27 January 2022

🔊 GALIL

ASX: GAL

Corporate Directory

Directors

Chairman & MD Brad Underwood

Non-Executive Director Noel O'Brien

Non-Executive Director Mathew Whyte

Projects

Fraser Range Project Nickel-Copper-Cobalt

Norseman Project Nickel-Cobalt-Palladium

Contact Details

- T: +61 8 9463 0063
- E: info@galmining.com.au
- W: www.galileomining.com.au
- 13 Colin St, West Perth, WA

QUARTERLY ACTIVITIES REPORT

Corporate

- Accelerated exploration programs at both the Fraser Range and Norseman projects following \$6.5 million capital raising completed in the September 2021 quarter
- Well-funded to continue aggressive exploration programs with approximately \$9.0 million in cash as at 31st December 2021

Fraser Range (Nickel-Copper-Cobalt)

- Two deep diamond drill holes completed at the Delta Blues prospect with matrix, stringer, and disseminated sulphides intercepted
- The drill holes tested for mineralisation beneath initial prospective RC drill intercepts:
 - 4m @ 0.29 g/t gold and 0.29% copper from 188m (DBRC001)
 including 1 metre @ 0.61 g/t gold and 0.66% copper from 190m
 - 5m @ 0.10 g/t gold and 0.25% copper from 167m (DBRC002)
 - 4m @ 0.21 g/t gold and 0.27% copper from 154m (DBRC003)
- Sulphides occur in association with tonalite intrusion (described petrographically as a trondhjemite)
- Further potential at Delta Blues to be assessed through laboratory assays and down hole EM surveys
- Ongoing regional EM surveys around the Lantern Prospect aiming to define new targets for drill testing
- Acquired new strategic Fraser Range tenement along strike from known nickel-copper sulphide mineralisation at the Lantern Prospect

Norseman Project (Nickel-Cobalt-Copper-Palladium)

- Significant aircore drilling program (8,700m) completed with mineralised nickel-copper-cobalt-palladium sulphides confirmed
- First assays from aircore drill program showed magmatic nickel-coppercobalt-palladium mineralisation
- One metre of sulphide from 60 metres downhole with 1 metre @ 0.24% nickel, 0.35% copper, 0.04% cobalt and 0.25 g/t palladium (NAC105)
- Aircore drilling unable to break through massive sulphide and drill intersection is open in all directions

Norseman Project (continued)

- Massive sulphide intercept at shallow depth significantly increases the prospectivity of Galileo's project area
- Bulk of assays from aircore drilling are expected to be received from mid-February onwards
- Follow-up work to include EM surveying prior to RC drill testing

Galileo Mining Ltd (ASX: GAL, "Galileo" or the "Company") is pleased to provide a summary of activities for the quarter ending 31st December 2021 from its Fraser Range and Norseman projects in Western Australia.

Commenting on the recent activities, Galileo Managing Director Brad Underwood said:

"It has been a busy three-month period for Galileo where we significantly progressed with our exploration campaigns at our Fraser Range and Norseman projects with drilling programs undertaken at both projects yielding highly encouraging results.

At Delta Blues prospect in the Fraser Range, two diamond drill holes tested a conductive target beneath sulphide mineralisation at DB2 with matrix, stringer, and disseminated sulphides intercepted in both holes. Our focus now is on down hole EM surveys and laboratory assays, planned for the current quarter to gain a better understanding of the prospect's potential. Regional EM surveying of prospective areas within our Fraser Range tenure will also continue over the current quarter.

At the Norseman project, mineralised nickel-copper-cobalt-palladium sulphides were confirmed from one of many priority targets drilled. The aircore program encompassed 8,700m of drilling with the majority of assays pending. We look forward to providing investors with an update on assays from this drilling which are now expected to be received from mid-February onwards. Mineral assay laboratories in Western Australia have been experiencing high demand for their services and the time taken for reporting of results has significantly increased over the previous six months.

We are now undertaking targeted EM surveying of the newly discovered massive sulphide occurrence at Norseman. The results from this work will be used in the design of follow up drill testing at this outstanding greenfields prospect.

On the corporate front, we remain well-funded with approximately \$9.0 million cash at the end of December 2021 to progress our exploration campaigns at both projects into the foreseeable future."

Fraser Range (67% GAL / 33% Creasy Group JV)

GALILEO

In October, Galileo reported the results of EM surveying from the Company's Delta Blues prospect within the Fraser Range Belt in Western Australia.¹

DHEM surveying at the Delta Blues DB2 prospect defined a highly conductive target with modelled conductivity up to 10,500 Siemens. The most conductive zone was positioned below drill holes DBRC001 and DBRC003. Both RC drill holes recorded sulphide intercepts with anomalous amounts of copper and gold in the first round of drilling undertaken at the prospect.² Modelled conductor dimensions up to 500m by 500m represent a large-scale target with all three drill holes completed to date showing sulphide indications over a minimum strike length of 210 metres.

Diamond core drilling commenced in late November to test for economic mineralisation at the DB2 prospect.³

Drill holes DBDD001 and DBDD002 (see collar details in Appendix 2) were designed to test a conductive target beneath sulphide mineralisation previously intercepted in RC drilling at DB2 target.⁴

Figure 1 – Diamond drilling at the Delta Blues prospect in the Fraser Range

¹ Refer to ASX announcement dated 27th October 2021

 $^{^{\}rm 2}$ Refer to ASX announcement dated 13 $^{\rm th}$ September 2021

³ Refer to ASX announcement dated 29th November 2021

⁴ Refer to ASX announcement dated 13th September 2021

Matrix, stringer, and disseminated sulphides were intercepted in both drill holes, however it is unsure whether the modelled conductor can be adequately explained by the mineralisation intercepted or is in part related to graphite which accompanies some sections of the sulphide mineralisation. ⁵

Figure 2 - Matrix sulphide mineralisation at 399m downhole in DBDD001 (field of view approximately 20cm across)

Observed sulphides are predominantly pyrrhotite with minor chalcopyrite. Geological logging recorded typical Fraser Range meta-sediments and mafic granulites as well as units of felsic (tonalite) intrusive rocks. The intrusive units occur proximal and adjacent to the sulphides and may have a causative relationship. Felsic intrusive samples from RC drill hole DBRC001 were examined petrographically under the microscope and were determined to be trondhjemite, a variety of tonalite.

Summary drill logs are provided in Appendix 1.

MGALILE

EM surveying at the Delta Blues DB1 prospect was not successful in replicating earlier modelling and the target wasn't drilled during this drill program.

Upcoming work

Core samples from diamond drilling were submitted in mid-December to the laboratory for assaying with full results expected towards the end of the current quarter.

Down hole EM surveying is planned to determine whether there are further targets for drilling within the prospect area.

Ongoing regional ground EM surveying aiming to define new targets for drill testing.

Page 4 | 18

⁵ Refer to ASX announcement dated 15th December 2021

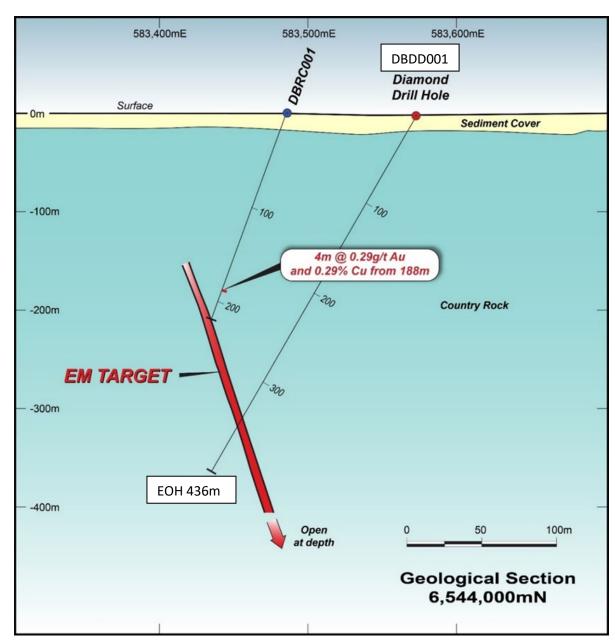


Figure 3 – Cross section schematic of drill hole DBDD001 with modelled EM target

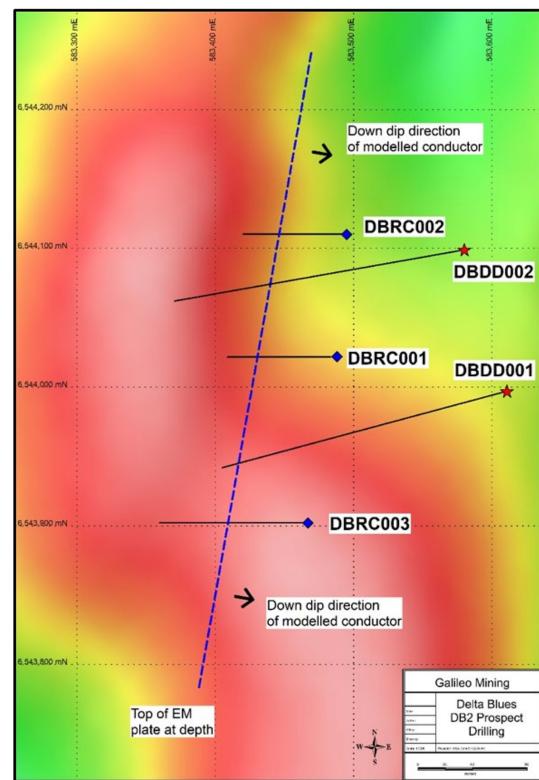
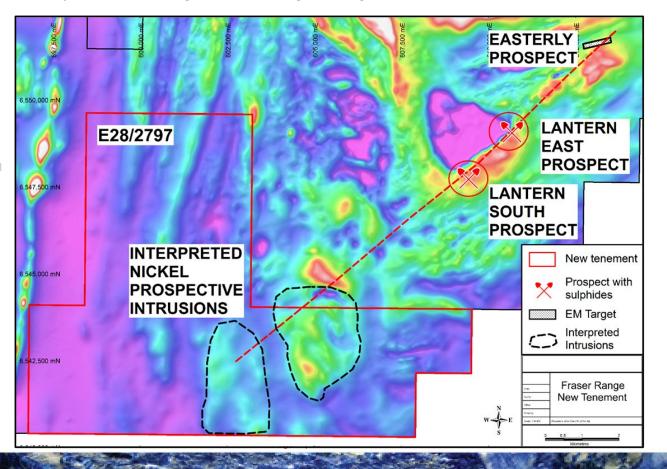


Figure 4 — Drill Hole Location Plan at Delta Blues DB2 with EM Target over TMI Magnetic Image


🔊, GALILEO

During the quarter Galileo purchased 100% of a highly prospective greenfield tenement along strike from its existing Fraser Range targets. No previous exploration provides Galileo with a first mover advantage for potential new discoveries on the unexplored ground. The new tenement, E28/2797, is six kilometres along strike from the Lantern South prospect where previous drilling intersected nickel-copper sulphides.

The additional 70km2 of prospective ground increases Galileo's total Fraser Range tenement position to 672km2. Magmatic intrusions prospective for nickel mineralisation have been interpreted from detailed airborne magnetic data and ground EM surveying is planned to cover the ground with the aim of defining new drill targets.

The Tenement was purchased from private tenement holder Mrs S. E. Creasy for a Total Consideration of \$170,000 being \$89,920 cash and 308,000 Galileo shares at a deemed price of \$0.26 per share (Consideration Shares). The Consideration Shares are subject to a 12-month voluntary escrow agreement from the date of issue and were issued within the Company's 15% placement capacity in accordance with ASX Listing Rule 7.1.

Figure 5 — New Fraser Range Greenfield Tenement E28/2797 with Existing Prospect Locations and Interpreted Intrusive Targets (over TMI Magnetic Image)

Figure 6 – Galileo Prospect Locations in the Fraser Range Mineral Belt

Norseman (100% GAL)

During the quarter, Galileo completed an aircore drilling program at its Norseman project to test five priority palladium-nickel targets defined from soil sampling and existing drilling.⁶

The 8,700 metre drilling program, across multiple new nickel and palladium drill targets, intersected massive sulphide at a new prospect (Figures 9 and 10). Aircore drill hole NAC105 was drilled to a depth of 61 metres with the final one metre intersecting almost fresh massive sulphide at the end of the hole with the drill bit unable to break through the mineralisation.

Single metre samples from the last three metres of drill hole NAC105 (58 – 61m) were submitted to the laboratory for priority analyses.

Figure 7 – Massive Sulphide Chip (25mm across) from 60m in NAC105. Bottom of Hole Sample Pile on Right. Drillhole was Unable to Breakthrough Sulphide

Assay results for NAC105 showed values of 0.24% nickel, 0.35% copper, 0.04% cobalt and 0.25 g/t palladium over the final metre of the drill hole at just 60m downhole depth.⁷

)	Hole ID	From (m)	To (m)	Interval	Ni (%)	Cu (%)	Co (%)	Pd (g/t)	Pt (ppb)	Au (ppb)
	NAC105	60	61	1	0.24	0.35	0.04	0.25	34	21

Table 1: One metre samples from end of hole NAC105. Four acid digest and nickel sulphidecollection used to determine results. Rh, Ru, Ir and Os assays were individually < 40 ppb.</td>

⁶ Refer to Galileo's ASX announcement dated 17th May and 25th August 2021

⁷ Refer to ASX announcements dated 17th November 2021 and 1st December 2021

🔊 GALILEO

Figure 8 — Aircore Drill Samples with 1 Metre of Sulphide at End of Hole (right foreground with sieve)

The sulphide mineralisation in NAC105 was intersected on the northern side of target JD1 (Figures 9 and 10) under alluvium and clay cover. JD1 occurs in the central position of the ultramafic Jimberlana Dyke where surface sampling identified maximum palladium values in soils of 0.81 g/t Pd while the maximum nickel recorded was 0.2% Ni⁸. Surface geochemical anomalism is associated with the outcropping Jimberlana Dyke layered intrusion. Prospective areas of the dyke to the north and south occur under shallow cover with soil sampling ineffective due to the cover material. Aircore drilling was designed to extend over these areas where cover prevented effective soil sampling.

NAC105 was drilled to a depth of 61 metres with the final metre intersecting fresh massive sulphide at the end of the hole. The host rock appears to be a mafic/ultramafic intrusion based on drill chips immediately above the sulphide. Drill holes to the south intersected ultramafic rocks and those to the north were logged as mafic/ultramafic at the end of hole (Figure 8).

A summary log of NAC105 is presented in Table 2, with collar details and end of hole lithologies for the aircore drill holes in Figure 10 included in Appendix 4. Thin section petrography is required to determine the precise rock classifications. Full laboratory assays and petrography will be undertaken to determine the metal values within the sulphides and the geological setting of the identified mineralisation.

⁸ Refer to Galileo's ASX announcement dated 17th May and 25th August 2021

Page 10 | 18

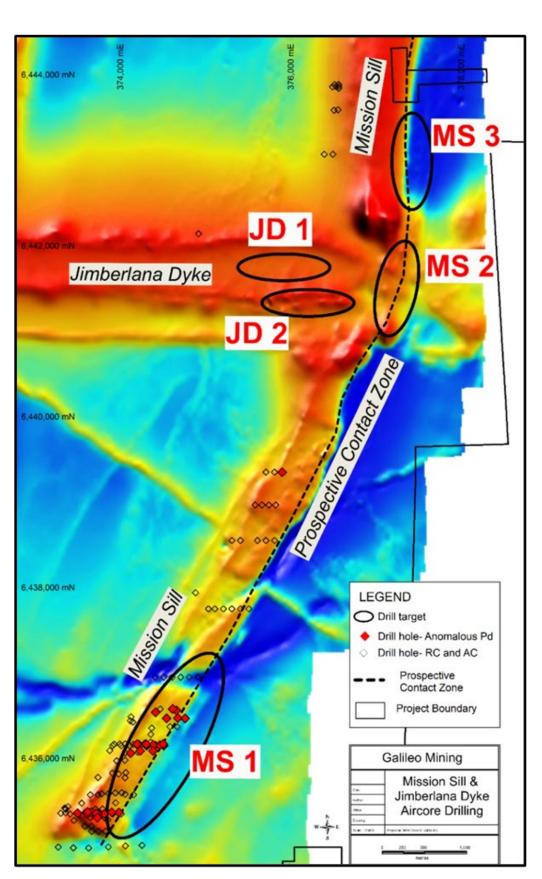
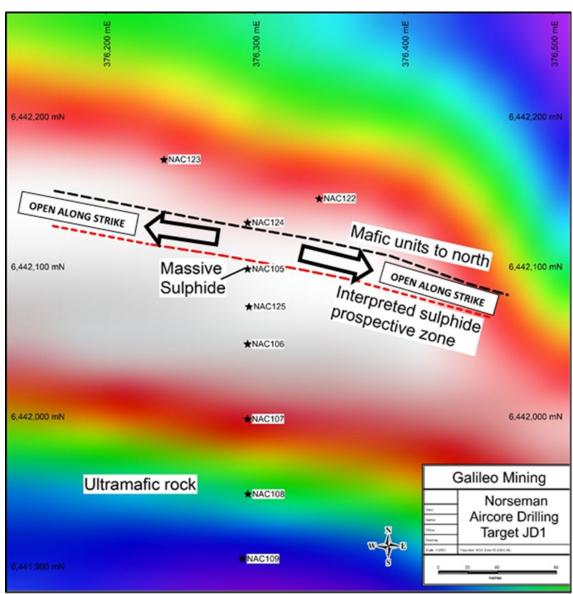
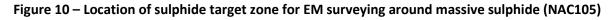
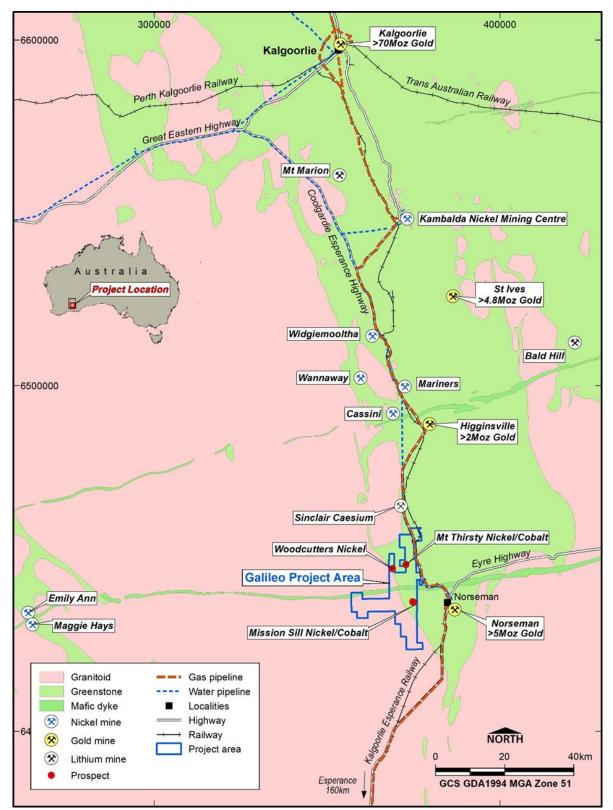




Figure 9 – Priority Drill Targets at Norseman (over TMI magnetic image)



From (m)	To (m)	Comment
0	13	Alluvium and clay cover
13	41	Weathered saprolite
41	47	Silcrete/silica cap
47	60	Lower saprolite
60	61	Massive sulphide at end of hole with minor mafic/ultramafic chips within the logged interval

Table 2: NAC105 Drill Log Summary

Page 12 | 18

GALI

The new zone of sulphide mineralisation is being targeted with EM surveying and results are expected in the next two weeks. The ground EM survey is designed to define further drill targets for RC drill testing in 2022 with the initial and outstanding drill target being the down dip and along strike continuation of the sulphides identified in NAC105.

Aircore drill samples from the majority of the drilling at Norseman are expected to start coming back from the laboratory in mid-February. Sample batches were submitted to the lab each week as drilling progressed and assay returns are expected weekly from mid-February onwards. Any material results from the aircore drilling will be released to the market as the assays are returned.

Corporate

Galileo is well funded to continue exploration with \$9,040,000 in cash as of 31 December 2021. This puts the Company in a strong position to undertake all its planned exploration programs.

Please refer to the Company's Appendix 5B Quarterly Cashflow Report for the period ended 31 December 2021 (released to the ASX on today's date) for further information.

ASX Additional Information

- 1. ASX Listing Rule 5.3.1: Exploration and Evaluation expenditure during the December 2021 Quarter was \$984,000. Full details of exploration activity during the December 2021 Quarter are set out in this report.
- 2. ASX Listing Rule 5.3.2: There was no substantive mining production and development activities during the Quarter.
- 3. ASX Listing Rule 5.3.3: Please refer to Appendix 4 for Galileo's Tenement Schedule at 31 December 2021.
- 4. Rule 5.3.5: Payments to related parties of the Company and their associates during the Quarter (as detailed in Section 6 of the Company's Appendix 5B Quarterly Cash Flow Report) totalling \$151,000 was paid to Directors and Associates for salaries, superannuation, and director and consulting fees. Please see the Remuneration Report in the 2021 Annual Financial Report for further details on Directors' remuneration.

Competent Person Statement

GALILEO

The information in this report that relates to Exploration Results is based on, and fairly represents, information and supporting documentation prepared by Mr Brad Underwood, a Member of the Australasian Institute of Mining and Metallurgy, and a full time employee of Galileo Mining Ltd. Mr Underwood has sufficient experience that is relevant to the styles of mineralisation and types of deposit under consideration, and to the activity being undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code). Mr Underwood consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

With regard to the Company's ASX Announcements referenced in the above Announcement, the Company is not aware of any new information or data that materially affects the information included in the Announcements.

Authorised for release by the Galileo Board of Directors.

Investor information: phone Galileo Mining on + 61 8 9463 0063 or email info@galmining.com.au

Media:

David Tasker Managing Director Chapter One Advisors E: <u>dtasker@chapteroneadvisors.com.au</u> T: +61 433 112 936

About Galileo Mining:

Galileo Mining Ltd (ASX: GAL) is focussed on the exploration and development of nickel, copper and cobalt resources in Western Australia. GAL has Joint Ventures with the Creasy Group over tenements in the Fraser Range which are highly prospective for nickel-copper sulphide deposits similar to the operating Nova mine. GAL also holds tenements near Norseman with over 26,000 tonnes of contained cobalt, and 122,000 tonnes of contained nickel, in JORC compliant resources (see JORC Table below).

JORC Mineral Resource Estimates for the Norseman Cobalt Project ("Estimates") (refer to ASX "Prospectus" announcement dated May 25th 2018 and ASX announcement dated 11th December 2018, accessible at <u>http://www.galileomining.com.au/investors/asx-announcements/</u>). Galileo confirms that all material assumptions and technical parameters underpinning the Estimates continue to apply and have not materially changed).

Cut-off	Class	Tonnes Mt	Со		Ni				
Cobalt %			%	Tonnes	%	Tonnes			
MT THIRSTY SILL	MT THIRSTY SILL								
0.06 %	Indicated	10.5	0.12	12,100	0.58	60,800			
	Inferred	2.0	0.11	2,200	0.51	10,200			
	Total	12.5	0.11	14,300	0.57	71,100			
MISSION SILL									
0.06 %	Inferred	7.7	0.11	8,200	0.45	35,000			
GOBLIN	GOBLIN								
0.06 %	Inferred	4.9	0.08	4,100	0.36	16,400			
TOTAL JORC COMPL	IANT RESOU	RCES			-				
0.06 %	Total	25.1	0.11	26,600	0.49	122,500			

Appendix 1 — Delta Blues Prospect Diamond Drill Hole Summary Logs

DBDD001 Drill Log Summary (DB2 Target). Thin section petrography required to determine precise rock classifications.

From (m)	To (m)	Comment
0	24	Transported and saprolite cover
24	137	Quartz-feldspar-garnet-(pyroxene) gneiss
137	187	Gneiss/meta-sediment with tonalite
187	215	Feldspar-quartz-garnet gneiss
215	305	Gneiss/meta-sediment with tonalite
305	351	Quartz-feldspar-(magnetite) gneiss
351	369	Granulite/meta-sediment with tonalite
369	372	Mafic granulite with disseminated and stringer sulphides; minor graphitic meta-sediment
372	393.6	Mafic granulite with weakly disseminated sulphides
393.6	394.5	Quartz vein and tonalite
394.5	397.9	Mafic granulite and meta-sediment
397.9	400.2	Mafic granulite/ meta-sediment with matrix to stringer sulphide
400.2	415.3	Gneiss and mafic granulite
415.3	435.6	Mafic granulite/meta-sediment with minor sulphide stringers/veinlets

DBDD002 Drill Log Summary (DB2 Target). Thin section petrography required to determine precise rock classifications.

From (m)	To (m)	Comment
0	24	Transported and saprolite cover
24	139	Quartz-feldspar-garnet gneiss with metasediment
139	184	Gneiss, metasediment, and pegmatite
184	206	Gneiss/metasediment with tonalite
206	234	Quartz-feldspar-(magnetite) meta-sediment
234	245	Metasediment with tonalite
245	256	Metasediment with weak disseminated sulphide
256	259	Tonalite with meta-sediment
259	263	Quartz-feldspar-graphite meta-sediment with disseminated sulphide

	263
	26
	27
	273
(\bigcirc)	297
	298
(15)	348
	363
(\bigcirc)	390
	397
	Appei
(ΠD)	Hole
	Hole DBDD
	DBDD
	DBDD
	DBDD
Hole ID NAC105	DBDDO
	DBDDO
NAC105	DBDDO
NAC105 NAC106	DBDDO
NAC105 NAC106 NAC107	DBDDO

		GALIL	EO Mining
and the second s	From (m)	To (m)	Comment
	263	265	Meta-sediment with tonalite
	265	271	Meta-sediment with disseminated sulphide; minor graphitic meta-sed
	271	273	Vein quartz, tonalite, minor meta-sediment
	273	297.4	Mafic granulite and meta-sediment
\bigcirc	297.4	298.7	Mafic granulite/ meta-sediment with matrix to stringer sulphide
	298.7	348	Mafic granulite and meta-sediment
(15)	348	363	Mafic sediment with weakly disseminated and occasional stringer sulphide
	363	390	Meta-sediment/gneiss
(\bigcirc)	390	397	Meta-sediment and tonalite
	397	405.4	Meta-sediment with minor tonalite veins

ndix 2 — Diamond Drillhole Collar Details at the Delta Blues Prospect

Hole ID	Prospect	East	North	RL	Dip	Azimuth	Depth (m)
DBDD001	Delta Blues (DB2)	583615	6544000	229	-60	255	435.6
DBDD002	Delta Blues (DB2)	583580	6544100	229	-62	260	405.4

Appendix 3 – Figure 10 Aircore Drillhole Details (Norseman)

	Hole ID	Prospect	East	North	RL	Dip	Azimuth	Depth	EOH Lithology
1	NAC105	JD1	376295	6442098	306	-60	0	61	Massive Sulphide
	NAC106	JD1	376295	6442048	306	-60	0	54	Ultramafic
	NAC107	JD1	376295	6441998	306	-60	0	65	Ultramafic
,	NAC108	JD1	376295	6441948	306	-60	0	61	Ultramafic
	NAC109	JD1	376292	6441905	306	-60	0	63	Ultramafic
	NAC122	JD1	376343	6442145	305	-60	0	50	Mafic
	NAC123	JD1	376239	6442171	305	-60	0	33	Mafic
	NAC124	JD1	376295	6442129	305	-60	0	56	Mafic/Ultramafic
	NAC125	JD1	376296	6442073	306	-60	0	67	Ultramafic

Note: Easting and Northing coordinates are GDA94 Zone 51.

Project	Tenement reference & Location	Interest at beginning of Quarter	Interest at end of Quarter	Nature of Interest As at end of Quarter
NORSEMAN PROJECT	All tenements are in			
NORSEMAN PROJECT	Western Australia			
	E63/1041	100%	100%	Active
	E63/1764	100%	100%	Active
	P63/2053	100%	100%	Active
	P63/2105	100%	100%	Active
	P63/2106	100%	100%	Active
	P63/2107	100%	100%	Active
	P63/2108	100%	100%	Active
	P63/2109	100%	100%	Active
	P63/2110	100%	100%	Active
	P63/2111	100%	100%	Active
	P63/2112	100%	100%	Active
	P63/2113	100%	100%	Active
	P63/2114	100%	100%	Active
	P63/2115	100%	100%	Active
	P63/2116	100%	100%	Active
	P63/2117	100%	100%	Active
	P63/2118	100%	100%	Active
	P63/2123	100%	100%	Active
	P63/2136	100%	100%	Active
	P63/2137	100%	100%	Active
	M63/671	100%	100%	Active
	L63/83	100%	100%	Active
	L63/85	100%	100%	Active
	L63/86	100%	100%	Active
	L63/87	100%	100%	Active
	L63/88	100%	100%	Active
FRASER RANGE	All tenements are in			
PROJECT	Western Australia			
	E28/2064	67%	67% NSZ ⁽¹⁾	Active
	E28/2912	100%	100%	Active
	E28/2949	100%	100%	Active
	E28/2797	0%	100%	Active
	E63/1539	67%	67% FSZ ⁽²⁾	Active
	E63/1623	67%	67% FSZ ⁽²⁾	Active
	E63/1624	67%	67% FSZ ⁽²⁾	Active

(1) 67% owned by NSZ Resources Pty Ltd a wholly owned subsidiary of Galileo Mining, 33% Great Southern Nickel Pty Ltd (a Creasy Group Company).

(2) 67% owned by FSZ Resources Pty Ltd a wholly owned subsidiary of Galileo Mining, 33% Dunstan Holdings Pty Ltd (a Creasy Group Company).