30 October 2018

ASX: GAL

Corporate Directory

GALIL

Directors

Non-Executive Chairman Simon Jenkins

Managing Director Brad Underwood

Technical Director Noel O'Brien

120.4m

\$0.175 \$21.1m

\$10.1m

Fast Facts

Issued Capital	
Share Price	
Market Cap	
Cash (30/09/18)	

Projects Norseman Cobalt Project Fraser Range Nickel Project

Port Hedland WESTERN AUSTRALIA Fraser Range Project Norseman Project

Contact Details

T: +61 8 9463 0063 E: <u>info@galmining.com.au</u> W: <u>www.galileomining.com.au</u>

NEW FRASER RANGE TARGET DEFINED AT EMPIRE ROSE PROSPECT

Highlights

- Anomalous nickel assays from shallow aircore drilling at the Empire Rose prospect in the Fraser Range:
 - 36m @ 0.20% Nickel from 18m (drill hole EARC015) Including 3m @ 0.56% Nickel from 24m
 - o 6m @ 0.19% Nickel from 30m (drill hole EARC046)
- Mafic-ultramafic host rocks indicate potential for mineralisation
- Strong geophysical conductor identified in prospective structural location relative to drilling results
- Follow up geophysical survey is planned to further refine targets prior to additional drilling

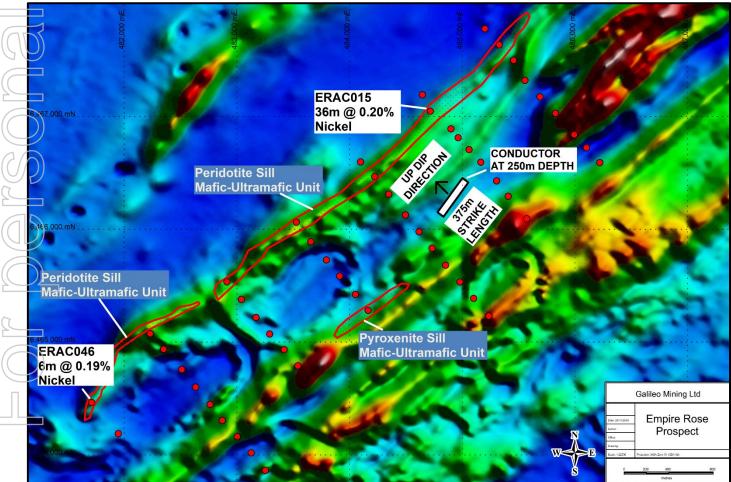
Galileo Mining Ltd (ASX: GAL, "Galileo" or the "Company") is pleased to announce first pass aircore drilling at the Empire Rose prospect in the Fraser Range has identified anomalous zones of nickel in mafic and ultramafic rocks similar to the rock units that occur at the Nova and Silver Knight deposits.

Although the initial results are not of economic grade, the presence of a strong conductive response identified in an EM geophysical survey indicates the possibility of sulphide mineralisation at depth. A follow up IP geophysical survey is planned to refine targets prior to further drill testing.

Galileo Managing Director, Brad Underwood, said the first drilling results from Galileo's Fraser Range Nickel Project were highly encouraging and with new targets identified the Company is hopeful that a discovery could eventuate.

"The Empire Rose prospect is the first area Galileo has drilled within its Fraser Range project portfolio. To have such positive results in our first drilling program is a great outcome and we hope that additional work, both at Empire Rose and at our other Fraser Range prospects, leads to the discovery of economic resources.

"The drilling at Empire Rose has intersected an extensive ultramafic peridotite sill of the kind often associated with nickel deposits around the world including the deposits so far found in the Fraser Range.


The EM conductor is offset and down dip of the better nickel results while the occurrence of a granulite pyroxenite lens to the south west of the conductor adds extra support to the deeper target.

"The Fraser Range is a rapidly evolving new mineralised province and with two confirmed discoveries in the area we believe that the potential for further discoveries is high.

"We will be actively exploring our tenements and we already have follow-up work programs planned for the Empire Rose prospect as well as first pass drilling programs planned at our northern Nightmarch and Lantern prospects". Drilling at the Empire Rose prospect focussed on intrusive magnetic patterns interpreted from detailed aeromagnetic data. 51 aircore holes were drilled for a total of 2,075m with an average depth to fresh rock of 41 metres. Samples were collected on a 3-metre composite basis with bottom of hole samples retained for the purpose of undertaking petrographical examination. The majority of the drillholes intercepted meta-sediments which are believed to be a part of the regional Snowys Dam Formation, the host rocks to the known nickel prospective intrusions within the Fraser Range. Two holes (ERAC015 and ERAC046) intercepted ultramafic peridotite with the surrounding units showing a mixture of mafic and ultramafic lithologies. Based on lithologies, magnetic data, and soil sampling, the peridotite has been interpreted as an extensive mafic-ultramafic sill with a strike length up to 5km. Adding further potential to the prospect, a pyroxenite unit was intercepted in drillhole ERAC036 and this has also been interpreted as a mafic-ultramafic sill intruding the surrounding country rocks. A plan view map of the drill hole locations is shown in Figure 1 with interpreted geology and the position of the conductive geophysical target marked on the map.

GALILEO

Figure 1 – Empire Rose prospect with aircore drill holes (red dots) over Total Magnetic Intensity image. Mafic-ultramafic units are interpreted with red outlines and the geophysical conductor has a black outline.

Significant intercepts from the aircore drilling are shown in Table 1 below. Nickel assays are indicative of mafic-ultramafic rock units that have the potential to host accumulations of nickel-copper-cobalt sulphides similar to the Nova and Silver Knight deposits in the Fraser Range. While no significant sulphides have yet been identified at the Empire Rose prospect it is understood that the existence of mafic-ultramafic lithologies are a necessary feature of nickel deposits in the Fraser Range and that their occurrence at the Empire Rose prospect is a positive development.

Hole_ID	Prospect	From (m)	To (m)	Interval	Ni%	Fe%	Mg%	Cr%
ERAC015	Empire Rose	18	54	36	0.20	4.54	5.99	0.05
	including	24	27	3	0.56	5.77	1.96	0.04
ERAC046 Empire Rose		30	36	6	0.19	13.82	1.17	0.14

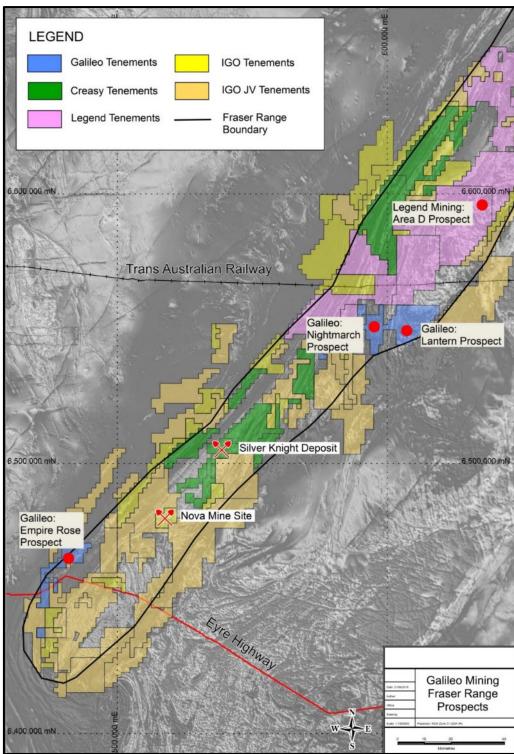
Table 1: Empire Rose Prospect Significant Results, 0.09% Nickel lower cut

GALILEO

Based on 3 metre composite sample assay results, 0.09% Nickel lower cut

An electromagnetic survey undertaken at the Empire Rose prospect, designed to look for conductive rocks that might represent accumulations of nickel and copper sulphides, has identified a strong conductor down dip and offset from the high nickel values intercepted at the bedrock interface within the ultramafic unit. Interpretation of the geophysical data by Spinifex Gpx indicates that the anomaly has a strong late time response (implying a high conductivity) and has been modelled as a bedrock conductor with a restricted strike length. The conductive response was visible in two of the survey lines and did not extend beyond into the remainder of the surveyed lines on either side of the conductor. The top of the conductor is modelled at 257 metres depth, has a strike length of 375 metres, and extends at least 200 metres sub vertically with a dip of 71⁰. The modelled conductivity is 2,100 siemens, a value within the range typically associated with sulphides.

Petrography samples sent for thin section analyses have confirmed the ultramafic rocks within drillholes ERAC015 and ERAC046 as serpentinised peridotites. Drillhole EARC036 intersected an ultramafic pyroxenite at the bottom of hole with associated mafic material up hole. The petrographic description of this rock suggested a cumulus origin with potential for magmatic nickel-copper in the unit. The pyroxenite has been interpreted as a mafic-ultramafic sill and is approximately 1km southwest of the conductor. The existence of this unit implies that other mafic-ultramafic rocks may have intruded into the prospect area at depths below the penetration capability of the initial aircore drilling.


An Induced Polarisation (IP) geophysical survey will be completed at Empire Rose prior to the start of deeper drilling. The IP survey will help to refine potentially mineralised targets prior to the commencement of relatively expensive deep drilling. Once the IP survey is complete it is anticipated that an RC drilling program of 1,000 -1,500 metres, followed by diamond drilling of approximately 500 metres, would be logical next steps to advance the prospect.

Galileo has two Joint Ventures with the Creasy Group covering 492 km² of granted exploration licenses in the Fraser Range region of Western Australia. The tenements are prospective for magmatic nickel-coppercobalt mineralization similar to that discovered at Nova and at Silver Knight. The presence of two significant discoveries in the Fraser Range indicates that the area is a developing mineral province and that new

Page 3 | 12

discoveries may be forthcoming in the future. Figure 2 shows the location of Galileo's prospects and tenements in the Fraser Range, with respect to the Nova and Silver Knight deposits, and to other key tenement holders in the region.

Figure 2 – Galileo's Fraser Range tenement holdings (blue) with Empire Rose, Nightmarch and Lantern prospect locations as marked. Silver Knight and Nova deposits are shown by mine symbols.

Competent Person Statement

GALI

The information in this report that relates to Exploration Results is based on information compiled by Mr Brad Underwood, a Member of the Australasian Institute of Mining and Metallurgy, and a full time employee of Galileo Mining Ltd. Mr Underwood has sufficient experience that is relevant to the styles of mineralisation and types of deposit under consideration, and to the activity being undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code). Mr Underwood consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Investor information: phone Galileo Mining on + 61 8 9463 0063 or email info@galmining.com.au

Media:

David Tasker Managing Director Chapter One Advisors E: <u>dtasker@chapteroneadvisors.com.au</u> T: +61 433 112 936

About Galileo Mining:

Galileo Mining Ltd (ASX: GAL) is focussed on the exploration and development of cobalt and nickel resources in Western Australia. GAL holds tenements near Norseman with over 22,000 tonnes of contained cobalt, and 106,000 tonnes of contained nickel, in JORC compliant resources (see Figure 3 below). GAL also has Joint Ventures with the Creasy Group over tenements in the Fraser Range which are prospective for nickel-copper-cobalt deposits.

Figure 3: JORC Mineral Resource Estimates for the Norseman Cobalt Project ("Estimates") (refer to ASX "Prospectus" 25th 2018 accessible announcement dated Mav and at confirms http://www.galileomining.com.au/investors/asx-announcements/). Galileo all that material assumptions and technical parameters underpinning the Estimates continue to apply and have not materially changed).

Cut-off	Class	Tonnes	Со		Ni		Mn	
Co, ppm		Mt	%	Kt	%	Kt	%	
MT THIRSTY	MT THIRSTY SILL							
600	Indicated	10.5	0.12	12.1	0.58	60.8	0.71	
	Inferred	2.0	0.11	2.2	0.51	10.2	0.71	
	Total	12.5	0.11	14.3	0.57	71.1	0.71	
1,000	Indicated	5.2	0.15	8.0	0.64	32.9	1.01	
	Inferred	0.8	0.15	1.2	0.52	4.1	1.09	
	Total	6.0	0.15	9.2	0.62	37.0	1.02	
MISSION SILI	L							
600	Inferred	7.7	0.11	8.2	0.45	35.0	0.80	
1,000	Inferred	2.8	0.15	4.4	0.47	13.4	1.20	
TOTAL JORC	TOTAL JORC COMPLIANT RESOURCES							
600		20.2	0.11	22.5	0.53	106.1	0.74	
1,000		8.8	0.15	13.6	0.57	50.4	1.08	

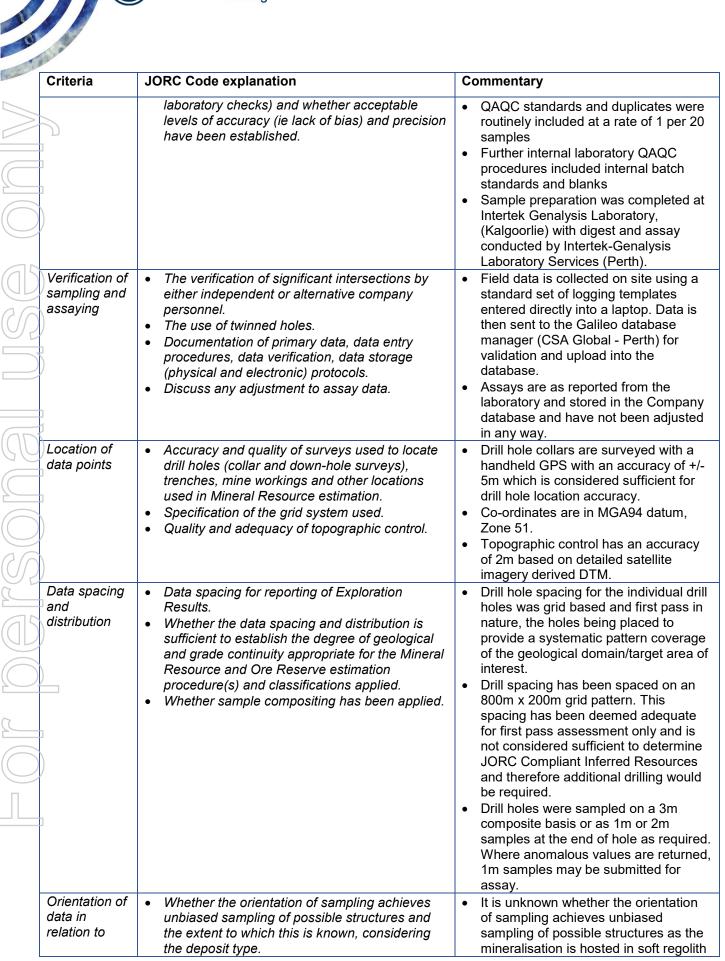
Appendix 1: Empire Rose (Fraser Range) Drill Hole Collar Locations

Hole ID	Prospect	East	North	RL	Dip	Azimuth	Depth
ERAC001	Empire Rose	482912	6465534	395	-90	Vertical	63
ERAC002	Empire Rose	483040	6465379	392	-90	Vertical	36
ERAC003	Empire Rose	483170	6465219	403	-90	Vertical	46
ERAC004	Empire Rose	483291	6465072	398	-90	Vertical	54
ERAC005	Empire Rose	485200	6467778	363	-90	Vertical	22
ERAC006	Empire Rose	485328	6467636	359	-90	Vertical	34
ERAC007	Empire Rose	485455	6467499	370	-90	Vertical	33
ERAC008	Empire Rose	485556	6467321	365	-90	Vertical	48
ERAC009	Empire Rose	485689	6467175	369	-90	Vertical	35
ERAC010	Empire Rose	485827	6467029	369	-90	Vertical	18
ERAC011	Empire Rose	485994	6466839	376	-90	Vertical	30
ERAC012	Empire Rose	486102	6466724	345	-90	Vertical	17
ERAC013	Empire Rose	486220	6466591	382	-90	Vertical	60
ERAC014	Empire Rose	484647	6467193	369	-90	Vertical	20
ERAC014 ERAC015	Empire Rose	484776	6467047	381	-90	Vertical	54
ERAC015 ERAC016	Empire Rose	484899	6466891	376	-90	Vertical	24
ERAC010 ERAC017	Empire Rose	484963	6466813	370	-90	Vertical	38
ERAC017 ERAC018	Empire Rose	484903	6466707	380	-90	Vertical	42
ERAC018 ERAC019	Empire Rose	485164	6466595	376	-90	Vertical	24
	· ·			376	-90		35
ERAC020	Empire Rose	485304	6466429			Vertical	
ERAC021	Empire Rose	485407	6466293	386	-90	Vertical	46
ERAC022	Empire Rose	485572	6466095	385	-90	Vertical	42
ERAC023	Empire Rose	484098	6466598	376	-90	Vertical	35
ERAC024	Empire Rose	484223	6466467	391	-90	Vertical	32
ERAC025	Empire Rose	484347	6466312	385	-90	Vertical	21
ERAC026	Empire Rose	484496	6466127	383	-90	Vertical	37
ERAC027	Empire Rose	484616	6465979	393	-90	Vertical	34
ERAC028	Empire Rose	484732	6465833	404	-90	Vertical	48
ERAC029	Empire Rose	484852	6465682	413	-90	Vertical	63
ERAC030	Empire Rose	484979	6465533	403	-90	Vertical	46
ERAC031	Empire Rose	485100	6465387	390	-90	Vertical	48
ERAC032	Empire Rose	485236	6465231	404	-90	Vertical	30
ERAC033	Empire Rose	483794	6465729	394	-90	Vertical	36
ERAC034	Empire Rose	483912	6465586	389	-90	Vertical	41
ERAC035	Empire Rose	484052	6465423	398	-90	Vertical	50
ERAC036	Empire Rose	484164	6465282	401	-90	Vertical	56
ERAC037	Empire Rose	482231	6465075	394	-90	Vertical	39
ERAC038	Empire Rose	482350	6464937	401	-90	Vertical	42
ERAC039	Empire Rose	482511	6464757	398	-90	Vertical	29
ERAC040	Empire Rose	482634	6464601	404	-90	Vertical	12
ERAC041	Empire Rose	482762	6464448	386	-90	Vertical	53
ERAC042	Empire Rose	482871	6464306	201	-90	Vertical	38
ERAC043	Empire Rose	483003	6464163	397	-90	Vertical	35
ERAC044	Empire Rose	483127	6464019	399	-90	Vertical	34
ERAC045	Empire Rose	483253	6463863	398	-90	Vertical	82
ERAC046	Empire Rose	481712	6464465	384	-90	Vertical	36
ERAC047	Empire Rose	481948	6464188	378	-90	Vertical	81
ERAC048	Empire Rose	483528	6466063	374	-90	Vertical	48
ERAC049	Empire Rose	483656	6465892	395	-90	Vertical	28
ERAC050	Empire Rose	483541	6464791	396	-90	Vertical	54
ERAC051	Empire Rose	483420	6464934	413	-90	Vertical	66

Easting and Northing coordinates are in GDA94 zone 51.

1

Appendix 2: Galileo Mining Ltd – Fraser Range Project JORC Code, 2012 Edition – Table 1


Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Reverse Circulation (RC) drilling, was used to obtain one metre samples which were ground dumped in rows. Each one metre sample pile was spear sampled to obtain a representative 3 metre composite sample for analyses. QAQC standards (blank & reference) and duplicate samples were included routinely with 1 per 20 samples being a standard or duplicate. Samples were sent to an independent commercial assay laboratory. All assay sample preparation comprised oven drying, jaw crushing, pulverising and splitting to a representative assay charge pulp. A 25g pulped sample charge was digested using Aqua Regia (AR25/MS33) and ICP-MS was used to determine a 33 element suite: Au, Ag, Al, As, B, Ba, Bi, Ca, Cd, Ce, Co, Cr, Cu, Fe, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sr, Te, Ti, Tl, V, W, Zn. An additional single metre sample of the last metre (EOH) drilled in each hole was spear sampled to obtain a representative sample for analyses. A 50g pulped sample charge from the EOH sample was assayed by Fire Assay, ICP-MS determination (FA50/MS) for Au, Pt, Pd. A 1g pulped sample charge was digested using Four Acid (4A/MS48) was used for a 48 element analysis suite: Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, TI, U, V, W, Y, Zn, Zr by ICP-MS.
Drilling techniques	 Drill type (eg core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 RC drilling was undertaken using a 5 ½ "drill bit completed by Red Rock Drilling Pty Ltd. An RC blade Bit was used for most of the drilling with RC hammer utilised to ensure penetration to recognisable lithology of weakly

10	and all		
The	Criteria	JORC Code explanation	Commentary
	\mathcal{D}		oxidised to fresh rock at end of hole as determined by the geologist supervising the drilling.
	Drill sample	Method of recording and assessing core and	Sample recoveries are visually
	recovery	 chip sample recoveries and results assessed. Measures taken to maximise sample recovery 	estimated for each metre with poor or wet samples recorded in drill and
	-	and ensure representative nature of the	sample log sheets for both single metres and composite intervals.
\bigcirc)	samples.Whether a relationship exists between sample	 The sample cyclone was routinely
		recovery and grade and whether sample bias	cleaned at the end of each 6m rod, between holes and when deemed
615		may have occurred due to preferential loss/gain of fine/coarse material.	necessary.
	/		 No relationship has been determined between sample recoveries and grade
\mathbb{Q}_{2})		and there is insufficient data to determine if there is a sample bias.
\square	Logging	Whether core and chip samples have been geologically and geotechnically logged to a	Geological logging of drill holes was done on a visual preliminary basis with
	r	level of detail to support appropriate Mineral	full logging in progress to include
	3	Resource estimation, mining studies and metallurgical studies.	lithology, grainsize, mineralogy, colour and weathering.
		• Whether logging is qualitative or quantitative in	Logging of drill chips is qualitative and
UU)	nature. Core (or costean, channel, etc) photography.	based on the presentation of the 1m samples in the chip trays.
		• The total length and percentage of the relevant	All drill holes were logged in their
	Sub-sampling	intersections logged.If core, whether cut or sawn and whether	entirety All RC drill samples were collected
$(\bigcirc$	techniques	quarter, half or all core taken.	using a PVC spear as 3m composites
26	and sample preparation	 If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or 	(2-3kg). Other composites of 2m and 4m and individual 1m samples were
\mathbb{O}^{2})	dry.	collected where required ie, at the
2	1	For all sample types, the nature, quality and appropriateness of the sample preparation	bottom of hole.The samples were dried and
(15		technique.	pulverised before analysis.
	/	 Quality control procedures adopted for all sub- sampling stages to maximise representivity of 	duplicates were routinely submitted
(\bigcirc)		samples.	with each batch.The sample size is considered
		 Measures taken to ensure that the sampling is representative of the in situ material collected, 	appropriate for the mineralisation style,
<u></u>	1	including for instance results for field duplicate/second-half sampling.	application and analytical techniques used.
	4	Whether sample sizes are appropriate to the	
\bigcirc	Quality of	grain size of the material being sampled.The nature, quality and appropriateness of the	RC Chip composite samples were
Π	assay data	assaying and laboratory procedures used and	analysed for a multielement suite (33
	and Iaboratory	whether the technique is considered partial or total.	elements) by ICP-MS following an Aqua Regia digest.
	tests	• For geophysical tools, spectrometers, handheld	EOH RC Chip samples were analysed
		XRF instruments, etc, the parameters used in determining the analysis including instrument	for a multielement suite (48 elements) by ICP-MS following a Four Acid
		make and model, reading times, calibrations	Digest as well as for Au, Pt, Pd by Fire
		factors applied and their derivation, etc.Nature of quality control procedures adopted	Assay with ICP-MS determination.The assay methods used are
		(eg standards, blanks, duplicates, external	considered appropriate.

100

M. GALI

Criteria	JORC Code explanation	Commentary
geological structure	 If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 material with no measurable structures recorded in drill core. The mineralisation occurs in highly weathered regolith material and no structures have been recorded from drilling. No quantitative measurements of mineralised zones/structures exist and all drill intercepts are reported as down hole length, true width unknown.
Sample security	• The measures taken to ensure sample security.	 Each sample was put into a tied off calico bag and then several placed in a large plastic "polyweave" bag which was zip tied closed. For transport, sampled were placed on wooden pallets inside plastic "polyweave" "Bulk Bags" ensuring no loss of material. Samples were delivered directly to the laboratory in Kalgoorlie by Galileo's freight contractor.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 Continuous improvement reviews of sampling techniques and procedures are ongoing. No external audits have been performed.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Fraser Range Project comprises four granted exploration licenses, covering 492km² Kitchener JV tenement E28/2064 (67% NSZ Resources Pty Ltd, 33% Great Southern Nickel Pt Ltd). Yardilla JV tenements: E63/1539, E63/1623, E63/1624 (67% FSZ Resources Pty Ltd, 33% Dunstan Holdings Pty Ltd) NSZ Resources Pty Ltd & FSZ Resources Pty Ltd are wholly owned subsidiaries of Galileo Mining L Great Southern Nickel Pty Ltd and Dunstan Holdings Pty Ltd are entities of Mark Creasy The Kitchener Area is approximately 250km east Kalgoorlie on vacant crown land and on the Boonderoo Pastoral Station. The Yardilla Area is approximately 90km east of Norseman on vacant crown land and on the Frase Range Pastoral Station. Both the Kitchener Area and the Yardilla Area are 100% covered by the Ngadju Native Title Determined Claim. The tenements are in good standing and there are no known impediments.

Page 10 | 12

The	Criteria	JORC Code explanation	Commentary
	Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	• NA
0	Geology	 Deposit type, geological setting and style of mineralisation. 	 The target geology is magmatic sulphide mineralisation hosted in mafic-ultramafic intrusions within the Fraser Complex of the Albany-Fraser Orogeny. The underlying unweathered lithology is granulite facies metamorphosed and partially retrogressed sedimentary and mafic and ultramafic igneous rocks as determined by petrographic work.
	Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Refer to drill hole collar and intercept reporting table in the body of the report
	Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Weighted averaging has been used, based on the sample interval, for the reporting of drilling results. Aggregation procedures are described in the footnotes to the drill hole intercept table in the body of the report.
-	Relationship between	These relationships are particularly important in the reporting of	It is unknown whether the orientation of sampling achieves unbiased sampling of possible structures

Page 11 | 12

P. S. C.	Criteria	JORC Code explanation	Commentary
	mineralisation widths and intercept lengths	 Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 as the mineralisation is hosted in soft regolith material with no measurable structures recorded in drill core. The mineralisation occurs in highly weathered regolith material and no structures have been recorded from drilling. No quantitative measurements of mineralised zones/structures exist, and all drill intercepts are reported as down hole length, true width unknown.
	Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Project location map and plan map of the drill hole locations with respect to each other and with respect to other available data. Drill hole locations have been determined with hand-held GPS drill hole collar location (Garmin GPS 78s) +/- 5m in X/Y/Z dimensions
	Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All available relevant information is presented.
	Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Detailed 50m line spaced aeromagnetic data has been used for interpretation of underlying geology. Data was collected using a Geometrics G-823 Caesium vapor magnetometer at an average flying height of 30m. Moving Loop Electromagnetic (MLEM) survey data was collected on 400m loops using a Smartem V system and Jesse Deeps SQUID receiver in a 400m offset Slingram configuration collecting Z, X and Y component data at a base frequency of 1Hz. Maxwell software was utilised to process and model the MLEM data. Modelling and interpretation of geophysical data was undertaken by Spinifex Gpx Pty Ltd Petrography was undertaken by R.N. England Consulting Geologist
	Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Dipole-Dipole IP surveying is planned at the Empire Rose Prospect aimed at further constraining the modelled MLEM conductor area as well as identify possible disseminated sulphide associated targets with the main ultramafic unit which strikes NE along the western side of the Empire Rose Prospect.