

A.B.N. 52 007 626 575

20 November 2017

ASX:JRV

NICO YOUNG COBALT-NICKEL LATERITE: UPDATED MINERAL RESOURCE

HIGHLIGHTS

- JORC Inferred resource of 167.8Mt @ 0.59% Ni and 0.06% Co (using a 0.6% Ni equivalent cutoff); including a higher grade zone of 42.5Mt @ 0.80% Ni and 0.09% Co (using a 1.0% Ni equivalent cut-off)
- Within this mineral resource, focusing on cobalt provides a JORC Inferred resource of 99.1Mt
 @ 0.58% Ni and 0.08% Co (using a 0.05% Co cut-off) including 33.4Mt @ 0.66% Ni and 0.12% Co (using a 0.08% Co-cut off)
- Subsequent infill drilling program to focus on upgrading the resource to Indicated status category under JORC, and on delineating shallow, higher grade cobalt zones that may be amenable to early mining. Current cobalt resources that are open to the east will also be tested

Jervois Mining Limited's (**"Jervois"** or **"the Company"**) (JRV:ASX) new management team, in conjunction with geological advisers Snowden Mining Industry Consultants Ltd ("Snowden") and Geostat Services Pty Ltd ("Geostat"), have completed a re-assessment of the 100% owned Young Cobalt-Nickel project in New South Wales, Australia ("**Nico Young**" or **"the Project**").

The focus of these initial efforts is an update of the Nico Young mineral resource by Geostat, who had earlier prepared the previous resource estimate for the Company in 2012. The updated mineral resource is reported and classified in accordance with the guidelines as set out in the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC, 2012 Edition). This estimate differs from the 2012 resource due to additional drilling completed in 2014, identification of laterite cobalt zones not previously modelled; offset by a reduction due to the exclusion from the geological model of deeper mineralized zones located to the north (West Thuddungra and Tyagong). These deeper zones were located within Exploration Licenses that were relinquished during 2016.

An independent audit of the Geostat estimate has been completed by Snowden. Snowden and Geostat both visited site.

This resource update provides an improved understanding of lithology and cobalt grade distribution throughout the deposit, with a particular focus on shallow lying areas of the deposits that are high in cobalt that may be amenable to potential early mining.

The results of this re-assessment provides confidence that a viable pathway to market for Nico Young can be found, to take advantage of the forecast structural challenges with reliable, high quality cobalt and nickel supply for the rapidly growing lithium ion battery industry.

JORC category:	Tonnes (Mt)	Ni grade (%)	Co grade (%)	Contained Ni metal (Kt)	Contained Co metal (Kt)
0.6% Ni equiv cut off					
Ardnaree	53.6	0.66	0.05	355.6	24.6
Fhuddungra	114.3	0.56	0.06	641.1	72.0
Total Nico Young	167.8	0.59	0.06	996.7	96.6
ncluding					
1.0% Ni equiv cut off					
Ardnaree	14.5	0.88	0.07	127.6	10.3
Thuddungra	27.9	0.76	0.10	211.2	27.7
Total Nico Young	42.5	0.80	0.09	338.8	38.0

Table 1: Inferred Mineral Resource by Project Area at 0.6% and 1.0% Ni equivalent cut-off grade

The updated resource also incorporates cobalt wireframes as the basis for identifying anomalous cobalt zones in the geological model. Cobalt resources are reported at various cobalt cut off grades is shown below. These cobalt resources are a sub-set of the Inferred Resource presented in Table 1.

Table 2: Inferred Nico Young Mineral Resource at various Co cut-off grades

Co cut off	Tonnes (Mt)	Ni grade (%)	Co grade (%)	Contained Ni metal (Kt)	Contained Co metal (Kt)
0.03	141.8	0.55	0.07	778.9	97.3
0.05	99.1	0.58	0.08	576.7	78.3
0.08	33.4	0.66	0.12	218.8	38.4
0.10	19.0	0.68	0.13	130.1	25.6
0.12	10.6	0.72	0.16	76.1	16.5
0.15	4.3	0.73	0.19	30.8	8.1
0.20	0.9	0.78	0.28	6.7	2.3

UPDATE ON FUTURE DEVELOPMENT PLANS

The Nico Young deposit sits over key exploration licenses 5527 (Young/Ardnaree) and 5571 (Thuddungra) in rural New South Wales, Australia. The resource is located in the established mining and farming region of central west New South Wales, around 300 kilometres west of Wollongong and Sydney ports. Jervois holds 100% of the licenses with no private royalties or other encumbrances over title. The Mineral Resource is favourably located geographically due to its proximity to the Cooper Basin gas pipeline, rail and major highways. The deposit is approximately 25 kilometres north east of the township of Young which has a permanent population of 7,000.

Figure 1: Project Location

Next steps

The application of heap leach to produce mixed hydroxide, mixed sulphide, separate nickel and cobalt hydroxides, as well as making of refined products such as nickel and cobalt sulphates, suitable for direct sale to battery manufacturers, will be explored. Jervois will study the relative attractiveness of each alternative with the benefit of significant practical experience of construction, commissioning and ramp up of hydrometallurgical flowsheets, benefitting from a close understanding of the differential capital and technical risk profiles, and their associated economics.

Jervois' new management team and advisers continue to review almost a decade of historical testwork surrounding the Nico Young deposit. Since discovering the deposit in the late 1990's Jervois has spent

around A\$6 million on studies involving drilling, various hydrometallurgical and pyrometallurgical process routes.

Jervois and its geological advisers have designed a drilling programme at Nico Young to further boost the level of confidence in the distribution of nickel-cobalt mineralization, and also extract bulk samples for further metallurgical testing. This drilling will focus on enhancing our understanding of high grade, shallow, cobalt mineralization at the Ardnaree deposit and to increase the confidence in the mineral resource estimate so that the shallow deposits can be upgraded to Indicated status. It will also target possible extensions of high grade cobalt intercepts, where cobalt mineralization is interpreted to extend beyond the currently defined cobalt wireframes. Plans are now underway to initiate this workstream.

Baseline environmental activities at site will be initiated and negotiations are commencing with surface

The Nico Young deposit also contains low levels of scandium, running around 50ppm. Initiatives are underway to ascertain if these scandium levels can be practically incorporated into a viable development plan. Likewise historical samples were not tested for platinum group metals and steps are underway to reassess these intersections.

Due to the Jervois Board's extensive experience with HPAL plants across all facets of their operating life cycles (construction, commissioning and ramp up, stabilization of operations), we are focused primarily on lower technical risk projects that can be more rapidly brought to market successfully. The company will simultaneously pursue the HPAL studies that many of our Australian peers are focused upon, however we recognize that such projects are seldom able to provide the optimized development scenario for shareholders, once technical risk is appropriately weighted. However given the background of the Board, should Jervois proceed in this area, its team is well placed to do so.

The company has been working with Mineral Technologies out of Gold Coast, Australia in undertaking ore characterization studies to explore upgrading and beneficiation processes that may be suitable for Nico Young mineralization. This will also extend to an assessment of heap leach, with leading international consultants in the field whom the Board has previously engaged to assist with this work.

Heap leach is significantly lower capital cost than alternative hydrometallurgical flowsheets such as HPAL or atmospheric leach. The metallurgy (Fe content) is considered manageable, and this part of rural New South Wales has favourable climatic conditions for the operation of the heaps and management of water balances.

Jervois has undertaken extensive testing on the hydrological and geotechnical properties of cobaltnickel ore heaps; including bottle rolls, column and bulk common tests. Initial recoveries are estimated in the 75-80% level, which whilst less than alternative processing routes, is adequate given the savings in capital. The Jervois team was directly involved in the construction and operation of the trial heap leach pads at Murrin Murrin, Glencore's nickel-cobalt operation in Western Australia.

For further information, please contact:

Bryce Crocker Chief Executive Officer Ph: +61 (0)3 9236 2800 The information in this report that relates to Exploration Results is based on information compiled by Anthony Jannink and Sanja van Huet, who are members of the Australasian Institute of Mining and Metallurgy. Mr Jannink is a previous director of Jervois Pty Ltd, and has sufficient experience in mineral resource estimation, which is relevant to the style of mineralisation and type of deposit under consideration. Ms van Huet is an employee of Jervois Pty Ltd, and has sufficient experience in mineral resource estimation, which is relevant to the style of mineralisation and type of deposit under consideration. Mr Jannink and Ms van Huet are qualified as Competent Persons as defined in the 2012 edition of the "Australasian Code for Reporting of Mineral Resources and Ore Reserves". Mr Jannink and Ms van Huet consent to the inclusion in the report of the matters based on their information in the form and context in which it appears.

The information in this report that relates to Mineral Resources is based on information compiled by Fleur Muller, who is a member of the Australasian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists. Fleur Muller is a director of Geostat Services Pty Ltd, and has sufficient experience in mineral resource estimation, which is relevant to the style of mineralisation and type of deposit under consideration. She is qualified as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Mineral Resources and Ore Reserves". Fleur Muller consents to the inclusion in the report of the matters based on their information in the form and context in which it appears.

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information 	 Aircore drilling was used to obtain 1m drill chip samples from which a 1-2 kg sample was collected for submission to the laboratory for analysis. Occasional 2m and 5m composite samples were also compiled from which a sample was collected for laboratory submission. Diamond drillholes used triple-tube techniques and were sampled at predominantly 1m intervals, with quarter core splits sent to the laboratory. Samples from each drill interval were collected in a cyclone and split using a riffle splitter. Wet samples were grab sampled for assay. Several drill campaigns were conducted, and samples submitted for assay as follows: Aircore holes YA001-YA235.1m samples were collected, and split using a single tier riffle splitter, and submitted to ALS, in Orange, NSW. Diamond holes YC01-YC03 were cut into 1m intervals and quarter core splits sent to ALS in Orange, NSW. RC holes YA236-YA288.1m samples were collected, and split using a single tier riffle splitter, and submitted to ALS, in Orange, NSW. RC holes YA236-YA428.1m samples were collected by spear-sampling from the sample pile, and submitted to ALS, in Orange, NSW. Aircore holes YA327-YA438.1m samples were collected by spear-sampling from the sample pile, and submitted to ALS, in Orange, NSW. Aircore holes YA327-YA438.1m samples were collected and split using a single tier riffle splitter, and submitted to ALS, in Orange, NSW. Aircore holes YA327-YA438.1m samples were collected by spear-samples were collected via diamond core drilling of HQ3 core. A separate program of 18 RC holes were drilled (RC454-RC481), however assays were not used in the resource estimate due to concerns with the method of sampling. These holes were used to guide the geological interpretation. Mineralisation is determined by a combination of motion
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Drilling is predominantly aircore, with the remainder reverse circulation and diamond core (refer to Section 2, Drillhole information for a detailed breakdown of drilling by method and year). Aircore holes were drilled using a diameter of 85mm and 100mm. RC holes were drilled using a down-the-hole hammer with a 100mm or 127mm face sampling bit to penetrate ground and deliver sample up 6 m drill rod inner tubes through to the cyclone and cone splitter. Diamond drillholes were drilled using a PQ3 rotary precollar and a triple-tube HQ3 core barrel. All holes were vertical.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery & ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias 	 No direct recovery measurements of aircore and reverse circulation samples were performed prior to 2005. Aircore samples from 2007 onwards were weighed. Aircore logs from 2000 onwards describe the sample condition. A split inner tube was used for the diamond drillholes, with generally good recovery using mud. Some core was lost at the top and bottom of holes due to broken ground. As only 3 diamond holes were drilled, analysis was not conducted to determine any relationships between

Criteria	JORC Code explanation	Commentary
	may have occurred due to preferential loss/gain of fine/coarse material.	sample recovery and grade.The quality of the RC samples is not verifiable.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Systematic logging describes the drillhole lithology to a level of detail to support appropriate Mineral Resource estimation. All drillholes were geologically logged utilising standard Jervois logging codes and recorded onto drill logs. These were subsequently transferred to a digital Access database. Qualitative logging of samples included (but was not limited to) lithology, oxidation, colour and weathering. Quantitative information recorded included magnetic susceptibility using a GeoInstruments GMS-2 meter and sample weights. Every sample interval (100%) of aircore, RC and diamond drilling was geologically logged. 85% of all drillholes were sampled for assay.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Sub-sampling techniques: Diamond core was cut, with 1m quarter-core split samples submitted for assay analysis. Samples prior to 2008 were mostly riffle-split and submitted for assay. All RC and aircore samples from 2008 onwards were collected in a cyclone and split using a single tier riffle splitter (50:50 split). Where samples greater than 2kg were collected in the bottom tray, a scoop was used to collect the sample along the length of the tray into a sample bag. Samples smaller than or equal to 2kg were collected in their entirety. The majority of samples were dry. Wet samples were grab sampled, put into a cloth bag and left to dry prior to being put through the splitter. A sample size of 1-2kg was collected and considered appropriate and representative for the style of mineralisation. Samples were crushed using a Boyd crusher if required and split to obtain no greater than 3kg samples. Samples were pulverised to 85% of weight passing 75 micrometers (µm) sieve. A 200g sub-sample were crushed and followed the
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 above sample preparation methodology. Assay methods: Holes drilled prior to 2004 were assayed for Ni and Co by various assay methods including IC3B, IC4, and AAS method A102 (nitric, perchloric, HF acid digestion, HCl leach, flame AAS determination). Half the samples were also assayed for scandium by ICP emission spectrometry method IC587. Limited information exists regarding these methods. Holes drilled between 2004-2007 were assayed for Ni, Co by digestion with perchloric, nitric, hydrofluoric and hydrochloric acids, and then inductively coupled plasma atomic emission spectroscopy analytical technique (ME-ICP61s and ME-ICP85). Holes drilled in 2008 were assayed for Ni, Co, Al2O3, CaO, Cr2O3, Fe, K2O, MgO, MnO, Na2O, Ni, P2O5, SiO2 and TiO2 using industry standard lithium meta/tetra borate fusion and inductively coupled plasma atomic emission spectroscopy analytical technique (ME-ICP93). Holes drilled from 2014 onwards were assayed for Ni, Co and other elements by digestion with perchloric, nitric, hydrofluoric, nitric, hydrofluoric and hydrochloric and hydrochloric and hydrochloric and hydrochloric, nitric, hydrofluoric and hydrochloric acids, and then

Criteria	JORC Code explanation	Commentary
		 inductively coupled plasma atomic emission spectroscopy analytical technique (ME-ICP61). Assay and laboratory techniques were industry standard at the time of collection and appropriate for the style of mineralisation. Samples were dispatched to ALS at Orange, NSW for sample preparation and then forwarded to Brisbane, Queensland for analytical testing. From 2014 onwards, samples were dispatched to ALS at Stafford, Queensland for both sample preparation and analytical testing. A GeoInstruments GMS-2 magnetic susceptibility meter was used on all samples.
		 QAQC methods: Early drilling prior to 2008 had limited QAQC conducted. These measures included: 100 pulps from ALS were submitted to Analabs, Orange, NSW, and were assayed using method A102. Returned assays correlated poorly with those of ALS. Analabs were requested to re-assay the pulps, which showed a closer reconciliation, with results 6% higher than those of ALS
		 200 pulps from ALS were submitted to Becquerel Laboratories in Ontario Canada for assay using neutron activation method BQ-NAA-1. These results reconciled very closely with those of ALS, with a 0.7% difference in Ni values. 5 Calweld holes were drilled in 2001 adjacent to existing aircore holes with bulk samples collected in 44 gallon drums for metallurgical purposes. Correlations between Calweld assays and aircore assays were poor which is
		 below the dassays and ancore assays were pool, which is thought to be due to the different sample sizes, and different assay methods. Little information is available regarding this QAQC process. Standards and blanks were included with samples submitted for assay during the 2014 and 2017 drill campaigns. Certified Reference Materials were sourced from Ore Research and Exploration (OREAS). 5% of assay pulps from ALS were sent to Bureau Veritas
		 Laboratory, SA for verification of assay results. All results returned within 5% of original assays. 102 field duplicates were collected by putting the retention sample through the single tier riffle splitter and the 50% split submitted for assay analysis ME-ICP93 at Bureau Veritas Laboratory, SA. Standards and blanks were included with this submission. All duplicate, standards and blanks assays returned results outside accepted tolerances. This sample batch is currently being re-bagged and will be submitted blind to ALS for
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Umpire checks on sample pulps were performed by an alternative and independent laboratory (Bureau Veritas, SA). 3 holes were twinned in the 2014 program, with twinned holes located 2m, 10m and 16m apart respectively. Comparisons were fair to poor, however limited data has restricted the validity of comparisons. It is planned to conduct a comprehensive program of twinned holes in the next drill campaign. Field data was recorded on paper drill logs, which were subsequently transferred to spreadsheet form and uploaded into a digital Access database. Assay data was returned electronically from the laboratory and transferred into a digital Access database. No adjustments of assay data have been made. One shallow pit was dug at Ardnaree for bulk sample for

	Criteria	JORC Code explanation	Commentary
			metallurgical testwork. The pit was 3m deep and encountered the top 1m of the deposit as expected
	Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill hole collar locations have been surveyed to Geocentric Datum of Australia 1994 (GDA94) and Map Grid of Australia 1994 (MGA94) Zone 55 grid by qualified surveyors using Differential Global Positioning System (DGPS) survey equipment, accurate to within 10 cm in both horizontal and vertical directions. Collar locations were checked by plotting a hard copy of surveyed drillholes and compared against planned coordinates. 90% of all drillholes have been surveyed by licensed contractor surveyors. As all holes were vertical and shallow, no downhole surveys were conducted. Grid system used is MGA 94 (Zone 55). A topography surface covering the Young deposit was generated from surveyed drill collars.
	Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Ardnaree: Holes were drilled on a total of 30 drill sections with drill spacing ranging from 90m to 650m along-strike, and averaging 100m across-strike. Data spacing is considered sufficient for the establishment and classification of an Inferred resource with respect to this style of mineralisation. Samples were composited to 5m intervals outside mineralised zones in early aircore and RC drill campaigns. All later aircore holes were not composited and were sampled at 1m intervals. Thuddungra: Holes were drilled on a total of 18 drill sections with drill spacing ranging from 200m to 420m along-strike, and averaging 100m across-strike. Data spacing is considered sufficient for the establishment and classification of an Inferred resource with respect to this style of mineralisation. Samples were composited to 5m intervals outside mineralised zones in early aircore and RC drill campaigns. All later aircore holes were not composited averaging 100m across-strike. Data spacing is considered sufficient for the establishment and classification of an Inferred resource with respect to this style of mineralisation. Samples were composited to 5m intervals outside mineralised zones in early aircore and RC drill campaigns. All later aircore holes were not composited and were sampled at 1m intervals.
R 500	Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Laterite nickel mineralisation at Ardnaree is predominantly horizontal to sub-horizontal, and thus the vertical drillholes intersect the interpreted mineralised lithologies as close to a perpendicular angle as possible. Drill lines lie east-south-east, perpendicular to the deposit strike. Drilling orientation and subsequent sampling is unbiased in its representation of reported material.
	Sample security	The measures taken to ensure sample security.	 Samples were collected by field assistants, placed onto pallets and delivered to the laboratory by recognised freight service. Retention and duplicate samples were kept in a locked facility in the town of Young. Early retention samples were stored on site, by arrangement with landholders. These were covered with a plastic UV silage tarpaulin and surrounded by a two wire, 1.5m high battery powered electric fence. Winter winds ripped the cover and curious stock trampled the sample bags that had been exposed and degraded by the elements. Approximately 40% of the samples were unable to be recovered. From September 2009 onwards all retention samples were stored in a locked facility in the town of Young

Criteria	JORC Code explanation	Commentary			
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 An external review has been conducted on the data integrity and field procedures by Snowden. Results are being compiled. 			

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	J(ORC Code explanation	Сс	ommei	ntary							
Mineral tenement and land tenure status	•	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	•	The N EL55 were 9 unit EL55 The t	Young c 71 whic granted is were 71 in 20 eneme	leposit is ch are 10 d on 6 Oc relinquis 016. nt is in go	located 0% hele tober 1 hed fro od star	d on Expl d by Jerv 998 and m EL552 nding and	oration ois Pty 6 May 7 in 20' I no kno	Licenses Ltd. The 1999 res 16, and 4 own impe	EL552 ese licer pective units fr ediment	27 & nses ly. rom s exist.
Exploration done by other parties	•	Acknowledgment and appraisal of exploration by other parties.	•	In 1967, BHP Ltd conducted a small nickel prospecting programme in the Thuddungra area to the north of Ardnaree, which included ground magnetic traverses, geological mapping, 20 preliminary holes and regional mapping.								amme in d ground s and
Geology Drill hole Information	•	Deposit type, geological setting and style of mineralisation. A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material	•	 The Young deposit is located within the Jindalee Beds sequence, on the western edge of a granodiorite complex. Mineralisation at Young is associated with laterisation of leached fluids from this granodiorite, resulting in enrichments of nickel, cobalt and scandium. The lateritic profile typically comprises hematitic clay and limonitic clay overlying saprolite, which in turn overlies a weathered serpentinite unit. Scandium is concentrated in the upper layers, followed by cobalt enrichment within limonitic clay and saprolite, and then nickel enrichment within the saprolite and weathered serpentinite. A summary of the drillholes are listed below. Details are provided in MGA grid co-ordinates. Assays from RC holes RC454-RC481 were excluded from the resource estimate, due to a lack of sampling details and concerns with the sampling method, however the geological logging was accepted 							nce, on t Young odiorite, onitic clay tinite by cobalt e cerns with ccepted	
	drill holes: • easting and northing of the drill hole collar • elevation or Pl			Detai as Ap	ls of dri pendix	Ilhole coo II.	ordinate	es, dip, az	zimuth,	and leng	th are i	ncluded
		(Reduced Level –			Airco	re Holes	Re [.] Circu	verse ulation	Diamo	nd Holes	Calweld Holes	
		elevation above sea level in metres) of the drill hole collar o dip and azimuth of the		Year	No of hole s	Metres	No of hole s	Metres	No of hole s	Metres	No of hole s	Metres
		hole		1998	10	490						
		 down note length and interception depth 		1999	95	2,773						
		 hole length. 		2000			11	476				
	•	It the exclusion of this information is justified on the		2001			10	489	3	161.8	5	125.7
		basis that the information is		2002			8	529				
		not Material and this exclusion does not detract		2005			6	352				
		from the understanding of		2007			36	1,802				

Criteria	JORC Code explanation	Commentary	
	the report, the Competent	2008 83 1,854	
	explain why this is the case.	2014 26 1,469	
		SUM 214 6,586 71 3,648 3 161.8 5 125.7	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No exploration results are reported in this announcement. Exploration results have been reported previously in historical annual reports and ASX releases as length-weighted averages. An example would be from YA419 as follows: From (m) To (m) Ni % 0 1 0.21 1 2 0.88 2 3 0.71 3 4 0.75 Weighted average= ((1x0.21)+(1x0.88)+(1x0.71)+(1x0.75))/(1+1+1+1) = 4m at 0.64% Ni No grade truncations were performed. A Ni-Eq metal equivalent was used for reporting the Ardnaree and Thuddungra resources. The formula used for the metal equivalent was as follows: Ni-Eq = Ni% + (5 * Co%) Metal prices for the Ni-Eq formula were taken as follows: Ni Price of US\$6/lb Co Price of US\$6/lb Metallurgical recoveries from testwork completed vary from 50% to 95% depending on the processing method used. Equivalent recoveries for Ni Co are assumed. 	
Relationship between mineralisatio n widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Drilling programs have been designed to intersect the lateritic mineralisation as close as practically possible to perpendicular. Downhole intercept lengths are deemed to provide an acceptable representation of true mineralisation widths at Ardnaree and Thuddungra due to vertical drilling and horizontal/sub-horizontal mineralisation. 	

Diagrams

- Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.
- A planview of drillhole collar locations and schematic cross section are shown below.

Ardnaree:

Thuddungra:

٠

		deleterious or contaminating substances.	
	Further work	 The nature and scale of planned further work (eg tests for lateral extensions, depth extensions or large- scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Jervois plans to undertake infill drilling to define the extents and grade of Ni and Co mineralisation to assess its development potential and determine the size of the high-grade Co resource. Twinning of aircore holes and further diamond density holes are also planned.
Sec	ction 3 Estir	mation and Reporting o	f Mineral Resources
(Crite	eria listed in section	on 1 also apply to this section.)	
	teria JO	DRC Code explanation	Commentary

	Critoria	IOBC Code explanation	Commentary				
5	Griteria						
	Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Drilling data is stored in a Microsoft Access database. Excel files containing drill logs, surveyed coordinates and assays of new holes were supplied to Geostat Services (Geostat) for use in the 2017 resource estimate. Data validation steps included, but were not limited to the following: Validation through database constraints eg overlapping/missing intervals, intervals exceeding maximum depth, missing assays, duplicate coordinates. Validation through 3D visualisation in 3D software to check for any obvious collar, downhole survey, or assay import errors. Checks were conducted between collar survey files from the licensed survey contractor with those supplied to Geostat. 				
2	Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 Geostat undertook a site visit during 2017, and visited both the Ardnaree and Thuddungra deposits, and the sample storage facility at Young. 				
	Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 The confidence in the geological interpretation is good, based on the quantity and quality of data available, and the continuity and nature of the mineralisation. Detailed geological logging has allowed extrapolations of mineralisation intersections from section to section. Cross-sectional interpretation of each lithology unit is performed followed by interpretation of mineralisation boundaries. Three-dimensional wireframes of the sectional interpretation model. Mineralisation was defined within discrete lithologies and modelled accordingly. The Mineral Resource is well-defined from existing drillholes, and as such, alternative interpretations will result in similar tonnage and grade. 				
	Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral 	 The Ardnaree deposit extends over 9km along strike and up to 700m across strike, with mineralisation present from surface to a maximum vertical depth of 56m. Average mineralisation thickness is 13m. 				

Criteria	JORC Code explanation	Commentary
	Resource.	 87% of the Ardnaree total resource is located within 30m from the topography surface. Mineralisation at Ardnaree is characterized by an overall NE trend and a sub-horizontal to horizontal dip. The Thuddungra deposit extends 5.9km along strike up to the northern boundary of the Jervois license and up to 715m across strike, with mineralisation present from 6m below the topography surface to a maximum vertical depth of 98m. Average mineralisation thickness is 22m. 24% of the Thuddungra total resource is located within 30m from the topography surface. Mineralisation at Thuddungra is characterized by an overall NNE trend and a sub-horizontal to gentle dip towards the east.
	 The nature and appropriateness of estimation technique(s) applied and key assumptions, including treatme of extreme grade values, domaining interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements other non-grade variables of econo significance (eg sulphur for acid mi drainage characterisation). In the case of block model interpolation, the block size in relat to the average sample spacing and search employed. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control to resource estimates. Discussion of basis for using or not using grade cutting or cappring. The process of validation, the chece process used, the comparison of model data to drill hole data, and us of reconciliation data if available. 	 The grade estimation process was completed using Surpac 6.6.1 mining software. Two grade attributes (Ni, Co) were estimated by ordinary kriging. This method is deemed appropriate by the Competent Person for estimating the tonnages and grades of the reported Mineral Resource. A combination of assays and lithology were used to define the sectional envelopes, with a cut-off of approximately 0.3% Ni to separate mineralisation from waste. Envelopes were subdivided on the basis of lithology into hematite, limonite, saprolite and serpentinite lithological zones. Wireframes were delineated from sectional envelopes to represent all mineralisation within respective lithologies. Each wireframe was treated as a separate interpolation domain, with interpolation of grades limited to blocks within each domain. No capping was applied, as all samples were of the same population with low to moderate coefficients of variation and no extreme outliers present. Statistical analysis was carried out on data from all domains. A minimum of 2 composites and a maximum of 15 composites were used in interpolation of grades into blocks. A block model of parent cell size 150m (N) x 50m (E) x 2m (RL) sub-celled to 75m x 25m x 1m was used for resource estimation. Search ellipses for initial interpolation of grades ranged from 450m x150m x 15m to 175m x 100m x 15m at Ardnaree, and 700m x 140m x 12m at Thuddungra. A second subsequent interpolation fasts in order to fill blocks in areas of sparse drill density within the domains. The area estrapolated up to a maximum distance of approximately 300m from data points. This equates to half the drilling at the time in comparison, albeit with smaller datasets and were consistent given the drilling at the time in comparison, albeit with smaller datasets and were consistent given the drilling at the time in comparison with the current Geostat estimate. The recovery

Criteria	JORC Code explanation	Commentary			
		 not correlated. The resource estimate was validated by visual validations on screen, global statistical comparisons of input composite grades and block grades, and local grade/depth graphical relationships. 			
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content. 	 Tonnages are estimated on a dry basis. 			
Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	 A nominal cut-off of 0.3% Ni was used to separate mineralisation from waste, which was confirmed by visual inspection of cross-sections. This cut-off was also chosen to reflect reasonable prospects for economic extraction of the appropriate grade population. 			
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. 	• The present assumption is that mining method will be the low cost open cut method. This assumption is made based on the facts that (1) the deposit occurs near the surface and (2) the host rock laterite is relatively soft hence easy to mine by open cut method and does not require regular blasting. The other assumption is that the hauled ore will be crushed and Ni Co extracted at the vicinity of mine. Modelling studies are planned to determine mining factors such as pit design parameters, excavation rates and cost of the mining operation.			
Metallurgical factors or assumptions	 The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made. 	 The amenability of the Ni-Co mineralisation to physical beneficiation was investigated by past and recent laboratory studies involving crushing, wet screening, sizing, heavy-liquid and magnetic separations. These studies showed that cobalt and nickel grades could be doubled but this would be at the expense of rejecting a significant portion of the feed. Testwork proved the underlying assumptions that high pressure acid leach (HPAL) would extract most of the Ni-Co, consume less acid and leave iron largely in the solid residue. Direct Acid and Heap Leach were also shown to be suitable but consumed more acid, extracted less nickel and cobalt, and more iron than HPAL. 			
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	No assumptions at this stage in regard to environmental factors or assumptions have been made.			
Duik density	vonement assumed or determined. If assumed, the basis for the	• Iso build density measurements were taken from 3 diamond holes, using the water immersion			

Criteria	JORC Code explanation	Commentary
	 assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 method. Densities were averaged by lithology zone, with a density of 2.18t/m³ (serpentinite), 1.84t/m³ (saprolite), 1.87t/m³ (limonite) and 1.99t/m³ (hematite) used to estimate resource block tonnage for all zones. A 3D lithology model has been used to delineate the distinct lithologies and is based on geological logging of the drill holes.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 Mineral Resources have been classified as Inferred in accordance with the JORC Code 2012 guidelines. Classification of the resource involved several criteria, including drillhole spacing, sampling density, sampling locations, lithology, QAQC, bulk density and confidence in grade continuity. Blocks were classified as Inferred on the basis of the above criteria and this is considered appropriate given the existing data. The resource estimate and classification result reflect the view of the Competent Person.
 Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	 An external review has been conducted on the resource model by Snowden. Results are being compiled.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 The relative accuracy of the Mineral Resource is reflected in the classification of the Mineral Resource in the Inferred category as per the guidelines of the 2012 JORC Code. Relative accuracy and confidence has been assessed through validation of the model as outlined above. The Mineral Resource statement reflects the assumed accuracy and confidence as a global estimate. The deposit is undeveloped and has no production history.

APPENDIX II

Drillhole Listing

	HoleID	MGAEast	MGANorth	RL	TotalDepth	HoleType	Dip	Azimuth
ĺ	RC461	598527.94	6222552.415	309.000	40.00	RC	-90	0
	RC462	598721.939	6222519.412	309.000	40.00	RC	-90	0
	RC463	598920.937	6222487.41	308.000	31.00	RC	-90	0
	RC464	598495.938	6222354.415	310.000	40.00	RC	-90	0
	RC465	598692.937	6222322.411	310.000	40.00	RC	-90	0
\geq	RC466	598891.935	6222290.409	310.000	40.00	RC	-90	0
	RC467	599747.928	6221945.402	314.000	79.00	RC	-90	0
	RC468	599842.928	6221944.401	314.000	40.00	RC	-90	0
	RC469	599687.926	6221553.402	315.000	64.00	RC	-90	0
	RC470	599786.925	6221530.402	315.000	75.00	RC	-90	0
	RC537	598177.936	6221939.418	314.000	54.00	RC	-90	0
	RC538	598367.937	6222179.416	312.000	54.00	RC	-90	0
	RC539	598560.936	6222144.412	312.000	55.00	RC	-90	0
70	RC540	598762.934	6222114.409	312.000	47.00	RC	-90	0
115	RC543	599520.934	6222401.406	308.000	73.00	RC	-90	0
Ľ	RC544	599620.934	6222389.405	308.000	78.00	RC	-90	0
\bigcirc	RC545	599719.933	6222374.405	308.000	84.00	RC	-90	0
$\left \right\rangle$	RC546	599817.933	6222359.404	309.000	84.00	RC	-90	0
- 14	YA004	599722.921	6220851.402	315.000	69.00	AC	-90	0
	YA005	599630.922	6220866.403	316.000	50.00	AC	-90	0
	YA006	599815.921	6220835.402	314.000	69.00	AC	-90	0
	YA007	599533.905	6218197.404	334.000	57.00	AC	-90	0
	YA008	599602.904	6218183.404	334.000	60.00	AC	-90	0
	YA009	599441.905	6218236.405	335.000	48.00	AC	-90	0
$\left(\right)$	YA063	599707.904	6218184.403	333.000	50.00	AC	-90	0
9	YA064	599335.906	6218237.405	336.000	36.00	AC	-90	0
	YA065	599228.906	6218253.406	338.000	39.00	AC	-90	0
	YA066	599160.907	6218298.406	340.000	12.00	AC	-90	0
	YA085	596644.998	6215305.653	370.000	20.00	AC	-90	0
	YA086	596741.833	6215293.725	366.000	36.00	AC	-90	0
	YA087	596838.718	6215280.817	368.000	32.00	AC	-90	0
$(\cap$	YA088	596936.508	6215268.105	376.000	27.00	AC	-90	0
12	YA089	597036.158	6215258.77	387.000	25.00	AC	-90	0
	YA090	597135.108	6215246.762	394.000	4.00	AC	-90	0
70	YA091	597227.379	6215235.881	389.000	7.00	AC	-90	0
	YA092	596967.797	6213951.911	389.000	6.00	AC	-90	0
Ľ	YA093	596867.831	6213988.653	399.000	30.00	AC	-90	0
	YA094	596750.269	6214021.529	397.000	8.00	AC	-90	0
	YA095	596670.099	6214039.379	388.000	32.00	AC	-90	0
	YA096	596578.458	6214055.847	384.000	50.00	AC	-90	0
	YA097	596476.724	6214076.54	384.000	18.00	AC	-90	0
	YA099	596658.521	6213221.687	381.000	32.00	AC	-90	0
	YA100	596559.785	6213235.094	380.000	48.00	AC	-90	0
	YA101	596463.889	6213249.919	382.000	27.00	AC	-90	0
	YA102	596365.448	6213264.342	384.000	24.00	AC	-90	0
	YA103	596266.466	6213279.271	388.000	24.00	AC	-90	0
	YA104	596083.067	6212453.075	406.000	6.00	AC	-90	0
	YA105	596181.226	6212434.688	401.000	12.00	AC	-90	0
	YA106	596279.456	6212415.835	397.000	27.00	AC	-90	0
	YA107	596377.863	6212397.746	394.000	15.00	AC	-90	0
	YA108	596476.474	6212379.578	395.000	24.00	AC	-90	0
	YA109	596573.223	6212342.826	396.000	9.00	AC	-90	0
	YA110	596669.902	6212323.744	397.000	6.00	AC	-90	0

	HoleID	MGAEast	MGANorth	RL	TotalDepth	HoleType	Dip	Azimuth
	YA111	596287.396	6211729.068	392.000	27.00	AC	-90	0
	YA112	596193.018	6211744.133	389.000	12.00	AC	-90	0
	YA113	596091.485	6211762.02	386.000	18.00	AC	-90	0
	YA114	595995.217	6211778.838	387.000	27.00	AC	-90	0
	YA115	595893.412	6211794.526	391.000	18.00	AC	-90	0
	YA116	595797.693	6211810.415	396.000	21.00	AC	-90	0
	YA117	596382.733	6211814.381	396.000	9.00	AC	-90	0
	YA118	596325.179	6211229.614	392.000	7.00	AC	-90	0
\gg	YA119	596229.944	6211248.081	387.000	11.00	AC	-90	0
	^D YA120	596131.723	6211266.731	383.000	14.00	AC	-90	0
	YA121	596030.475	6211285.223	379.000	19.00	AC	-90	0
	YA122	595935.211	6211302.8	377.000	27.00	AC	-90	0
	YA123	595837.076	6211320.124	380.000	15.00	AC	-90	0
\square	YA124	595738.151	6211338.404	383.000	22.00	AC	-90	0
$(\bigcirc$	YA125	595849.082	6210557.925	393.000	4.00	AC	-90	0
	YA126	595749.772	6210571.833	387.000	17.00	AC	-90	0
	YA127	595649.765	6210586.015	381.000	21.00	AC	-90	0
615	YA128	595550.961	6210597.534	375.000	16.00	AC	-90	0
UD.	YA129	595447.659	6210610.957	374.000	11.00	AC	-90	0
	YA130	595354.157	6210624.431	373.000	15.00	AC	-90	0
	YA131	595423.645	6210115.949	394.000	23.00	AC	-90	0
O E	YA132	595520.72	6210096.291	390.000	8.00	AC	-90	0
	YA133	595619.572	6210078.797	393.000	7.00	AC	-90	0
	YA134	595719.352	6210055.346	392.000	15.00	AC	-90	0
	YA135	595440.431	6209438.888	355.000	34.00	AC	-90	0
	YA136	595343.378	6209456.742	356.000	25.00	AC	-90	0
	YA137	595240.488	6209471.445	360.000	18.00	AC	-90	0
(ΩD)	YA138	595144.283	6209487.147	368.000	6.00	AC	-90	0
66	YA139	594962.546	6208898.907	342.000	21.00	AC	-90	0
\square	YA140	595057.519	6208878.416	338.000	25.00	AC	-90	0
<u></u>	YA141	595155.644	6208858.812	336.000	32.00	AC	-90	0
	YA142	595254.193	6208839.199	337.000	39.00	AC	-90	0
(\bigcirc)	YA166	596728.815	6213396.251	378.000	43.00	AC	-90	0
\subseteq	YA167	596827.694	6213379.153	379.000	27.00	AC	-90	0
26	YA168	597079.17	6214331.668	394.000	9.00	AC	-90	0
\mathbb{O}	YA169	597171.474	6214311.321	383.000	15.00	AC	-90	0
	YA170	597558.543	6214217.64	365.000	27.00	AC	-90	0
	YA171	597655.946	6214194.082	362.000	53.00	AC	-90	0
65	YA172	597240.363	6214868.588	378.000	30.00	AC	-90	0
UD.	YA173	597338.956	6214852.947	371.000	18.00	AC	-90	0
	YA174	597635.416	6214806.122	361.000	39.00	AC	-90	0
(()	YA175	597737.337	6214804.791	358.000	33.00	AC	-90	0
	YA176	598922.053	6216799.742	332.000	42.00	AC	-90	0
	YA177	598826.958	6216820.198	338.000	30.00	AC	-90	0
ζ	YA178	599341.559	6217486.733	331.000	56.00	AC	-90	0
	YA179	599439.673	6217470.497	330.000	69.00	AC	-90	0
$(\bigcirc$	YA180	599537.914	6217451.736	329.000	64.00	AC	-90	0
	YA181	599243.126	6217501.914	336.000	42.00	AC	-90	0
ПП	YA182	5991/2.166	621/671.016	335.000	27.00	AC	-90	0
	YA183	599453.298	6218/52.05	328.000	57.00	AC	-90	0
	YA184	599554.316	6218/33.83	327.000	65.00	AC	-90	0
	YA185	599649.578	6218/18.386	325.000	/3.00	AC	-90	0
	YA186	599744.807	6218/01.593	325.000	45.00	AC	-90	0
	YA18/	599357.493	6218/6/.538	328.000	39.00	AC	-90	0
	YA188	599566.245	6219240.845	325.000	69.00	AC	-90	0
	V/1V0	500667 774	6 J1 (J) J / QE /			ι Λ(⁺	- un	ι <u>Λ</u>

	HoleID	MGAEast	MGANorth	RL	TotalDepth	HoleType	Dip	Azimuth
	YA190	599759.545	6219208.117	323.000	80.00	AC	-90	0
	YA191	599473.36	6219255.367	326.000	58.00	AC	-90	0
	YA192	599602.531	6220197.648	317.000	33.00	AC	-90	0
	YA193	599695.244	6220184.905	316.000	54.00	AC	-90	0
	YA194	599794.53	6220173.18	315.000	87.00	AC	-90	0
	YA195	599660.654	6219798.166	318.000	65.00	AC	-90	0
	YA196	599462.919	6219828.973	320.000	47.00	AC	-90	0
	YA197	599562.082	6219811.335	318.000	58.00	AC	-90	0
>	YA204	597316.862	6220865.209	327.000	20.00	AC	-90	0
	YA205	597414.484	6220849.199	329.000	15.00	AC	-90	0
	YA206	597511.452	6220837.106	331.000	16.00	AC	-90	0
\square	YA207	597605.117	6220824.072	336.000	9.00	AC	-90	0
2	YA208	597996.424	6220724.192	341.00	7.00	AC	-90	0
	YA214	594939.587	6208223.058	334.000	39.00	AC	-90	0
(()	YA268	597766.378	6221413.101	322.700	36.00	RC	-90	0
\subseteq	YA269	597668.978	6221429.601	322.800	24.00	RC	-90	0
	YA270	597565.778	6221447.401	323.200	16.00	RC	-90	0
615	YA271	598450.577	6221333.801	325.400	6.00	RC	-90	0
(UD)	YA272	598432.878	6221891.1	315.500	48.00	RC	-90	0
	YA273	598330.178	6221909.3	314.800	60.00	RC	-90	0
$(C/ \cap$	YA274	598231.378	6221926.3	313.800	54.00	RC	-90	0
O E	YA275	598639.478	6222486.9	309.300	58.00	RC	-90	0
	YA280	599680.077	6221966.4	313.500	76.00	RC	-90	0
\square	YA281	599577.577	6221983.7	313.100	60.00	RC	-90	0
	YA282	598811.978	6222388.2	308.900	38.00	RC	-90	0
	YA283	597969.936	6221660.42	319.000	39.00	RC	-90	0
_	YA284	599731.927	6221752.402	314.000	84.00	RC	-90	0
(ΩD)	YA285	599685.919	6220526.403	315.000	66.00	RC	-90	0
66	YA286	599517.912	6219247.404	326.000	66.00	RC	-90	0
	YA287	599392.903	6217866.405	334.000	46.00	RC	-90	0
<u> </u>	YA288	599402.903	6217864.405	334.000	51.00	RC	-90	0
	YA289	599214.917	6218562.248	332.760	29.00	RC	-90	0
(()	YA290	599317.204	6218548.269	330.280	53.00	RC	-90	0
	YA291	599416.608	6218530.882	328.330	48.00	RC	-90	0
RA	YA292	599515.332	6218513.281	326.710	57.00		-90	0
65	YA295	599012.407	6210490.302	224 760	65.00	RC	-90	0
\mathcal{L}	VA205	500910 204	6219462 041	222 080	64.00	RC	-90	0
	VA295	599310.394	6210025 386	323.380	23.00	RC	-90	0
(\square)	VA297	599/00 838	6219020 595	326.670	41.00	RC	-90	0
QP	YA298	599499 58	6219003 864	325.270	47.00	RC	-90	0
\square	YA299	599597 862	6218987 568	323.980	59.00	RC	-90	0
(\Box)	YA300	599659.81	6221228.521	310.010	52.00	RC	-90	0
	YA301	599563.252	6221230.21	310.420	22.00	RC	-90	0
7	YA302	599758.929	6221197.26	311.440	77.00	RC	-90	0
2	YA303	599859.148	6221179.508	311.85	82.00	RC	-90	0
\square	YA305	596035.032	6210931.894	384.000	24.00	RC	-90	0
$(\bigcirc$	YA306	595932.034	6210954.798	377.590	23.00	RC	-90	0
_	YA307	595840.329	6210967.339	373.160	29.00	RC	-90	0
	YA308	595758.495	6210981.891	370.770	5.00	RC	-90	0
	YA309	595642.385	6211000.607	369.580	35.00	RC	-90	0
	YA310	595543.267	6211017.687	372.250	18.00	RC	-90	0
	YA311	596556.898	6212105.57	396.510	28.00	RC	-90	0
	YA312	596610.426	6212908.154	387.360	29.00	RC	-90	0
	YA313	596704.671	6212893.155	393.350	9.00	RC	-90	0
	YA315	599531.181	6220888.07	311.980	52.00	RC	-90	0

VA16 39957.099 6220548.68 333.600 S2.00 RC 90 0 VA318 599417.739 6219563.243 333.870 43.00 RC 90 0 VA318 599417.739 6219563.243 338.800 92.00 RC 90 0 VA320 599588.85 6219534.429 318.000 92.00 RC 90 0 VA321 599950.66 6219519.325 33.6.300 95.00 RC 90 0 VA324 59970.66 621951.07 322.450 72.00 RC 90 0 VA325 59938.68 6217163.54 333.010 83.00 RC 90 0 VA325 59938.68 6217163.43 331.010 83.00 AC 90 0 VA325 599485.61 62126591.36 317.20 18.00 AC 90 0 VA325 599485.62 6212498.93 371.20 18.00 AC 90 0		HoleID	MGAEast	MGANorth	RL	TotalDepth	HoleType	Dip	Azimuth
YA317 S99980.483 6220481.219 313.970 72.00 RC -90 0 YA318 S99477739 6229563.24 318.000 92.00 RC -90 0 YA319 S99588.85 621954.101 318.000 92.00 RC -90 0 YA321 S99688.19 621954.122 318.000 92.00 RC -90 0 YA322 S99756.08 621954.123 318.000 92.00 RC -90 0 YA324 S9976.096 621897.073 322.450 72.00 RC -90 0 YA324 S9978.63 621718.164 330.850 71.00 RC -90 0 YA328 S9978.16 621569.37 317.20 12.00 AC -90 0 YA325 S9675.73 621490.43 377.560 6.00 AC -90 0 YA333 S96559.21 621492.73 377.860 6.00 AC -90 0		YA316	599587.099	6220548.658	313.600	52.00	RC	-90	0
YA318 599417.739 621954.210 318.20 X3.00 RC -90 0 YA320 599589.358 6219534.29 318.000 92.00 RC 90 0 YA321 59968.19 6219519.325 316.000 76.00 RC 90 0 YA322 599795.08 621949.54 316.700 76.00 RC 90 0 YA324 599790.066 621949.54 316.700 76.00 RC 490 0 YA325 599335.838 621718.15.43 331.010 83.00 RC 490 0 YA325 59935.838 6215701.08 331.2680 60.00 AC 490 0 YA329 599951.62 6215704.08 359.120 22.00 AC 490 0 YA330 598951.62 6215721.37 354.000 17.00 AC 490 0 YA331 596953.93 671490.28 377.80 6.00 AC 490 0 </td <td></td> <td>YA317</td> <td>599980.483</td> <td>6220481.219</td> <td>313.970</td> <td>72.00</td> <td>RC</td> <td>-90</td> <td>0</td>		YA317	599980.483	6220481.219	313.970	72.00	RC	-90	0
YA319 999493.08 62:19549.101 318.420 37.00 RC 90 0 YA321 59968.85 62:1954.429 316.000 95.00 RC 90 0 YA322 599508.66 62:19519.325 316.000 76.00 RC 90 0 YA323 599508.161 62:1895.678 32:2.730 77.000 RC 90 0 YA324 599736.066 62:1895.678 32:1.450 72.00 RC 90 0 YA325 599435.683 62:1718.1.443 330.850 71.00 RC 90 0 YA326 599761.17 62:2050.67 313.990 40.00 AC 90 0 YA328 599761.17 62:2050.67 313.990 40.00 AC 90 0 YA330 596891.52 62:1572.13 77.500 AC 90 0 YA333 596793.65 62:1492.73 377.800 AO AC 90 0		YA318	599417.739	6219563.234	319.870	43.00	RC	-90	0
YA320 599589.85 6219534.29 318.000 92.00 RC -90 0 YA321 599688.19 6219519.325 316.300 95.00 RC -90 0 YA322 599796.05 621990.65 322.730 74.00 RC -90 0 YA325 599368.056 6219970.65 322.730 74.00 RC -90 0 YA325 599358.838 621718.541 331.010 83.00 RC -90 0 YA325 599358.838 622050.67 313.990 40.00 AC -90 0 YA327 599481.69 6215689.33 371.220 18.00 AC -90 0 YA330 596931.62 621570.40 359.120 2.00 AC -90 0 YA333 596593.5 6214992.33 377.560 6.00 AC -90 0 YA333 596593.5 621492.23 377.560 6.00 AC -90 0		YA319	599493.08	6219549.101	318.420	37.00	RC	-90	0
YA221 990688.19 62:19519.25 316.200 95.00 RC 90 0 YA323 599698.16 62:18976.05 322.730 74.00 RC 90 0 YA324 59976.06 62:18976.07 322.730 74.00 RC 90 0 YA324 59976.17 62:2050.67 331.010 83.00 RC 90 0 YA326 599336.88 62:1718.16.43 330.850 71.00 RC 90 0 YA326 599751.17 62:2051.86 312.680 60.00 AC 90 0 YA330 596851.42 62:1570.18 331.260 AC 90 0 YA331 596757.33 62:1492.72 377.80 6.00 AC 90 0 YA333 596659.21 62:1495.28 377.380 6.00 AC 90 0 YA333 59656.72 62:1480.37 597.80 AC 90 0 0 YA333		YA320	599589.858	6219534.429	318.000	92.00	RC	-90	0
Y4322 599795.08 621949.54 315.700 FC. 90 0 Y4324 599796.096 621897.65 322.730 FC 90 0 Y4324 599796.096 6218954.078 321.450 72.00 FC 90 0 Y4325 599435.632 621718.16.33 330.850 FL -90 0 Y4327 599485.63 622056.07 313.990 40.00 AC -90 0 Y4328 599791.17 622051.186 312.680 60.00 AC -90 0 Y4329 596981.69 621589.33 371.20 18.00 AC -90 0 Y4330 596579.39 6214907.23 377.380 6.00 AC -90 0 Y4331 59659.51 6214927.23 377.380 6.00 AC -90 0 Y4334 59659.21 6214981.28 372.10 6.00 AC -90 0 Y4334 59659.21		YA321	599688.19	6219519.325	316.300	95.00	RC	-90	0
YA323 S99988.161 G218970.055 322.730 YA.00 RC -90 0 YA325 S99435.632 G217163.54 331.010 83.00 RC -90 0 YA325 S99435.632 G217163.54 331.900 RC -90 0 YA326 S9936.83 G21718.1643 330.850 71.00 RC -90 0 YA326 S99781.17 G22056.07 313.990 40.00 AC -90 0 YA328 S96891.62 G215704.08 337.220 18.00 AC -90 0 YA330 S96891.62 G21572.137 7354.00 17.00 AC -90 0 YA331 S96559.21 G21499.376 394.910 7.00 AC -90 0 YA335 S96956.72 G21493.76 394.910 7.00 AC -90 0 YA335 S96956.72 G21493.76 394.910 7.00 AC -90 0 <t< td=""><td></td><td>YA322</td><td>599795.08</td><td>6219494.54</td><td>316.700</td><td>76.00</td><td>RC</td><td>-90</td><td>0</td></t<>		YA322	599795.08	6219494.54	316.700	76.00	RC	-90	0
YA324 599796.096 6218954.078 321.450 Z0.0 RC -90 0 YA325 599336.683 6217163.54 330.101 R30.00 RC -90 0 YA326 599336.683 6217181.643 330.850 71.00 RC -90 0 YA327 59948.63 6220501.86 312.680 60.00 AC -90 0 YA328 599781.17 6221589.33 371.220 18.00 AC -90 0 YA330 596891.62 6215704.08 359.120 22.00 AC -90 0 YA331 596757.93 6214927.23 377.380 6.00 AC -90 0 YA334 596552.21 6214927.23 377.380 6.00 AC -90 0 YA335 596556.22 6214863.76 39.491 7.00 AC -90 0 YA335 59755.247 6214863.76 39.490 12.00 AC -90 0 <		YA323	599698.161	6218970.65	322.730	74.00	RC	-90	0
VA225 599435.62 621763.54 331.00 82.00 RC -90 0 VA326 59935.83 6217181.643 330.850 71.00 RC -90 0 VA327 599485.63 6220560.67 313.990 40.00 AC -90 0 VA328 599781.17 6220511.86 312.680 60.00 AC -90 0 VA330 596681.62 621570.08 3531.20 22.00 AC -90 0 VA331 596757.93 6214903.96 377.560 6.00 AC -90 0 VA333 596550.21 6214945.28 377.200 AC -90 0 VA335 590757.47 6214807.43 394.910 7.00 AC -90 0 VA335 590757.47 6214864.39 383.940 13.00 AC -90 0 VA336 59709.27 621567.09 994.890 12.00 AC -90 0 VA	>	YA324	599796.096	6218954.078	321.450	72.00	RC	-90	0
YA326 59933.88.8 6217181.643 330.850 71.00 RC 90 0 YA327 599485.63 622056.67 313.990 40.00 AC -90 0 YA328 5996981.69 6215689.33 371.220 18.00 AC -90 0 YA328 596781.69 621570.08 359.122 22.00 AC -90 0 YA331 596757.93 6214907.23 377.560 6.00 AC -90 0 YA334 596757.93 6214997.23 377.80 6.00 AC -90 0 YA335 59695.72 6214957.03 39.910 7.00 AC -90 0 YA335 59955.21 621493.76 39.910 7.00 AC -90 0 YA335 59752.01 6214945.28 379.210 6.00 AC -90 0 YA336 59726.01 621492.43 39.940 13.00 AC -90 0 >		¹⁾ YA325	599435.632	6217163.54	331.010	83.00	RC	-90	0
YA327 599485.63 622050.67 313.990 40.00 AC -90 0 YA328 599781.17 6220511.86 312.680 60.00 AC -90 0 YA329 596981.69 6215704.08 355120 22.00 AC -90 0 YA330 596981.62 6215704.08 355120 22.00 AC -90 0 YA331 596793.66 6215721.37 354.000 AC -90 0 YA333 596592.1 6214945.28 377.120 6.00 AC -90 0 YA334 596952.1 6214943.28 379.210 6.00 AC -90 0 YA335 597952.47 6214864.33 386.600 4.00 AC -90 0 YA335 59795711 6215657.28 389.000 13.00 AC -90 0 YA340 59709.27 621567.72.8 389.00 13.00 AC -90 0 YA344<		YA326	599336.883	6217181.643	330.850	71.00	RC	-90	0
YA328 599781.7 6220511.86 312.680 60.00 AC -90 0 YA329 596981.69 6215693.33 371.220 18.00 AC -90 0 YA330 596981.62 6215704.08 353.120 22.00 AC -90 0 YA331 59679.36 6214927.23 377.80 6.00 AC -90 0 YA333 59659.91 6214927.23 377.380 6.00 AC -90 0 YA335 59659.21 621493.76 394.910 7.00 AC -90 0 YA335 59695.72 6214893.76 394.910 7.00 AC -90 0 YA335 59705.47 6214840.43 396.680 27.00 AC -90 0 YA336 59715.139 621657.09 394.890 13.00 AC -90 0 YA341 59659.28 621452.57 338.06 31.00 AC -90 0	(YA327	599485.63	6220560.67	313.990	40.00	AC	-90	0
YA329 596981.62 6215704.08 359120 12.00 AC -90 0 YA330 596973.66 6215704.08 359120 22.00 AC -90 0 YA331 596757.93 6214909.96 377.560 6.00 AC -90 0 YA333 596559.51 6214927.23 377.380 6.00 AC -90 0 YA334 596559.21 6214945.28 379.210 6.00 AC -90 0 YA335 596056.72 6214893.76 394.910 7.00 AC -90 0 YA336 597052.47 6214860.43 396.680 2.00 AC -90 0 YA335 597150.13 6214844.39 383.940 13.00 AC -90 0 YA340 597287.01 6214567.28 389.000 13.00 AC -90 0 YA341 596593.26 6214492.35 401.320 10.00 AC -90 0	2	YA328	599781.17	6220511.86	312.680	60.00	AC	-90	0
YA330 596891.62 6215704.08 359.120 22.00 AC -90 0 YA331 596793.66 6215721.37 354.000 17.00 AC -90 0 YA332 596757.93 6214907.23 377.380 6.00 AC -90 0 YA333 596559.21 62149427.23 377.380 6.00 AC -90 0 YA335 596956.72 6214880.43 399.680 27.00 AC -90 0 YA336 597052.47 6214880.43 398.680 27.00 AC -90 0 YA337 597151.39 6214844.39 383.840 13.00 AC -90 0 YA338 597287.01 6215677.02 394.890 12.00 AC -90 0 YA340 597099.27 6214672.83 383.360 31.00 AC -90 0 YA341 596858.63 6214525.4 401.240 12.00 AC -90 0 </td <td>\square</td> <td>YA329</td> <td>596981.69</td> <td>6215689.33</td> <td>371.220</td> <td>18.00</td> <td>AC</td> <td>-90</td> <td>0</td>	\square	YA329	596981.69	6215689.33	371.220	18.00	AC	-90	0
YA31 59673.66 621572.137 354.000 17.00 AC -90 0 YA32 596757.93 6214909.96 377.560 6.00 AC -90 0 YA334 596559.21 6214995.28 377.380 6.00 AC -90 0 YA335 596656.72 6214937.63 394.910 7.00 AC -90 0 YA336 597052.47 6214893.76 394.910 7.00 AC -90 0 YA336 597052.47 6214803.76 394.910 13.00 AC -90 0 YA338 597151.39 6214567.09 394.890 12.00 AC -90 0 YA340 597089.27 6214593.57 401.320 10.00 AC -90 0 YA341 596658.33 621492.34 401.1200 AC -90 0 YA343 596691.27 621458.47 401.200 AC -90 0 YA344 5966	()	YA330	596891.62	6215704.08	359.120	22.00	AC	-90	0
YA332 596757.93 6214907.95 377.560 6.00 AC -90 0 YA333 596659.95 6214927.23 377.380 6.00 AC -90 0 YA334 59655.72 6214807.428 379.10 6.00 AC -90 0 YA335 59695.72 621480.43 383.940 13.00 AC -90 0 YA337 597151.39 621480.43 383.940 13.00 AC -90 0 YA337 597150.33 621567.728 388.000 13.00 AC -90 0 YA340 59709.27 6215677.28 383.00 13.00 AC -90 0 YA341 596595.28 621452.57 401.240 12.00 AC -90 0 YA343 596595.28 621452.54 401.240 12.00 AC -90 0 YA344 596697.7 621452.654 401.240 12.00 AC -90 0 <t< td=""><td></td><td>YA331</td><td>596793.66</td><td>6215721.37</td><td>354.000</td><td>17.00</td><td>AC</td><td>-90</td><td>0</td></t<>		YA331	596793.66	6215721.37	354.000	17.00	AC	-90	0
YA333 596659.95 6214927.23 377.380 6.00 AC -90 0 YA334 596559.21 6214945.28 379.210 6.00 AC -90 0 YA335 596956.72 621483.37 399.101 7.00 AC -90 0 YA336 597052.47 6214844.39 383.940 13.00 AC -90 0 YA337 597151.39 6214844.39 383.940 13.00 AC -90 0 YA338 597287.01 6215657.09 394.890 12.00 AC -90 0 YA340 597099.27 6215677.28 383.800 13.00 AC -90 0 YA341 596552.8 6214526.54 401.20 10.00 AC -90 0 YA343 596691.27 6214526.54 401.20 AC -90 0 YA344 596683.6 621475.17.4 411.350 8.00 AC -90 0 YA34		YA332	596757.93	6214909.96	377.560	6.00	AC	-90	0
YA334 59655.21 6214943.76 394.910 7.00 AC -90 0 YA335 596956.72 6214893.76 394.910 7.00 AC -90 0 YA336 597052.47 621480.43 396.680 27.00 AC -90 0 YA337 597151.39 6215640.04 386.000 4.00 AC -90 0 YA338 597287.01 621567.09 394.890 12.00 AC -90 0 YA341 596856.33 6214567.72.88 389.000 13.00 AC -90 0 YA341 596895.28 621492.35 383.360 31.00 AC -90 0 YA343 596695.28 621452.57 401.20 AC -90 0 YA343 596695.28 621452.43 401.20 AC -90 0 YA344 596691.27 621458.47 401.190 15.00 AC -90 0 YA345 59668	615	YA333	596659.95	6214927.23	377.380	6.00	AC	-90	0
YA335 596956.72 6214893.76 394.910 7.00 AC -90 0 YA336 597052.47 6214860.43 396.680 27.00 AC -90 0 YA337 597151.39 6214844.39 383.940 13.00 AC -90 0 YA338 597287.01 621567.09 394.890 12.00 AC -90 0 YA340 59709.27 621567.7.28 389.000 13.00 AC -90 0 YA341 596856.33 6214892.35 383.360 31.00 AC -90 0 YA342 596497.62 6214543.57 401.240 12.00 AC -90 0 YA344 596691.27 6214508.99 397.140 12.00 AC -90 0 YA345 596693.2 6214475.17 411.350 8.00 AC -90 0 YA344 596846.3 621477.17 411.350 8.00 AC -90 0	(UD)	YA334	596559.21	6214945.28	379.210	6.00	AC	-90	0
YA336 597052.47 6214860.43 396.680 27.00 AC -90 0 YA337 597151.39 6214844.39 383.940 13.00 AC -90 0 YA338 597287.01 6215667.09 394.890 12.00 AC -90 0 YA339 597186.03 6215677.28 389.000 13.00 AC -90 0 YA340 597099.27 6215677.28 389.000 13.00 AC -90 0 YA341 596695.28 6214526.54 401.20 10.00 AC -90 0 YA343 596595.28 6214526.54 401.120 AC -90 0 YA345 596789.2 6214492.34 401.90 15.00 AC -90 0 YA345 596789.2 6214475.17 411.350 8.00 AC -90 0 YA345 59688.63 621475.08 370.180 38.00 AC -90 0 YA3	16	YA335	596956.72	6214893.76	394.910	7.00	AC	-90	0
YA337 597151.39 6214844.39 383.940 13.00 AC -90 0 YA338 597287.01 6215640.04 386.000 4.00 AC -90 0 YA339 597186.03 6215567.09 398.900 13.00 AC -90 0 YA340 597099.27 6215677.28 389.000 13.00 AC -90 0 YA341 596856.33 6214892.35 383.360 31.00 AC -90 0 YA342 596497.62 6214452.54 401.240 12.00 AC -90 0 YA343 596595.28 6214492.34 401.190 15.00 AC -90 0 YA344 596686.75 6214492.34 401.190 15.00 AC -90 0 YA344 596886.75 6214451.74 405.940 14.00 AC -90 0 YA348 596684.75 6213675.08 370.180 38.00 AC -90 0 <	((/))	YA336	597052.47	6214860.43	396.680	27.00	AC	-90	0
YA338 597287.01 6215640.04 386.000 4.00 AC -90 0 YA339 597186.03 6215677.08 394.890 12.00 AC -90 0 YA340 59695.27 6215677.28 383.360 31.00 AC -90 0 YA341 596856.33 6214892.35 383.360 31.00 AC -90 0 YA342 596497.62 6214543.57 401.320 10.00 AC -90 0 YA343 596595.28 6214526.54 401.120 12.00 AC -90 0 YA345 596789.2 6214492.34 401.190 15.00 AC -90 0 YA345 596789.2 6214492.34 401.190 15.00 AC -90 0 YA345 596789.2 6214475.17 411.350 80.00 AC -90 0 YA348 596840.77 6213675.08 370.180 38.00 AC -90 0 YA349 596739.23 621377.04 382.000 15.00 AC <	O E	YA337	597151.39	6214844.39	383.940	13.00	AC	-90	0
YA339 597186.03 621567.09 394.890 12.00 AC -90 0 YA340 597099.27 6215677.28 389.000 13.00 AC -90 0 YA341 59655.33 6214543.57 401.320 10.00 AC -90 0 YA343 596595.28 6214526.54 401.240 12.00 AC -90 0 YA343 596595.28 6214526.54 401.240 12.00 AC -90 0 YA343 596595.28 6214452.37 401.320 15.00 AC -90 0 YA345 596691.27 6214452.34 401.190 15.00 AC -90 0 YA346 59686.75 6214458.47 405.940 14.00 AC -90 0 YA348 59686.75 621372.35 375.390 35.00 AC -90 0 YA343 596543.85 621372.35 375.390 33.00 AC -90 0	<u> </u>	YA338	597287.01	6215640.04	386.000	4.00	AC	-90	0
YA340 597099.27 6215677.28 389.000 13.00 AC -90 0 YA341 596856.33 6214892.35 383.360 31.00 AC -90 0 YA342 596497.62 6214543.57 401.320 10.00 AC -90 0 YA343 596595.28 6214526.54 401.240 12.00 AC -90 0 YA344 596691.27 6214526.54 401.190 15.00 AC -90 0 YA345 59688.63 6214475.17 411.350 8.00 AC -90 0 YA346 59688.63 6214475.17 411.350 8.00 AC -90 0 YA348 59686.35 6214458.47 405.940 14.00 AC -90 0 YA348 596739.23 6213678.7 372.430 40.00 AC -90 0 YA351 59646.13 6213723.5 375.390 33.00 AC -90 0		YA339	597186.03	6215657.09	394.890	12.00	AC	-90	0
YA341 596856.33 6214892.35 383.360 31.00 AC -90 0 YA342 596497.62 6214543.57 401.320 10.00 AC -90 0 YA343 596595.28 6214526.54 401.240 12.00 AC -90 0 YA344 596691.27 6214508.99 397.140 12.00 AC -90 0 YA345 596789.2 6214492.34 401.190 15.00 AC -90 0 YA346 59688.63 6214475.17 411.350 8.00 AC -90 0 YA347 596986.75 6214458.47 405.940 14.00 AC -90 0 YA348 596840.77 6213675.04 370.180 38.00 AC -90 0 YA350 596543.85 6213723.5 375.390 35.00 AC -90 0 YA352 596633.74 6213710.04 378.600 33.00 AC -90 0 <td></td> <td>YA340</td> <td>597099.27</td> <td>6215677.28</td> <td>389.000</td> <td>13.00</td> <td>AC</td> <td>-90</td> <td>0</td>		YA340	597099.27	6215677.28	389.000	13.00	AC	-90	0
YA342 596497.62 6214543.57 401.320 10.00 AC -90 0 YA343 596595.28 6214526.54 401.240 12.00 AC -90 0 YA344 596691.27 6214508.99 397.140 12.00 AC -90 0 YA345 596789.2 6214492.34 401.190 15.00 AC -90 0 YA346 59688.63 6214475.17 411.350 8.00 AC -90 0 YA348 596840.77 6213675.08 370.180 38.00 AC -90 0 YA349 596739.23 6213723.5 375.390 35.00 AC -90 0 YA350 596543.85 6213723.5 375.390 33.00 AC -90 0 YA351 596446.13 6213735.04 382.000 33.00 AC -90 0 YA352 596345.99 621375.70.4 382.000 23.00 AC -90 0 <td></td> <td>YA341</td> <td>596856.33</td> <td>6214892.35</td> <td>383.360</td> <td>31.00</td> <td>AC</td> <td>-90</td> <td>0</td>		YA341	596856.33	6214892.35	383.360	31.00	AC	-90	0
YA343 596595.28 6214526.54 401.240 12.00 AC -90 0 YA344 596691.27 6214508.99 397.140 12.00 AC -90 0 YA345 596789.2 6214492.34 401.190 15.00 AC -90 0 YA346 596886.63 6214475.17 411.350 8.00 AC -90 0 YA347 596986.75 6214458.47 405.940 14.00 AC -90 0 YA348 596840.77 6213675.08 370.180 38.00 AC -90 0 YA350 596543.85 6213723.5 375.390 35.00 AC -90 0 YA351 596446.13 6213757.04 382.000 15.00 AC -90 0 YA352 596345.99 6213757.04 382.000 15.00 AC -90 0 YA354 59630.16 621297.34 387.980 12.00 AC -90 0	_	YA342	596497.62	6214543.57	401.320	10.00	AC	-90	0
YA344 596691.27 6214508.99 397.140 12.00 AC -90 0 YA345 596789.2 6214492.34 401.190 15.00 AC -90 0 YA346 596886.63 6214475.17 411.350.40 A.00 AC -90 0 YA347 596986.75 6214458.47 405.940 14.00 AC -90 0 YA348 596840.77 6213675.08 370.180 38.00 AC -90 0 YA349 596739.23 6213670.8 370.180 38.00 AC -90 0 YA350 596543.85 6213723.5 375.390 35.00 AC -90 0 YA351 596446.13 621375.04 382.000 15.00 AC -90 0 YA352 596345.99 621375.04 387.980 12.00 AC -90 0 YA354 59639.16 621293.93 385.000 23.00 AC -90 0	(nn)	YA343	596595.28	6214526.54	401.240	12.00	AC	-90	0
YA345 596789.2 6214492.34 401.190 15.00 AC -90 0 YA346 596886.63 6214475.17 411.350 8.00 AC -90 0 YA347 596986.75 6214458.47 405.940 14.00 AC -90 0 YA348 596840.77 6213675.08 370.180 38.00 AC -90 0 YA349 596739.23 6213723.5 375.390 35.00 AC -90 0 YA350 596543.85 6213723.5 375.390 35.00 AC -90 0 YA351 596446.13 6213757.04 382.000 15.00 AC -90 0 YA352 59633.74 6213713.21 373.890 13.00 AC -90 0 YA353 59663.74 6212939.39 385.000 23.00 AC -90 0 YA354 596307.7 6212920.12 384.240 14.00 AC -90 0	GQ	YA344	596691.27	6214508.99	397.140	12.00	AC	-90	0
YA346 596886.63 6214475.17 411.350 8.00 AC -90 0 YA347 596986.75 6214458.47 405.940 14.00 AC -90 0 YA348 596840.77 6213675.08 370.180 38.00 AC -90 0 YA349 596739.23 6213698.7 372.430 40.00 AC -90 0 YA350 596543.85 6213723.5 375.390 35.00 AC -90 0 YA351 596446.13 6213740.04 378.600 33.00 AC -90 0 YA352 596345.99 621375.04 382.000 15.00 AC -90 0 YA353 596630.16 6212957.44 387.980 12.00 AC -90 0 YA354 596309.16 6212939.39 385.000 23.00 AC -90 0 YA355 596408.64 6212939.39 385.000 23.00 AC -90 0 <td></td> <td>YA345</td> <td>596789.2</td> <td>6214492.34</td> <td>401.190</td> <td>15.00</td> <td>AC</td> <td>-90</td> <td>0</td>		YA345	596789.2	6214492.34	401.190	15.00	AC	-90	0
YA347 596986.75 6214458.47 405.940 14.00 AC -90 0 YA348 596840.77 6213675.08 370.180 38.00 AC -90 0 YA349 596739.23 6213698.7 372.430 40.00 AC -90 0 YA350 596543.85 6213723.5 375.390 35.00 AC -90 0 YA351 596446.13 6213740.04 378.600 33.00 AC -90 0 YA352 596345.99 6213757.04 382.000 15.00 AC -90 0 YA353 596633.74 6213713.21 373.890 33.00 AC -90 0 YA355 596408.64 6212937.44 387.980 12.00 AC -90 0 YA355 596408.64 621293.93 385.000 23.00 AC -90 0 YA356 596507.7 621296.15 384.240 14.00 AC -90 0	<u> </u>	YA346	596886.63	6214475.17	411.350	8.00	AC	-90	0
YA348 596840.77 6213675.08 370.180 38.00 AC -90 0 YA349 596739.23 6213698.7 372.430 40.00 AC -90 0 YA350 596543.85 6213723.5 375.390 35.00 AC -90 0 YA351 596646.13 6213740.04 378.600 33.00 AC -90 0 YA352 596345.99 6213757.04 382.000 15.00 AC -90 0 YA353 596633.74 6213713.21 373.890 33.00 AC -90 0 YA354 59630.16 6212957.44 387.980 12.00 AC -90 0 YA355 596408.64 621293.9 385.000 23.00 AC -90 0 YA355 596607.7 6212920.12 384.240 14.00 AC -90 0 YA355 59663.61 6212186.55 397.460 19.00 AC -90 0		YA347	596986.75	6214458.47	405.940	14.00	AC	-90	0
YA349 596739.23 6213698.7 372.430 40.00 AC -90 0 YA350 596543.85 6213723.5 375.390 35.00 AC -90 0 YA351 596446.13 6213740.04 378.600 33.00 AC -90 0 YA352 596345.99 6213757.04 382.000 15.00 AC -90 0 YA353 596630.74 6213713.21 373.890 33.00 AC -90 0 YA354 596309.16 6212957.44 387.980 12.00 AC -90 0 YA355 596408.64 6212939.39 385.000 23.00 AC -90 0 YA355 596408.64 6212930.12 384.200 14.00 AC -90 0 YA355 596408.64 6212930.12 384.200 14.00 AC -90 0 YA356 596259.73 6212186.55 397.460 19.00 AC -90 0 </td <td>(\bigcirc)</td> <td>YA348</td> <td>596840.77</td> <td>6213675.08</td> <td>370.180</td> <td>38.00</td> <td>AC</td> <td>-90</td> <td>0</td>	(\bigcirc)	YA348	596840.77	6213675.08	370.180	38.00	AC	-90	0
YA350 596543.85 6213723.5 375.390 35.00 AC -90 0 YA351 596446.13 6213740.04 378.600 33.00 AC -90 0 YA352 596345.99 6213757.04 382.000 15.00 AC -90 0 YA353 596633.74 6213713.21 373.890 33.00 AC -90 0 YA354 596408.64 6212957.44 387.980 12.00 AC -90 0 YA355 596408.64 6212939.39 385.000 23.00 AC -90 0 YA356 596507.7 6212920.12 384.240 14.00 AC -90 0 YA357 596063.61 6212186.55 397.460 19.00 AC -90 0 YA358 596259.73 6212121.71 396.330 17.00 AC -90 0 YA359 596455.62 6212121.71 396.330 17.00 AC -90 0 </td <td>\subseteq</td> <td>YA349</td> <td>596739.23</td> <td>6213698.7</td> <td>372.430</td> <td>40.00</td> <td>AC</td> <td>-90</td> <td>0</td>	\subseteq	YA349	596739.23	6213698.7	372.430	40.00	AC	-90	0
YA351 596446.13 6213740.04 378.600 33.00 AC -90 0 YA352 596345.99 6213757.04 382.000 15.00 AC -90 0 YA353 596633.74 6213713.21 373.890 33.00 AC -90 0 YA353 596633.74 6212957.44 387.980 12.00 AC -90 0 YA355 596408.64 6212939.39 385.000 23.00 AC -90 0 YA356 596507.7 6212920.12 384.240 14.00 AC -90 0 YA358 596259.73 6212186.55 397.460 19.00 AC -90 0 YA358 596259.73 6212121.71 396.330 17.00 AC -90 0 YA360 599884.34 6220494.75 313.170 35.00 AC -90 0 YA361 599592.57 6217849.47 328.080 51.00 AC -90 0 <	26	YA350	596543.85	6213723.5	375.390	35.00	AC	-90	0
YA352 596345.99 6213757.04 382.000 15.00 AC -90 0 YA353 596633.74 6213713.21 373.890 33.00 AC -90 0 YA354 596309.16 6212957.44 387.980 12.00 AC -90 0 YA355 596408.64 6212939.39 385.000 23.00 AC -90 0 YA356 596507.7 6212920.12 384.240 14.00 AC -90 0 YA358 596259.73 6212186.55 397.460 19.00 AC -90 0 YA358 596259.73 6212154.77 395.170 23.00 AC -90 0 YA359 596455.62 6212121.71 396.330 17.00 AC -90 0 YA360 599884.34 6220494.75 313.170 35.00 AC -90 0 YA361 599592.57 6217833.82 326.650 58.00 AC -90 0 YA363 599298.92 6217849.47 328.080 51.00 AC	\mathbb{O}^{2}	YA351	596446.13	6213740.04	378.600	33.00	AC	-90	0
YA353 596633.74 6213713.21 373.890 33.00 AC -90 0 YA354 596309.16 6212957.44 387.980 12.00 AC -90 0 YA355 596408.64 6212939.39 385.000 23.00 AC -90 0 YA356 596507.7 6212920.12 384.240 14.00 AC -90 0 YA357 596063.61 6212186.55 397.460 19.00 AC -90 0 YA358 596259.73 6212124.77 395.170 23.00 AC -90 0 YA359 596455.62 621212.71 396.330 17.00 AC -90 0 YA360 599884.34 6220494.75 313.170 35.00 AC -90 0 YA361 599592.57 6217833.82 326.650 58.00 AC -90 0 YA363 599298.92 6217849.47 328.080 51.00 AC -90 0 YA364 599298.92 6217882.82 330.840 22.00 AC	(YA352	596345.99	6213757.04	382.000	15.00	AC	-90	0
YA354 596309.16 6212957.44 387.980 12.00 AC -90 0 YA355 596408.64 6212939.39 385.000 23.00 AC -90 0 YA356 596507.7 6212920.12 384.240 14.00 AC -90 0 YA357 596063.61 6212186.55 397.460 19.00 AC -90 0 YA358 596259.73 6212154.77 395.170 23.00 AC -90 0 YA359 596455.62 6212121.71 396.330 17.00 AC -90 0 YA360 599884.34 6220494.75 313.170 35.00 AC -90 0 YA361 599592.57 6217833.82 326.650 58.00 AC -90 0 YA363 599298.92 6217882.82 330.840 22.00 AC -90 0 YA363 599298.92 6217882.82 330.840 22.00 AC -90 0 <		YA353	596633.74	6213713.21	373.890	33.00	AC	-90	0
YA355 596408.64 6212939.39 385.000 23.00 AC -90 0 YA356 596507.7 6212920.12 384.240 14.00 AC -90 0 YA357 596063.61 6212186.55 397.460 19.00 AC -90 0 YA358 596259.73 6212154.77 395.170 23.00 AC -90 0 YA359 596455.62 6212121.71 396.330 17.00 AC -90 0 YA360 599884.34 6220494.75 313.170 35.00 AC -90 0 YA361 599592.57 6217833.82 326.650 58.00 AC -90 0 YA362 599497.36 6217849.47 328.080 51.00 AC -90 0 YA363 599298.92 6217882.82 330.840 22.00 AC -90 0 YA364 599238.14 6217196.42 329.210 60.00 AC -90 0 YA365 599116.3 6217151.59 329.690 59.00 AC	(15)	YA354	596309.16	6212957.44	387.980	12.00	AC	-90	0
YA356 S96507.7 6212920.12 384.240 14.00 AC -90 0 YA357 596063.61 6212186.55 397.460 19.00 AC -90 0 YA358 596259.73 6212154.77 395.170 23.00 AC -90 0 YA359 596455.62 6212121.71 396.330 17.00 AC -90 0 YA360 599884.34 6220494.75 313.170 35.00 AC -90 0 YA361 599592.57 6217833.82 326.650 58.00 AC -90 0 YA362 599497.36 6217849.47 328.080 51.00 AC -90 0 YA363 599298.92 6217882.82 330.840 22.00 AC -90 0 YA364 599238.14 6217196.42 329.210 60.00 AC -90 0 YA365 599116.3 6217226.24 330.880 59.00 AC -90 0 </td <td>QP</td> <td>YA355</td> <td>596408.64</td> <td>6212939.39</td> <td>385.000</td> <td>23.00</td> <td>AC</td> <td>-90</td> <td>0</td>	QP	YA355	596408.64	6212939.39	385.000	23.00	AC	-90	0
YA357 590083.61 6212186.55 397.460 19.00 AC -90 0 YA358 596259.73 6212154.77 395.170 23.00 AC -90 0 YA359 596455.62 6212121.71 396.330 17.00 AC -90 0 YA360 599884.34 6220494.75 313.170 35.00 AC -90 0 YA361 599592.57 6217833.82 326.650 58.00 AC -90 0 YA362 599497.36 6217849.47 328.080 51.00 AC -90 0 YA363 599298.92 6217882.82 330.840 22.00 AC -90 0 YA364 599238.14 6217196.42 329.210 60.00 AC -90 0 YA365 599116.3 621726.24 330.880 59.00 AC -90 0 YA366 599039.52 621726.24 330.880 59.00 AC -90 0 YA366 599039.52 6217345.58 334.190 15.00 AC	\bigcirc	YA350	596507.7	6212920.12	384.240	14.00	AC	-90	0
YA358 359239.73 6212134.77 395.170 23.00 AC -90 0 YA359 596455.62 6212121.71 396.330 17.00 AC -90 0 YA360 599884.34 6220494.75 313.170 35.00 AC -90 0 YA361 599592.57 6217833.82 326.650 58.00 AC -90 0 YA362 599497.36 6217849.47 328.080 51.00 AC -90 0 YA363 599298.92 6217882.82 330.840 22.00 AC -90 0 YA364 599238.14 6217196.42 329.210 60.00 AC -90 0 YA365 599116.3 621726.24 330.880 59.00 AC -90 0 YA366 599039.52 621726.24 330.880 59.00 AC -90 0 YA366 598940.29 6217345.58 334.190 15.00 AC -90 0 YA367 598940.29 6217345.58 334.190 15.00 AC	(\bigcirc)	1A357	590003.01	6212180.55	397.460	19.00	AC	-90	0
YA359 359435.62 6212121.71 396.330 17.00 AC -90 0 YA360 599884.34 6220494.75 313.170 35.00 AC -90 0 YA361 599592.57 6217833.82 326.650 58.00 AC -90 0 YA362 599497.36 6217849.47 328.080 51.00 AC -90 0 YA363 599298.92 6217882.82 330.840 22.00 AC -90 0 YA364 599238.14 6217196.42 329.210 60.00 AC -90 0 YA365 599116.3 621726.24 330.880 59.00 AC -90 0 YA366 599039.52 6217345.58 334.190 15.00 AC -90 0 YA367 598940.29 6217345.58 334.190 15.00 AC -90 0		YA358	596259.73	6212154.77	395.170	23.00	AC	-90	0
YA360 3593834.34 6220494.73 315.170 35.00 AC -90 0 YA361 599592.57 6217833.82 326.650 58.00 AC -90 0 YA362 599497.36 6217849.47 328.080 51.00 AC -90 0 YA363 599298.92 6217882.82 330.840 22.00 AC -90 0 YA364 599238.14 6217196.42 329.210 60.00 AC -90 0 YA365 599116.3 6217151.59 329.690 59.00 AC -90 0 YA366 599039.52 6217226.24 330.880 59.00 AC -90 0 YA367 598940.29 6217345.58 334.190 15.00 AC -90 0	~	1A359 VA260	590455.02	6212121.71	390.330	25.00	AC	-90	0
YA361 393932.37 6217833.82 320.630 38.00 AC -90 0 YA362 599497.36 6217849.47 328.080 51.00 AC -90 0 YA363 599298.92 6217882.82 330.840 22.00 AC -90 0 YA364 599238.14 6217196.42 329.210 60.00 AC -90 0 YA365 599116.3 6217151.59 329.690 59.00 AC -90 0 YA366 599039.52 6217226.24 330.880 59.00 AC -90 0 YA367 598940.29 6217345.58 334.190 15.00 AC -90 0	μ	1A300 VA261	599884.34	6220494.75	313.170	35.00	AC	-90	0
YA362 3593497.36 6217849.47 322.080 31.00 AC -90 0 YA363 599298.92 6217882.82 330.840 22.00 AC -90 0 YA364 599238.14 6217196.42 329.210 60.00 AC -90 0 YA365 599116.3 6217151.59 329.690 59.00 AC -90 0 YA366 599039.52 6217226.24 330.880 59.00 AC -90 0 YA367 598940.29 6217345.58 334.190 15.00 AC -90 0		VA262	599592.57	6217835.82	320.030	58.00	AC	-90	0
YA363 55228.32 6217882.82 530.840 22.00 AC -90 0 YA364 599238.14 6217196.42 329.210 60.00 AC -90 0 YA365 599116.3 6217151.59 329.690 59.00 AC -90 0 YA366 599039.52 6217226.24 330.880 59.00 AC -90 0 YA367 598940.29 6217345.58 334.190 15.00 AC -90 0	(\bigcirc)	1A302 VA262	533437.30	6217049.47	320.000	22.00		-90	0
YA365 599116.3 6217150.42 529.210 60.00 AC -90 0 YA365 599116.3 6217151.59 329.690 59.00 AC -90 0 YA366 599039.52 6217226.24 330.880 59.00 AC -90 0 YA367 598940.29 6217345.58 334.190 15.00 AC -90 0	\subseteq	VA264	500220.92	6217106 42	220.210	60.00		-90	0
YA366 599039.52 6217256.24 330.880 59.00 AC -90 0 YA367 598940.29 6217345.58 334.190 15.00 AC -90 0		VA265	500116 2	6217150.42	329.210	50.00		-90	0
YA367 598940.29 6217345.58 334.190 15.00 AC -90 0		VV366	200050 65	6217226.24	329.090	59.00		-30	0
		γΔ367	598940 29	6217245 58	330.000	15 00		-90	0
YΔ368 59963399 6217/3/95 226680 5600 ΛC		V7368	599622 00	6217/3/ 05	376 680	56.00	ΔC	-90	0
YA369 596858 32 6216097 34 345 940 29 00 4C -90 0		γΔ360	596858 22	6216097 34	320.000	29.00		-90	0
YA370 596957 45 6216037.34 343.540 23.00 AC -00 0		γΔ370	596957.45	6216083 82	351 890	11 00	ΔC	-90	0
YA371 597052.71 6216048.52 362.000 11.00 AC -90 0		YA371	597052.71	6216048.52	362.000	11.00	AC	-90	0

	HoleID	MGAEast	MGANorth	RL	TotalDepth	HoleType	Dip	Azimuth
	YA372	597165.42	6216047.3	374.190	2.00	AC	-90	0
	YA373	597252.29	6216016.98	384.120	15.00	AC	-90	0
	YA374	597352.87	6216012.65	382.300	20.00	AC	-90	0
	YA375	597443.36	6215996.52	381.280	11.00	AC	-90	0
	YA376	597423.85	6216419.62	374.800	35.00	AC	-90	0
	YA377	597322.4	6216437.23	365.420	23.00	AC	-90	0
	YA378	597224.89	6216454.62	362.320	17.00	AC	-90	0
	YA379	597127.36	6216469.61	356.230	12.00	AC	-90	0
>	YA380	596799.9	6215321.77	364.400	31.00	AC	-90	0
	¹⁾ YA381	596852.26	6215312.8	366.550	21.00	AC	-90	0
	YA382	596955.53	6215301.43	375.080	17.00	AC	-90	0
	YA383	596801.55	6215232.17	367.560	22.00	AC	-90	0
	YA384	596852	6215222.99	370.420	25.00	AC	-90	0
	YA385	596900.93	6215213.68	375.020	28.00	AC	-90	0
()	YA386	597051.6	6215290.55	385.320	10.00	AC	-90	0
	YA387	597102.91	6215280.1	391.460	8.00	AC	-90	0
	YA388	597044.63	6215195.48	390.810	3.00	AC	-90	0
215	YA389	597098.02	6215190.66	392.000	2.00	AC	-90	0
UD.	YA390	597048.9	6215112.44	396.580	25.00	AC	-90	0
	YA391	596969.12	6215121.92	389.130	6.00	AC	-90	0
2/N	YA392	597023.79	6215002.7	399.020	14.00	AC	-90	0
95	YA393	596931.08	6215011.5	387.930	4.00	AC	-90	0
	YA394	597119.06	6215424.62	389.460	13.00	AC	-90	0
	YA395	597131.96	6215519.36	390.950	7.00	AC	-90	0
	YA396	596641.37	6215060.88	374.430	26.00	AC	-90	0
	YA397	596716.76	6215043.91	372.900	12.00	AC	-90	0
	YA398	596822.9	6215030.98	375.670	28.00	AC	-90	0
AD	YA399	596773.49	6215147.35	369.680	32.00	AC	-90	0
77	YA400	596858.84	6215129.59	375.060	27.00	AC	-90	0
	YA401	596811.63	6215382.82	362.340	30.00	AC	-90	0
	YA402	596858	6215396.16	363.610	33.00	AC	-90	0
	YA403	596988.95	6215408.36	373.570	20.00	AC	-90	0
\bigcirc	YA404	596824.28	6215481.94	359.740	42.00	AC	-90	0
\subseteq	YA405	596924.64	6215493.12	364.980	20.00	AC	-90	0
26	YA406	597013.87	6215504.43	373.580	21.00	AC	-90	0
())	YA407	596845.29	6215590.39	357.250	23.00	AC	-90	0
ΥĽ	YA408	596950.82	6215599.98	365.900	34.00	AC	-90	0
	YA409	597035.02	6215620.37	377.600	14.00	AC	-90	0
25	YA413	597046.414	6214875.543	397.412	66.00	AC	-90	0
UD.	YA414	596753.89	6214914.739	377.376	57.00	AC	-90	0
\ge	YA415	596970.333	6215004.347	394.018	78.00	AC	-90	0
\square	YA416	596980.899	6215121.832	390.836	45.00	AC	-90	0
	YA417	596689.797	6215163.456	369.697	45.00	AC	-90	0
	YA418	596972.18	6215203.615	384.543	72.00	AC	-90	0
5	YA419	597046.157	6215290.418	384.682	57.00	AC	-90	0
	YA420	597038.15	6215426.03	378.902	69.00	AC	-90	0
\square	YA421	596728.28	6215465.056	367.376	54.00	AC	-90	0
\square	YA422	597102.672	6215515.756	386.526	75.00	AC	-90	0
_	YA423	597107.442	6215636.001	389.549	78.00	AC	-90	0
	YA424	597129.613	6216055.443	368.457	54.00	AC	-90	0
	YA425	596714.035	6214789.271	382.024	33.00	AC	-90	0
	YA426	596812.929	6214767.461	386.878	75.00	AC	-90	0
	YA427	596912.244	6214751.365	399.659	27.00	AC	-90	0
	YA428	597008.485	6214727.674	402.550	78.00	AC	-90	0
	YA429	597106.747	6214703.82	388.230	39.00	AC	-90	0
	YA430	597204.693	6214688.258	377.532	29.00	AC	-90	0

	HoleID	MGAEast	MGANorth	RL	TotalDepth	HoleType	Dip	Azimuth
	YA431	597303.427	6214668.807	370.181	58.00	AC	-90	0
	YA432	596674.941	6214666.324	389.374	42.00	AC	-90	0
	YA433	596765.359	6214649.707	390.469	45.00	AC	-90	0
	YA434	596864.099	6214624.596	401.230	78.00	AC	-90	0
	YA435	596960.663	6214604.4	407.491	79.00	AC	-90	0
	YA436	597061.056	6214586.663	394.272	29.00	AC	-90	0
	YA437	597152.035	6214574.239	385.569	49.00	AC	-90	0
	YA438	597254.226	6214557.398	375.075	58.00	AC	-90	0
>>	YB001	596810.892	6215280.42	366.40	33.00	CALWELD	-90	0
	^D YB002	596664.886	6214031.422	387.35	22.40	CALWELD	-90	0
	YB003	596557.885	6213234.705	380.000	27.00	CALWELD	-90	0
$(\square$	YB004	596363.887	6213264.705	384.000	21.50	CALWELD	-90	0
	YB005	596643.892	6215304.421	370.000	21.80	CALWELD	-90	0
	YC001	596788.892	6215289.42	365.000	42.57	DD	-90	0
(()	YC002	599559.915	6219811.404	318.000	60.60	DD	-90	0
	YC003	598731.938	6222441.411	309.000	58.60	DD	-90	0