.34 | | SADD018 | 152.15 | 153.15 | 1.00 | SCH | 0.24 | | SADD018 | 185.40 | 186.40 | 1.00 | SCH | 0.30 | | SADD018 | 186.40 | 187.37 | 0.97 | SCH | 0.45 | | SADD018 | 187.37 | 188.00 | 0.63 | PEG | 0.03 | | SADD018 | 188.00 | 189.00 | 1.00 | PEG | 0.05 | | SADD018 | 189.00 | 190.00 | 1.00 | PEG | 1.08 | | SADD018 | 190.00 | 191.00 | 1.00 | PEG | 3.06 | | SADD018 | 191.00 | 192.00 | 1.00 | PEG | 1.68 | | SADD018 | 192.00 | 193.00 | 1.00 |
PEG | 1.44 | | SADD018 | 193.00 | 194.00 | 1.00 | PEG | 0.13 | | SADD018 | 194.00 | 195.00 | 1.00 | PEG | 2.17 | | SADD018 | 195.00 | 196.00 | 1.00 | PEG | 0.45 | | SADD018 | 196.00 | 197.00 | 1.00 | PEG | 4.22 | | SADD018 | 197.00 | 198.00 | 1.00 | PEG | 2.72 | | SADD018 | 198.00 | 199.00 | 1.00 | PEG | 0.20 | | SADD018 | 199.00 | 200.00 | 1.00 | PEG | 1.05 | | SADD018 | 200.00 | 201.00 | 1.00 | PEG | 1.32 | | SADD018 | 201.00 | 202.00 | 1.00 | PEG | 0.56 | | SADD018 | 202.00 | 203.00 | 1.00 | PEG | 0.09 | | SADD018 | 203.00 | 204.00 | 1.00 | PEG | 0.05 | | SADD018 | 204.00 | 205.00 | 1.00 | PEG | 0.47 | | SADD018 | 205.00 | 206.00 | 1.00 | PEG | 0.04 | | SADD018 | 206.00 | 206.75 | 0.75 | PEG | 0.04 | | SADD018 | 206.75 | 207.75 | 1.00 | SCH | 0.34 | | SADD018 | 207.75 | 208.75 | 1.00 | SCH | 0.24 | | SADD018 | 211.05 | 212.50 | 1.45 | PEG | 0.02 | | SADD018 | 215.50 | 215.93 | 0.43 | PEG | 0.11 | | SADD019 | 88.59 | 89.20 | 0.61 | PEG | 0.02 | | HOLE ID | FROM
(m) | TO
(m) | Interval
(m) | LITHO | Li₂O
(%)³ | |--------------------|-------------|-----------|-----------------|------------|--------------| | SADD019 | 89.20 | 89.88 | 0.68 | PEG | 0.02 | | SADD019 | 115.00 | 116.00 | 1.00 | SCH | 0.09 | | SADD019 | 116.00 | 117.12 | 1.12 | SCH | 0.23 | | SADD019 | 117.12 | 118.00 | 0.88 | PEG | 0.43 | | SADD019 | 118.00 | 119.00 | 1.00 | PEG | 1.37 | | SADD019 | 119.00 | 119.73 | 0.73 | PEG | 0.48 | | SADD019 | 119.73 | 120.75 | 1.02 | SCH | 0.48 | | SADD019 | 120.75 | 121.75 | 1.00 | SCH | 0.36 | | SADD019 | 139.00 | 140.00 | 1.00 | SCH | 0.14 | | SADD019 | 140.00 | 140.94 | 0.94 | SCH | 0.22 | | SADD019 | 140.94 | 142.00 | 1.06 | PEG | 3.04 | | SADD019 | 142.00 | 143.00 | 1.00 | PEG | 1.01 | | SADD019 | 143.00 | 144.00 | 1.00 | PEG | 1.27 | | SADD019
SADD019 | 144.00 | 145.00 | 1.00 | PEG | 2.66 | | SADD019
SADD019 | 145.00 | 146.00 | 1.00 | PEG | 1.87 | | SADD019
SADD019 | 145.00 | 146.78 | 0.78 | PEG | 1.22 | | | | | | | | | SADD019 | 146.78 | 147.80 | 1.02 | SCH
SCH | 0.27 | | SADD019 | 147.80 | 148.80 | 1.00 | | 0.20 | | SADD019 | 162.60 | 163.60 | 1.00 | SCH | 0.21 | | SADD019 | 163.60 | 164.57 | 0.97 | SCH | 0.25 | | SADD019 | 164.57 | 165.36 | 0.79 | PEG | 0.95 | | SADD019 | 165.36 | 166.15 | 0.79 | PEG | 0.59 | | SADD019 | 166.15 | 166.94 | 0.79 | PEG | 0.28 | | SADD019 | 166.94 | 168.00 | 1.06 | SCH | 0.34 | | SADD019 | 168.00 | 169.00 | 1.00 | SCH | 0.36 | | SADD019 | 169.50 | 170.27 | 0.77 | PEG | 0.03 | | SADD019 | 181.38 | 182.12 | 0.74 | PEG | 0.05 | | SADD019 | 183.00 | 184.00 | 1.00 | SCH | 0.33 | | SADD019 | 184.00 | 185.13 | 1.13 | SCH | 0.32 | | SADD019 | 185.13 | 186.00 | 0.87 | PEG | 0.96 | | SADD019 | 186.00 | 186.72 | 0.72 | PEG | 2.65 | | SADD019 | 186.72 | 187.44 | 0.72 | PEG | 2.68 | | SADD019 | 187.44 | 188.40 | 0.96 | SCH | 0.29 | | SADD019 | 188.40 | 189.40 | 1.00 | SCH | 0.15 | | SADD019 | 204.25 | 205.25 | 1.00 | SCH | 0.14 | | SADD019 | 205.25 | 206.24 | 0.99 | SCH | 0.31 | | SADD019 | 206.24 | 207.00 | 0.76 | PEG | 0.86 | | SADD019 | 207.00 | 208.00 | 1.00 | PEG | 0.69 | | SADD019 | 208.00 | 209.00 | 1.00 | PEG | 1.63 | | SADD019 | 209.00 | 210.00 | 1.00 | PEG | 1.74 | | SADD019 | 210.00 | 211.00 | 1.00 | PEG | 2.73 | | SADD019 | 211.00 | 212.00 | 1.00 | PEG | 2.40 | | SADD019 | 212.00 | 213.00 | 1.00 | PEG | 2.26 | | SADD019 | 213.00 | 214.00 | 1.00 | PEG | 0.81 | | HOLE ID FROM TO Interval LITHO | Li ₂ O
(%) ³ | |--|---------------------------------------| | (m) (m) (m) SADD019 214.00 215.00 1.00 PEG | 2.09 | | SADD019 215.00 216.00 1.00 PEG | 1.16 | | SADD019 216.00 216.00 1.00 PEG SADD019 216.00 217.00 1.00 PEG | 1.23 | | | | | SADD019 217.00 217.60 0.60 PEG | 1.81 | | SADD019 217.60 218.20 0.60 PEG | 1.96 | | SADD019 218.20 219.00 0.80 SCH | 0.30 | | SADD019 219.00 220.00 1.00 SCH | 0.24 | | SADD019 234.60 235.60 1.00 SCH | 0.21 | | SADD019 235.60 236.60 1.00 SCH | 0.25 | | SADD019 236.60 237.30 0.70 PEG | 0.09 | | SADD019 237.30 238.00 0.70 PEG | 1.62 | | SADD019 238.00 239.00 1.00 PEG | 0.37 | | SADD019 239.00 240.00 1.00 PEG | 0.71 | | SADD019 240.00 241.00 1.00 PEG | 2.54 | | SADD019 241.00 242.00 1.00 PEG | 2.96 | | SADD019 242.00 243.00 1.00 PEG | 1.71 | | SADD019 243.00 244.00 1.00 PEG | 2.46 | | SADD019 244.00 245.00 1.00 PEG | 0.08 | | SADD019 245.00 246.00 1.00 PEG | 2.17 | | SADD019 246.00 246.73 0.73 PEG | 0.82 | | SADD019 246.73 247.70 0.97 SCH | 0.34 | | SADD020 17.10 17.31 0.21 PEG | 0.01 | | SADD020 21.00 21.26 0.26 PEG | 0.00 | | SADD020 65.33 66.15 0.82 PEG | 0.01 | | SADD020 66.15 66.98 0.83 PEG | 0.01 | | SADD020 81.50 82.50 1.00 SCH | 0.09 | | SADD020 82.50 83.52 1.02 SCH | 0.11 | | SADD020 83.52 84.50 0.98 PEG | 0.01 | | SADD020 84.50 85.45 0.95 PEG | 0.13 | | SADD020 85.45 86.41 0.96 PEG | 0.13 | | SADD020 86.41 87.40 0.99 SCH | 0.24 | | SADD020 87.40 88.40 1.00 SCH | 0.16 | | SADD020 91.00 92.00 1.00 SCH | 0.27 | | SADD020 92.00 93.05 1.05 SCH | 0.27 | | SADD020 93.05 94.05 1.00 PEG | 0.27 | | SADD020 94.05 95.10 1.05 PEG | 0.74 | | SADD020 95.10 95.54 0.44 SCH | 0.58 | | SADD020 95.54 96.06 0.52 PEG | 0.05 | | SADD020 96.06 97.00 0.94 SCH | 0.22 | | SADD020 97.00 97.97 0.97 SCH | 0.23 | | | T | | SADD020 97.97 99.00 1.03 PEG | 0.65 | | SADD020 97.97 99.00 1.03 PEG SADD020 99.00 100.00 1.00 PEG | 0.65
1.32 | | | | | HOLE ID | FROM
(m) | TO
(m) | Interval
(m) | LITHO | Li ₂ O
(%) ³ | |---------|-------------|-----------|-----------------|-------|---------------------------------------| | SADD020 | 101.60 | 102.60 | 1.00 | SCH | 0.12 | | SADD020 | 118.40 | 119.40 | 1.00 | SCH | 0.15 | | SADD020 | 119.40 | 120.33 | 0.93 | SCH | 0.14 | | SADD020 | 120.33 | 121.10 | 0.77 | PEG | 4.30 | | SADD020 | 121.10 | 121.90 | 0.80 | PEG | 3.34 | | SADD020 | 121.90 | 122.68 | 0.78 | PEG | 3.09 | | SADD020 | 122.68 | 123.60 | 0.92 | SCH | 0.17 | | SADD020 | 123.60 | 124.60 | 1.00 | SCH | 0.36 | | SADD020 | 141.80 | 142.80 | 1.00 | SCH | 0.16 | | SADD020 | 142.80 | 143.77 | 0.97 | SCH | 0.12 | | SADD020 | 143.77 | 144.40 | 0.63 | PEG | 0.61 | | SADD020 | 144.40 | 145.00 | 0.60 | PEG | 2.94 | | SADD020 | 145.00 | 146.00 | 1.00 | PEG | 2.16 | | SADD020 | 146.00 | 147.00 | 1.00 | PEG | 0.42 | | SADD020 | 147.00 | 147.93 | 0.93 | PEG | 1.37 | | SADD020 | 147.93 | 148.53 | 0.60 | SCH | 0.33 | | SADD020 | 148.53 | 149.13 | 0.60 | SCH | 0.32 | | SADD020 | 149.13 | 149.90 | 0.77 | PEG | 2.51 | | SADD020 | 149.90 | 150.60 | 0.70 | PEG | 2.90 | | SADD020 | 150.60 | 151.35 | 0.75 | PEG | 0.86 | | SADD020 | 151.35 | 151.80 | 0.45 | SCH | 0.35 | | SADD020 | 151.80 | 152.89 | 1.09 | PEG | 0.32 | | SADD020 | 152.89 | 153.90 | 1.01 | SCH | 0.12 | | SADD020 | 153.90 | 154.90 | 1.00 | SCH | 0.10 | | SADD020 | 205.00 | 206.00 | 1.00 | SCH | 0.12 | | SADD020 | 206.00 | 207.08 | 1.08 | SCH | 0.11 | | SADD020 | 207.08 | 208.00 | 0.92 | PEG | 1.12 | | SADD020 | 208.00 | 209.00 | 1.00 | PEG | 1.27 | | SADD020 | 209.00 | 210.00 | 1.00 | PEG | 1.34 | | SADD020 | 210.00 | 211.00 | 1.00 | PEG | 0.69 | | SADD020 | 211.00 | 212.00 | 1.00 | PEG | 0.82 | | SADD020 | 212.00 | 212.85 | 0.85 | PEG | 1.74 | | SADD020 | 212.85 | 213.70 | 0.85 | PEG | 1.75 | | SADD020 | 213.70 | 214.54 | 0.84 | PEG | 0.90 | | SADD020 | 214.54 | 215.60 | 1.06 | SCH | 0.12 | | SADD020 | 215.60 | 216.60 | 1.00 | SCH | 0.10 | | SADD020 | 221.77 | 221.97 | 0.20 | VQZ | 0.00 | | SADD020 | 236.18 | 236.40 | 0.22 | VQZ | 0.00 | TABLE 4 MONTE ALTO PROSPECT DRILL COLLAR TABLE | Hole
ID | Easting
(m) | Northing
(m) | RL
(m) | Azi
(deg) | Dip
(deg) | EOH
Depth
(m) | Hole
Status | |------------|----------------|-----------------|-----------|--------------|--------------|---------------------|----------------| | MADD001 | 811639 | 8213718 | 762 | 325 | -84 | 291.40 | Complete | | MADD002 | 811625 | 8213761 | 745 | 325 | -65 | 265.60 | Complete | | MADD003 | 811559 | 8213841 | 744 | 145 | -65 | 130.90 | Complete | | MADD004 | 811696 | 8213826 | 722 | 325 | -65 | 156.40 | Complete | | MADD005 | 811789 | 8213883 | 698 | 325 | -65 | 171.10 | Complete | | MADD006 | 811656 | 8213802 | 730 | 325 | -65 | 47.50 | Complete | | MADD007 | 811656 | 8213802 | 730 | 145 | -80 | 60.50 | Complete | | MADD008 | 811650 | 8213908 | 720 | 325 | -65 | 103.80 | Complete | | MADD009 | 811723 | 8213948 | 695 | 338 | -65 | 120.40 | Complete | TABLE 5 MONTE ALTO PROSPECT SIGNIFICANT DIAMOND DRILL RESULTS | Hole ID | From
(m) | To
(m) | Interval
(m) | Li₂O
(%) | | | |---------|------------------------|------------------------|-----------------|-------------|--|--| | MADD001 | No significant re | esults | | | | | | MADD002 | No significant re | esults | | | | | | MADD003 | No significant re | No significant results | | | | | | MADD004 | No significant re | No significant results | | | | | | MADD005 | No significant re | No significant results | | | | | | MADD006 | No significant re | No significant results | | | | | | MADD007 | No significant results | | | | | | | MADD008 | No significant results | | | | | | | MADD009 | No significant re | esults | | | | | #### **APPENDIX 2** #### JORC CODE, 2012 EDITION – TABLE 1 #### **SECTION 1 SAMPLING TECHNIQUES AND DATA** #### (CRITERIA IN THIS SECTION APPLY TO ALL SUCCEEDING SECTIONS) | Criteria | JORC Code explanation | Commentary | |---------------------
--|--| | Sampling techniques | Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. | The chosen part (1/4) was screened using a 2 mm stainless steel sieve. A composite sample weighting 350-400g of the <2 mm fraction was poured in a labelled zip lock bag for assaying. Oversize material retained in the sieve was analyzed with hand lens and discarded. The other three quartiles were discarded, sample holes were filled back, and sieve and canvas were thoroughly cleaned. Photographs of the sampling location were taken for all the samples. | | Criteria | JORC Code explanation | Commentary | |---|---|---| | Drilling
techniques | Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). | Latin Resources drilling is completed using industry standard practices. Diamond drilling is completed using HQ size coring equipment. Drilling techniques used at Salinas Project comprise: HQ Diamond Core, standard tube to a depth of ~200- 250 m. Diamond core holes drilled directly from surface. Down hole survey was carried out by Reflex EZ-TRAC tool. Core orientation was provided by an ACT Reflex (ACT III) tool. All drill collars are surveyed using handheld GPS. | | Drill sample
recovery | Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | Latin Resources core is depth marked and orientated to check against the driller's blocks, ensuring that all core loss is taken into account. Diamond core recovery is logged and captured into the database. Zones of significant core loss may have resulted in grade dilution due to the loss of fine material. | | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. | All drill cores have been geologically logged. Sampling is by sawing core in half and then sampling core on nominal 1m intervals. All core sample intervals have been photographed before and after sawing. Latin's geological logging is completed for all holes, and it is representative. The lithology, alteration, and structural characteristics of drill samples are logged following standard procedures and using standardised geological codes. Logging is both qualitative and quantitative depending on field being logged. All drill-holes are logged in full. Geological structures are collected using Reflex IQ Logger. All cores are digitally photographed and stored. | | Sub-sampling
techniques
and sample
preparation | If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. | For the 2021 stream sediment sampling program: All samples collected from field were dry due to dry season. To maximise representativeness, samples were taken from five holes weighting around 3 Kg each for a total of 15 Kg to be reduced to 350-400 g. Samples were dried, crushed and pulverized 250g to 95% at 150#. Any samples requiring splitting were split using a Jones splitter. For the 2022 diamond drilling program: | | Criteria | JORC Code explanation | Commentary | |--|--|---| | | Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field
duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. | Samples were crushed in a hammer mill to 75% passing -3mm followed by splitting off 250g using a Jones splitter and pulverizing to better than 95% passing 75 microns. Duplicate sampling is carried out routinely throughout the drilling campaign. The laboratory will carry out routine internal repeat assays on crushed samples. The selected sample mass is considered appropriate for the grain size of the material being sampled. | | Quality of
assay data
and
laboratory
tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. | For the 2021 stream sediment sampling program: The stream sediment samples were assayed via ICM90A (fusion by sodium peroxide and finish with ICP-MS/ICP-OES) for a 56-element suite at the SGS Geosol Laboratorios located at Vespasiano/Minas Gerais, Brazil. No control samples have been used at this stage. The internal laboratory controls (blanks, duplicates and standards) are considered suitable. For the 2022 diamond drilling program: Core samples are assayed via ICM90A (fusion by sodium peroxide and finish with ICP-MS/ICP-OES) for a 56-element suite at the SGS Geosol Laboratorios located at Vespasiano/Minas Gerais, Brazil. If lithium results are above 15,000ppm, the Lab analyze the pulp samples just for lithium through ICP90Q (fusion by sodium peroxide and finish with ICP/OES). | | Verification of
sampling and
assaying | The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. | Selected sample results which are considered to be significant will be subjected to resampling by the Company. This can be achieved by either reassaying of sample pulps, resplitting of coarse reject samples, or resplitting of core and reassaying. All Latin Resources data is verified by the Competent person. All data is stored in an electronic Access Database. Assay data and results is reported, unadjusted. Li₂O results used in the market are converted from Li results multiplying it by the industry factor 2.153. | | Location of
data points | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. | Stream sediment sample locations and drill collars are captured using a handheld GPS. Drill collars are located using a handheld GPS. All GPS data points were later visualized using ESRI ArcGIS Software to ensure they were recorded in the correct position. The grid system used was UTM SIRGAS 2000 zone 23 South. | | Criteria | JORC Code explanation | Commentary | |---|--|---| | Data spacing
and
distribution | Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. | Stream sediment samples were taken every 200m between sampling points along the drainages which is considered appropriate for a first stage, regional work. Every sampling spot had a composite sample made of five subsamples spaced 2.5 m each other along a channel for a 10 m length zone or a cross pattern with the same spacing of 2.5 m for the open valleys and braided channels. Due to the preliminary nature of the initial drilling campaign, drill holes are designed to test specific targets, with not set drill spacing. | | Orientation of
data in
relation to
geological
structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | Sampling is preferentially across the strike or trend of mineralised outcrops. Drilling has been designed to intersect the mapped stratigraphy as close to normal as possible. | | Sample
security | The measures taken to ensure sample security. | At all times samples were in the custody and control of the Company's representatives until delivery to the laboratory where samples were held in a secure enclosure pending processing. | | Audits or
reviews | The results of any audits or reviews of sampling techniques and data. | The Competent Person for Exploration Results reported here has reviewed the field procedures used for sampling program at field and has compiled results from the original sampling and laboratory data. No External audit has been undertaken at this | ## SECTION 2 REPORTING OF EXPLORATION RESULTS (CRITERIA LISTED IN THE PRECEDING SECTION ALSO APPLY TO THIS SECTION.) | Criteria | JORC Code explanation | Commentary | |--|--|---| | Mineral
tenement and
land tenure
status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | Exploration Licenses 830.578/2019, 830.579/2019, 830.580/2019, 30.581/2019 & 830.582/2019 are 100% fully owned by Latin Resources Limited. Latin has entered in separate exclusive option agreement to acquire 100% interest in the areas: 830.691/2017 and 830.080/2022. The Company is not aware of any impediments to obtaining a licence to operate, subject to carrying out appropriate environmental and clearance surveys. | | Exploration
done by other
parties | Acknowledgment and appraisal of exploration by other parties. | Historic exploration was carried out on the area 830.080/2022 (Monte Alto) with extraction of gems (tourmaline and lepidolite), amblygonite, columbite and feldspar. | | Geology | Deposit type, geological setting and style of mineralisation. | Salinas Lithium Project geology comprises Neoproterozoic age sedimentary rocks of Araçuaí Orogen intruded by fertile Li-bearing pegmatites originated by fractionation of magmatic
fluids from the peraluminous S-type post-tectonic granitoids of Araçuaí Orogen. Lithium mineralisation is related to discordant swarms of spodumene-bearing tabular pegmatites hosted by biotite-quartz schists. | | Drill hole
Information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. | All drill hole summary location data is provided in Appendix 1 to this report, and is accurately represented in appropriate location maps and drill sections. | | Data
aggregation
methods | In reporting Exploration Results,
weighting averaging techniques,
maximum and/or minimum grade
truncations (e.g. cutting of high-grades)
and cut-off grades are usually Material
and should be stated. | Sample length weighted averaging techniques have been applied to the sample assay results. Where duplicate core samples have been collected in the field, results for duplicate pairs have been averaged. A nominal minimum Li₂O grade of 0.4% Li₂O has been used to define a 'significant intersection'. | | Criteria | JORC Code explanation | Commentary | |---|---|--| | | Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. | No grade top cuts have been applied. | | Relationship
between
mineralisation
widths and
intercept
lengths | These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). | Drilling is carried out at right angles to targeted structures and mineralised zones where possible. Drill core orientation is of a high quality, with clear contact of pegmatite bodies, enabling the calculation of true width intersections. | | Diagrams | Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. | The Company has released various maps and
figures showing the sample results in the
geological context. | | Balanced
reporting | Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high-grades and/or widths should be practiced avoiding misleading reporting of Exploration Results. | All analytical results for lithium have been reported. | | Other
substantive
exploration data | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | | | Further work | The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. | Latin plans to undertake additional reconnaissance mapping, infill stream sediment and soil sampling at Salinas South Prospect (Salinas South Target 2). Follow-up infill and step-out drilling will be undertaken based on results. |