

91-92m Cu:

BOTSWANA COPPER/SILVER PROJECT UPDATE

HIGH Cu ASSAYS AND SIGNIFICANT Pb/Zn INTERSECTIONS CONFIRM T3 DISCOVERY

HIGHLIGHTS

- High grade Cu assays and wide zones of Pb/Zn sulphide mineralisation intersected at T3 provide an indication of the potential of this exciting new polymetallic discovery
- Second drill hole at T3 (MO-G-11R) intersected 14m @ 1.97% Cu from 86m down hole depth, including 7m @ 2.9% Cu from 92m down hole depth (Figures 1 & 2)
- MO-G-11R also intersected 5 zones of highly anomalous Pb/Zn over an 84m interval from 64m down hole depth (Appendix 1). Highest 1m Zn assays are: 3.43%, 2.07% & 1.07% Zn
- Two RC drill holes have intersected wide zones of visible disseminated Cu/Pb/Fe sulphides 100m west and east of current drill section (Figure 2). Results are being interpreted
- Cu/Pb/Zn mineralisation intersected in hanging-wall sediments in the interpreted T3 Dome is unlike any other known mineral deposit in the Kalahari Copper Belt
- Preliminary interpretation suggests Cu/Pb/Zn intersections occur near the western end of 4-5km long Pb/Zn soil anomaly along part the axis of the T3 Dome (Figures 3 & 4)
- Two diamond drill rigs now on site. Hole MOG-01D is targeting an inferred DHEM conductor at >200m depth and testing for the interpreted deeper Kalahari prospective contact

Figure 1: 1m samples from RC drill hole MO-G-11R showing visible chalcopyrite and Cu assays for each 1m sample (Refer Appendix 1)

MOD Resources Limited ABN 78 003 103 544 | First Floor, 1304 Hay Street, West Perth WA 6005 | PO Box 1927, West Perth WA 6872 ASX code: MOD | T +61 (8) 9322 8233 | F +61 (8) 9322 8077 | E administrator@modresources.com.au | www.modresources.com.au

BOTSWANA COPPER/SILVER PROJECT UPDATE HIGH Cu ASSAYS AND SIGNIFICANT Pb/Zn INTERSECTIONS CONFIRM T3 DISCOVERY Page 2

s

50m

100m

150m

second RC drill hole (MO-G-11R) at the T3 discovery, owned by MOD (70%) and Metal Tiger Plc (LON:MTR) (30%). As announced on 17 March 2016 and 23 March 2016, significant visible Cu mineralization was also Intersected in MO-G-12R and MO-G-13R which are on the same drill section as MO-G-11R (Figure 2) and assays are expected from these holes soon.

Key results from **MO-G-11R** include:

Two significant zones of Cu mineralisation:

- 14m @ 1.97% Cu from 86m down hole depth, including 7m @ 2.9% Cu from 92m down hole depth; and
- 12m @ 0.76% Cu from 69m down hole depth (Figures 1 and 2)
- Five zones of highly anomalous Pb/Zn mineralisation over an 84m interval starting from 64m down hole depth (Appendix 1). The Pb and Zn assays in the five distinct zones are highlighted in Appendix 1. The Pb/Zn assay data are still being interpreted and the significance of these results is expected to become more apparent when assays are received from other drill holes in the immediate area:
 - Highest individual 1m zinc assays are: 3.43%, 2.07% and 1.07% Zn

A preliminary interpreted cross section (Figure 2) illustrates the difference in assay results and geology between holes MO-G-10R and MO-G-11R. Hole MO-G-10R includes an isolated interval of moderate grade Cu, has no significant Pb or Zn and is hosted by sandstone. Hole MO-G-11R includes two intervals of significant Cu and five zones of highly anomalous Pb/Zn, hosted mainly by green/grey siltstone.

A WNW trending fault is interpreted from magnetics (Figures 3 and 4) which may explain the apparent offset of mineralised siltstone north of the interpreted fault from the relatively barren sandstones MO-G-10R south of the fault. Drill logs for holes MO-G-12R and MO-G-13R show strong similarities with MO-G-11R.

Interpretation of the geology, structure and geometry of the near surface Cu/Pb/Zn mineralisation at T3 is still at a very early stage. The results from diamond drilling will provide higher quality geological and assay data and the capacity to test deeper targets within the 25km long interpreted T3 Dome. Diamond drill hole MOG-01D is in progress to test an inferred DHEM conductor modelled at >200m depth and MOG-02D is expected to provide information on the sulphide mineralisation in MO-G-11R and test the south side of an interpreted fault (Figure 2).

The MOD/MTR joint venture now has one RC drill rig and two diamond core drill rigs on site supported by a strengthened geological team to manage the T3 Project. This enables the joint venture to start testing the potential along strike from the area of current drilling (Figure 3). The first two drill holes in this program (MO-G-14R and MO-G-15R) have intersected wide zones of visible disseminated Cu/Pb/Fe sulphides 100m west and east of the current drill section. Results are still being interpreted and assays are not yet available.

Figure 3: Magnetic image of part of interpreted T3 Dome showing area of current drilling (white square) and approximate outlines of 4-5km long soil anomalies based on previous data (Red - Cu, Black - Pb, Yellow - Zn)

Page 4

Figure 4: Magnetic image showing interpreted T3 Dome and area of current drilling

Figure 5: Kalahari Copper Belt showing location of T3 and other regional targets on joint venture and MOD 100% licences

Page 5

Drill Hole ID	Collar	Collar	A 	Din	EOH
Drill Hole ID	UTM East	UTM North	AZI	Dip	m
MO-G-10R	636268	7641598	335	-60	150
MO-G-11R	636247	7641653	335	-60	199
MO-G-12R	636231	7641710	335	-60	130
MO-G-13R	636214	7641765	335	-60	173
MO-G-14R	636118	7641743	160	-60	170
MO-G-15R	636309	7641791	160	-60	158

Table 1: T3 RC drill hole collar coordinates and survey parameters

Note: This announcement refers to Exploration Targets as defined under Sections 18 and 19 of the 2012 JORC Code. The Exploration Targets quantity and quality referred to in this announcement are conceptual in nature. Apart from the announced Mahumo Stage One Mineral Resource there has been insufficient exploration at other Exploration Targets to define a Mineral Resource and it is uncertain if further exploration will result in the Exploration Targets being delineated as a Mineral Resource.

For further information, please contact:

Julian Hanna Managing Director MOD Resources Limited Ph: (61 8) 9322 8233 Jhanna@modresources.com.au

Mark Clements

Executive Chairman and Company Secretary MOD Resources Limited Ph: (61 8) 9322 8233 mclements@modresources.com.au

Background

Botswana Copper Project

The combined MOD holdings comprise 25 prospecting licences with a total area >11,600km² in the relatively unexplored central and western Kalahari Copper Belt which is largely covered by sand and soil.

MOD has been an active explorer in the Kalahari Copper belt since 2011 and discovered the 'Corner K Deposit', how re-named Mahumo Copper/Silver Deposit in late 2011. The Mahumo deposit was discovered by drilling a soil anomaly along the northern margin of a major >20km wide structural zone (Mahumo Structural Corridor). The Mahumo Stage One resource is currently the highest grade copper resource in the Kalahari Copper Belt and is the basis for an underground mining scoping study. Mahumo remains completely open below the limit of drilling along 2.4km strike length and Stage Two drilling is designed to test for extensions to ~600m depth.

MOD through its subsidiary company MOD Resources Botswana (Pty) Ltd has 100% holdings and various existing joint venture interests in 11 granted prospecting licences with a total area of approximately 4,187km² in the Kalahari Copper Belt. MOD also owns 70% of Discovery Mines (Proprietary) Ltd ("DMI") through UK joint venture company, Metal Capital Ltd ("MCL") and a wholly owned subsidiary company of MCL, Tshukudu Metals Botswana (Pty) Ltd, following the acquisition of DMI announced on 16 December 2015. DMI holds 14 prospecting licences with a total area of approximately 7,446km² in the same area as MOD's holdings.

London AIM listed company Metal Tiger Plc ("MTR") owns a 30% interest in DMI through MCL. The business fit between MTR and MOD is strong and both companies are working together to explore and potentially develop opportunities within their extensive holdings in the Kalahari Copper Belt. MTR is primarily focused on undervalued natural resource investment opportunities in which it can provide financial and business support to companies to maximize the value of their interests.

In November 2015 Cupric Canyon Capital announced results of a feasibility study for the potential development of a substantial underground mine at the Zone 5 deposit. Zone 5 is located approximately 100km NE of Mahumo along the same interpreted structural contact as Mahumo. Currently reported resources at Zone 5 are 100.3Mt @ 1.95% Cu and 20g/t Ag (December 2015). Zone 5 is the most significant announced resource in the Kalahari Copper Belt to date and may demonstrate the wider potential of this relatively under-explored region.

Competent Person's Statement

The information in this announcement that relates to Geological Data and Exploration Results at the Botswana Copper Project is reviewed and approved by Jacques Janse van Rensburg, BSc (Hons), General Manager Exploration (Africa) for MOD Resources Ltd. He is registered as a Professional Natural Scientist with the South African Council for Natural Scientific Professions (SACNASP) No. 400101/05 and has reviewed the technical information in this report. Mr Janse van Rensburg has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and the activity which it is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves. Mr Janse van Rensburg consents to the inclusion in this announcement of the matters based on information in the form and context in which it appears.

Exploration Targets and Results

This announcement refers to Exploration Targets as defined under Sections 18 and 19 of the 2012 JORC Code. The Exploration Targets quantity and quality referred to in this announcement are conceptual in nature. Apart from the announced Mahumo Stage One Mineral Resource there has been insufficient exploration at other Exploration Targets to define a Mineral Resource and it is uncertain if further exploration will result in the Exploration Targets being delineated as a Mineral Resource. This announcement includes several drill hole intersections which have been announced by MOD Resources Limited previously.

Forward Looking Statements and Disclaimers

This announcement includes forward-looking statements that are only predictions and are subject to risks, uncertainties and assumptions which are outside the control of MOD Resources Limited.

Examples of forward looking statements included in this announcement are: 'A WNW trending fault is interpreted from magnetics (Figure 2) which may explain the apparent offset of mineralised siltstone north of the interpreted fault from the relatively barren sandstones MO-G-10R south of the fault.' and 'The results from diamond drilling will provide higher quality geological and assay data and the capacity to test deeper targets within the 25km long interpreted T3 Dome. Diamond drill hole MOG-01D is in progress to test an inferred DHEM conductor modelled at >200m depth and MOG-02D is expected to provide information on the sulphide mineralisation in MO-G-11R and test the south side of an interpreted fault (Figure 2).'

Actual values, results, interpretations or events may be materially different to those expressed or implied in this announcement. Given these uncertainties, recipients are cautioned not to place reliance on forward-looking statements in the announcement as they speak only at the date of issue of this announcement. Subject to any continuing obligations under applicable law and ASX Listing Rules, MOD Resources Limited does not undertake any obligation to update or revise any information or any of the forward-looking statements in this announcement or any changes in events, conditions or circumstances on which any such forward-looking statement is based.

This announcement has been prepared by MOD Resources Limited. The document contains background information about MOD Resources Limited current at the date of this announcement. The announcement is in summary form and does not purport to be all inclusive or complete. Recipients should conduct their own investigations and perform their own analysis in order to satisfy themselves as to the accuracy and completeness of the information, statements and opinions contained in this announcement.

The announcement is for information purposes only. Neither this announcement nor the information contained in it constitutes an offer, invitation, solicitation or recommendation in relation to the purchase or sale of shares in any jurisdiction. The announcement may not be distributed in any jurisdiction except in accordance with the legal requirements applicable in such jurisdiction. Recipients should inform themselves of the restrictions that apply to their own jurisdiction as a failure to do so may result in a violation of securities laws in such jurisdiction.

This announcement does not constitute investment advice and has been prepared without taking into account the recipient's investment objectives, financial circumstances or particular needs and the opinions and recommendations in this announcement are not intended to represent recommendations of particular investments to particular persons.

Recipients should seek professional advice when deciding if an investment is appropriate. All securities transactions involve risks, which include (among others) the risk of adverse or unanticipated market, financial or political developments. To the fullest extent of the law, MOD Resources Limited, its officers, employees, agents and advisers do not make any representation or warranty, express or implied, as to the currency, accuracy, reliability or completeness of any information, statements, opinion, estimates, forecasts or other representations contained in this announcement. No responsibility for any errors or omissions from the announcement arising out of negligence or otherwise is accepted.

Appendix 1

T3 RC Drill Hole (MO-G-11R) Assay Results (54 - 150m interval). Significant zones highlighted (bold)

INTERV	'AL (m)	Ag	Cu	Cu	Мо	Pb	Pb	Zn	Zn
From	То	ppm	ppm	%	ppm	ppm	%	ppm	%
		3AD/ICP*							
54	55	<3.0	2308		7.1	222		332	
55	56	<3.0	2256		4.3	259		363	
56	57	<3.0	2962		10	1382		664	
57	58	<3.0	6053		2.8	697		522	
58	59	<3.0	1428		<2.5	452		460	
59	60	<3.0	586		<2.5	278		351	
60	61	<3.0	954		<2.5	362		508	
61	62	<3.0	436		<2.5	443		1287	
62	63	<3.0	217		<2.5	402		1257	
63	64	<3.0	2867		4.5	1141		1415	
64	65	5.6	4755		60	2168		1183	
65	66	<3.0	3839		<2.5	769		1212	
66	67	4.5	3751		9.7	1510		5298	
67	68	7.8	3626		4.9	1862		-	3.43
68	69	<3.0	2190		<2.5	3503		5679	
69	70	<3.0	4508		<2.5	1169		3569	
70	71	5.7	4785		91	3640		5878	
71	72	16	-	1.24	256	3512		1035	
72	73	11	-	1.16	134	1659		1160	
73	74	6.6	3470		6.3	1414		4240	
74	75	6	5113		23	876		483	
75	76	3.3	5612		<2.5	723		1071	
76	77	4.4	5869		9.7	814		865	
77	78	9.1	-	1.17	27	1765		5818	
78	79	<3.0	2291		13	699		2219	
79	80	5.2	-	1.42	16	426		773	
80	81	5.3	9184		19	343		541	
81	82	3.9	393		11	2261		-	1.07
82	83	<3.0	1672		14	577		298	
83	84	<3.0	2500		14	371		364	
84	85	<3.0	3261		18	191		243	
85	86	<3.0	2274		15	228		260	
86	87	5.4	-	1.19	11	296		436	
87	88	4	_	1.66	27	323		577	
88	89	<3.0	5754		30	487		578	
89	90	4	_	1.33	26	1816		2278	
90	91	<3.0	2476	1.00	9.6	2662		7481	
91	92	<30		1 2 9	26	421		1207	
92	93	5.0	_	4 57	18	231		413	
93	94	<30	_	1.57	13	251		357	
94	95	5.5	_	4.35	17	96		310	
95	96	<20	_	2.1	47	71		304	
96	97	49	_	3.21	41	77		280	
97	98	<30	_	1 64	11	238		250	
98	99	4.2		2.82	100	1011		255	ļ
99	100		_	1.02	29	183		233	ļ
100	101	-2.0	E004	1.03	01	105		270	<u> </u>
100	101	s.0	5094		0.1	123	1	202	

BOTSWANA COPPER/SILVER PROJECT UPDATE HIGH Cu ASSAYS AND SIGNIFICANT Pb/Zn INTERSECTIONS CONFIRM T3 DISCOVERY

Page | 9

INTERV	/AL (m)	Ag	Cu	Cu	Мо	Pb	Pb	Zn	Zn
From	То	ppm	ppm	%	ppm	ppm	%	ppm	%
		3AD/ICP*	3AD/ICP*	3AD/ICP*	3AD/ICP*	3AD/ICP*	3AD/ICP*	3AD/ICP*	3AD/ICP*
101	102	<3.0	1928		12	1036	,	1013	· · · · ·
102	103	<3.0	3751		6.2	808		538	
103	104	<3.0	356		2.6	2607		4014	
104	105	<3.0	417		4.8	5177		1772	
105	106	18		4 36	28		1.06	2440	
105	100	2 1	4255	1.50	11	940	1.00	4267	
100	107	-2.0	4255		20	1295		2070	
107	100	<3.0	992		2.9 -2 E	1305		2970	
100	109	<3.0	019		<2.5	2515		/ 50	
109	110	~3.0	410		<2.5	2313		4700	
110	111	-2.0	220		<2.5	6670		5925	
111	112	-3.0	567		<2.5	5060		6638	
112	113	-3.0	686		<2.5	611		824	
113	115	<3.0	114		<2.5	1575		6052	
115	115	5.0	1150		<2.5	6340		3010	
115	117	<3.0	212		<2.5	1830		3408	
117	117	<3.0	202		<2.5 <2.5	1042		050	
11/	110	< 3.0	505		<2.5	1942		850	
118	119	<3.0	530 1245		<2.5	1004		282	
119	120	< 3.0	1345		<2.5	295		447	
120	121	<3.0	470		<2.J	1422		2202	
121	122	<3.0	54		<2.5	1432		3303	
122	123	<3.0	326		<2.5	3001		3522	
123	124	<3.0	2684		Z./	1//0		4419	
124	125	<3.0	1202		5.5	1270		1626	
125	120	< 3.0	1383		<2.5	1370		1013	
120	127	<3.0	1152		<2.5	970 1722		2517	
127	120	<3.0	410		<2.5	1722		1200	
120	129	<3.0	410		<2.5	2622		2001	
129	121	<3.0	252		~2.3	1244		002	
130	131	<3.0	250		3	1344		992	
131	132	<3.0	108		3.8	829		/40	
132	133	<3.0	07		2.9	301		1040	
133	134	<3.0	207		3	2059		1049	
134	135	<3.0	110		4.2	030 ECO		598	
135	130	<3.0	1/3		2.9	2240		4020	
136	13/	<3.0	86		3.6	2340		4838	
137	138	<3.0	431		<2.5	3512		4829	
138	139	<3.0	161		/./	2425		3045	
139	140	3.1	165		22	5619		5959	
140	141	<3.0	221		11	245/		3016	
141	142	<3.0	221		0.1	2911		4140	
142	143	<3.0	//		<2.5	1/49	ļ	3912	
143	144	<3.0	/8		<2.5	4114		0360	
144	145	<3.0	65		<2.5	5956	ļ	6042	
145	140	< 3.0	51		<u></u>	2000		50043 5500	
140	14/	< 3.0	70		<2.5 シンド	6627		5508	2.07
14/	14ð	3.8	/5		<2.5	0027		1004	2.07
148	149	<3.0	332		3.1	613		1004	
149	150	<3.0	75		16	332		/14	
150	151	<3.0	47		5.9	153		464	

Appendix 2 - JORC Code, 2012 Edition Table 1 Reporting Exploration Results from Botswana Copper Project Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Sampling was carried out using RC Drilling, at 1m sampling intervals. After every 1m interval the hole is flushed by compressed air. The full 1m interval was collected before being weighed and the weight recorded. All samples were riffle split (50:50) into samples weighing approximately 1.5kg These samples were taken to the core logging facility where a unique sample number was allocated to every interval sampled All samples were geologically logged by a suitably qualified geologist on site Samples were submitted to Setpoint Laboratories in Johannesburg
D rílling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 The six drill holes referred to in this release were drilled by reverse circulation drilling using a 5 inch – 127mm face sampling bit diameter and 900pfm – 24 bar compressor
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 RC sample recovery was recorded by weighing every sample before splitting. Sample size was found to be consistent
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 During the core logging geologists follow MOD's standard operating procedure for RC logging processes. The meter interval (from & to) is recorded and the data below is described within the RC drill logs: Major rock unit (colour, grain size, texture) Weathering Alteration (style and intensity)

BOTSWANA COPPER/SILVER PROJECT UPDATE HIGH Cu ASSAYS AND SIGNIFICANT Pb/Zn INTERSECTIONS CONFIRM T3 DISCOVERY P a g e | 11

Cri	iteria	JORC Code explanation	Commentary
			 Mineralisation (type of mineralisation, origin of mineralisation, estimation of % sulphides/oxides) Veining (type, style, origin, intensity) Data is originally recorded on paper (hard copies) and then transferred to Excel logging sheets Logging is semi quantitative based on visual estimation
	b-sampling hniques d sample eparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 All RC samples were taken at 1m intervals and riffle split into ~1.5kg samples. A reference sample is retained at core logging facility All RC intervals are geologically logged and sample intervals selected for assays at Setpoint Laboratories in Johannesburg Field duplicates, blanks and standards are inserted at a ratio of 1:10. Setpoint also has its own internal QA/QC control to ensure assay quality.
	ality of say data d ioratory ts	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Field duplicates, blanks and standards are inserted at a ratio of 1:10 on site. At the lab the split for analysis is milled to achieve a fineness of 90% less than 106 µm (or a fineness of 80 % passing 75 µm. Prep QC: At least one out of every 10 samples of every batch is screened at 75µm or 106µm, whichever is applicable, to check that 80% of the material passes. The % loss for samples screened should be <2% Analysis for Cu, Ag, by determination of aqua-regia acid digestion followed by ICP-AES finish: PROCEDURE: One gram of pulp material is digested using a combination of three acids (HNO3, HCIO4 and HCI) and made up to a volume of 100ml. The resulting solutions are analysed for metals by the technique of ICP-OES (Inductively

BOTSWANA COPPER/SILVER PROJECT UPDATE HIGH Cu ASSAYS AND SIGNIFICANT Pb/Zn INTERSECTIONS CONFIRM T3 DISCOVERY P a g e | 12

Criteria	JORC Code explanation	Commentary
		 Coupled Plasma – Optical Emission Spectrometry). REPORTING: A detection limit of <10ppm is reported. Values >10ppm are reported with no decimals and when the midpoint (5) between rounded off values is reached the number is rounded up. Below the midpoint, the number is rounded down. All reported results are down hole widths.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic. protocols. Discuss any adjustment to assay data. 	 15-20% QA/QC checks are inserted in the sample stream, as lab standards, blanks and duplicates.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The collar coordinates of the 6 drill holes were taken by hand held gps and are reflected in Table 1. No down hole surveys have been done
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	• Samples of RC chips for assaying were throughout taken at 1m intervals
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	• Drilling planned at right angles to known strike and at best practical angle to intersect the target mineralisation at approximately right angles
Sample security	• The measures taken to ensure sample security.	 Sample bags were tagged, logged and transported to Setpoint Laboratories in Johannesburg by Project Manager
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	• MOD's sampling procedure is done according to standard industry practice

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 PL190/2008 is a granted Prospecting Licence held by 100% by Discovery Mines (Pty) Ltd which is wholly owned by Tshukudu Metals Botswana (Pty) Ltd which is wholly owned by Metal Capital Limited which is owned 70% MOD Resources Ltd and 30% Metal Tiger Plc. In January 2016, the Minister of Minerals, Water and Energy extended the licence date to 31 December 2016. MOD expects to apply for a further renewal or an extension at least 3 months ahead of that date. MOD is already in discussion with the Ministry regarding this.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	• No previous exploration in the area of drilling apart from widely spaced soil sampling conducted by Discovery Mines.
Geology	• Deposit type, geological setting and style of mineralisation.	The visible copper mineralisation intersected in drill holes on PL190/2008 is interpreted to be a Proterozoic or early Palaeozoic age vein related sediment hosted occurrence similar to other known deposits and mines in the central Kalahari Copper Belt A photo image of chalcopyrite sulphide mineralization from drilling is included in this release at Figure 1.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 All information relating to the six RC drill holes is listed in Table 1 of the release No down hole surveys have been done There is no material change to this drill hole information

BOTSWANA COPPER/SILVER PROJECT UPDATE HIGH Cu ASSAYS AND SIGNIFICANT Pb/Zn INTERSECTIONS CONFIRM T3 DISCOVERY P a g e | 14

Criteria	JORC Code explanation	Commentary
Data aggregati methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	• Significant copper and silver intersections will be reported by MOD as received from the lab
Relations between mineralis widths an intercept lengths	 hip These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 True widths are not quoted Down hole widths are used throughout
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 The T3 Preliminary Interpreted Cross Section #1 showing significant intersections in drill holes MO-G-10R and MO-G-11R is included in this release at Figure 2 A table of drill hole collar locations is included at Table 1
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	• The accompanying document is considered to be a balanced report with a suitable cautionary note
Other substanti exploratio data	• Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All substantive data is reported
Further w	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	• Any further work on PL190/2008 will be dependent on the results from the next RC and DD holes