

June 02, 2016

Kidman Resources Limited ABN 88 143 526 096

Corporate Details: ASX Code: KDR

Issued capital:

237.3M ordinary shares 29.66 listed options (KDRO)

Substantial Shareholders:

Capri Holdings (9.63%) Acorn Capital (8.85%)

Directors:

Non-Executive Chairman: Peter Lester Managing Director: Martin Donohue Non-Executive Director: Brad Evans

Chief Financial Officer (CFO): Melanie Leydin

Company Secretary:

Justin Mouchacca

Contact Details:

Kidman Resources Limited Suite 3, Level 4 12 - 20 Flinders Lane Melbourne Victoria 3000 Australia

Tel: +61 (0)3 9671 3801 Fax: +61 (0)3 9671 3523

Email: info@kidmanresources.com.au

Website: www.kidmanresources.com.au

Spectacular lithium assays at Mt Holland project in WA

- <u>Wide, high-grade results are among the best</u> seen in WA
 - Exploration program being devised for adjacent 6km-long pegmatite

Kidman Resources (ASX: KDR) is pleased to announce exceptionally strong lithium oxide assays at its Mt Holland gold project near Southern Cross in WA.

The results, which are among some of the best seen in WA, were **54.2m at 1.53%** Li₂0 from **37.8m and 33.5m at 1.39%** Li₂0 from **294m**.

The assays came from two samples of drill core generated by previous owners of Mt Holland. The drilling was part of a gold exploration program around the Bounty mine, which has since been closed, and therefore the core was not assayed for lithium.

Kidman is also undertaking gold exploration at Mt Holland, where there is already a combined Measured, Indicated and Inferred Resource of more than one million ounces.

As part of this program, it is drilling down-dip of the key Blue Vein deposit, where there is a Combined Measured, Indicated and Inferred Resource of 372,000oz at 2.39g/t (See ASX Announcement 18th December 2015). Assays from this drilling are expected shortly.

As previously reported, Kidman is conducting a review of the Mt Holland lithium potential following several approaches from third parties interested in securing the lithium rights. This review is aimed at ensuring Kidman shareholders receive full value for this asset.

The mineralogy and geochemistry of these pegmatites remains unclear. However, the data demonstrates the potential for additional LCT-type pegmatite occurrences along the Mt Holland tenements.

ASX Release

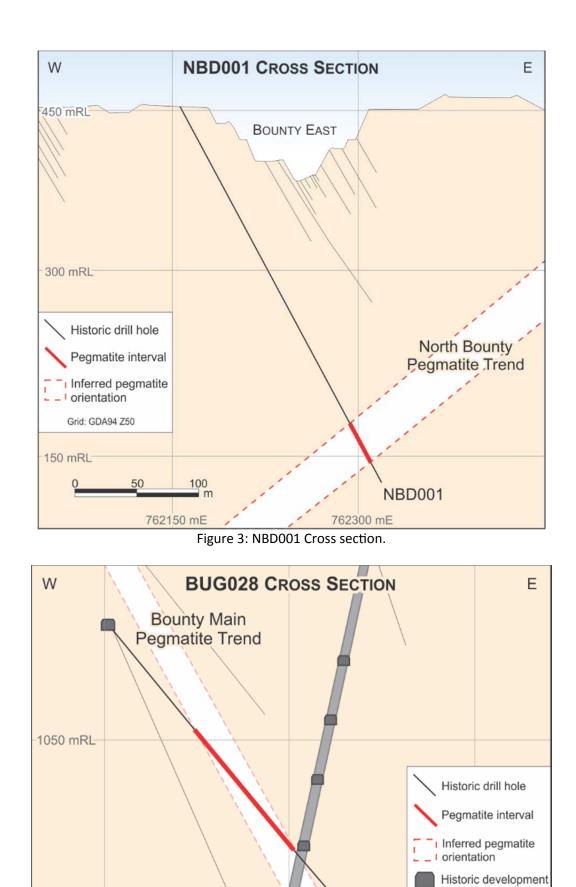

With the database consolidation and project-wide geological review still underway, it is possible further historically mapped pegmatites will be found in the data shortly.

Figure 1: NBD001 Spodumene-rich pegmatite.

Figure 2: Location Map of two holes collected for re-assay.

20650 mRL

100 m

20600 mRL

50

1050 mRL

Historic stope

Grid: Bounty Mine Grid

20700 mRL

BUG028

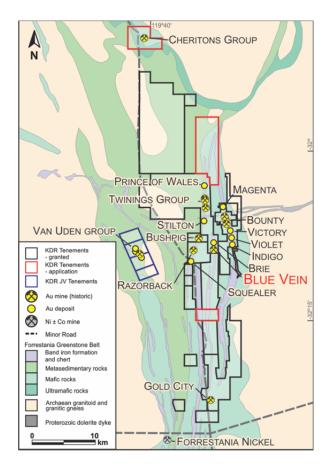


Figure 5: Location of Bounty Mine (Bounty) within Mt Holland Tenement package. Samples have been collected from 2 holes at Bounty Mine only.

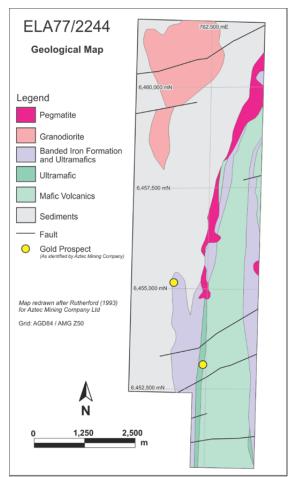


Figure 6: ELA77/2244 Pegmatite logged by previous explorers.

Kidman Background

Kidman is a diversified resource company currently in production at the Burbanks Gold Mine near Coolgardie in WA, production commenced in the September quarter of 2015.

Kidman has also entered into a Binding Agreement to acquire the 1moz Mt Holland gold field near Southern Cross in WA. The company intends to upgrade the existing gold resource at Mt Holland with a significant RC and Diamond drilling program, followed by an update to the feasibility study.

Kidman also owns advanced exploration projects in the Northern Territory (Home of Bullion – Cu, Au, Pb, Zn, Ag/ Prospect D - Ni, Cu) and New South Wales.

In New South Wales the company has the Crowl Creek Project which is host to numerous projects such as Murrays (Au) Blind Calf (Cu, Au) and Three Peaks (Cu, Pb, Ag).

The company also owns the Brown's Reef project in the southern part of the Cobar Basin (Zn, Pb, Ag, and Cu)

For further information on the Company's portfolio of projects please refer to the website at:

Media: Paul Armstrong / Nicholas Read Read Corporate 0421 619 084

Martin Donohue Managing Director Twitter @DonohueMartin <u>info@kidmanresources.com.au</u> +61 3 9671 3801

Competent Persons Statement

Exploration:

The information in this release that relates to sampling techniques and data, exploration results, geological interpretation and exploration targets has been reviewed by Mr L Sawyer M.App.Sc. Mr Sawyer is not an employee of the company, but is employed by Geos Mining as a contract consultant. Mr Sawyer is a member of the Australian Institute of Geoscientists, he has sufficient experience with the style of mineralisation and type of deposit under consideration, and to the activities undertaken, to qualify as a competent person as defined in the 2012 edition of the "Australian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves" (The JORC Code). Mr Sawyer consents to the inclusion in this report of the contained technical information in the form and context as it appears.

Cautionary Statement:

Readers should use caution when reviewing the exploration and historical information results presented and ensure that the Modifying Factors described in the 2012 edition of the JORC Code are considered before making an investment decision. Potential quantity and grade is conceptual in nature, that there has been insufficient exploration to define a Mineral Resource, and that it is uncertain if further exploration will result in the determination of a Mineral Resource.

Appendix 1 Table 1: Drill hole details

		r	Mt Holland,	Western Aust	ralia		
Drill Hole	Easting GDA94 (m)	Northing GDA94 (m)	Mine RL (m)	Inclination (°)	Azimuth (°)	Total length (m)	Location to Mine
BUG0028	761930	6445082	1096.7	-70	141	147.9	Underground
NBD001	762156	6444946	1430	-40	090	345	Surface

Appendix 2

Table 2: Sample analysis results

				Element Unit Symb	al	AI2O3	As %	Be	CaO %	Co %	Cr2O3	Cu %	Fe2O3 %	K20 %	Li2O %	MgO %	MnO %	Ni %	Pb %	S %
				Analysis N		ME-ICP89	ME-ICP89	ppm ME-ICP89	ME-ICP89	ME-ICP89	ME-ICP89	ME-ICP89	ME-ICP89	ME-ICP89	ME-ICP89	ME-ICP89		ME-ICP89	ME-ICP89	ME-ICP89
					ection Limit	0.02	0.01	20	0.01	0.005	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.005	0.01	0.01
					ection Limit	100	10	10000	70	30	88	50	100	60	21.5	50	50	30	30	60
		Sample	Depth From		ección cinne	100	10	10000	10	50	00	50	100	00	21.5	50	50	50	50	00
\bigcirc	Drill Hole		(m)	(m)	Interval (m)															
\bigcirc	BUG28	U15376	37.8			15.7	< 0.01	270	0.5	< 0.005	< 0.01	< 0.01	0.59	2.47	1.01	0.1	0.08	< 0.005	< 0.01	0.02
	BUG28	U15395	39				<0.01	140	0.29	< 0.005	<0.01	<0.01	0.59	3.07	1.33	0.03	0.07	< 0.005	<0.01	< 0.01
615	BUG28	U15378	40				<0.01	130	0.95	< 0.005	<0.01	<0.01	0.97	2.96	0.82	0.1	0.07	< 0.005	<0.01	0.02
(UD)	BUG28	U15379	41	42	1	15.95	<0.01	150	0.55	< 0.005	<0.01	< 0.01	0.67	2.88	0.9	0.03	0.05	< 0.005	<0.01	0.02
	BUG28	U15380	42	43	1	15	0.01	150	0.35	< 0.005	<0.01	<0.01	0.57	2.36	0.73	0.03	0.06	< 0.005	<0.01	< 0.01
(O/O)	BUG28	U15381	43	44	1	15.35	<0.01	160	0.38	< 0.005	<0.01	< 0.01	0.8	2.78	0.99	0.07	0.08	< 0.005	<0.01	< 0.01
	BUG28	U15382	44	45	1	15.45	<0.01	140	1.47	< 0.005	< 0.01	<0.01	1.92	2.53	0.73	0.78	0.11	< 0.005	<0.01	0.02
	BUG28	U15383	45	46	1	15.25	<0.01	180	0.6	< 0.005	<0.01	<0.01	0.6	1.52	0.73	0.05	0.06	< 0.005	<0.01	< 0.01
	BUG28	U15384	46	47	1	15.8	<0.01	190	0.35	<0.005	<0.01	<0.01	0.94	1.73	1.66	0.03	0.08	<0.005	<0.01	<0.01
	BUG28	U15385	47	48	1	15.25	<0.01	140	1.6	< 0.005	< 0.01	< 0.01	0.66	2.08	0.41	0.13	0.05	< 0.005	<0.01	0.05
	BUG28	U15386	48	49	1	15.95	<0.01	150	0.38	< 0.005	<0.01	< 0.01	0.54	3.87	1.16	0.03	0.08	< 0.005	<0.01	0.01
adi	BUG28	U15387	49	50	1	15.65	0.02	170	0.55	< 0.005	<0.01	<0.01	0.89	2.59	1.05	0.05	0.06	< 0.005	<0.01	0.01
60	BUG28	U15388	50	51	1	15.75	<0.01	160	0.45	< 0.005	<0.01	<0.01	0.7	2.59	1.79	0.02	0.09	< 0.005	<0.01	0.01
	BUG28	U15389	51	52	1	15.35	0.01	130	0.74	< 0.005	< 0.01	<0.01	0.66	3.05	1.51	0.03	0.1	< 0.005	< 0.01	0.01
	BUG28	U15390	52	53	1	15.25	< 0.01	140	0.35	< 0.005	< 0.01	< 0.01	0.95	2.59	1.51	0.02	0.09	< 0.005	< 0.01	0.01
\bigcirc	BUG28	U15391	53	-	2.02	and the second second second	0.01	180	0.99	< 0.005	< 0.01	< 0.01	1.49	1.05	2.32	0.36	0.14	< 0.005	< 0.01	0.01
\bigcirc	BUG28	U15392	54				< 0.01	200	0.98	< 0.005	< 0.01	< 0.01	0.73	2.63	1.95	0.05	0.15	< 0.005	< 0.01	0.02
20	BUG28	U15393	55				0.01	170	0.55	< 0.005	< 0.01	< 0.01	0.76	4.99	1.49	0.02	0.09	< 0.005	<0.01	0.02
(0/2)	BUG28	U15394	56				0.01	160	0.78	< 0.005	< 0.01	< 0.01	0.83	2.6	1.96	0.02	0.09	< 0.005	< 0.01	< 0.01
Ĩ	BUG28	U15395	57				< 0.01	170	0.97	< 0.005	< 0.01	< 0.01	1.09	2.02	1.53	0.32	0.08	< 0.005	< 0.01	< 0.01
	BUG28	U15396	58.4				< 0.01	60	7.6	0.005	0.01	< 0.01	9.19	0.6	0.8	5.57	0.2	< 0.005	< 0.01	0.01
(a 5)	BUG28	U15397	58.7			16	< 0.01	190	0.46	< 0.005	< 0.01	< 0.01	0.79	2.57	1.74	0.07	0.07	< 0.005	< 0.01	0.01
QD	BUG28	U15398	60				< 0.01	180	0.45	< 0.005	< 0.01	< 0.01	0.86	1.86	1.79	0.03	0.09	< 0.005	< 0.01	< 0.01
\bigcirc	BUG28	U15399	61				0.01	160	0.66	< 0.005	< 0.01	< 0.01	0.9	2.25	1.49	0.08	0.07	< 0.005	< 0.01	< 0.01
	BUG28	U15400	62				<0.01	130	1.34	< 0.005	<0.01	< 0.01	0.63	3.58	0.54	0.02	0.05	< 0.005	< 0.01	< 0.01
	BUG28	U15401	63		-		0.01	150	1.12	< 0.005	< 0.01	< 0.01	0.73	2.84	1.14	0.03	0.08	< 0.005	<0.01	0.02
2	BUG28	U15402	64				<0.01	170	0.53	< 0.005	<0.01	< 0.01	1.22	2.2	2.24	0.07	0.09	< 0.005	<0.01	0.03
	BUG28	U15403	65				0.01	170	0.43	< 0.005	<0.01	<0.01	0.61	2.48	1.05	0.03	0.06	< 0.005	<0.01	0.01
(\bigcirc)	BUG28	U15404	66				<0.01	170	0.36	< 0.005	<0.01	<0.01	0.66	2.67	1.42	0.02	0.06	< 0.005	<0.01	<0.01
	BUG28	U15405	67	68			<0.01	160	0.42	< 0.005	<0.01	<0.01	0.87	1.96	1.94	0.05	0.1	< 0.005	<0.01	0.01
П	BUG28	U15406	68				0.01	130	0.29	< 0.005	<0.01	<0.01	0.76	3.05	2	0.03	0.08	< 0.005	<0.01	0.01
	BUG28	U15407	69			15.6	<0.01	140	0.35	< 0.005	<0.01	<0.01	0.96	1.67	2.15	0.02	0.08	< 0.005	<0.01	<0.01
	BUG28	U15409	70.8		-114 Log	CONTRACTOR OF STREET	0.01	190	0.94	< 0.005	0.01	< 0.01	0.69	2.57	1.27	0.05	0.09	< 0.005	< 0.01	<0.01
	BUG28	U15410	72				0.01	160	0.45	<0.005	0.01	<0.01	0.74	2.43	1.18	0.05	0.07	< 0.005	0.01	0.01
	BUG28 BUG28	U15411 U15412	73			and the second second	0.01	210 170	1.55	<0.005	0.01	< 0.01	0.76	2.51	0.65	0.05	0.09	<0.005	0.01	0.02
	BUG28	U15412	74								0.01		0.89				0.11	<0.005		0.02
	80028	015413	15	/6	1	10.45	0.01	180	0.28	< 0.005	0.01	<0.01	0.8	2.92	1.57	0.05	0.08	< 0.005	<0.01	0.01

				Element		AI2O3	As	Be	CaO	Co	Cr2O3	Cu	Fe2O3	K20	Li2O	MgO	MnO	Ni	Pb	S
				Unit Symb	ol	%	%	ppm	%	%	%	%	%	%	%	%	%	%	%	%
				Analysis N	lethod	ME-ICP89														
				Lower Det	ection Limit	0.02	0.01	20	0.01	0.005	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.005	0.01	0.01
\rightarrow	_			Upper Det	ection Limit	100	10	10000	70	30	88	50	100	60	21.5	50	50	30	30	60
	ע	Sample	Depth From	Depth To																
	Drill Hole	Number	(m)	(m)	Interval (m)														1010	
	BUG28	U15414	76	77	1	15.65	< 0.01	220	0.45	< 0.005	< 0.01	< 0.01	1.09	1.93	1.87	0.05	0.09	< 0.005	0.01	0.01
	BUG28	U15415	77	78	1	16.85	0.01	190	0.25	< 0.005	0.01	< 0.01	1.4	3.69	2.6	0.03	0.1	< 0.005	< 0.01	0.01
\bigcirc	BUG28	U15416	78	79	1	16.45	0.03	200	0.24	< 0.005	0.01	< 0.01	1.39	3.63	2.02	0.1	0.09	0.005	0.02	0.02
\bigcirc	BUG28	U15417	79	80	1	16.65	0.02	180	0.21	< 0.005	0.01	< 0.01	1.33	2.76	2.3	0.05	0.11	< 0.005	< 0.01	0.03
	BUG28	U15418	80	81	. 1	15.4	< 0.01	170	0.24	< 0.005	< 0.01	< 0.01	1.02	1.95	2.28	0.03	0.1	< 0.005	< 0.01	< 0.01
615	BUG28	U15419	81	82	1	15.7	0.01	150	0.21	< 0.005	0.01	< 0.01	1.24	2.59	1.42	0.03	0.09	< 0.005	0.01	0.01
(UD)	BUG28	U15420	82	83	1	16.1	0.02	170	0.29	< 0.005	0.01	< 0.01	1.03	1.6	1.79	0.05	0.11	< 0.005	< 0.01	0.01
40	BUG28	U15421	83		-	15.25	0.02	140	0.18	< 0.005	0.01	< 0.01	0.83	2.4	1.61	0.03	0.08	< 0.005	0.01	0.01
(())	BUG28	U15422	84			16.75	0.02	140	0.13	< 0.005	0.01	< 0.01	1.02	3.55	2.17	0.02	0.11	0.005	0.01	0.01
	BUG28	U15423	85	86	1	16.55	0.01	160	0.17	< 0.005	0.01	< 0.01	1.24	2.96	2.07	0.03	0.11	< 0.005	< 0.01	0.01
	BUG28	U15424	86	87	1	16.15	0.01	160	0.21	< 0.005	< 0.01	< 0.01	0.95	2.98	1.83	0.04	0.09	< 0.005	< 0.01	< 0.01
	BUG28	U15425	87	88	1	17.35	0.01	150	0.21	< 0.005	0.01	< 0.01	0.69	3.38	1.85	0.07	0.1	< 0.005	0.01	0.04
	BUG28	U15426	88		1	16.45	0.02	150	0.21	< 0.005	0.01	<0.01	0.8	4.42	1.18	0.05	0.07	< 0.005	0.01	0.01
	BUG28	U15427	89	90	1	16.75	0.02	140	0.22	< 0.005	0.01	< 0.01	0.74	2.95	1.57	0.05	0.09	< 0.005	0.01	0.01
(00)	BUG28	U15428	90		-	15.9	0.01	180	0.25	< 0.005	0.01	< 0.01	0.71	2.59	1.59	0.02	0.1	< 0.005	< 0.01	< 0.01
60	BUG28	U15429	91	92	1	16.95	0.01	120	0.36	< 0.005	0.01	< 0.01	0.89	3.48	1.72	0.15	0.13	< 0.005	< 0.01	0.03
\square	BUG28	U15430	92	93	1	17.1	0.01	180	0.22	< 0.005	0.01	< 0.01	0.89	1.39	2.02	0.03	0.11	< 0.005	< 0.01	0.01
	NBD001	U15431	294		-	15.3	< 0.01	150	0.52	0.047	0.01	0.01	1.49	4.26	1.66	0.53	0.08	< 0.005	< 0.01	< 0.01
\bigcirc	NBD001	U15432	295			16.15	0.01	170	0.18	< 0.005	0.01	< 0.01	0.84	3.34	1.53	0.07	0.07	< 0.005	0.01	0.02
(\bigcirc)	NBD001	U15433	296			16.5	0.02	190	0.18	< 0.005	0.01	< 0.01	0.83	2.88	1.59	0.07	0.08	0.005	0.01	0.01
40	NBD001	U15434	297			16.35	0.02	150	0.27	< 0.005	0.02	< 0.01	0.8	3.24	0.86	0.05	0.08	< 0.005	0.01	< 0.01
(U/)	NBD001	U15435	298			17.25	0.02	170	0.31	< 0.005	0.01	< 0.01	0.99	2.53	1.31	0.07	0.1	< 0.005	< 0.01	0.02
Ĩ	NBD001	U15436	298.5			16	0.02	150	0.22	< 0.005	0.01	< 0.01	0.8	2.53	1.12	0.05	0.08	< 0.005	0.01	< 0.01
	NBD001	U15437	299.5			16	0.01	200	0.15	< 0.005	0.02	< 0.01	1.32	3.96	1.08	0.1	0.23	< 0.005	< 0.01	0.03
(15)	NBD001	U15438	301.3			15.6	0.02	190	0.18	< 0.005	0.02	< 0.01	0.94	2.66	0.8	0.07	0.29	< 0.005	0.01	0.02
Y	NBD001	U15439	302			15.6	0.01	170	0.18	< 0.005	0.01	< 0.01	0.89	2.52	0.39	0.05	0.29	< 0.005	< 0.01	0.01
\square	NBD001	U15440	303			16.15	0.02	140	0.17	< 0.005	0.01	< 0.01	0.89	2.69	0.47	0.03	0.22	< 0.005	0.01	0.01
	NBD001	U15441	304			16.1	0.02	110	0.2	< 0.005	< 0.01	< 0.01	0.83	3.13	0.56	0.02	0.23	< 0.005	< 0.01	0.01
	NBD001	U15442	304.6			17.25	0.02	210	0.15	< 0.005	< 0.01	< 0.01	1.72	2.02	2.11	0.12	0.21	< 0.005	< 0.01	0.02
\mathcal{L}	NBD001	U15443	306			15.4	0.01	150	0.11	< 0.005	<0.01	< 0.01	1.16	2.4	1.44	0.03	0.15	< 0.005	< 0.01	< 0.01
	NBD001	U15444	307.4			15.25	0.01	110	0.17	< 0.005	<0.01	< 0.01	0.92	2.08	1.68	0.03	0.08	< 0.005	<0.01	< 0.01
	NBD001	U15445	308			14	0.01	80	0.2	< 0.005	0.01	< 0.01	0.83	2.76	1.79	0.03	0.08	0.005	0.01	0.01
\Box	NBD001	U15446	309			16.25	0.01	150	0.22	< 0.005	0.01	< 0.01	1.09	2.49	2	0.03	0.08	< 0.005	<0.01	0.03
П	NBD001	U15447	310			16.65	0.01	140	0.18	< 0.005	<0.01	< 0.01	0.69	3.26	2.02	0.02	0.09	< 0.005	<0.01	< 0.01
	NBD001	U15448	311			16.1	0.01	200	0.21	< 0.005	<0.01	<0.01	0.89	2.05	1.98	0.03	0.1	< 0.005	<0.01	<0.01
	NBD001	U15449	312			16.25	<0.01	180	0.18	< 0.005	<0.01	<0.01	0.95	3.3	1.16	0.03	0.1	< 0.005	<0.01	<0.01
	NBD001	U15450	312.9	314	1.1	16.15	0.02	140	0.13	< 0.005	0.01	< 0.01	0.81	1.81	1.92	0.02	0.18	< 0.005	< 0.01	0.02

				Element Unit Symb Analysis M	lethod	Al2O3 % ME-ICP89	As % ME-ICP89	Be ppm ME-ICP89	CaO % ME-ICP89	Co % ME-ICP89	Cr2O3 % ME-ICP89	Cu % ME-ICP89	Fe2O3 % ME-ICP89	K2O % ME-ICP89	Li2O % ME-ICP89	MgO % ME-ICP89	MnO % ME-ICP89	Ni % ME-ICP89	Pb % ME-ICP89	S % ME-ICP89
				Lower Dete		0.02	0.01	20 10000	0.01	0.005	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.005	0.01	0.01
\geq	2	Sample	Depth From		ection Limit	100	10	10000	10	30	00	50	100	60	21.5	50	50	30	30	60
	Drill Hole	Number	(m)	(m)	Interval (m)															
\square	NBD001	U15451	314	315	1	16.4	0.01	180	0.18	< 0.005	< 0.01	< 0.01	0.76	3.89	1.44	0.02	0.08	< 0.005	< 0.01	<0.01
2	NBD001	U15452	315	315.75	0.75	16.35	0.01	160	0.15	<0.005	<0.01	<0.01	1.14	2.61	1.53	0.03	0.1	< 0.005	<0.01	<0.01
\bigcap	NBD001	U15453	315.75	316.5	0.75	15.6	<0.01	200	0.17	< 0.005	< 0.01	< 0.01	1.26	1.43	1.83	0.07	0.17	< 0.005	< 0.01	0.02
\bigcirc	NBD001	U15454	316.5	317	0.5	16.4	<0.01	160	0.18	< 0.005	0.01	< 0.01	1.29	2.17	1.92	0.03	0.12	< 0.005	< 0.01	< 0.01
	NBD001	U15455	317	318.4	1.4	16.35	0.01	190	0.21	< 0.005	< 0.01	<0.01	0.87	2.17	1.14	0.03	0.15	< 0.005	< 0.01	0.01
<i>a</i> 15	NBD001	U15456	318.4	319	0.6	16.6	<0.01	230	0.18	< 0.005	0.01	<0.01	1.1	1.66	1.64	0.07	0.12	< 0.005	<0.01	<0.01
(\mathbf{D})	NBD001	U15457	319	320	1	15.3	0.01	180	0.13	< 0.005	< 0.01	<0.01	1.03	2.24	1.53	0.1	0.05	< 0.005	< 0.01	0.03
40	NBD001	U15458	320	320.8	0.8	14.95	0.01	150	1.19	< 0.005	0.04	<0.01	2.03	1.64	0.65	2.37	0.13	0.014	0.01	0.13
(0)	NBD001	U15459	320.8	322	1.2	15.15	< 0.01	200	0.43	< 0.005	< 0.01	<0.01	0.96	2.37	0.9	0.15	0.04	< 0.005	<0.01	0.02
	NBD001	U15460	322	323	1	16.3	<0.01	110	0.22	< 0.005	0.01	< 0.01	1.3	3.36	1.7	0.13	0.04	< 0.005	< 0.01	0.03
	NBD001	U15461	323	324	1	16.6	0.01	150	0.27	< 0.005	0.01	< 0.01	0.95	1.84	1.59	0.03	0.03	< 0.005	<0.01	0.06
	NBD001	U15462	324	325	1	13.85	0.03	150	0.27	< 0.005	0.01	< 0.01	0.94	2.32	0.88	0.1	0.07	< 0.005	0.01	0.02
	NBD001	U15463	325	326	1	16.45	0.01	130	0.27	< 0.005	0.01	< 0.01	0.7	2.43	0.99	0.02	0.04	< 0.005	< 0.01	< 0.01
	NBD001	U15464	326	327	1	15.65	0.01	130	0.17	< 0.005	0.01	<0.01	0.94	1.49	2.32	0.07	0.06	< 0.005	< 0.01	0.01
an	NBD001	U15465	327	327.5	0.5	14.1	0.02	200	0.36	< 0.005	0.01	<0.01	1.17	2.79	0.97	0.75	0.05	0.007	0.01	0.03
60	NBD001	U15466	338.2	339.1	0.9	17.15	<0.01	180	0.7	< 0.005	0.01	<0.01	1.14	1.24	2.43	0.41	0.1	< 0.005	<0.01	0.03

			Element Unit Symbo Analysis M Lower Dete	ol ethod	TiO2 % ME-ICP8 0.0	Zn % 9 ME-ICP89 02 0.01		Cs2O Oxide %	Nb ppm ME-MS91	Nb2O5 Oxide %	Rb ppm ME-MS91 0.5	Rb2O Oxide %	Sn ppm ME-MS91		Ta2O5 Oxide %	Th ppm ME-MS91 0.5	
				ection Limit		B3 60		Converted		Converted	and an and the second se	Converted	10000		Converted	2500	
	Sample	Depth From		ceron chine	1.2		20000	converteu	20000	converteu	10000	converted	10000	2300	converted	2500	-
Drill Hole	Number	(m)	(m)	Interval (m)													
BUG28	U15424	86			< 0.02	0.01	144.5	153	93	133	1765	1930	64	40.3	49.2	2.9)
BUG28	U15425	87	88	1	<0.02	0.01	169.5	180	82	117	1910	2089	65	38.6	47.1	3	3
BUG28	U15426	88	89	1	<0.02	0.01	220	233	92	132	2330	2548	55	42.1	51.4	2.8	3
BUG28	U15427	89	90	1	<0.02	0.01	180.5	191	60	86	1610	1761	54	33.5	40.9		3
BUG28	U15428	90	91	1	<0.02	0.01	222	235	74	106	1605	1755	64	52.6	64.2	3.7	7
BUG28	U15429	91	92	1	0.0	0.04	242	257	87	124	2050	2242	66	47.7	58.2	9.7	7
BUG28	U15430	92	93	1	<0.02	0.02	145.5	154	82	117	806	881	71	40.4	49.3	4.2	2
NBD001	U15431	294	295	1	<0.02	0.01	199.5	212	86	123	1820	1990	58	52.8	64.5	4.5	5
NBD001	U15432	295	296	1	<0.02	0.01	165.5	175	82	117	1545	1690	40	38.4	46.9	4.3	3
NBD001	U15433	296	297	1	<0.02	0.01	155	164	112	160	1510	1651	52	55.7	68.0	5.1	1
NBD001	U15434	297	298	1	<0.02	0.01	206	218	112	160	1955	2138	40	66.8	81.6	5.6	5
NBD001	U15435	298	298.5	0.5	< 0.02	0.01	146.5	155	99	142	1480	1619	56	73.3	89.5	5.4	1
	U15436	298.5	299.5		<0.02	0.01									42.5		
	U15437	299.5		1.8	0.0												
	U15438	301.3			< 0.02	0.01											
	U15439	302			< 0.02	0.01		N							310	1 2 3 3	Q
	U15440	303			< 0.02	0.01			1.04.0	2							
	U15441	304	304.6		<0.02	0.01											
	U15442	304.6		1.4	0.0												
	U15443	306			< 0.02	0.01											
and the second second	U15444	307.4			< 0.02	0.01											
NBD001	U15445	308			< 0.02	0.01											
and the second second	U15446	309	1		<0.02	0.01		1 to picture		(1				1	0
	U15447	310			< 0.02	0.01											
	U15448	311			<0.02	0.01											
	U15449	312			<0.02	0.01											
	U15450 U15451	312.9			<0.02 <0.02	0.02											
NBD001	U15452	315			<0.02	0.01											
	U15453	315.75		0.75	0.02												
	U15454	316.5			<0.02	0.01											
	U15455	317			<0.02	0.01											
	U15456	318.4			<0.02	0.01											
	U15457	319			<0.02	0.01											
	U15458	320		0.8	0.0												
	U15459	320.8			<0.02	0.01											
	U15460	322		1	0.01								-				
	U15461	323		_	<0.02	0.01							-				
	U15462	324		1		02 < 0.01	151										
NBD001	U15463	325			<0.02	0.01											
	U15464	326	1000		<0.02	0.01											
NBD001	U15465	327		0.5	0.0												
	U15466	338.2			<0.02	0.01											

Kidman Resources Limited – ASX Announcement

Page 9 of 15

				Element Unit Symb Analysis N	lethod	SiO2 % ME-ICP89	TiO2 % ME-ICP89	Zn % ME-ICP89	Cs ppm ME-MS91	Cs2O Oxide %	Nb ppm ME-MS91	Nb2O5 Oxide %	Rb ppm ME-MS91	Rb2O Oxide %	Sn ppm ME-MS91	Ta ppm ME-MS91	Ta2O5 Oxide %	Th ppm ME-MS91	U ppm ME-MS91
		Sample	Depth From	Upper Det	ection Limit ection Limit	0.2 100	0.02 83	0.01 60	0.2 25000	Converted	5 10000	Converted	0.5 10000	Converted	5 10000	0.5 2500	Converted	0.5 2500	0.5 2500
	Drill Hole		(m)	(m)	Interval (m)														
	BUG28	U15414	76			73.2	< 0.02	0.01	98	104	101	144	882	965	46	38.2	46.6	5.5	8.9
2	BUG28	U15415	77	78	1	75.3	<0.02	0.01	128	136	67	96	1570	1717	47	45.4	55.4	3.4	6.5
\bigcirc	BUG28	U15416	78	79	1	74.4	<0.02	0.01	151.5	161	92	132	1570	1717	45	63.3	77.3	4.6	8.2
\bigcirc	BUG28	U15417	79	80	1	76.6	<0.02	0.01	152	161	92	132	1380	1509	63	65.3	79.7	4.5	6.9
	BUG28	U15418	80	81	1	71.7	< 0.02	0.01	146	155	85	122	1195	1307	75	70.5	86.1	4.6	7.5
615	BUG28	U15419	81	82	1	72.9	< 0.02	< 0.01	136	144	64	92	1465	1602	58	32.8	40.1	3.7	6.3
	BUG28	U15420	82	83	1	76.6	< 0.02	0.01	108	115	69	99	958	1048	63	40.9	49.9	4	6.6
	BUG28	U15421	83	84	1	71	< 0.02	< 0.01	114.5	121	61	87	1315	1438	48	30.7	37.5	3.7	5.9
(\langle / \rangle)	BUG28	U15422	84	85	1	71.4	<0.02	0.01	175.5	186	59	84	2070	2264	62	53.5	65.3	2.8	5.8
0 D	BUG28	U15423	85	86	1	74.9	< 0.02	0.01	138	146	85	122	1685	1843	64	57.8	70.6	2.8	5.2
	BUG28	U15424	86	87	1	72.1	< 0.02	0.01	144.5	153	93	133	1765	1930	64	40.3	49.2	2.9	4.9
	BUG28	U15425	87	88	1	75.7	< 0.02	0.01	169.5	180	82	117	1910	2089	65	38.6	47.1	3	4.7
	BUG28	U15426	88	89	1	73.6	< 0.02	0.01	220	233	92	132	2330	2548	55	42.1	51.4	2.8	4.7
	BUG28	U15427	89	90	1	95.9	< 0.02	0.01	180.5	191	60	86	1610	1761	54	33.5	40.9	3	5.3
60	BUG28	U15428	90	91	1	74	< 0.02	0.01	222	235	74	106	1605	1755	64	52.6	64.2	3.7	6.7
60	BUG28	U15429	91	92	1	75.5	0.02	0.04	242	257	87	124	2050	2242	66	47.7	58.2	9.7	3.8
	BUG28	U15430	92	93	1	78.7	< 0.02	0.02	145.5	154	82	117	806	881	71	40.4	49.3	4.2	4.3
2	NBD001	U15431	294	295		70.2	< 0.02	0.01	199.5	212	86	123	1820	1990	58	52.8	64.5	4.5	7.5
\bigcirc	NBD001	U15432	295	296	1	75.5	< 0.02	0.01	165.5	175	82	117	1545	1690	40	38.4	46.9	4.3	7.6
\bigcirc	NBD001	U15433	296	297	1	75.9	< 0.02	0.01	155	164	112	160	1510	1651	52	55.7	68.0	5.1	7.7
20	NBD001	U15434	297	298	1	74.9	< 0.02	0.01	206	218	112	160	1955	2138	40	66.8	81.6	5.6	10.4
(U/z)	NBD001	U15435	298	298.5		79.2	< 0.02	0.01	146.5	155	99	142	1480	1619	56	73.3	89.5	5.4	9
	NBD001	U15436	298.5	299.5		73.6	< 0.02	0.01	103.5	110	86	123	1205	1318	53	34.8	42.5	4.6	6.6
	NBD001	U15437	299.5	301.3		75.5	0.02	0.01	346	367	59	84	2570	2811	60	46.8	57.1	6	10.3
((1))	NBD001	U15438	301.3	302		72.9	< 0.02	0.01	320	339	87	124	1825	1996	24	46.1	56.3	6.9	10.7
	NBD001	U15439	302		1	74.4	< 0.02	0.01	329	349	129	185	1810	1979	17	54.9	67.0	7.2	12.7
\bigcirc	NBD001	U15440	303	304	1	74.2	< 0.02	0.01	268	284	79	113	1610	1761	32	30	36.6	5.7	8
	NBD001	U15441	304	304.6		95.9	< 0.02	0.01	299	317	74	106	1875	2051	38	30.1	36.8	4.5	4.8
	NBD001	U15442	304.6			78.1	0.03	0.04	258	274	137	196	1265	1383	16	67.6	82.5	11.5	16.9
<u> </u>	NBD001	U15443	306	307.4	1.4	73.8	< 0.02	0.01	295	313	153	219	1815	1985	33	70.2	85.7	8.7	14.4
	NBD001	U15444	307.4	308	0.6	75.7	< 0.02	0.01	73.4	78	79	113	934	1021	56	24.4	29.8	3	4.8
	NBD001	U15445	308	309	1	67	< 0.02	0.01	74.5	79	39	56	1120	1225	36	13.2	16.1	2.2	4.7
	NBD001	U15446	309	310	1	95.2	< 0.02	0.01	93.9	100	79	113	1015	1110	53	19.6	23.9	4.2	5.6
	NBD001	U15447	310	311		76.2	< 0.02	0.01	111	118	78	112	1450	1586	52	37.2	45.4	3.2	6.5
	NBD001	U15448	311	312		95.2	< 0.02	0.01	102	67	91	133	940	629	52	35.1	58.5	6.4	8.4
	NBD001	U15449	312	312.9	0.9	79.2	< 0.02	0.01	178	189	76	109	1635	1788	41	31	37.9	4.4	7.1
	NBD001	U15450	312.9	314	1.1	75.9	<0.02	0.02	149	158	81	116	966	1056	35	41.5	50.7	7.2	15.1

						SiO2 % ME-ICP89 0.2 100	TiO2 % ME-ICP89 0.02 83	Zn % ME-ICP89 0.01 60	Cs ppm ME-MS91 0.2 25000	Cs2O Oxide %	Nb ppm ME-MS91 5 10000	Nb2O5 Oxide %	Rb ppm ME-MS91 0.5 10000	Rb2O Oxide %	Sn ppm ME-MS91 5 10000	Ta ppm ME-MS91 0.5 2500	Ta2O5 Oxide %	Th ppm ME-MS91 0.5 2500	U ppm ME-MS91 0.5 2500
)	Sample	Depth From																
	Drill Hole		(m)	(m)	Interval (m)														
	NBD001	U15451	314	315		95.9	< 0.02	0.01	146	155	78	112	1835	2007	41	42.1	51.4	4.3	6.2
	NBD001	U15452	315	315.75	0.75	95	< 0.02	0.01	148.5	157	78	112	1405	1537	42	49.3	60.2	4.5	7.2
(\bigcirc)	NBD001	U15453	315.75	316.5	0.75	75.9	0.02	0.02	172	182	104	149	821	898	14	51.3	62.6	6.6	14.7
\bigcirc	NBD001	U15454	316.5	317	0.5	75.5	< 0.02	0.01	88.9	94	89	127	1020	1115	51	35.3	43.1	6.1	8.9
	NBD001	U15455	317	318.4	1.4	78.3	< 0.02	0.01	190.5	202	118	169	1170	1280	40	76	92.8	5.6	8.5
615	NBD001	U15456	318.4	319	0.6	78.7	< 0.02	0.01	186.5	198	71	102	915	1001	16	49.6	60.6	5.7	12.6
	NBD001	U15457	319	320	1	95.2	< 0.02	0.01	202	214	194	278	1125	1230	28	59.2	72.3	21.8	36.2
40	NBD001	U15458	320	320.8	0.8	70.4	0.04	0.02	249	264	95	136	841	920	16	95.9	117.1	6.4	9.5
(U/)	NBD001	U15459	320.8	322	1.2	75.9	< 0.02	0.01	120.5	128	140	200	859	939	9	42.2	51.5	7.2	13.9
	NBD001	U15460	322	323	1	76.6	0.02	0.03	154	163	121	173	1345	1471	9	39.6	48.4	4.8	11.7
	NBD001	U15461	323	324	1	95	< 0.02	0.01	162.5	172	95	136	906	991	12	50.2	61.3	6.5	9.6
	NBD001	U15462	324	325	1	71.4	0.02	<0.01	151	160	181	259	1315	1438	33	66.9	81.7	7.6	12.7
	NBD001	U15463	325	326	1	95	<0.02	0.01	187.5	199	113	162	1425	1558	26	47.9	58.5	8.4	10.9
	NBD001	U15464	326	327	1	75.5	< 0.02	0.01	141	149	146	209	794	868	16	53.2	65.0	6	10.8
(D)	NBD001	U15465	327	327.5	0.5	69.3	0.02	0.01	197	209	114	163	1280	1400	21	51.2	62.5	10.9	25
	NBD001	U15466	338.2			78.1	<0.02	0.01	63.5	67	93	133	575	629	61	47.9	58.5	4.7	6.1

JORC Code, 2012 Edition – Table 1 report template

SECTION 1 SAMPLING TECHNIQUES AND DATA

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation, information. 	 This table relates to recent selective sampling of target identified dr core (spodumene bearing pegmatite) from historical underground a surface drill holes at Bounty Gold Mine undertaken by KDR at the Molland project. Core sample intervals selected are variable in leng (Table 2) though average at 1m. A total of 2 drill holes (Table 1) had sample intervals selected from them by KDR in this programme. Selected core sample intervals were retrieved from the stored core and cut lengthwise into quarter split core samples as per industry standard practice. Samples were forwarded to certified laboratory for analysis where they were weighed, crushed, reweighed, pulverised and split to produce a ~200g pulp subsample to use in the assay process. The core samples were assayed by Inductively coupled plasma ma spectrometry (ICP) or mass spectrometry (MS). No field duplicate samples were in evidence.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 All sampled drill holes are diamond drill core holes, 1 hole was drill from surface and 1 from underground workings. These were undertaken by previous operators of the Bounty Gold Mine and not be KDR. Selected holes were standard NQ 47.6mm diameter core. The selected drill holes total lengths ranged from 147.9m to 345m.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Diamond core drill holes had been geologically logged and records within a database. Selected intervals from the targeted drill holes have been re-logge and entered into a database by KDR. Historical recoveries for these selected intervals are of apparent >90%. Samples were selected on a basis of pegmatite intersection and his spodumene occurrence, hence are not an unbiased sample.
Togging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All information captured by previous workers is imported and consolidated into a database by KDR, for interpretation, analysis, a verification purposes. Historical diamond core drill hole data includes: Geological logging over varying intervals, dependent on observed changes for various parameters (e.g. lithology, alteration, mineralogy etc.) The geological logs and re-logging are compiled with appropriate attention to detail. Industry standard practice is assumed for activities which occurre prior to KDR.
Súb-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 The select diamond core intervals were quarter cut lengthwise with circular diamond blade saw. A quarter of the core has been retained. A total of 88.6m in 90 samples was collected. The NATA accredited laboratory is registered to ISO 9001: 2008 standards. They use industry best practice. The laboratory procedure used includes the following: Sort all samples and note any discrepancies to the submittal form Record a received weight (WEI-21) for each sample, Crush samples to 6mm nominal (CRU-21), Record a crushed samples weight, Split any samples >3.2Kg using a riffle splitter (SPL-21), Generate internal laboratory duplicates for nominated sample assigning a D' suffix to the sample number, Pulverise samples in LM5 pulveriser until grind size passes 9 passing 75µm (PUL-23), Check pulverise size on 1:20 wet screen (PUL-QC), Take ~ 100g work master pulp for 0.2g sample for sodium pentoxide fusion with ICP-OES or ICP_MS finish. The elements the samples were assayed for are: Al₂O₃, As, CaO Co, Cr₂O₃, Cu, Fe₂O₃, K₂O, MgO, MnO, Ni, Pb, S, SiO₂, TiO₂, Zn, Be, Li₂O, Cs, Nb, Rb, Sn, Ta, Th, and U. The code for the method units of measure, limits of detection are shown Table 2 in the text above.
Quality of assay data	The nature, quality and appropriateness of the assaying and	 For the drill core samples being reported elemental concentrations have been determined as per the outline in the proceeding item. No geophysical results are reported.

tests	 considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 No field QAQC has been supplied by KDR. It is recommended that future sampling programmes incorporate field QAQC best practice as used by KDR on other projects.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Historical drill holes have not been twinned by KDR to date. Industry standard practice is assumed for activities which occurred prior to KDR. Primary historical data and any re-logging / new sampling data have been compiled into the database. This database is being re-evaluated and consolidated by KDR in an ongoing activity. No adjustments or calibrations to the assay data have been made. Oxides of Cs, Rb, Nb, and Ta (Table 2) have been calculated based on atomic weight proportion percentile. Values for Li in the report text have also been calculated by atomic weight proportion percentile from the assay Li₂O% value.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All horizontal co-ordinates are assumed to be GDA94 zone 51 grid datum. Vertical regional level (RL) is assumed to be a Bounty Gold Mine level as the surface drill holes have an RL of 1430m whilst a local topographic peak at Mount Holland is 473 m above sea level. Best practice is assumed for activities which occurred prior to KDR. No resurvey of the hole collar co-ordinates has been undertaken by KDR.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The reported results are based on selective sampling of target identified drill core (spodumene bearing pegmatite) from historical underground and surface drill holes at Bounty Gold Mine. Samples were selected on a basis of high visual spodumene occurrence, hence are not an unbiased sample. The recently assay sample spacing is not sufficient to establish a high degree of geological and grade continuity appropriate for Mineral resource and Ore reserve reporting. No sample compositing has been applied to the samples being reported. Historical drill hole data and surface mapping does show a high number of pegmatite intersections in the Bounty Mine lease and occurrences in E77/2244 to the north.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The orientation of the targeted drill holes for selective sampling is given in Appendix1, Table 1 in the document. The orientation of the drill holes in relation to the pegmatites sampled as interpreted by KDR are shown on the sections Figures 3 and 4. Discussions with KDR personnel indicated that in the main there are pegmatites which are flat lying with a gentle westerly dip. However there are others which appear to be southeast dipping and others which are near vertical. The pegmatites can be truncated by east – northeast trending fracture zones. Relationship of the pegmatites and local or regional structures has not been fully established by KDR at this early stage.
Sample security	• The measures taken to ensure sample security.	 Sample chain of custody is managed by KDR. Samples were collected and stored on site prior to delivery to the laboratory in Perth by KDR personnel. Whilst in storage samples are kept in a locked yard. Tracking sheets are use d to track the progress of batches of samples.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 Internal review of sampling techniques as well as data handling and validation is conducted by KDR as part of due diligence and continual review of protocols. Further application of industry best practice in applying field duplicates and field standards needs to be addressed in future sampling programmes. Recording of LOI from sample analyses is also recommended to be included in all sample results in future programmes, as is analysis for Na₂O or Na. Industry best practice is assumed for activities which occurred prior to KDR.

(Criteria listed in the preceding section also apply to this section.)

(Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to construct in the order. 	 KDR has signed a binding agreement to acquire the Mt Holland gold project package of tenements. The author is not aware of issues which may impede KDR tenure position and understands the tenements are in good standing. No cultural heritage issues have been reported.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Potential first recognised in 1980 by Harmark – Au and Ni In 1985 Aztec conducted soil sampling of the tenement which highlighted a number of discrete zones with values ranging from 100ppb-1000ppb Au within a broad anomalous trend and significant anomalism around the future Bounty pit. The anomalies were then tested with RAB drilling. During 1986 further RAB and follow-up RC intersected the main body of Au mineralisation which was eventually drilled out on 20x12m. The Au mineralisation was recognised as being associated with the pyrite and pyrrhotite. Transient Electromagnetic surveys (TEM) were conducted over and along strike of the Bounty ore body further delineating the resource. This found that the data was dominated by a westerly dipping, near vertical semicontinuous conductive zone, which thickens to the south and extends over the length of the survey. This is associated with sulphides within and peripheral to the contacts of the Bounty horizon. In 1989 mining of the Bounty pit started. The total ore mined from the Bounty, West and North Bounty pits was 640 000t @ 5.55g/t Au or 114 000oz Au. Minor RAB and occasional RC drilling was undertaken north and south testing for strike extension. This effectively closed off the Au resource to the north but left it open to the south. In 1997 Forrestania drilled a number of holes to the east of the pit to test for potential nickel mineralisation. No known previous exploration focussed on lithium.
	Deposit type, geological setting and style of mineralisation.	 Regional Geology N-S trending linear greenstone stratigraphy E-W cross-cutting Proterozoic dykes Alternating peridotitc and basaltic komatiites to the east, overlain by sheared and brecciated metasediment, which in turn has a sheared upper contact with the overlying dolerite. Intrude by granite to the east and west. Local Bounty Mine Geology Bounty Horizon BIF (a variably deformed Fe-Am-chert formation) is the western most and youngest horizon of an ultramafic sequence of basaltic and peridotitic komatiite and associated sediments known as the Bounty sequence; strike N-S. Hanging wall dolerite has a mylonitised chloritic sheared contact. Sequence is a near-vertical, westerly dipping (75 –85) semi-continuous horizon with discontinuities due to cross cutting fracture zones. Fracture zones are intruded by pegmatites and younger north northeast trending dykes i.e. the 280m wide Proterozoic Binneringie dyke. Mineralisation Spodumene (lithium containing mineral) bearing pegmatite zonation within larger pegmatite body. Zonation of pegmatites with the Mt Holland project is not fully understood or has not been fully investigated at this stage.
Drillhole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 All horizontal co-ordinates are assumed to be GDA94 zone 5 grid datum. Vertical regional level (RL) is assumed to be a Bounty Gold Mine level as the surface drill holes have an RL of 1430m whilst a local topographic peak at Mount Holland is 473 m above sea level. Industry standard practice is assumed for activities which occurred prior to KDR. No resurvey of the hole collar co-ordinates has been undertaken by KDR

Dete		
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated 	 Oxides of Cs, Rb, and Ta (Table 2) have been calculated based on atomic weight proportion percentile. Values for Li in the report text have also been calculated by atomic weight proportion percentile from the assay Li2O% value. Core sample intervals selected are variable in length (Table 2) though average at 1m. For assay results greater that 1% Li2O a weighted average result has been reported: The assay results weighted averaged to the individual sample lengths and the average of those used for the combined interval. No metal equivalent has been used. No top cut has been applied.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known') 	 The relationship between sample interval lengths to the pegmatite orientation and drill core orientation has not been fully noted at this early stage. Interpretation shown in Figure 3 indicates drill hole BUG028 intersects the pegmatite at a low angle and is not a true thickness, but rather drills tangentially down the pegmatite. Interpretation in Figure 4 indicates drill hole NBD001 intersection is near to true thickness though does not penetrate normal to the dip of the pegmatite. Further work needs to be done to define the orientation of the pegmatites and hence define the true thickness of any future sample intervals.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Diagrams of the location of the drill holes have been provided as Figures 2, 3 and 4. These preliminary results are sufficient in numbers to only enable only a preliminary interpretation of the pegmatite in section to be made. Any detailed interpretation at this stage may bias the future work. As further work progresses more detailied interpretation plans and sections will be added.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 The current results reported constitute all known results for lithium mineralisation within pegmatites. All results to date are reported in Appendix 2, table 2.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances 	 Systematic sampling and multi element assaying of the pegmatites has not historically been conducted. Forthcoming work is aimed at improving this situation.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step- out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Any further sampling of spodumene pegmatite intersection from historic drill holes from Bounty Gold Mine undertaken by KDR will be reported in accordab=nce with reporting standards. Results of analyses of samples outstanding, pendingor future will be reported in accordance to the 2012 JORC Code. The geology, mineralogy and geochemistry of these pegmatites has not been fully determined at this early stage, ongoing work is intended to assist in addressing these matters. Continued project-wide geological review and database consolidation may assist in locating further historically mapped pegmatites and or others not previously identified