

ASX ANNOUNCEMENT

1st February, 2016

PILGANGOORA RESOURCE HITS 80.2MT AS 54% UPGRADE CEMENTS ITS STATUS AS A MAJOR NEW GLOBAL LITHIUM PROJECT

GLOBAL RESOURCE NOW CONTAINS OVER 1MT OF LITHIUM OXIDE AS INDICATED RESOURCE GROWS TO 469,000T, UNDERPINNING THE CURRENT FEASIBILITY STUDIES

HIGHLIGHTS:

- Pilbara's 100%-owned Pilgangoora Lithium-Tantalum Project in WA confirmed as one of the biggest new lithium ore (spodumene) deposits in the world with a further major upgrade in the JORC 2012 Mineral Resource, including:
 - A 54% increase in the total Indicated and Inferred Resource to 80.2Mt grading 1.26% Li₂O (spodumene) containing 1,008,000 tonnes of lithium oxide with 42.3Mt grading 0.02% Ta₂O₅ (Tantalum) containing 18.3 million pounds of Ta₂O₅;
 - Within the total Mineral Resource of 80.2Mt, and at a cut-off of 1% Li₂O, the Inferred and Indicated Lithium Resource amounts to <u>59.3Mt @ 1.44% Li₂O containing 855,000 tonnes of</u> *lithium oxide.*
- The latest upgrade incorporates the results of successful in-fill drilling completed from October to December 2015, the main objective of which was to upgrade the Indicated component of the resource to underpin the Pre-Feasibility Study, due in March 2016.
- In-fill RC and Diamond drilling has successfully converted a further 369,000 tonnes of contained Li₂O to the Indicated category, which now totals 469,000 tonnes of contained Li₂O.
- Pilbara has also increased its overall Exploration Target¹ for Pilgangoora to 100 110Mt @ 1.2-1.5% Li₂O and 175-225ppm Ta₂O₅. RC drilling is scheduled to resume in March 2016 with a focus on further extensions and improvement in the resource categories.
- "This resource upgrade cements Pilgangoora's status as a significant new global lithium project, second only to the world-class Greenbushes spodumene deposit. Its scale, quality and grade combined with its location, access to infrastructure and close proximity to key Asian markets has propelled it to the forefront of new lithium projects worldwide," Pilbara Executive Director Neil Biddle

Australian strategic metals company Pilbara Minerals Ltd (ASX: PLS) is pleased to announce a further significant increase in the Mineral Resource at its flagship 100%-owned **Pilgangoora Lithium-Tantalum Project** in WA's Pilbara region. The updated resource – which includes the results of highly successful infill drilling programs completed last quarter – will underpin the Pre-Feasibility Study (PFS) to be delivered

in March 2016 and contribute to the concurrent Definitive Feasibility Study works underway. It also paves the way for further resource growth with the Company publishing an updated Exploration Target.

The updated Pilgangoora Mineral Resource adds a **54 per cent increase in contained lithium oxide** and a **16 per cent increase in contained tantalite**, based on all drilling information (including historical) including an additional 94 holes drilled between mid-September and December 2015.

The overall Pilgangoora Mineral Resource now comprises **1,008,000 tonnes of contained lithium oxide** and **18.2 million pounds of contained tantalite.**

The next phase of resource extension and in-fill drilling at Pilgangoora will commence in March 2016. Extensional drilling will focus on the northern extension of the central zones, southern domains, Monster and the newly discovered western domain. Drilling in these zones is expected to result in further significant increases in the overall resource inventory.

The updated January 2016 resource model will be used as the basis for the Pre-Feasibility Study, with the significant conversion of Inferred material into the Indicated category expected to allow the definition of an Ore Reserve as part of the PFS and the associated financial model due for completion in March 2016. The upgraded resource will also provide the foundation for the Definitive Feasibility Study (DFS), which is due for completion by mid-2016. The DFS is being undertaken on the basis of developing a standalone operation at Pilgangoora with an annualised ore throughput rate of 2Mtpa, producing lithium concentrates targeting the glass and ceramics industry and the rapidly growing global lithium-ion battery market.

2012 JORC Resource Estimation

After several drilling campaigns from late 2014 and throughout 2015 Pilbara has clearly demonstrated that Pilgangoora is a **globally significant hard-rock lithium-tantalum deposit.**

The updated 2012 JORC compliant Mineral Resource for the Project incorporates all historical data, as well as all drilling data from Pilbara's 2014 and 2015 programs.

The estimation was carried out by independent resource consultancy, Trepanier Pty Ltd ("Trepanier"), resulting in the estimation of Inferred and Indicated Resources. The reporting of all domains (capturing material above 0.01% Ta₂O₅) results in an Indicated and Inferred Mineral Resource estimate (Table 1) totalling:

• 80.2 million tonnes @ 1.26% Li₂O containing 1,008,000 tonnes of Li₂O

Associated with the lithium resource, there is a corresponding tantalite resource of **42.3 million tonnes @ 0.020% Ta₂O₅** containing **18.2 million pounds of contained tantalite.**

Category		Tonnage (million tonnes)	Ta₂O₅ (ppm)	Li₂O (%)	Ta₂O₅ (tonnes)	Ta₂O₅ (Mlbs)	Li₂O (T)
Indicated	Ta ₂ O ₅	17.9	182		3,255	7.2	
	Li ₂ O	35.7		1.31			469,400
Inferred	Ta ₂ O ₅	24.3	205		4,995	11.0	
	Li ₂ O	44.5		1.21			538,600
TOTAL	Ta₂O₅	42.3	195		8,250	18.2	
	Li ₂ O	80.2		1.26			1,008,000

Table 1: Pilgangoora Project – Mineral Resource Estimate

The envelope was wire-framed using both geological logging information (in particular logging of zoning within the pegmatite) and assay data for Ta_2O_5 and Li_2O . Note that there were insufficient samples analysed to allow Li_2O mineralisation to be populated into one of the 35 domains.

Of the 35 domains, five are significantly lower grade in Li_2O and are excluded from the Li_2O resource and thirteen are significantly lower grade in Ta_2O_5 and are excluded from the Ta_2O_5 resource – hence the different tonnage reported above for the Li_2O and Ta_2O_5 resource.

If a **lower lithium cut-off of >1%** is used in reporting, this results in a reduction in tonnage but provides a significantly higher grade resource (see Figure 1: Grade vs. tonnage curves for the total lithium resource):

59.3 million tonnes @ 1.44% Li₂O containing 855,000 tonnes of lithium oxide.

Details of the data used for the estimation, site inspection information and the quality control checks completed on the data are documented in Appendix 1 and 2 (Tables 1 to 3).

Summary and Management Comment

Pilbara Minerals' Executive Director, Neil Biddle, said the Pilgangoora Project was now firmly established as a globally significant hard rock lithium-tantalum resource with the potential to underpin a world-class, long-life mine producing high quality lithium concentrates for global markets.

"This latest resource upgrade has delivered another very significant increment to the overall size of the Pilgangoora resource but, most importantly, it has delivered a substantial increase in the higher confidence Indicated component of the resource," he said.

"This was always the main objective of the drilling, as the Indicated Resources will provide the foundation for our PFS due next month and the Feasibility Study due later in the year. However, the resource is a long way from being closed off, and we have multiple opportunities to drill out extensions which could deliver further significant increases in the overall size of the deposit.

"This has enabled us to increase our overall Exploration Target, and drilling will resume in March to test some of these extensions, while also closing up the drill spacing in certain areas to upgrade part of the resource to Measured Status for inclusion in the DFS.

"Pilgangoora clearly has the potential to transform Pilbara into a significant player in the global lithium market over the next few years, and we are all very focused on achieving our core objective of demonstrating the economic potential of the Pilgangoora resource and bringing the project into production as quickly as we can," he added.

Updated 2016 Exploration Target

The next phase of drilling planned for the Pilgangoora Project includes **120 drill holes for approximately 12,500m** and is scheduled to commence March 2016. A large component of this drilling program has been designed to further upgrade resource classifications to Indicated and Measured status as part of the ongoing Feasibility Study.

Figure 1 – Grade vs. Tonnage curves for the total lithium resource.

Figure 2 – Snapshot of resource domains (see Figures 4 to 7 for cross-sections).

Drilling will be carried out on nominal 25m centres over the central parts of the Eastern, Western and Central zones. In addition, the program will target the north-west extensions of the thick pegmatites at the Central prospect (Figure 3), as well as extensions of the mapped pegmatites at the Southern Prospect (7,667,500mN) to the Monster Prospect (7,674,200mN) in the north.

The total strike length of the mapped pegmatites within the Pilgangoora Project is now over 6km.

Due to the current estimation of the Mineral Resource being in excess of 80 million tonnes based on the RC and Diamond drilling completed to date, Pilbara has updated its **Exploration Target¹** for the Pilgangoora Project to **100-110 million tonnes @ 1.2-1.5% Li₂O and 175-225ppm Ta₂O₅** (Table 2).

An Exploration Target is conceptual in nature and there has been insufficient exploration to estimate a Mineral Resource in compliance with the JORC Code and it is uncertain if further exploration will result in the estimation of a Mineral Resource as defined by the JORC Code.

Exploration Target ¹	Tonnes (Mt)	Grade Li₂O %	Grade Ta₂O₅ ppm
Northern Area (inc Monster)	35-40	1.2 - 1.5	200 - 250
Central & Southern Area	65-70	1.2 - 1.5	150 - 200
TOTAL	100-110	1.2 - 1.5	175 - 225

Table 2 – Pilgangoora Tantalum-Lithium Exploration Target¹ on E45/2232 and M45/333

Exploration Target¹: The potential quantities and grades are conceptual in nature and there has been insufficient exploration to date to define a Mineral Resource. It is not certain that further exploration will result in the determination of a Mineral Resource under the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves, the JORC Code" (JORC 2012). The Exploration Target is not being reported as part of any Mineral Resource or Ore Reserve.

Table 3 –	Comparison of	Producers and	Emerging Producers	of Lithium in Australia
-----------	---------------	----------------------	---------------------------	-------------------------

Company	Mea	sured	Indica	ited	Inferr	ed	Tot	al
-Deposit	Resour	Grade %	Resource	Grade	Resources	Grade	Resources	Grade %
	ces (Mt)	Li₂O	s (Mt)	% Li₂O	(Mt)	% Li₂O	(Mt)	Li₂O
Talison- Greenbushes(a)	0.6	3.20%	117.9	2.40%	2.1	2.00%	120.6	2.40%
Pilbara Minerals – Pilgangoora			34	1.31%	46.2	1.22%	80.2	1.26%
Altura – Pilgangoora(b)			19.80	1.21%	6.3	1.20	26.1	1.20%
Neometals Mt Marion (c)			10.05	1.45%	13.19	1.34%	23.24	1.39
General Mining – Mt Cattlin (d)	2.5	1.20	9.5	1.06	4.3	1.07	16.4	1.08

Sources

- (a) Talison Lithium Limited N143-101 Report 21 December 2012
- (b) Altura Mining ASX Release 14 September 2015
- (c) Neo Metals ASX Release 21 September 2015
- (d) General Mining Corporation ASX Release 4 August 2015

Figure 3 – Pilgangoora RC collar locations within licences E45/2232 and M45/333.

Figure 4 – Central Geology cross-section 7,670,150mN (Open to the North)

Figure 5 – Central Geology cross-section 7,669,900mN

Figure 6 – Western Pegmatite Geology cross-section 7,670,400mN

Figure 7– Eastern Pegmatite Geology cross-section 7,671,600mN

Fe₂O₃ within resource

In addition to Ta_2O_5 and Li_2O , Pilbara has also estimated the Fe_2O_3 for the resource as it is a potential deleterious element in the production of spodumene concentrates for the glass and ceramics industry.

In May 2015 Pilbara announced (see ASX Release 25 May 2015) that high-quality spodumene concentrate was successfully produced from 100kg bulk sample by German industrial minerals specialists ANZAPLAN, using simple flotation and magnetic separation. Flotation testing of the bulk sample resulted in very high recoveries of spodumene with two flotation tests producing concentrate grading 5.7% Li₂0 (lithium oxide) and 0.37% Fe₂O₃ (iron oxide). Magnetic separation after flotation **reduced the iron oxide content of the spodumene concentrate to 0.11% Fe₂O₃. This meets the specifications of typical glass-grade spodumene products, which require low iron oxide content, typically in the range of 0.06 – 0.17% Fe₂O₃. Therefore Fe₂O₃ is not considered to a deleterious element as it can be removed through a standard metallurgical process.**

During the process of drilling, sampling and assaying, Pilbara identified two key issues that were causing contamination and hence, artificial elevation of the Fe_2O_3 assays for the drill samples. Firstly, when the drill samples were pulverised in laboratory in steel containers, the highly abrasive nature of mineralised pegmatite again resulted in further iron contamination of the drill samples. Secondly, the highly abrasive nature of the Li₂O/Ta₂O₅ mineralised pegmatite on the RC drilling bits and rods has resulted in iron contamination of the drill samples are discussed in more detail below.

As such, Pilbara completed a statistical analysis into the both of the abovementioned issues which then allowed for factoring of the Fe_2O_3 assays to account for the contamination. Both the raw and factored Fe_2O_3 was estimated and reported in Table 4.

Category		Tonnage (million tonnes)	Ta₂O₅ (ppm)	Li2O (%)	Raw Fe ₂ O ₃ (%)	Factored Fe ₂ O ₃ (%)
Indicated	Ta ₂ O ₅	17.9	182		0.97	0.62
	Li ₂ O	35.6		1.31	1.01	0.63
Inferred	Ta ₂ O ₅	24.3	205		1.12	0.74
	Li ₂ O	44.4		1.22	1.13	0.73
TOTAL	Ta ₂ O ₅	42.2	195		1.06	0.69
	Li ₂ O	80.0		1.26	1.07	0.69

Table 4: Pilgangoora Project – Mineral Resource Estimate including Fe₂O₃ (%)

The iron contamination introduced when the drill samples were pulverised in the laboratory was investigated initially by pulverising six duplicate samples of crushed and homogenised core in both steel vs. tungsten carbide containers. This produced a convincing set of results with Li_2O and Ta_2O_5 repeating consistently, but with a consistent 0.15% increase in Fe_2O_3 in the samples pulverised in the steel container. To allow for a more substantial, statistically viable dataset, a further 50 samples were analysed using the same process. The additional results confirmed the initial test with a very high degree of confidence, with results shown in Figure 8 and Table 5. An initial factor of -0.15% has been applied to all the raw Fe_2O_3 assays in the database.

Table 5: Steel vs. tungsten carbide pulverising difference for Li (ppm), Ta₂O₅ (%) & Fe₂O₃ (%)

Difference	Li (%)	Ta₂O₅ (%)	Fe₂O₃ (%)
Average	0.00	0.00	0.15
	90% Conf	idence Average	0.15
Standard Deviation	0.05	0.01	0.04

The iron contamination introduced into the RC drill samples by the highly abrasive nature of the mineralised pegmatite on the RC drilling bits and rods was investigated by comparing Fe₂O₃ assays from 5 sets of twin diamond core and RC holes. To date, Pilbara has completed 8 diamond core holes at Pilgangoora. Three of the holes were excluded from this study as two do not have twin RC holes and the third intersected pegmatites that bifurcated between the holes and made it difficult to directly compare the Fe₂O₃ assays. The twin hole sets were spread over a strike length 1,100m and the separation distance between holes varied between 2m and 15m. Statistical analysis of the spatial co-located data for the Pilbara diamond core, Pilbara RC and historic RC drilling confirmed a consistent significant difference in the Fe₂O₃ assays between the Pilbara diamond core and Pilbara RC – and to a lesser extent between the Pilbara diamond core and the historic RC results. This is illustrated by the box and log probability plots in Figure 9. From this, an additional factor of -0.26% has been applied to all the raw Fe₂O₃ assays for the Pilbara RC holes and -0.1% for the historic RC holes. No additional factor was applied to the Pilbara diamond core Fe₂O₃ assays.

Figure 9 – Charts showing box plot and log probability plot comparing Pilbara diamond core vs. Pilbara RC vs. historic RC for Fe₂O₃ (%) assays

The two step Fe₂O₃ adjustment factors are summarised in Table 6.

Drillhole assay sub-set	Fe₂O₃ (%) Factor 1	Fe₂O₃ (%) Factor 2	Fe₂O₃ (%) Factor Total
Pilbara Diamond Core Samples	-0.15%	N/A	-0.15%
Pilbara RC Samples	-0.15%	-0.26%	-0.41%
Historic RC Samples	-0.15%	-0.10%	-0.25%

Table 6:	Fe ₂ O ₃ (%)	adjustment	factors used	at Pilgangoora
----------	------------------------------------	------------	--------------	----------------

Table 7 shows the main pegmatite Li_2O and Ta_2O_5 intersections reported from the diamond drillholes with their corresponding raw and factored Fe_2O_3 grades. Note that only the sample pulverisation correction factor of -0.15% Fe_2O_3 is applied to the diamond core assays. The Factored intersection grades in Table 7 highlight that with the ability to select the geological contacts more accurately using core that the Fe_2O_3 content of Pilgangoora pegmatite drilled by the diamond core holes typically ranges as a zone between 0.23% and 0.62% Fe_2O_3 . This range is lower that the estimated resource grade of 0.83% Fe_2O_3 which can be attributed to better geological contact identification and sampling selectivity with core rather than RC, plus less possibility for sample contamination during the drilling process. This illustrates the potential, with some selectivity, to further decrease the Fe_2O_3 grade in the run of mine ore.

Table 7: Fe₂O₃ (%) adjustment factors used at Pilgangoora

Hole ID	From (m)	To (m)	Interval (m)	Li ₂ O	Ta ₂ O ₅	Raw	Factored
PLS114M	33	42.68	9.68	1.85	263	0.51	0.36
PLS114M-A	30	45	15	1.84	297	0.46	0.31
	74	76	2	1.21	265	0.52	0.37
	120	132	12	1.70	189	0.73	0.58
	159	162	3	2.16	673	0.48	0.33
	165	178	13	1.74	200	0.51	0.36
PLS197M	75	76	1	1.37	110	0.62	0.47
	108	116	9	1.78	107	0.62	0.47
	167	170	3	1.93	37	0.63	0.48
	173	181	8	1.65	71	0.63	0.48
PLS269M	4	6	2	1.43	540	0.49	0.34
	58	71	13	1.51	332	0.47	0.32
	76	82	6	1.59	145	0.53	0.38
	102	105	3	1.68	270	0.60	0.45
PLS270M	20	21	1	1.92	280	0.38	0.23
	29	43	14	1.69	446	0.77	0.62
	47	52	5	2.71	388	0.49	0.34
	55	59	4	1.26	370	0.38	0.23
PLS272M	26	29	3	1.95	197	0.50	0.35
	33	46	13	1.65	252	0.43	0.28
	88	94	6	1.30	715	0.53	0.38
	103	105	2	2.01	345	0.57	0.42
PLS303M	61	87	26	1.67	182	0.59	0.44
PLS306M	58	78	20	1.46	124	0.61	0.46
PLS337M	65	99	34	1.56	119	0.60	0.45

Pilbara will continue to investigate and further improve the understanding of the Fe_2O_3 grades of the Pilgangoora pegmatites with additional diamond core drilling to twin RC holes in key parts of the resource, it is expected that run of mine ore will contain Fe_2O_3 grades of less than 0.45% Fe_2O_3 within the resource. It will also be an important consideration in the metallurgical testwork program as it develops; to date simple magnetic separation has removed most of the iron from floatation concentrates.

More Information:

What is Lithium?

Lithium (Li) is recovered from the mineral spodumene and lithium-rich brines. It is used in a range of products such as ceramics, glass, batteries and pharmaceuticals. Lithium use has expanded significantly in recent years due to increasing use in rechargeable batteries in portable electronic devices and in batteries and electric motors for hybrid and electric cars.

What is Tantalum?

The primary source of tantalum is from minerals such as tantalite, columbite, wodginite and microlite contained in pegmatite ore bodies. The largest deposits are located in Australia, Brazil and Africa. Tantalum's **major use is** in the production of electronic components, **especially for capacitors**, with additional use in components for chemical plants, nuclear power plants, airplanes and missiles. It is also used as a substitute for platinum.

The tantalum market is boutique in size with around 1,300 tonnes required each year. However the market is rapidly growing due to capacitor use in wireless and handheld devices. PLS's Tabba Tabba Project could supply approximately 7% of the annual market consumption over two years. There are two major buyers of tantalum raw product worldwide: HC Starck and Global Advanced Metals.

Contact:

Neil Biddle Director Ph 0418 915 752

--- ENDS ----

Competent Person's Statement

The information in this report that relates to Exploration Results and Exploration Targets is based on and fairly represents information and supporting documentation prepared by Mr John Young (Executive and Chief Geologist of Pilbara Minerals Limited). Mr Young is a shareholder of Pilbara Minerals. Mr Young is a member of the Australasian Institute of Mining and Metallurgy and has sufficient experience of relevance to the styles of mineralisation and types of deposits under consideration, and to the activities undertaken to qualify as Competent Persons as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Specifically, Mr Young consents to the inclusion in this report of the matters based on his information in the form and context in which they appear.

The information in this report that relates to Mineral Resources is based on and fairly represents information compiled by Mr Lauritz Barnes, (Consultant with Trepanier Pty Ltd) and Mr John Young (Executive and Chief Geologist of Pilbara Minerals Limited). Mr Young is a shareholder of Pilbara Minerals. Mr Barnes and Mr Young are members of the Australasian Institute of Mining and Metallurgy and have sufficient experience of relevance to the styles of mineralisation and types of deposits under consideration, and to the activities undertaken to qualify as Competent Persons as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Specifically, Mr Young is the Competent Person for the database, geological model and completed the site inspection. Mr Barnes is the Competent Person for the database and the resource estimation. Mr Barnes and Mr Young consent to the inclusion in this report of the matters based on their information in the form and context in which they appear.

SUMMARY OF RESOURCE ESTIMATE AND REPORTING CRITERIA

As per ASX Listing Rule 5.8 and the 2012 JORC reporting guidelines, a summary of the material information used to estimate the Mineral Resource is detailed below (for more detail please refer to Table 1, Sections 1 to 3 included below in Appendix 2).

Geology and geological interpretation

The Pilgangoora pegmatites are hosted in the East Strelley greenstone belt, which is a series of steeply dipping, mafic meta volcanic rocks and amphibolites. At Pilgangoora, the greenstones have been intruded by a swarm of north-trending, east-dipping pegmatites extending from Mount York in the south northwards for about 11km to McPhees Mining Centre. Many of the pegmatites are very large, reaching over 1000m in length and 200–300m in width. Despite their large size, mineralisation within these zoned pegmatites appears to be restricted to alteration zones, mainly along vein margins containing quartz, albite, muscovite, and spessartine garnet. These mineralised zones contain varying amounts of lepidolite, spodumene, tantalite, cassiterite, and minor microlite, tapiolite, and beryl.

The area of the Pilgangoora pegmatite field within E45/2232 and M45/333 comprises a series of extremely fractionated dykes and veins up to 50m thick within the immediate drilling area. These dykes and veins dip to the east at 20-60°, are parallel to sub-parallel to the main schistose fabric within the greenstones (Figures 2 to 7).

Drilling techniques and hole spacing

Talison Minerals Pty Ltd ("Talison") conducted a 54 drill hole RC program in 2008 totalling 3,198m and 29 drill holes for a total of 2,783m in 2010. Talison changed its name to Global Advanced Metals ("GAM") and completed 17 RC holes for 1,776m in 2012. Pilbara Minerals completed 41 RC holes for 3,812m in late 2014. Sections are generally spaced 25m to 50m (Grid North), while holes on section are spaced 5m to 50m apart (see Figures 1 to 4 above). In March 2015 Pilbara Minerals completed 23 RC holes for 2,193m and between May and mid-September a further 135 RC holes (14,064m) and 9 diamond core holes (1,082.7m). From mid-September and December 2015 Pilbara drilled a further 94 holes for 12,285m

Sampling and sub-sampling techniques

Sample information used in resource estimation was derived from both RC and diamond core drilling. The drill samples have been geologically logged and sampled for lab analysis. Eight of the nine diamond core holes twinned existing RC holes and when compared, strongly confirmed the RC results.

Sample analysis method

The Talison and GAM samples were assayed by GAM's Wodgina Site Laboratory for a 36 element suite using XRF on fused beads. Selected pulps from the 2008 and 2010 drilling plus all pegmatite pulps from the 2012 drilling were collected and sent to SGS Laboratories in Perth for analysis of their lithium content. Lithium analysis was conducted by Atomic Absorption Spectroscopy (AAS). The PLS drillhole samples were analysed by the Nagrom Laboratory in Perth by both fused bead XRF and ICP. No geophysical tools were used to determine any element concentrations used in the resource estimate.

Cut-off grades

Grade envelopes have been wireframed to an approximate 100ppm Ta₂O₅ cut-off which typically coincides with pegmatite boundaries and which allows for geological continuity of the mineralised zones.

Estimation Methodology

Grade estimation was by Ordinary Kriging ("OK") for Ta_2O_5 , Li_2O and Fe_2O_3 (both raw and factored) using GEOVIA SurpacTM software. Note that there were insufficient samples analysed to allow populating of Li_2O into 1 of the 35 domains. The estimate was resolved into 5m (E) x 25m (N) x 5m (RL) parent cells that had been sub-celled at the domain boundaries for accurate domain volume representation. Estimation parameters were based on the variogram models, data geometry and kriging estimation statistics. Top-cuts were decided by completing an outlier analysis using a combination of methods including grade histograms, log probability plots and other statistical tools. Based on this statistical analysis of the data population, top-cuts of between 2.0% and 3.8% for Li_2O , 110ppm to 1000ppm for Ta_2O_5 and 1.0% and 4.8% for Fe_2O_3 were applied. Some domains did not require top-cutting.

Classification criteria

The Mineral Resource has been classified on the basis of confidence in the geological model, continuity of mineralized zones, drilling density, confidence in the underlying database and the available bulk density information. The Pilgangoora Mineral Resource in part has been classified as Indicated with the remainder as Inferred according to JORC 2012.

Mining and metallurgical methods and parameters

Based on the orientations, thicknesses and depths to which the pegmatite veins have been modelled, plus their estimated grades for Ta_2O_5 and Li_2O , the potential mining method is considered to be open pit mining.

Historical mining operations and the presence of a tin-tantalum separation plant adjacent to a large tailings dump indicates that the assumption for potential successful processing of Pilgangoora ore is reasonable.

Nagrom Pty Ltd and Anzaplan have both completed scoping metallurgical testwork and have recovered both Ta_2O_5 and Li_2O of marketable qualities. (see ASX release "Pilbara Testwork Confirms Potential" released 25/05/2015, "Quarterly Activities and Appendix 5B, released 24/04/2015).

Appendix 1

Exploration Results – Downhole intercepts (to be read in conjunction with JORC Table 1)

Hole Early MGA Hole Depth Interval Torop Peth Interval Torop Peth FLC001 RC 88 767.298 19 -60 94 -8 Not within resource zone -			MGA										
PLC001 RC 6887 68847 7672998 191 -60 94 45 Not within resource zone PLC002 RC 1772900 200 -60 78 59 20 44 12 250 PLC004 RC 20537 7672699 191 -60 82 30 Not within resource zone PLC005 RC 69854 7672000 188 -60 96 60 22 44 5 365 PLC006 RC 69854 7672800 204 -60 98 50 Not within resource zone PLC007 RC 69854 7672800 200 -60 95 52 Not within resource zone PLC007 RC 69854 7672701 197 -60 274 55 20 44 4 334 PLC007 RC 6985 7672701 197 -60 96 22 0 7 342 PLC013 RC <th>HoleID</th> <th>Hole Type</th> <th>Eastin g</th> <th>MGA Northing</th> <th>RL</th> <th>Dip</th> <th>MGA Azimuth</th> <th>Hole Depth</th> <th>Domain</th> <th>Depth From</th> <th>Interval Length</th> <th>Ta2O5 ppm</th> <th>Li2O pct¹</th>	HoleID	Hole Type	Eastin g	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth	Domain	Depth From	Interval Length	Ta2O5 ppm	Li2O pct ¹
HLC002 RC 0.88.7 7672900 200 600 78 59 20 44 12 250 HLC004 RC 2 7672699 191 -60 82 30 Not within resource zone HLC005 RC 6983 7673000 188 -70 94 35 Not within resource zone HLC005A RC 6983 7673000 188 -60 96 60 22 44 5 365 PLC006A RC 6983 7672800 204 -60 98 50 Not within resource zone PLC007 RC 65 7672800 200 -60 95 52 Not within resource zone PLC007A RC 67 767202 197 -60 276 45 22 0 19 318 PLC007A RC 67 767202 197 -60 90 121 12 59 56 203	PLC001	RC	69845 8	7672998	191	-60	94	45	Not withir	n resource	e zone		
HLCO04 RC OBEL 7672699 191 -60 82 30 Not within resource zone HLCO05 RC 1 7673000 188 -70 94 35 Not within resource zone HLCO05A RC 0 7673000 188 -60 96 60 22 44 5 365 HLCO06A RC 0 7673000 188 -60 98 70 Not within resource zone PLCO07A RC 5855 7672800 109 -60 97 52 Not within resource zone PLCO07A RC 6854 7672702 197 -60 927 45 22 0 19 318 PLCO07A RC 6853 7671700 190 -60 90 121 12 59 56 203 PLC013A RC 68827 7671500 190 -60 90 85 110 15 7 202 28	PLC002	RC	09847 1 60851	7672900	200	-60	78	59	20	44	12	250	
PLC005 RC GBB34 0 (0) 7673000 188 -70 94 35 Not within resource zone PLC005A RC 0 7673000 188 -60 96 60 22 44 5 365 PLC006 RC 4 7672896 204 -60 98 70 Not within resource zone PLC006A RC 5 7672900 204 -60 95 52 Not within resource zone PLC007A RC 6 7672800 199 -60 276 45 22 0 19 318 PLC008A RC 7 7672701 197 -60 90 121 12 59 56 203 PLC018A RC 97 767160 190 60 90 121 12 59 56 203 PLC014A RC 6 7671600 193 60 90 85 11 15 7 206 <td>PLC004</td> <td>RC</td> <td>60852</td> <td>7672699</td> <td>191</td> <td>-60</td> <td>82</td> <td>30</td> <td>Not withir</td> <td>n resource</td> <td>e zone</td> <td></td> <td></td>	PLC004	RC	60852	7672699	191	-60	82	30	Not withir	n resource	e zone		
PLC005A RC 0 7673000 188 -60 96 60 22 44 5 365 PLC006 RC 4 7672896 204 -60 98 70 Not within resource zone PLC006A RC 5 7672900 204 -60 95 52 Not within resource zone PLC007 RC 1 7672800 200 -60 95 52 Not within resource zone PLC007 RC 6 7672800 199 -60 274 55 20 44 4 334 PLC008A RC 7 7672701 197 -60 94 30 22 0 7 342 PLC013 RC 6 7 7671600 195 -60 96 80 12 37 22 278 23 PLC014 RC 7 7671600 193 -60 90 85 10 49 9	PLC005	RC	09855 1 69854	7673000	188	-70	94	35	Not withir	n resource	e zone		
PLC006 RC Rd 7672896 204 -60 98 70 Not within resource zone PLC006A RC 5 7672900 204 -60 98 50 Not within resource zone PLC007 RC 1 7672800 200 -60 95 52 Not within resource zone PLC007A RC 68858 7672702 197 -60 274 55 20 44 4 334 PLC008 RC 8 7672701 197 -60 94 30 222 0 7 342 PLC013 RC 53 7671700 190 -60 90 121 12 59 56 203 PLC013 RC 69827 7671500 193 -60 90 85 11 15 7 206 PLC014 RC 7 7671500 193 -60 90 85 10 49 9 324	PLC005A	RC	0 69853	7673000	188	-60	96	60	22	44	5	365	
PLC006A RC S 7672900 204 -60 98 50 Not within resource zone PLC007 RC 1 7672800 200 -60 95 52 Not within resource zone PLC007 RC 6 772800 199 -60 274 55 20 44 4 334 PLC008 RC 8 7672702 197 -60 276 45 22 0 7 342 PLC008 RC 5 7671700 190 -60 90 121 12 59 56 203 PLC013 RC 5 7671700 190 -60 96 80 12 37 22 278 1.59 PLC014 RC 7 7671600 193 -60 90 85 10 49 9 324 PLC014 RC 7 7671400 193 -60 72 60 11	PLC006	RC	4 69854	7672896	204	-60	98	70	Not withir	n resource	e zone		
PLC007 RC Image: registration of the second	PLC006A	RC	5 69855	7672900	204	-60	98	50	Not within	n resource	e zone		
PLC007A RC 6 7672800 199 -60 274 55 20 44 4 334 PLC008 RC 8 7672702 197 -60 276 45 22 0 19 318 PLC008 RC 7 7672701 197 -60 94 30 22 0 7 342 PLC013 RC 7 767160 190 -60 90 121 12 59 56 203 PLC014 RC 7 7671600 195 -60 96 80 12 37 22 278 1.59 PLC014 RC 7 767160 193 -60 90 85 11 15 7 206 69827 767140 193 -60 72 60 12 0 2 459 PLC016 RC 7 7671400 193 -60 72 60	PLC007	RC	1 69854	7672800	200	-60	95	52	Not withir	n resource	e zone		
PLC008 RC 8 7672702 197 -60 276 45 22 0 19 318 PLC008A RC 7 7672701 197 -60 94 30 22 0 7 342 PLC013 RC 69839 7671700 190 -60 96 76 12 43 24 194 PLC013A RC 69827 7671600 195 -60 96 80 12 37 22 278 159 PLC014A RC 69827 7 7671500 193 -60 90 85 11 15 7 206 PLC015 RC 4 7671500 193 -60 90 85 10 49 9 324 PLC016 RC 7 7671400 193 -60 72 60 11 16 1 117 PLC016 RC 7 7671400	PLC007A	RC	6 69858	7672800	199	-60	274	55	20	44	4	334	
PLC008A RC 7 7672701 197 -60 94 30 22 0 7 342 PLC013 RC 5 7671700 190 -60 90 121 12 59 56 203 PLC013A RC 3 7671552 192 -60 96 76 12 43 24 194 1.59 PLC014 RC 69827 7671500 195 -60 96 80 12 37 22 278 2 PLC014 RC 67751500 193 -60 90 85 10 49 9 324 PLC015 RC 4 7671500 193 -60 72 60 11 16 1 117 PLC016 RC 7 7671400 193 -60 72 60 11 16 1 117 PLC016 RC 7 7671400 193 <td< td=""><td>PLC008</td><td>RC</td><td>8 69858</td><td>7672702</td><td>197</td><td>-60</td><td>276</td><td>45</td><td>22</td><td>0</td><td>19</td><td>318</td><td></td></td<>	PLC008	RC	8 69858	7672702	197	-60	276	45	22	0	19	318	
PLC013 RC 5 7671700 190 -60 90 121 12 59 56 203 PLC013A RC 3 7671652 192 -60 96 76 12 43 24 194 1.59 PLC014 RC 7 7671600 195 -60 96 80 12 37 22 278 22 PLC014 RC 3 7671544 195 -70 100 64 10 25 19 236 PLC015 RC 4 7671500 193 -60 90 85 10 49 9 324 PLC016 RC 7 7671400 193 -60 72 60 11 16 1 117 PLC016 RC 7 7671400 193 -60 72 60 10 40 3 134 PLC016 RC 7 7671342 199	PLC008A	RC	7 69831	7672701	197	-60	94	30	22	0	7	342	
PLC013A RC 3 7671652 192 -60 96 76 12 43 24 194 PLC014 RC 7 7671600 195 -60 96 80 12 37 22 278 278 2 PLC014A RC 3 7671544 195 -70 100 64 10 25 19 236 PLC015 RC 4 7671500 193 -60 90 85 10 49 9 324 PLC016 RC 7 7671400 193 -60 72 60 12 0 2 459 PLC016 RC 7 7671400 193 -60 72 60 11 16 1 117 PLC016 RC 7 7671400 193 -60 72 60 10 40 3 134 PLC016 RC 5 7671342 199 -60 227 80 13 7 4 202 20	PLC013	RC	5 69829	7671700	190	-60	90	121	12	59	56	203	
PLC014 RC 7 7671600 195 -60 96 80 12 37 22 278 2 PLC014A RC 3 7671544 195 -70 100 64 10 25 19 236 PLC015 RC 4 7671500 193 -60 90 85 11 15 7 206 PLC015 RC 4 7671500 193 -60 90 85 10 49 9 324 PLC016 RC 7 7671400 193 -60 72 60 11 16 1 117 PLC016 RC 7 7671400 193 -60 72 60 10 40 3 134 PLC016 RC 7 7671400 193 -60 227 80 13 7 4 202 PLC016A RC 5 7671342 199 -60 227 80 13 7 4 202 PLC016A RC	PLC013A	RC	3 69827	7671652	192	-60	96	76	12	43	24	194	1.59
PLC014A RC 3 7671544 195 -70 100 64 10 25 19 236 PLC015 RC 4 7671500 193 -60 90 85 11 15 7 206 PLC015 RC 4 7671500 193 -60 90 85 10 49 9 324 PLC016 RC 7 7671400 193 -60 72 60 12 0 2 459 PLC016 RC 7 7671400 193 -60 72 60 11 16 1 117 PLC016 RC 7 7671400 193 -60 72 60 10 40 3 134 PLC016 RC 7 7671342 199 -60 227 80 13 7 4 202 PLC016A RC 5 7671342 199 -60 227 80 9 48 14 395 PLC016A RC 5	PLC014	RC	7 69827	7671600	195	-60	96	80	12	37	22	278	2
PLC015 RC 4 7671500 193 -60 90 85 11 15 7 206 PLC015 RC 4 7671500 193 -60 90 85 10 49 9 324 PLC016 RC 7 7671400 193 -60 72 60 12 0 2 459 PLC016 RC 7 7671400 193 -60 72 60 11 16 1 117 PLC016 RC 7 7671400 193 -60 72 60 10 40 3 134 PLC016 RC 7 7671400 193 -60 72 60 10 40 3 134 PLC016 RC 5 7671342 199 -60 227 80 13 7 4 202 PLC016A RC 5 7671342 199 -60 227 80 8 62 8 326 PLC016A RC 4 <	PLC014A	RC	3 69825	7671544	195	-70	100	64	10	25	19	236	
PLC015 RC 4 7671500 193 -60 90 85 10 49 9 324 PLC016 RC 7 7671400 193 -60 72 60 12 0 2 459 PLC016 RC 7 7671400 193 -60 72 60 11 16 1 117 PLC016 RC 7 7671400 193 -60 72 60 10 40 3 134 PLC016 RC 7 7671400 193 -60 227 80 13 7 4 202 PLC016A RC 5 7671342 199 -60 227 80 12 11 17 215 PLC016A RC 5 7671342 199 -60 227 80 8 62 8 326 PLC016A RC 5 7671342 199 -60 227 80 8 62 8 326 PLC016A RC 4	PLC015	RC	4 69825	7671500	193	-60	90	85	11	15	7	206	
PLC016 RC 7 7671400 193 -60 72 60 12 0 2 459 PLC016 RC 7 7671400 193 -60 72 60 11 16 1 117 PLC016 RC 7 7671400 193 -60 72 60 10 40 3 134 PLC016 RC 7 7671400 193 -60 72 60 10 40 3 134 PLC016A RC 5 7671342 199 -60 227 80 12 11 17 215 PLC016A RC 5 7671342 199 -60 227 80 12 11 17 215 PLC016A RC 5 7671342 199 -60 227 80 8 62 8 326 PLC016A RC 5 7671342 199 -60 109 79 12 0 33 294 0.92 69825 PLC016	PLC015	RC	4 69824	7671500	193	-60	90	85	10	49	9	324	
PLC016 RC 7 7671400 193 -60 72 60 11 16 1 117 69824 PLC016 RC 7 7671400 193 -60 72 60 10 40 3 134 PLC016 RC 5 7671342 199 -60 227 80 13 7 4 202 PLC016A RC 5 7671342 199 -60 227 80 12 11 17 215 PLC016A RC 5 7671342 199 -60 227 80 9 48 14 395 PLC016A RC 5 7671342 199 -60 227 80 8 62 8 326 69827 7 69827 7671381 194 -60 109 79 12 0 33 294 0.92 PLC016B RC 4 7671381 194 -60 109 79 10 66 4 179 0.96	PLC016	RC	7 69824	7671400	193	-60	72	60	12	0	2	459	
PLC016 RC 7 7671400 193 -60 72 60 10 40 3 134 PLC016A RC 5 7671342 199 -60 227 80 13 7 4 202 PLC016A RC 5 7671342 199 -60 227 80 12 11 17 215 PLC016A RC 5 7671342 199 -60 227 80 9 48 14 395 PLC016A RC 5 7671342 199 -60 227 80 9 48 14 395 PLC016A RC 5 7671342 199 -60 227 80 8 62 8 326 PLC016A RC 4 7671381 194 -60 109 79 12 0 33 294 0.92 69825 9 41 77 0.96 69824 9 10 66 4 179 0.96 69823 PLC01	PLC016	RC	7 69824	7671400	193	-60	72	60	11	16	1	117	
PLC016A RC 5 7671342 199 -60 227 80 13 7 4 202 69827 PLC016A RC 5 7671342 199 -60 227 80 12 11 17 215 PLC016A RC 5 7671342 199 -60 227 80 9 48 14 395 PLC016A RC 5 7671342 199 -60 227 80 9 48 14 395 PLC016A RC 5 7671342 199 -60 227 80 8 62 8 326 PLC016A RC 5 7671381 194 -60 109 79 12 0 33 294 0.92 69825 7 671381 194 -60 109 79 10 66 4 179 0.96 69824 7 7671300 196 -70 88 50 12 0 4 174 69823 7	PLC016	RC	7 69827	7671400	193	-60	72	60	10	40	3	134	
PLC016A RC 5 7671342 199 -60 227 80 12 11 17 215 PLC016A RC 5 7671342 199 -60 227 80 9 48 14 395 PLC016A RC 5 7671342 199 -60 227 80 8 62 8 326 PLC016A RC 4 7671381 194 -60 109 79 12 0 33 294 0.92 69825 - - 69825 - - 69825 - 0 33 294 0.92 PLC016B RC 4 7671381 194 -60 109 79 10 66 4 179 0.96 69824 - - - - 88 50 12 0 4 174 69823 - - - 69824 - - 150 150 150 150 150 150 150 150 150 </td <td>PLC016A</td> <td>RC</td> <td>5 69827</td> <td>7671342</td> <td>199</td> <td>-60</td> <td>227</td> <td>80</td> <td>13</td> <td>7</td> <td>4</td> <td>202</td> <td></td>	PLC016A	RC	5 69827	7671342	199	-60	227	80	13	7	4	202	
PLC016A RC 5 7671342 199 -60 227 80 9 48 14 395 PLC016A RC 5 7671342 199 -60 227 80 8 62 8 326 PLC016A RC 5 7671381 194 -60 109 79 12 0 33 294 0.92 69825 69825 69825 69825 7671381 194 -60 109 79 10 66 4 179 0.96 69825 69825 7671300 196 -70 88 50 12 0 4 174 69824 7671300 196 -70 88 50 12 0 4 174 69823 7671305 196 -60 50 88 9 41 42 319 1.50 69824 7671300 197 -60 88 80 12 0 20 227 69823 7671200 196 -60 84 <td>PLC016A</td> <td>RC</td> <td>5 69827</td> <td>7671342</td> <td>199</td> <td>-60</td> <td>227</td> <td>80</td> <td>12</td> <td>11</td> <td>17</td> <td>215</td> <td></td>	PLC016A	RC	5 69827	7671342	199	-60	227	80	12	11	17	215	
PLC016A RC 5 7671342 199 -60 227 80 8 62 8 326 69825 69825 69825 69825 69825 0 109 79 12 0 33 294 0.92 69825 69825 69825 69825 109 79 10 66 4 179 0.96 69826 69824 7671381 194 -60 109 79 10 66 4 179 0.96 69824 69824 7671300 196 -70 88 50 12 0 4 174 69823 7671305 196 -60 50 88 9 41 42 319 1.50 69824 7671300 197 -60 88 80 12 0 20 227 69823 69823 7671200 196 -60 84 50 9 42 4 787 FLC0178 RC 8 7671200 196 -60 8	PLC016A	RC	5 69827	7671342	199	-60	227	80	9	48	14	395	
PLC016B RC 4 7671381 194 -60 109 79 12 0 33 294 0.92 69825 69825 69825 69825 109 79 10 66 4 179 0.96 69824 7671381 194 -60 109 79 10 66 4 179 0.96 69824 7671300 196 -70 88 50 12 0 4 174 PLC017 RC 0 7671305 196 -60 50 88 9 41 42 319 1.50 69823 69824 7671300 197 -60 88 80 12 0 20 227 PLC017B RC 6 7671300 197 -60 84 50 9 42 4 787 PLC018 RC 8 7671200 196 -60 84 50 9 42 4 787 69823	PLC016A	RC	5 69825	7671342	199	-60	227	80	8	62	8	326	
PLC016B RC 4 7671381 194 -60 109 79 10 66 4 179 0.96 69824 69824 69824 7671300 196 -70 88 50 12 0 4 174 PLC017 RC 9 7671305 196 -60 50 88 9 41 42 319 1.50 69824 7671300 197 -60 88 80 12 0 20 227 69823 69823 7671200 196 -60 84 50 9 42 4 787 PLC018 RC 8 7671200 196 -60 84 50 9 42 4 787 69823 9 42 4 787 69823 787 787	PLC016B	RC	4 69825	7671381	194	-60	109	79	12	0	33	294	0.92
PLC017 RC 0 7671300 196 -70 88 50 12 0 4 174 69823 69823 7671305 196 -60 50 88 9 41 42 319 1.50 PLC017A RC 6 7671300 197 -60 88 80 12 0 20 227 PLC017B RC 6 7671200 196 -60 84 50 9 42 4 787 PLC018 RC 8 7671200 196 -60 84 50 9 42 4 787 69823 - - - - - 9 42 4 787	PLC016B	RC	4 69824	7671381	194	-60	109	79	10	66	4	179	0.96
PLC01/A RC 9 76/1305 196 -60 50 88 9 41 42 319 1.50 69824 69824 69824 69824 69823 69823 69823 69823 69823 69823 69 41 42 319 1.50 PLC018 RC 8 7671200 196 -60 84 50 9 42 4 787 69823 </td <td>PLC017</td> <td>RC</td> <td>0 69823</td> <td>7671300</td> <td>196</td> <td>-70</td> <td>88</td> <td>50</td> <td>12</td> <td>0</td> <td>4</td> <td>174</td> <td>4 - 0</td>	PLC017	RC	0 69823	7671300	196	-70	88	50	12	0	4	174	4 - 0
PLC017B RC 6 7671200 197 -60 88 80 12 0 20 227 69823 PLC018 RC 8 7671200 196 -60 84 50 9 42 4 787 69823	PLC017A	RC	9 69824	/671305	196	-60	50	88	9	41	42	319	1.50
69823 69823	PLC017B	RC	6 69823	7671300	197	-60	88	80	12	0	20	227	
		RC	8 69823	7671200	196	-60	84	50	9	42	4	/8/	
PLCUIDA RC I /D/1109 190 -DU 140 DU 12 U 25 259 69823	PLC018A	RC	1 69823	7671169	196	-60	140	60	12	0	25	259	

Page 17

Luge 17												
HoleID	Hole Type	MGA Eastin g	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth	Domain	Depth From	Interval Length	Ta2O5 ppm	Li2O pct ¹
PI C019	BC	69823 6	7671095	211	-60	90	52	12	24	15	261	0.90
DI CO10A	PC	69819	7671002	206	60	266	64		2		174	0.00
PLCUI9A	RC	69819	7671093	200	-60	200	04	0	3	9	1/4	
PLC019A	RC	0 69819	7671093	206	-60	266	64	6	28	13	205	
PLC019A	RC	0 69791	7671093	206	-60	266	64	5 Not withi	55	5	216	
PLC021	RC	6 69792	7670899	194	-60	96	50		Tresource	20118		
PLC022	RC	7	7670801	198	-88	330	55	Not withii	n resource	e zone		
PLC023	RC	7 60700	7670670	203	-90	90	60	1	0	6	267	
PLC024	RC	6	7670600	210	-85	84	56	Not withii	n resource	e zone		
PLC024A	RC	69793 9	7670540	221	-60	0	30	1	0	21	191	
PLC025	RC	69792 2	7670500	219	-60	96	60	Not withii	n resource	e zone		
PLC025A	RC	69796 1	7670512	223	-80	20	34	1	0	27	174	1.30
PLC026	RC	69798 0	7670401	218	-60	96	124	1	46	78	117	
PLC026A	RC	69796 7	7670438	221	-60	80	60	Not withii	n resource	e zone		
PI C027	RC	69760 8	7670293	205	-60	174	38	Not withii	n resource	e zone		
DI CO28		69760 1	7670255	205	60	1/4	50	Not withii	n resource	e zone		
PLC028	RC	69760	7670250	210	-60	99	50	Not withii	n resource	e zone		
PLC028A	RC	4 69760	7670236	217	-90	90	50	Not withii	n resource	o zone		
PLC029	RC	9 69761	7670200	212	-60	90	50			20110		
PLC029A	RC	5 69766	7670228	217	-90	90	10	36 Not withi	2	5	176	
PLC030	RC	4 69769	7670103	194	-60	38	50	NOL WILIII	Tresource	20112		
PLC030A	RC	5 69775	7670039	195	-90	90	20	36	0	14	99	0.38
PLC030B	RC	0 69775	7670032	191	-60	8	46	36	0	41	107	
PLC030C	RC	0	7670031	191	-88	50	25	36	0	20	100	
PLC031	RC	6 6	7670003	188	-80	30	60	Not withii	n resource	e zone		
PLC031A	RC	69777 7	7670037	190	-60	310	60	36	0	45	133	1.08
PLC032	RC	69802	7670370	211	-60	260	70	1	31	30	135	
PLC033	RC	69801 6	7670403	214	-60	268	80	1	19	9	214	
PLC034	RC	69800 1	7670448	223	-60	274	80	1	1	13	135	
PLC035	RC	69795 1	7670433	222	-60	280	60					
PLC036	RC	69817 9	7671223	192	-60	281	80	7	1	6	193	0.82
PLC036	RC	69817 9	7671223	192	-60	281	80	6	24	13	211	1.71
PLC036	RC	- 69817 ۹	7671223	192	-60	281	80	5	60		201	0.22
PI (037	RC	69814 3	7671215	106	-60	110	63	Not within	n resource	e zone	201	0.22
		69817	7671000	190	-00	110	00	2	0	10	170	
	RC	5 69817	7071008	203	-60	204	80	3	0	18	1/8	
PLC038	ĸĊ	5 69817	/6/1068	203	-60	264	80	5	37	4	270	
PLC039	RC	9	7671145	203	-70	280	77	7	0	8	161	

ASX Announcement 1 Februa	ary 2016 cont.
---------------------------	----------------

Page 18

HoleID	Hole	MGA Eastin g	MGA Northing	RL	Din	MGA Azimuth	Hole	Domain	Depth	Interval Length	Ta2O5	Li2O
HOICID	Type	69817	Northing			Azimuth	Deptil	Domain	110111	Length	ppin	per
PLC039	RC	9 69817	7671145	203	-70	280	77	6	24	13	278	
PLC039	RC	9	7671145	203	-70	280	77	5	58	3	120	
PLC040	RC	69819 5	7671204	195	-59.7	265.1	87	7	15	3	143	
PLC040	RC	69819 5	7671204	195	-59.7	265.1	87	6	36	14	303	
PI C040	RC	69819 5	7671204	195	-59 7	265.1	87	5	67	6	228	
1 2040		69822	7071204	155	-55.7	205.1	07	5	-	0	220	
PLC041	RC	0 69822	/6/11/3	196	-60.5	277.1	93	9	5	3	293	
PLC041	RC	0 69822	7671173	196	-60.5	277.1	93	7	37	2	126	
PLC041	RC	0	7671173	196	-60.5	277.1	93	6	60	14	200	
PLC041	RC	09822	7671173	196	-60.5	277.1	93	5	82	4	198	
PLC042	RC	69821 4	7671249	193	-59.7	270.4	99	8	7	3	540	0.48 2
PI C042	RC	69821 4	7671249	193	-59 7	270.4	99	7	43	5	159	
DI 6042	ne	69821	7671213	100	55.7	270.1		,	.5	10	200	
PLC042	RC	4 69821	7671249	193	-59.7	270.4	99	6	62	10	261	
PLC042	RC	4 69837	7671249	193	-59.7	270.4	99	5	88	5	232	
PLC043	RC	3 69837	7671681	193	-59.7	274.5	117	14	35	4	226	
PLC043	RC	3	7671681	193	-59.7	274.5	117	13	43	4	250	
PLC043	RC	69837 3	7671681	193	-59.7	274.5	117	12	66	8	202	
PLC043	RC	69837 3	7671681	193	-59.7	274.5	117	10	91	2	152	
	DC	69837	7671691	102	E0 7	274 E	117	0	102	0	205	
FLC043	NC .	69834	/0/1081	193	-59.7	274.5	117	0	102	0	505	
PLC044	RC	8 69834	7671625	194	-59.7	264.4	105	13	29	10	193	
PLC044	RC	8 69834	7671625	194	-59.7	264.4	105	12	53	10	265	
PLC044	RC	8	7671625	194	-59.7	264.4	105	10	77	2	172	0.40
PLC044	RC	8	7671625	194	-59.7	264.4	105	8	89	11	476	0.40 2
PLC045	RC	69828 0	7671253	204	-60	233.4	81	12	21	19	248	1.34
PLC045	RC	69828 0	7671253	204	-60	233.4	81	9	56	6	296	1.96
DI CO4E	DC	69828	7671262	204	60	222.4	01	-	60	2	276	0.08
FLC045	NC	69828	7071255	204	-00	255.4	01	0	09	J	270	0.08
PLC046	RC	1 69828	7671285	206	-60.1	276.6	87	12	20	17	222	1.67
PLC046	RC	1 69828	7671285	206	-60.1	276.6	87	9	54	7	320	1.76
PLC046	RC	1	7671285	206	-60.1	276.6	87	8	70	5	230	0.79
PLC047	RC	09828	7671341	202	-59.7	268.6	93	13	12	10	222	1.73
PLC047	RC	69828 8	7671341	202	-59.7	268.6	93	12	22	10	201	0.99
PLC047	RC	69828 8	7671341	202	-59.7	268.6	93	9	59	6	558	1.20
DI CO47	DC	69828	7671044	202	E0 7	269.0	02	0	60	0	270	1 74
FLCU4/	ĸu	8 69830	/0/1341	202	-39.7	208.0	93	ð	69	9	370	1.74
PLC048	RC	3 69830	7671429	205	-59.1	238.7	81	13	27	12	342	1.41
PLC048	RC	3 69830	7671429	205	-59.1	238.7	81	12	41	8	174	2.12
PLC048	RC	3	7671429	205	-59.1	238.7	81	11	49	6	386	1.48

Tuge 10												
HoleID	Hole Type	MGA Eastin g	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth	Domain	Depth From	Interval Length	Ta2O5 ppm	Li2O pct ¹
PLC048	RC	69830 3	7671429	205	-59.1	238.7	81	10	67	1	95	0.91
PLC049	RC	69827 0	7671452	198	-70.7	263.3	87	13	0	8	187	1.09
PLC049	RC	69827 0	7671452	198	-70.7	263.3	87	12	18	7	288	0.82
PLC049	RC	69827 0	7671452	198	-70.7	263.3	87	11	29	1	81	0.38
PLC049	RC	69827 0	7671452	198	-70.7	263.3	87	10	39	3	147	1.38
PLC049	RC	69827 0	7671452	198	-70.7	263.3	87	8	62	9	387	1.11
PL C050	RC	69825 6	7671143	204	-60.9	266.2	123	12	16	16	416	1 91
PI C050	RC	69825 6	7671143	204	-60.9	266.2	123	9	34	10	449	0.19
PL C050	RC	69825 6	7671143	204	-60.9	266.2	123	8	51	2	157	0.17
PLC050	PC	69825 6	7671143	204	-00.5	200.2	123	7	76	2	225	1.05
PLC050		69825	7071145	204	-00.9	200.2	125	6	70	4	225	1.05
PLC050	RC	69827	7671143	204	-60.9	200.2	123	0	92	14	226	1.24
PLC051	RC	3 69827	7671058	219	-59.5	273.4	135	12	40	1	269	2.22
PLC051	RC	3 69827	7671058	219	-59.5	273.4	135	8	70	7	156	1.17
PLC051	RC	3 69827	7671058	219	-59.5	273.4	135	3	81	16	206	1.77
PLC051	RC	3 69823	7671058	219	-59.5	273.4	135	4	102	3	266	1.83
PLC052	RC	7 69823	7671036	213	-59.5	265.9	93	12	14	1	207	1.50
PLC052	RC	7 69823	7671036	213	-59.5	265.9	93	3	41	35	267	1.73
PLC052	RC	7 69825	7671036	213	-59.5	265.9	93	4	81	2	232	1.57 2.06
PLC053	RC	6 69825	7670982	208	-59.5	284.4	125	3	41	28	231	2
PLC053	RC	6 69821	7670982	208	-59.5	284.4	125	4	100	2	170	
PLC054	RC	9 69821	7670940	199	-59.3	273.1	75	3	5	26	205	
PLC054	RC	9 69833	7670940	199	-59.3	273.1	75	4	68	1	124	
PLC055	RC	9 69833	7671202	216	-59.1	262	141	12	64	21	291	
PLC055	RC	9 69833	7671202	216	-59.1	262	141	9	103	2	391	0.98
PLC055	RC	9	7671202	216	-59.1	262	141	8	124	2	503	2
PLC056	RC	2	7671200	200	-59.1	269.4	129	12	0	12	225	
PLC056	RC	09825 2	7671200	200	-59.1	269.4	129	9	22	8	266	
PLC056	RC	09825 2	7671200	200	-59.1	269.4	129	8	44	4	249	
PLC056	RC	69825 2	7671200	200	-59.1	269.4	129	7	75	4	174	
PLC056	RC	69825 2	7671200	200	-59.1	269.4	129	6	103	16	214	
PLC058	RC	69858 5	7672997	192	-59.8	267.2	51	Not withi	n resource	e zone		
PLC057	RC	69849 6	7672954	190	-59.7	273.1	69	20	16	26	201	1.40
PLC059	RC	69859 9	7672949	199	-59.7	271.9	93	22	68	3	404	1.83
PLC059	RC	69859 9	7672949	199	-59.7	271.9	93	21	79	3	448	1.19
PLC060	RC	69858 0	7672906	203	-59.5	264.5	57	22	19	2	366	1.03

		MGA										
HoleID	Hole Type	Eastin g	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth	Domain	Depth From	Interval Length	Ta2O5 ppm	Li2O pct ¹
PLC060	RC	69858 0	7672906	203	-59.5	264.5	57	21	33	5	515	1.49
PLC061	RC	69850 4	7672891	203	-60.1	269.7	45	20	19	7	180	1.33
PLC062	RC	69852 4	7672930	198	-60.5	265.1	93	20	76	14	236	1.02
PLC063	RC	69864 8	7672795	207	-58.9	272.9	81	22	54	5	497	1.75
PLC064	RC	69829	7672743	202	-59.9	277.3	57	22	32	5	277	1.27
PLC065	RC	69829 7	7671343	202	-88.8	48.5	141	13	25	12	197	
PLC065	RC	69829	7671343	202	-88.8	48.5	141	12	37	17	269	0.68
PLC065	RC	69829	7671343	202	-88.8	48.5	141	9	98	5	638	2
PLC065	RC	69828	7671343	202	-88.8	48.5	141	8	124	1	178	0.64
PLC066	RC	2 69828	7671285	203	-89.3	107.7	117	12	24	26	295	2
PLC066	RC	2 69828	7671285	203	-89.3	107.7	117	9	92	3	410	0.94
PLC066	RC	2 69825	7671285	203	-89.3	107.7	117	8	106	3	176	
PLC067	RC	7 69825	7671144	205	-76.7	275.9	147	12	15	14	252	
PLC067	RC	7 69825	7671144	205	-76.7	275.9	147	9	38	7	240	
PLC067	RC	7 69825	7671144	205	-76.7	275.9	147	8	65	2	380	
PLC067	RC	7 69825	7671144	205	-76.7	275.9	147	7	95	9	218	
PLC067	RC	7 69823	7671144	205	-76.7	275.9	147	6	125	17	211	
PLC068	RC	2 69823	7671303	195	-59.8	269.5	81	9	5	4	169	1.30
PLC068	RC	2 69823	7671303	195	-59.8	269.5	81	8	21	4	480	1.02
PLC068	RC	2 69838	7671303	195	-59.8	269.5	81	7	65	2	210	1.18
PLC069	RC	7 69838	7671748	191	-60	270	89	14	29	7	201	0.43
PLC069	RC	7 69838	7671748	191	-60	270	89	13	45	3	221	0.50
PLC069	RC	7 69842	7671748	191	-60	270	89	12	70	12	311	1.10
PLC070	RC	2 69842	7671748	193	-60	270	149	15	13	3	452	0.64
PLC070	RC	2 69842	7671748	193	-60	270	149	14	63	5	198	1.00
PLC070	RC	2 69842	7671748	193	-60	270	149	13	68	5	152	0.88
PLC070	RC	2 69842	7671748	193	-60	270	149	12	98	12	241	0.83
PLC070	RC	2 69840	7671748	193	-60	270	149	8	137	6	290	0.59
PLC071	RC	0 69840	7671796	191	-60	270	95	14	30	6	399	0.67
PLC071	RC	0 69840	7671796	191	-60	270	95	13	44	6	298	0.17
PLC071	RC	0 69844	7671796	191	-60	270	95	12	77	11	211	0.78
PLC072	RC	6 69844	7671797	192	-60	270	161	16	7	2	232	
PLC072	RC	6 69844	7671797	192	-60	270	161	15	31	2	554	0.05
PLC072	RC	6 69844	7671797	192	-60	270	161	14	68	3	266	
PI C072	RC	6	7671797	192	-60	270	161	13	76	6	254	0.64

Page 21

HoleID	Hole Type	MGA Eastin g	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth	Domain	Depth From	Interval Length	Ta2O5 ppm	Li2O pct ¹
DI CO72		69844	7671707	102		270	161	12	109	14	225	
PLC072	RC	69844	/0/1/9/	192	-00	270	101	12	108	14	225	0.08
PLC072	RC	6 69842	7671797	192	-60	270	161	8	141	6	234	0.59
PLC073	RC	9 69842	7671845	191	-60	270	119	15	15	2	602	0.07
PLC073	RC	9	7671845	191	-60	270	119	14	49	2	288	1.04
PLC073	RC	69842 9	7671845	191	-60	270	119	13	60	3	227	0.68
PLC073	RC	69842 9	7671845	191	-60	270	119	12	86	13	206	0.64
PLC074	RC	69846 7	7671847	189	-60	270	163	16	11	2	493	0.40
PLC074	RC	69846 7	7671847	189	-60	270	163	15	45	2	564	0.81
PLC074	RC	69846 7	7671847	189	-60	270	163	14	73	2	375	0.77
PL C074	RC	69846 7	7671847	180	-60	270	163	13	80	- 7	222	0.78
DL 0074	ne ne	69846	7071047	105	-00	270	105	13	111	,	200	0.78
PLC074	RC	7 69846	/6/184/	189	-60	270	163	12	111	8	326	0.47
PLC074	RC	7 69844	7671847	189	-60	270	163	8	151	3	329	0.61
PLC075	RC	0 69844	7671899	187	-60	270	155	16	2	2	344	
PLC075	RC	0 69844	7671899	187	-60	270	155	15	17	1	1205	
PLC075	RC	0 69844	7671899	187	-60	270	155	14	49	2	208	0.04
PLC075	RC	0	7671899	187	-60	270	155	13	55	4	279	0.12
PLC075	RC	00044	7671899	187	-60	270	155	12	84	13	183	0.78
PLC075	RC	09844	7671899	187	-60	270	155	8	122	2	436	0.33
PLC076	RC	69840 7	7671714	194	-60	270	161	15	0	1	206	
PLC076	RC	69840 7	7671714	194	-60	270	161	14	56	5	239	0.94
PLC076	RC	69840 7	7671714	194	-60	270	161	13	61	5	170	0.92
PLC076	RC	69840 7	7671714	194	-60	270	161	12	93	12	226	0.80
PLC076	RC	69840 7	7671714	194	-60	270	161	8	121	7	299	0.61
PLS001	RC	69852 2	7673000	188	-59.5	256.2	70	Not withi	n resource	e zone		
PLS001A	RC	69853 2	7673000	188	-61.1	85.9	56	Not withi	n resource	e zone		
PLS002	RC	69861 2	7672998	195	-60.7	264.9	80	Not withi	n resource	e zone		
PI \$003	RC	69854 7	7672959	193	-60.2	270.1	70	Not withi	n resource	e zone		
PI S004	RC	י 69848 3	7672956	191	-59 3	270.2	55	20	1	16	111	1 በጓ
	DC	69853	7672004	204	<u>_</u> در ه	270.0	02	20	- 75	د د	107	1 1 /
FL3003		69859	7072894	204	-00.8	200.0	00	20 Not:+L:	/5	0	19/	1.14
PLSUUD	KC	3 69857	/0/2908	203	-87.9	223.8	110	NUL WITHI	n resource	- 20118	a	
PLS006A	RC	7 69857	7672906	203	-61.1	282	70	22	18	2	360	1.06
PLS006A	RC	7 69851	7672906	203	-61.1	282	70	21	32	3	527	0.89
PLS007	RC	1 69850	7672845	209	-59.7	271.3	70	20	5	11	361	1.17
PLS011	RC	3 69857	7672806	204	-60.9	275	51	Not withi	n resource	e zone		
PLS013	RC	7	7672753	197	-59.5	266.1	50	Not withi	n resource	e zone		

ASX Announcement 1 February 2016 cont.	
Page 22	

	HoleI
	PLS01
	PLS02
\bigcirc	PLS02
	PLS02
(15)	PLS02
	PLS02
$(\mathcal{O}\mathcal{O})$	PLS02
	PLS02
	PLS02
	PLS02
ant	PLS02
	PLS02
	PLS02

	HoleID	Hole Type	MGA Eastin g	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth	Domain	Depth From	Interval Length	Ta2O5 ppm	Li2O pct ¹
	PLS014	RC	69852 1	7672751	195	-60.6	261.4	50	Not withir	n resource	zone		
	PLS015	RC	69855 2	7672697	192	-59.4	274.6	70	Not withir	n resource	zone		
	PLS016	RC	69862 0	7672705	198	-60.6	269.7	70	22	45	7	433	1.23
	PLS017	RC	09845 0 69849	7672500	186	-59	262	66	13	48	3	340	0.52
	PLS018	RC	9 69854	7672499	187	-60.9	262	100	Not withir	n resource	zone		
	PLS019	RC	9 69859	7672497	191	-59.5	260	100	16	38	7	407	1.83
	PLS020	RC	9 69840	7672501	192	-60	265	102	16	90	6	413	1.82
\bigcirc	PLS021	RC	3 69845	7672300	188	-60	265	96	Not withir	n resource	zone		
	PLS022	RC	3 69849	7672298	189	-59.4	264.4	85	13	41	2	510	0.09
(D)	PLS023	RC	8 69855	7672301	188	-59.3	260.7	102	13	79	14	212	0.94
\mathcal{C}	PLS024	RC	0 69835	7672305	192	-59.2	254.3	63	16	42	2	285	0.48
	PLS025	RC	0 69839	7672103	189	-59.7	264.7	102	Not within	n resource	zone _		
	PLS026	RC	9 69845	7672102	190	-59.1	261.7	100	13	11	7	413	0.73
	PLS027	RC	0 69845	7672102	192	-58.6	264.2	96	14	28	1	130	0.10
	PL3027	RC	69850 0	7672102	192	-58.6	204.2	90 102	13	45	19	195	0.42
(ΩD)	PI \$028	RC	69850 0	7672103	198	-58.6	208.3	102	10	76	3	268	0.42
	PLS028	RC	69850 0	7672103	198	-58.6	268.3	102	13	95	4	195	1.22
	PLS029	RC	69830 0	7671897	185	59.56	271.18	60	8	5	2	305	0.17
(\bigcirc)	PLS030	RC	69835 1	7671901	186	- 60.14	276.75	91	12	14	5	470	0.16
	PLS030	RC	69835 1	7671901	186	- 60.14	276.75	91	8	49	1	220	0.34
	PLS031	RC	69839 8	7671898	185	- 60.57	268.45	120	14	16	4	402	0.90
	PLS031	RC	69839 8	7671898	185	- 60.57	268.45	120	13	31	4	265	1.64
(D)	PLS031	RC	69839 8	7671898	185	- 60.57	268.45	120	12	60	6	202	1.29
$\overline{\bigcirc}$	PLS031	RC	69839 8	7671898	185	- 60.57	268.45	120	8	91	2	285	1.67
	PLS032	RC	69838 3	7671845	190	60.55	267.79	103	14	17	5	264	1.48
(PLS032	RC	69838	7671845	190	60.55	267.79	103	13	30	5	198	0.90
	PLS032	RC	69838	7671845	190	60.55 -	267.79	103	12	61	5	302	1.33
\bigcirc	PLS032	RC	3 69836	7671845	190	60.55	267.79	103	8	91	1	300	1.58
	PLS033	RC	1 69836	7671800	189	-60.4	269.6	110	14	8	5	240	1.86
	PLS033	RC	1 69836	7671800	189	-60.4	269.6	110	13	20	4	202	0.95
	PLS033	RC	1 69836	7671800	189	-60.4	269.6	110	12	52	6	190	1.40
	PLS033	RC	1 69834	7671800	189	-60.4	269.6	110	8	80	2	160	0.54
	PLS034	RC	4 69834	7671749	189	-59.9	284.7	110	14	7	5	208	1.37
	PLS034	RC	4	7671749	189	-59.9	284.7	110	13	16	4	200	0.99

Page 23

HoleID	Hole Type	MGA Eastin g	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth	Domain	Depth From	Interval Length	Ta2O5 ppm	Li2O pct ¹
PLS034	RC	69834 4	7671749	189	-59.9	284.7	110	12	44	6	185	0.75
	DC	69834	7671740	100	55.5	207.7	110		++ •	1	105	0.17
PL3U34	ĸu	4 69833	/0/1/49	193	-59.9	284.7	110	8	/3	1	2/0	0.17
PLS035	RC	6 69833	7671656	193	-60.5	270.2	106	14	8	1	100	1.40
PLS035	RC	6 69833	7671656	193	-60.5	270.2	106	13	12	9	192	1.57
PLS035	RC	6 69833	7671656	193	-60.5	270.2	106	12	46	9	158	1.58
PLS035	RC	6 69833	7671656	193	-60.5	270.2	106	10	71	1	180	0.16
PLS035	RC	6	7671656	193	-60.5	270.2	106	8	99	4	210	0.91
PLS036	RC	69832 5	7671599	197	-60.1	270	94	13	20	3	227	0.80
PLS036	RC	69832 5	7671599	197	-60.1	270	94	12	46	9	201	1.19
PLS036	RC	69832 5	7671599	197	-60.1	270	94	10	64	3	170	0.29
PLS036	RC	69832 5	7671599	197	-60.1	270	94	8	83	5	408	1.48
PI \$037	RC	69824 8	7671597	199	-59.2	266 5	43	10	0	2	350	1 20
PI \$027	PC	69824	7671507	100	50.2	266.5	13	-0	25	-	272	0.62
PL0000		69834	7071537	199	-59.2	200.5	43	0	55	4	272	0.03
PLS038	RC	7 69834	/6/1542	202	-60.1	259.4	100	13	43	9	204	1.72
PLS038	RC	7 69834	7671542	202	-60.1	259.4	100	12	64	8	218	1.27
PLS038	RC	7 69829	7671542	202	-60.1	259.4	100	10	82	12	301	1.55
PLS039	RC	3 69829	7671549	198	-60.4	268.2	61	13	0	4	405	0.83
PLS039	RC	3	7671549	198	-60.4	268.2	61	12	12	2	185	1.51
PLS039	RC	3	7671549	198	-60.4	268.2	61	10	26	7	229	0.98
PLS040	RC	8	7671498	203	-58.2	262.4	100	13	16	5	174	0.95
PLS040	RC	69829 8	7671498	203	-58.2	262.4	100	12	36	6	187	1.85
PLS040	RC	69829 8	7671498	203	-58.2	262.4	100	11	42	4	188	0.62
PLS040	RC	69829 8	7671498	203	-58.2	262.4	100	10	56	3	77	0.82
PLS040	RC	69829 8	7671498	203	-58.2	262.4	100	8	83	11	431	1.19
PI \$041	RC	69824 6	7671498	193	-60 5	270.3	68	10	14	1	120	1 08
DI 5041	PC	69824	7671409	102	60 F	270.2	60	0	24	-	205	0.15
PL3041	RC DO	69823	7071498	195	-00.5	270.5	00	0	54	2	295	0.15
PLS042	RC	3 69823	/671447	193	-60	270	48	11	1	1	160	0.14
PLS042	RC	3 69823	7671447	193	-60	270	48	10	6	1	160	0.07
PLS042	RC	3 69833	7671447	193	-60	270	48	8	19	2	255	1.04
PLS043	RC	5 69833	7671447	212	-60	270	126	13	47	9	174	1.39
PLS043	RC	5	7671447	212	-60	270	126	12	60	12	263	1.91
PLS043	RC	5	7671447	212	-60	270	126	11	74	4	362	2.11
PLS043	RC	69833 5	7671447	212	-60	270	126	10	91	2	230	2.10
PLS043	RC	69833 5	7671447	212	-60	270	126	8	119	2	220	1.52
PLS044	RC	69829 1	7671380	198	-60	268	90	13	13	7	217	1.13

ASX Announcement 1	February	2016	cont
--------------------	----------	------	------

		MGA							Death		T-205	1:20
HoleID	Hole Type	g	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth	Domain	Depth From	Interval Length	ppm	Li2O pct ¹
PLS044	RC	69829 1	7671380	198	-60	268	90	12	22	17	218	1.32
PLS044	RC	69829 1	7671380	198	-60	268	90	10	45	3	163	1.00
PLS044	RC	69829 1	7671380	198	-60	268	90	9	61	3	357	1.78
PLS044	RC	69829 1	7671380	198	-60	268	90	8	69	3	427	1.16
PI \$045	RC	69817 8	7671248	191	-59.9	268.6	60	7	7	2	125	2 77
	PC	69817	7671240	101	-55.5	200.0	60	,	, 25	10	214	1.72
PL3043	NC .	69831	7071240	191	-59.9	208.0	100	0	25	10	214	1.25
PLS046A	RC	0 69831	/6/1250	215	-60	267	108	12	39	18	181	1.82
PLS046A	RC	0 69831	7671250	215	-60	267	108	9	85	6	275	1.39
PLS046A	RC	0 69832	7671250	215	-60	267	108	8	96	3	247	1.20
PLS047	RC	3 69832	7671089	215	-59.8	275	112	12	67	7	266	1.58
PLS047	RC	3 69832	7671089	215	-59.8	275	112	9	81	1	200	0.60
PLS047	RC	3 69822	7671089	215	-59.8	275	112	8	105	1	170	1.09
PLS048	RC	9	7671087	212	-60	274	110	12	13	1	190	1.68
PLS048	RC	9	7671087	212	-60	274	110	9	17	1	310	0.25
PLS048	RC	09822 9	7671087	212	-60	274	110	8	33	8	181	2.09
PLS048	RC	69822	7671087	212	-60	274	110	6	76	16	311	1.25
PLS049	RC	69817 4	7671030	202	-89.9	342.6	60	3	0	22	190	1.54
PLS049	RC	69817 4	7671030	202	-89.9	342.6	60	4	36	6	380	1.62
PLS050	RC	69821 1	7670992	204	-60	270	80	3	16	26	187	1.85
PLS051	RC	69826 8	7670941	199	-60	260	72	3	47	20	214	1.94
PLS052	RC	69822 3	7670896	188	-60	270	50	3	0	13	209	1.45
PLS053	RC	69827 8	7670901	191	-60	270	96	3	64	14	172	1.33
PI \$054	RC	69822 1	7670800	197	-60	270	100	3	q	3	207	0.84
PL \$054	PC	69822 1	7670800	107	60	270	100	3	24	1	40	0.20
		69827	7670300	204	-00	270	100	4	10	1	260	1.04
PL3055	RC	8 69827	7670799	204	-00	270	102	2	10	2	200	1.04
PLS055	RC	8 69827	7670799	204	-60	270	102	3	55	13	209	1.19
PLS055	RC	8 69825	7670799	204	-60	270	102	4	86	8	135	0.96
PLS056	RC	1 69825	7670700	195	-60	263	96	3	0	2	90	0.04
PLS056	RC	1 69830	7670700	195	-60	263	96	4	39	2	170	1.09
PLS057	RC	4 69830	7670699	198	-60	265	96	2	19	2	185	1.02
PLS057	RC	4	7670699	198	-60	265	96	3	39	7	173	0.98
PLS057	RC	4 60824	7670699	198	-60	265	96	4	85	2	155	0.20
PLS058	RC	09054 7	7670701	202	-58.5	265	100	2	34	1	350	1.35
PLS058	RC	9834 7	7670701	202	-58.5	265	100	3	54	4	250	1.42
PLS059	RC	69830 8	7670625	199	-63.7	270	97	2	0	7	236	1.15

Page 25

HoleID	Hole Type	MGA Eastin g	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth	Domain	Depth From	Interval Length	Ta2O5 ppm	Li2O pct ¹
PLS059	RC	69830 8	7670625	199	-63.7	270	97	3	49	1	80	0.06
PLS059	RC	69830 8	7670625	199	-63.7	270	97	4	93	2	100	0.56
PLS060	RC	69834 8	7670622	199	-60.7	266	100	2	17	9	201	1.41
PI \$060	RC	69834 8	7670622	199	-60.7	266	100	3	82	7	110	1.21
PI \$061	RC	69838 5	7670626	201	-60	260	100	2	46	, 5	218	1.21
PI \$062	PC	69830	7670547	201	-00	200	100	2	40	2	210	0.72
PL5002	RC DC	69830	7070547	202	-00	204	100	5	42	2	205	0.72
PLS062	RC	8 69834	7670547	202	-60	264	100	4	91	2	65	0.63
PLS063	RC	8 69834	7670550	204	-60	262	100	2	11	4	215	0.82
PLS063	RC	8 69839	7670550	204	-60	262	100	3	67	8	139	1.95
PLS064	RC	6 69795	7670551	209	-60	260	100	2	37	3	343	0.99
PLS065	RC	2 69796	7670998	190	-59.9	272.7	100	1	7	4	235	1.16
PLS066	RC	9 69795	7670895	203	-59.5	262.5	100	1	11	8	265	1.01
PLS067	RC	1 69799	7670846	200	-62.4	263.9	73	1	21	6	263	1.09
PLS068	RC	4 69797	7670848	199	-62.3	265.3	100	1	29	5	306	0.65
PLS069	RC	4 69797	7670746	202	-59.4	269.4	100	1	9	12	202	1.24
PLS070	RC	3 69795	7670674	211	-60.7	267.7	100	1	17	16	164	0.74
PLS071	RC	9 69800	7670597	224	-59.1	265.3	100	1	19	21	210	0.31
PLS072	RC	0	7670545	225	-58.9	271.7	79	1	25	29	189	1.41
PLS073	RC	1	7670498	225	-59.9	260.7	103	1	59	23	132	1.82
PLS073A	RC	09800	7670496	229	-59.4	267.2	80	1	22	20	192	1.39
PLS074	RC	6 6	7670452	225	-59.5	258.2	73	1	56	12	145	1.09
PLS075	RC	09805	7670400	216	-61.5	259.8	100	1	58	28	109	1.45
PLS076	RC	69805 9	7670358	210	-61.8	260.5	120	1	55	27	86	1.01
PLS076	RC	69805 9	7670358	210	-61.8	260.5	120	31	106	2	120	1.04
PLS077	RC	69780 4	7669901	184	-58.2	264.9	100	36	0	15	127	0.44
PLS077	RC	69780 4	7669901	184	-58.2	264.9	100	38	67	2	55	0.55
PLS078	RC	69784 7	7669901	185	-57.5	268.8	100	36	0	37	113	1.55
PLS078	RC	69784 7	7669901	185	-57.5	268.8	100	38	93	3	67	0.87
PLS079	RC	69790 0	7669898	185	-59.5	265.4	100	35	9	7	183	1.63
PLS079	RC	69790 0	7669898	185	-59.5	265.4	100	36	26	25	88	1.51
PLS080	RC	69794 8	7669897	185	-60	272.9	100	34	1	12	82	1.17
PLS080	RC	69794 8	7669897	185	-60	272.9	100	35	29	2	300	1.37
PLS080	RC	69794 8	7669897	185	-60	272.9	100	36	35	28	111	1.21
PLS081	RC	69780 1	7669797	185	58.36	269.83	100	38	44			1.72
PLS082	RC	- 69784 4	7669797	184	61.41	265.53	100	36	0	د ۷	48	1.07

Page 26

	,c _ 0												
н	oleID	Hole Type	MGA Eastin g	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth	Domain	Depth From	Interval Length	Ta2O5 ppm	Li2O pct ¹
PI	_\$082	RC	69784 4	7669797	184	61.41	265.53	100	38	53	6	32	0.70
PI	_S083	RC	69789 6	7669798	185	- 59.44	266.4	100	36	8	20	66	0.95
PI	_S083	RC	69789 6	7669798	185	- 59.44	266.4	100	38	67	2	45	0.75
Р	_S084	RC	69794 4	7669797	185	- 60.64	267.25	100	35	11	5	100	1.14
PI	_S084	RC	69794 4	7669797	185	- 60.64	267.25	100	36	16	25	48	1.63
PI	_S084	RC	69794 4	7669797	185	- 60.64	267.25	100	38	68	1	60	1.06
PI	_S085	RC	69799 6	7669794	185	-60.2	266.45	100	34	0	12	141	1.02
PI	_S085	RC	69799 6	7669794	185	-60.2	266.45	100	35	27	2	35	1.09
P	_S085	RC	69799 6	7669794	185	-60.2	266.45	100	36	57	10	99	0.96
PI	_S086	RC	69804 7	7669796	185	- 59.69	274.74	103	34	9	25	87	1.19
PI	_S086	RC	69804 7	7669796	185	- 59.69	274.74	103	36	74	19	68	0.86
PI	_S087	RC	69810 1	7669794	185	- 59.78	271.54	100	34	41	18	70	1.33
P	_S088	RC	09790 0	7669598	187	59.98	264.6	100	45	4	4	60	1.36
P	_S089	RC	69800 2	7669598	187	59.13	264.97	100	45	11	5	66	0.66
PI	_S090	RC	69805 69805	7669596	189	-60.2	262.67	100	42	7	13	47	1.20
P	_S090	RC	69810	7669596	189	-60.2	262.67	100	45	62	3	83	0.89
PI	_S091	RC	69810	7669598	187	61.06 -	264.12	100	42	38	8	55	1.19
PI	_S091	RC	6 69814	7669598	187	61.06	264.12	100	45	77	10	66	1.19
PI	_S092	RC	3 69820	7669607	185	59.81	269.45	116	45	97	14	55	1.26
PI	_\$093	RC	0 69824	7669599	187	-59.1	265.48	100	40	18	4	52	1.16
PI	_S093A	RC	9 69824	7669595	188	59.89 -	271.15	127	40	50	4	65	0.58
PI	_S093A	RC	9 69749	7669595	188	59.89	271.15	127	42	111	10	75	1.29
PI	_S094	RC	8 69755	7669495	183	-59.2 -	264.1	100	Not withir	n resource	zone		
PI	_\$095	RC	2 69759	7669495	183	60.02	263.09	100	Not withir	n resource	zone		
PI	_\$096	RC	9 69764	7669495	183	60.49 -	263.6	100	Not withir	n resource	zone		
PI	_\$097	RC	7 69774	7669497	184	59.99 -	261.35	100	Not withir	n resource	zone		
PI	_S097A	RC	0 69785	7669500	184	59.36 -	257.25	100	Not withir	n resource	e zone		
PI	_S098	RC	9 69790	7669396	200	61.45	271.53	100	Not withir	n resource	2 zone		
PI	_S099	RC	5 69795	7669398	203	-61	270.17	100	45	4	9	52	1.40
PI	_\$100	RC	2 69795	7669400	211	59.77	261.56	100	42	7	3	57	1.02
PI	-5100	RC	2 69799	7669400	211	59.77	261.56	100	45	33	8	42	1.65
	_5101 \$101	RC	8 69799	7660401	212	00.59 -	267.57	100	42	/	8	41	1.33
	S102	RC	× 69804 م	7669400	212	60.59 -	207.57	100	45	55	8 7	50	1.22
PI DI	S102	RC	69804 ג	7669400	200	- 60 35	203.74	100	42	72	13	50	1 85

Page 27

- 0 -		MGA											
HoleID	Hole Type	Eastin g	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth	Domain	Depth From	Interval Length	Ta2O5 ppm	Li2O pct ¹	
PLS103	RC	69811 2	7669401	196	- 59.37	267.47	102	40	0	13	61	2.00	
PLS103	RC	69811	7669401	196	- 59.37	267.47	102	42	72	3	63	0.56	
PLS104	RC	69818 5	7669297	195	- 59.93	268.23	100	40	69	10	6	1.27	
PLS105	RC	69787 3	7669197	225	- 60.71	266.67	103	45	32	9	68	1.06	
PLS106	RC	69790 2	7669197	221	- 60.14	266.86	100	42	15	1	80	0.80	
PLS106	RC	69790 2	7669197	221	- 60.14	266.86	100	45	43	9	69	1.55	
PLS107	RC	69794 7	7669198	207	60.39	273.27	89	42	24	1	140	0.46	
PLS107	RC	69794 7	7669198	207	60.39	273.27	89	45	53	13	69	1.68	
PLS108	RC	69799 4	7669194	205	- 59.51	275.83	100	42	20	5	30	0.74	
PLS108	RC	69799 4	7669194	205	- 59.51	275.83	100	45	78	11	61	1.45	
PLS109	RC	09804 7	7669193	198	- 59.33	265	100	42	48	3	12	0.51	
PLS110	RC	69809 5	7669206	204	60.57	267.98	100	40	30	8	50	0.72	
PLS110	RC	69809 5	7669206	204	60.57	267.98	100	42	84	3	27	1.01	
PLS110A	RC	69783	7669208	205	49.65	91.58	100	Not withi	n resource	e zone			
PLS111	RC	69789	7669000	211	60.57	269.22	103	45	42	16	72	1.34	
PLS112	RC	9 69822	7668994	205	60.45	274.72	103	45	66	13	68	1.38	
PLS113	RC	69822 3	7671152	197	-60	262	99	7	27	7	170	1.85	
PLS113	RC	3 69829	7671152	197	-60	262	99	6	59	20	173	1.69	
PLS114	RC	69830	7671154	209	-69.8	269	102	Not inclue	led in reso	ource (twin	hole)		
PLS114M-A	DDH	0 69830	7671156	210	-69.9	273.6	183.5	12	30	16	292	1.78	
PLS114M-A	DDH	0 69830	7671156	210	-69.9	273.6	183.5	9	74	2	265	1.21	
PLS114M-A	DDH	0 69830	7671156	210	-69.9	273.6	183.5	8	94	1	210	1.26	
PLS114M-A	DDH	0 69830	7671156	210	-69.9	273.6	183.5	7	121	11	191	1.76	
PLS114M-A	DDH	0 69856	7671156	210	-69.9	273.6	183.5	6	159	19	252	1.57	
PLS115	RC	6 69864	7672956	192	-59.9	266.3	100	22	7	2	425	0.98	
PLS116	RC	6 69831	7672755	206	-59.3	270.2	70	22	59	6	513	1.16	
PLS117	RC	0 69831	7671417	205	-90	0	90	13	29	17	395	2.12	
PLS117	RC	0 69826	7671417	205	-90	0	90	12	46	9	236	1.13	
PLS118	RC	5 69826	7671344	198	-60	266	84	12	3	11	217	0.59	
PLS118	RC	5 69826	7671344	198	-60	266	84	9	32	6	488	2.55	
PLS118	RC	5 69829	7671344	198	-60	266	84	8	50	10	260	0.82	
PLS119	RC	4 69829	7671298	207	-90	0	120	12	25	26	200	1.95	
PLS119	RC	4 69829	7671298	207	-90	0	120	9	91	4	325	1.85	
PLS119	RC	4 69740	7671298	207	-90	0	120	8	104	2	275	2.27	
PLS120	RC	2	7669493	181	-60	266	100	Not withi	n resource	e zone			

ASX Announcement 1 February 2016	5 cont
Page 28	

PLS181

RC

-60

HoleID	Hole Type	MGA Eastin g	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth	Domain	Depth From	Interval Length	Ta2O5 ppm	Li2O pct ¹
PLS121	RC	69744 5	7669494	182	-59.7	259.8	103	Not withir	n resource	zone		
PLS122	RC	69834 2	7671846	189	-60	270	80	12	15	6	170	0.39
PLS122	RC	69834 2 69832	7671846	189	-60	270	80	8	56	1	230	1.24
PLS123	RC	69832 7	7671799	187	-62.3	262.8	91	12	25	4	245	1.74
PLS124	RC	1 69832	7671756	187	-61.2	272	80	12	24	6	208	1.05
PLS124	RC	1 69829	7671756	187	-61.2	272	80	8	51	1	180	0.11
PLS125	RC	8 69829	7671650	192	-59.8	266	73	12	21	7	184	0.91
PLS125	RC	8 69829	7671650	192	-59.8	266	73	10	42	1	170	0.05
PLS125	RC	8 69830	7671650	192	-59.8	266	73	8	67	4	302	0.99
PLS126	RC	1 69830	7671490	203	-87.2	289.4	100	13	26	10	217	1.84
PLS126	RC	1 69830	7671490	203	-87.2	289.4	100	12	48	8	181	1.60
PLS126	RC	1 69833	7671490	203	-87.2	289.4	100	10	61	12	277	1.69
PLS127	RC	1 69833	7671597	197	-88.7	331.3	110	13	33	10	228	1.62
PLS127	RC	1 69833	7671597	197	-88.7	331.3	110	12	70	10	222	1.38
PLS127	RC	1 69831	7671597	197	-88.7	331.3	110	10	86	16	271	1.88
PLS134	RC	0 69835	7667397	221	-60.9	268.7	100	Not within	resource	zone		
PLS135	RC	7 69839	7667399	214	-60	267.4	100	Not within	resource	zone		
PLS136	RC	5 69799	7667396	214	-58.7	273.8	100		n resource	20118	77	1 21
PLS141	RC	۱ 69805	7007550	212	-60	270	100	50	8	21		1.21
PL3142	RC	5 69806 5	7007540	212	-00	270	90	50	30	27	66	1.00
PL3142A	RC	69801 8	7667649	213	-58.3	268.9	100	50	0	39	61	0.96
PI \$146	RC	69805 2	7667646	205	-50.5	266.5	96	50	18	32	76	0.96
PI \$149	RC	69804 2	7667800	210	-60	200.5	96	50	0	16	61	1 27
PLS150	RC	69807 6	7667806	202	-60.4	261.5	87	Not withir	n resource	zone	01	1.27
PLS174	RC	69790 7	7669696	183	-60	270	100	Not withir	n resource	zone		
PLS175	RC	69794 9	7669697	183	-60	270	100	Not withir	n resource	zone		
PLS176	RC	69800 2	7669698	184	-60	270	100	Not withir	n resource	zone		
PLS177	RC	69804 6	7669700	185	-60	270	100	Not withir	n resource	zone		
PLS178	RC	69809 7	7669702	185	- 60.44	278.8	109	Not withir	n resource	zone		
PLS179	RC	69815 0	7669693	185	- 60.48	270	100	Not within	n resource	zone		
PLS180	RC	69821 4	7669699	185	۔ 59.78	262.7	100	Not withir	n resource	zone		
PLS180A	RC	69825 4	7669698	185	-60.8	265	103	Not withir	n resource	zone		
PLS181	RC	69814 8 69814	7669797	186	-60	270	150	1	20	6	95	0.97

80 0.82

Page 29

	50 23												
ŀ	HoleID	Hole Type	MGA Eastin g	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth	Domain	Depth From	Interval Length	Ta2O5 ppm	Li2O pct ¹
F	PLS182	RC	69819 5	7669798	187	-60	270	138	1	38	17	138	0.85
F	PLS182	RC	69819 5	7669798	187	-60	270	138	34	81	6	58	0.85
F	PLS183	RC	69824 7	7669800	188	-61.6	280.3	120	26	0	5	86	0.49
F	PLS183	RC	69824 7	7669800	188	-61.6	280.3	120	1	91	11	80	1.16
) F	PLS184	RC	69828 2	7669790	188	-61.5	264.4	186	26	16	2	70	0.60
F	PLS184	RC	69828 2	7669790	188	-61.5	264.4	186	1	111	15	86	0.76
F	215185	RC	69779 7	7669851	185	-59.9	266.5	100	38		9	51	0.68
	25186	RC	69784 5	7669848	185	-60.4	274.6	102	36	0	18	84	1 41
	015186	RC	69784 5	7669848	185	-60.4	274.6	102	38	68	10	70	0.96
	015197	PC	69790 0	7660840	196	-00.4	274.0	102	25	0	5	206	1 42
	01 \$ 1 9 7	RC RC	69790 0	7660940	196	-50.2	274.5	120	35	0	25	124	1.42
	20107		69790	7009649	100	-50.2	274.9	120	20	0	25	124	1.50
	25187	RC	69794 7	7009849	180	-50.2	274.9	120	30	00	2	105	1.21
	25188	RC	69794	7009848	180	-60	270	123	30	10	5	1/8	1.55
ŀ	JS188	RC	7 69799	7669848	186	-60	270	123	36	30	23	100	1.18
ł	PLS189	RC	9 69799	7669848	188	-59	273.4	120	34	14	17	94	1.31
F	PLS189	RC	9 69799	7669848	188	-59	273.4	120	35	48	4	105	1.30
F	PLS189	RC	9 69804	7669848	188	-59	273.4	120	36	67	17	68	1.51
F	PLS190	RC	9 69804	7669847	188	-60.1	267.2	126	34	24	20	110	1.62
F	PLS190	RC	9 69804	7669847	188	-60.1	267.2	126	35	56	4	68	2.07
F	PLS190	RC	9 69810	7669847	188	-60.1	267.2	126	36	92	16	66	0.91
F	PLS191	RC	1 69810	7669848	187	-59.2	263.7	138	1	0	5	96	0.79
F	PLS191	RC	1 69810	7669848	187	-59.2	263.7	138	34	27	35	89	1.26
F	PLS191	RC	1 69815	7669848	187	-59.2	263.7	138	36	116	15	87	1.27
F	PLS191A	RC	7 69815	7669848	191	-57.2	267.3	96	1	24	13	109	1.27
F	PLS191A	RC	7 69824	7669848	191	-57.2	267.3	96	34	63	13	130	0.54
F	PLS192	RC	9 69824	7669850	197	-60	264.7	198	26	2	3	103	0.58
F	PLS192	RC	9 69824	7669850	197	-60	264.7	198	1	111	7	90	1.02
F	PLS192	RC	9 69828	7669850	197	-60	264.7	198	36	180	14	86	1.72
F	PLS193	RC	3 69828	7669844	192	-60	270	162	26	15	4	80	1.66
F	PLS193	RC	3 69800	7669844	192	-60	270	162	1	127	22	85	1.09
F	PLS194	RC	02000	7669900	191	-59.1	267	98	34	26	17	91	1.68
F	PLS194	RC	60800 0	7669900	191	-59.1	267	98	35	58	3	70	1.41
F	PLS194	RC	03000	7669900	191	-59.1	267	98	36	68	28	112	1.85
F	PLS195	RC	09804 9	7669899	192	-58.6	268.1	130	34	39	19	86	1.88
F	PLS195	RC	90804 9	7669899	192	-58.6	268.1	130	35	71	1	70	1.58

	Hole	MGA Eastin	MGA			MGA	Hole		Depth	Interval	Ta2O5	Li2O
HoleID	Туре	g	Northing	RL	Dip	Azimuth	Depth	Domain	From	Length	ppm	pct ¹
PLS195	RC	69804 9 69810	7669899	192	-58.6	268.1	130	36	97	25	85	1.06
PLS196	RC	5	7669901	190	-60.3	269.9	162	1	0	10	108	0.85
PLS196	RC	5 5 5	7669901	190	-60.3	269.9	162	34	61	14	77	1.58
PLS196	RC	69810 5	7669901	190	-60.3	269.9	162	35	88	6	148	1.52
PLS196	RC	5 69815	7669901	190	-60.3	269.9	162	36	130	23	95	1.56
PLS197M	DDH	3 69815	7669897	195	-59	265.6	186.5	1	37	10	162	1.75
PLS197M	DDH	3 69815	7669897	195	-59	265.6	186.5	33	57	4	52	1.56
PLS197M	DDH	3 69815	7669897	195	-59	265.6	186.5	34	107	10	110	1.72
PLS197M	DDH	3 69815	7669897	195	-59	265.6	186.5	35	118	1	160	1.59
PLS197M	DDH	3 69828	7669897	195	-59	265.6	186.5	36	166	15	69	1.42
PLS199	RC	3 69828	7669900	201	-60.2	269	180	26	7	5	138	1.71
PLS199	RC	3 69775	7669900	201	-60.2	269	180	1	136	25	80	1.42
PLS200	RC	4 69779	7669952	187	-60	270	100	Not withii	n resource	e zone		
PLS201	RC	8 69785	7669947	189	-60	270	48	36	0	24	90	1.77
PLS202	RC	2 69789	7669947	193	-60	270	78	36	9	46	96	1.66
PLS203	RC	3 69789	7669948	195	-60	270	90	34	11	4	200	1.59
PLS203	RC	3 69794	7669948	195	-60	270	90	36	26	48	126	1.66
PLS204	RC	8 69794	7669949	192	-60	270	108	34	25	7	143	1.58
PLS204	RC	8 69801	7669949	192	-60	270	108	36	48	29	156	1.49
PLS205	RC	2 69801	7669945	191	-60	270	130	34	39	21	81	1.78
PLS205	RC	2 69804	7669945	191	-60	270	130	36	88	28	105	1.66
PLS206	RC	8 69804	7669949	194	-60	270	150	33	22	1	100	0.08
PLS206	RC	8 69804	7669949	194	-60	270	150	34	52	23	82	1.45
PLS206	RC	8 69809	7669949	194	-60	270	150	36	110	26	107	1.44
PLS207	RC	9 69809	7669942	194	-60	270	168	1	3	14	118	0.81
PLS207	RC	9 69809	7669942	194	-60	270	168	34	73	23	90	1.82
PLS207	RC	9 69814	7669942	194	-60	270	168	36	137	25	102	0.73
PLS208	RC	7 69814	7669949	199	-60.4	262.8	150	1	39	14	94	1.66
PLS208	RC	7 69814	7669949	199	-60.4	262.8	150	33	68	12	76	1.79
PLS208	RC	7 69829	7669949	199	-60.4	262.8	150	34	129	12	178	1.53
PLS210	RC	4 69829	7669951	214	-62	269	186	26	8	8	76	1.79
PLS210	RC	4 69774	7669951	214	-62	269	186	1	155	28	81	1.75
PLS211	RC	9 69779	7670000	189	-60.4	272.6	48	36	0	5	66	0.49
PLS212	RC	9 69784	7670000	190	-58.8	271.1	87	36	0	37	111	1.55
PI \$213	RC	8	7669998	199	-59 3	268	96	36	32	37	126	1 27

Page 31			-									
	Hole	MGA Eastin	MGA			MGA	Hole		Depth	Interval	Ta2O5	Li2O
HoleID	Туре	g	Northing	RL	Dip	Azimuth	Depth	Domain	From	Length	ppm	pct1
PLS214	RC	69789 7	7669984	199	-60.1	267.7	100	33	0	3	63	0.41
PLS214	RC	69789 7 69789	7669984	199	-60.1	267.7	100	34	24	2	160	1.39
PLS214	RC	69794	7669984	199	-60.1	267.7	100	36	42	43	122	1.54
PLS215	RC	8 69794	7669996	200	-59.3	274.7	120	33	0	10	75	1.29
PLS215	RC	8 69794	7669996	200	-59.3	274.7	120	34	38	8	171	2.27
PLS215	RC	8 69794	7669996	200	-59.3	274.7	120	36	57	53	118	1.67
PLS215	RC	8 69799	7669996	200	-59.3	274.7	120	98	88	4	75	0.24
PLS216	RC	2 69799	7669994	191	-60	272	130	33	1	9	99	1.49
PLS216	RC	2 69799	7669994	191	-60	272	130	34	43	21	78	1.73
PLS216	RC	2 69803	7669994	191	-60	272	130	36	90	30	99	1.60
PLS216A	RC	1 69803	7669998	194	-72.3	270.5	144	33	19	4	108	1.72
PLS216A	RC	1 69803	7669998	194	-72.3	270.5	144	34	61	25	100	1.60
PLS216A	RC	1 69810	7669998	194	-72.3	270.5	144	36	120	21	111	1.65
PLS217	RC	2 69815	7670019	209	-57.6	254.6	78	1	23	23	133	0.52
PLS218	RC	3 69822	7670019	205	-57.8	271.1	100	1	54	19	91	0.47
PLS219	RC	1 69822	7669998	220	-60.6	269	150	26	5	7	126	1.17
PLS219	RC	1 69828	7669998	220	-60.6	269	150	1	109	25	101	1.05
PLS220	RC	2 69828	7669997	225	-59.4	269	186	26	17	6	127	0.95
PLS220	RC	2 69772	7669997	225	-59.4	269	186	1	155	23	92	1.15
PLS221	RC	7 69782	7670048	192	-61.2	270.5	96	36	0	35	82	0.33
PLS222	RC	0 69786	7670051	197	-59.8	266.4	78	36	18	51	120	1.50
PLS223	RC	5 69786	7670052	208	-58.5	263.9	114	33	19	4	132	0.08
PLS223	RC	5 69810	7670052	208	-58.5	263.9	114	36	52	47	132	1.67
PLS226	RC	0 69816	7670047	211	-59.7	267.5	72	1	22	22	123	1.89
PLS227	RC	0 69816	7670063	219	-60	269.3	204	1	65	31	119	1.37
PLS227	RC	0 69822	7670063	219	-60	269.3	204	34	139	15	166	0.32
PLS228	RC	5 69826	7670050	227	-59.3	261.2	86	26	1	5	124	1.27
PLS229	RC	8 69769	7670051	239	-60.3	269	192	1	166	21	117	0.17
PLS230	RC	0 69791	7670095	196	-58.9	270.5	60	36	6	13	301	1.19
PLS231	RC	0 69791	7670101	210	-61.8	266.8	132	31	3	3	133	0.95
PLS231	RC	0 69791	7670101	210	-61.8	266.8	132	33	44	12	98	1.83
PLS231	RC	0 69795	7670101	210	-61.8	266.8	132	36	89	38	96	1.03
PLS232	RC	4 69795	7670109	212	-61.3	267.1	146	31	9	3	153	1.11
PLS232	RC	69795	7670109	212	-61.3	267.1	146	33	49	8	198	1.16
PLS232	RC	4	7670109	212	-61.3	267.1	146	36	101	35	113	1.54

Page 32

	HoleD	Hole	MGA Eastin	MGA	DI	Din	MGA	Hole	Domain	Depth	Interval	Ta2O5	Li2O
F		Type	6 9807	worthing	NL	Dip	Azimuth	Depth	Domain	FIOM	Length	phin	per
	PLS233	RC	8 69807	7670099	211	-59.4	264.4	70	1	6	24	150	1.32
	PLS233	RC	8 69812	7670099	211	-59.4	264.4	70	31	39	3	117	2.30
	PLS234	RC	60824	7670090	220	-58.8	256.4	100	1	40	26	102	1.54
	PLS235	RC	5 69827	7670102	244	-58.3	267.4	100	25	46	3	177	1.18
	PLS236	RC	1 69827	7670097	241	-60	269	204	25	54	6	168	0.69
	PLS236	RC	1 69791	7670097	241	-60	269	204	1	178	24	118	1.19
	PLS238	RC	4 69791	7670140	218	-59.5	275.7	156	31	15	5	150	2.16
	PLS238	RC	69791	7670140	218	-59.5	275.7	156	34	66	10	164	1.82
	PLS238	RC	4 69794	7670140	218	-59.5	275.7	156	36	115	34	106	0.99
	PLS239	RC	7 69794	7670149	209	-58.7	276.1	162	31	15	5	168	1.99
	PLS239	RC	7 69794	7670149	209	-58.7	276.1	162	34	64	12	78	2.20
	PLS239	RC	69807	7670149	209	-58.7	276.1	162	36	112	38	96	0.97
	PLS240	RC	2 69807	7670144	203	-60.1	272.4	162	1	4	28	165	1.38
	PLS240	RC	2 69807	7670144	203	-60.1	272.4	162	31	39	3	90	1.30
	PLS240	RC	2 69807	7670144	203	-60.1	272.4	162	32	58	2	60	2.23
	PLS240	RC	2 69807	7670144	203	-60.1	272.4	162	33	72	4	95	1.59
	PLS240	RC	2 69808	7670144	203	-60.1	272.4	162	34	108	25	72	1.29
	PLS241	RC	0 69808	7670143	203	-76.5	263.2	180	1	8	30	150	1.34
	PLS241	RC	0 69808	7670143	203	-76.5	263.2	180	32	59	1	70	1.67
	PLS241	RC	0 69808	7670143	203	-76.5	263.2	180	33	67	8	82	1.51
	PLS241	RC	0 69816	7670143	203	-76.5	263.2	180	34	109	18	74	1.41
	PLS242	RC	7 69816	7670152	231	-59.4	269	124	25	3	2	165	1.13
	PLS242	RC	7 69822	7670152	231	-59.4	269	124	1	91	27	85	1.70
	PLS243	RC	2 69822	7670149	242	-60	269	174	25	39	6	173	1.73
	PLS243	RC	2 69835	7670149	242	-60	269	174	1	145	22	106	1.33
	PLS244	RC	4 69835	7670151	231	-60.6	269.8	108	2	4	4	272	2.13
	PLS244	RC	4 69839	7670151	231	-60.6	269.8	108	25	100	5	102	1.89
	PLS245	RC	9 69804	7670151	231	-57.8	273.3	100	2	22	1	180	0.13
	PLS247	RC	8 69804	7670202	222	-59.4	270.4	90	1	9	33	139	1.65
	PLS247	RC	8 69804	7670202	222	-59.4	270.4	90	31	68	3	80	1.33
	PLS247	RC	8 69809	7670202	222	-59.4	270.4	90	32	75	3	80	1.67
	PLS248	RC	7 69809	7670202	225	-60	260.4	114	1	43	33	135	1.61
	PLS248	RC	7 69809	7670202	225	-60	260.4	114	31	89	2	165	1.42
	PLS248	RC	7 69809	7670202	225	-60	260.4	114	32	95	3	107	1.84
1	PI \$248	RC	7	7670202	225	-60	260.4	114	33	104	3	100	1.66

ASX Announcement 1	February	2016	cont
--------------------	----------	------	------

	0		MGA										
	HoleID	Hole Type	Eastin	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth	Domain	Depth From	Interval Length	Ta2O5 ppm	Li2O pct ¹
	PLS249	RC	69818 1	7670201	236	-60	269	150	1	112	26	114	1.17
	PLS250	RC	69822 8	7670198	240	-60	280.6	198	25	43	2	135	0.75
	PLS250	RC	69822 8	7670198	240	-60	280.6	198	28	142	1	110	0.96
	PLS250	RC	69822	7670198	240	-60	280.6	198	1	167	24	111	1.38
ĺ	PLS255	RC	69808 2	7670239	228	-61.1	259.6	166	1	45	32	134	1.77
	PLS255	RC	69808 2	7670239	228	-61.1	259.6	166	31	91	5	78	1.60
	PLS255	RC	2	7670239	228	-61.1	259.6	166	32	100	3	80	1.64
	PLS255	RC	609008 2	7670239	228	-61.1	259.6	166	34	145	16	88	1.87
	PLS256	RC	5 5 5	7670254	236	-60.7	254	168	25	10	3	143	1.22
	PLS256	RC	69817 5	7670254	236	-60.7	254	168	28	120	7	76	1.47
	PLS256	RC	5 69822	7670254	236	-60.7	254	168	1	135	16	145	1.23
	PLS257	RC	69822	7670250	235	-60	273.1	168	25	44	5	166	1.10
	PLS257	RC	69800	7670250	235	-60	273.1	168	28	143	9	103	1.82
	PLS259	RC	69800	7670301	208	-59.6	270.6	96	1	2	23	124	0.87
	PLS259	RC	69804	7670301	208	-59.6	270.6	96	31	56	3	93	1.22
	PLS260	RC	9 69804	7670302	215	-60	271.8	96	1	30	31	126	1.44
	PLS260	RC	9 69836	7670302	215	-60	271.8	96	31	86	6	73	1.58
	PLS261	RC	8 69836	7670351	224	-57.6	269.2	100	2	3	8	236	0.97
	PLS261	RC	8 69840	7670351	224	-57.6	269.2	100	25	92	6	120	0.77
	PLS262	RC	9 69840	7670346	224	-57.7	272.4	100	2	28	4	282	1.25
	PLS266	RC	5 69835	7670439	232	-57	272.4	96	2	34	8	214	1.55
	PLS269M	DDH	3 69835	7671443	212	-59.6	274.3	147.3	13	58	13	332	1.51
	PLS269M	DDH	3 69835	7671443	212	-59.6	274.3	147.3	12	73	9	156	1.25
	PLS269M	DDH	3 69835	7671443	212	-59.6	274.3	147.3	10	102	3	270	1.68
	PLS269M	DDH	3 69831	7671443	212	-59.6	274.3	147.3	8	135	3	203	1.12
	PLS270M	DDH	0 69831	7671427	205	-89.5	208.6	90.7	13	30	17	422	1.50
	PLS270M	DDH	0 69832	7671427	205	-89.5	208.6	90.7	12	47	12	342	1.74
	PLS271	RC	7 69832	7671339	209	-90	265.6	139	13	59	8	262	1.77
	PLS271	RC	7 69828	7671339	209	-90	265.6	139	12	78	27	241	1.80
	PLS272M	DDH	8 69828	7671293	206	-89.1	304.5	121.3	12	21	27	245	1.19
	PLS272M	DDH	8 69828	7671293	206	-89.1	304.5	121.3	9	88	6	715	1.30
	PLS272M	DDH	8 69839	7671293	206	-89.1	304.5	121.3	8	103	2	345	2.00
	PLS273	RC	8 69839	7671996	189	-59.3	265.5	65	13	15	9	210	1.35
	PLS273	КC	8 69844	7671996	189	-59.3	265.5	65	12	45	4	217	1.16
1	PIS774	R(.	a	/671999	129	-60.1	270 Q	100	1/	47	1	1090	() 19

	, .		MGA										
н	oleID	Hole Type	Eastin	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth	Domain	Depth From	Interval Length	Ta2O5 ppm	Li2O pct ¹
PL	_S274	RC	69844 9	7671999	189	-60.1	270.9	100	13	50	13	317	0.99
Ρl	_S274	RC	69844 9	7671999	189	-60.1	270.9	100	12	83	8	251	1.85
Ρl	_S275	RC	69849 9	7672000	191	-58.1	273	144	16	31	2	195	1.10
PL	_S275	RC	69849 9	7672000	191	-58.1	273	144	14	78	2	465	1.22
Pl	_S275	RC	69849 9	7672000	191	-58.1	273	144	13	96	5	232	1.63
Ρl	_S275	RC	09849 9 69890	7672000	191	-58.1	273	144	12	114	11	318	1.30
Ρl	_S282	RC	69894	7674249	230	-90	0	97	80	4	21	143	1.53
Ρl	_S283	RC	69907	7674247	233	-90	0	103	80	21	22	183	1.26
Ρl	_S286	RC	9 69907	7674340	209	-90	0	100	80	6	17	215	1.65
Ρl	_S286	RC	9 69912	7674340	209	-90	0	100	81	44	8	101	1.19
Ρl	_S287	RC	4 69912	7674352	218	-90	0	80	80	38	5	168	1.84
Ρl	_S287	RC	4 69913	7674352	218	-90	0	80	81	66	4	148	1.03
Ρl	_S290	RC	2 69917	7674449	201	-90	0	100	81	40	17	169	1.12
Pl	_S291	RC	9 69917	7674446	206	-90	0	154	80	6	8	89	1.28
PL	_S291	RC	9 69842	7674446	206	-90	0	154	81	88	18	117	1.20
PL	_\$293	RC	8 69842	7671448	201	-60	270	180	13	98	10	186	0.69
PL	.5293	RC	8 69842	7671448	201	-60	270	180	12	139	3	243	1.00
	5293	RC	8 69836 4	7671448	201	-6U	2/0	120	10	149	8	300	1.03
	5294	RC	4 69836 م	7671/15	213	-59.4 _50 1	204.8 264.8	125	13	20	ð 1 <i>1</i>	234	1.72
PI	5294	RC	4 69836 4	7671415	213	-59.4	204.0 264 8	125	10	04 112	14	120	3,88
PI		RC	- 69841 8	7671413	203	-61.8	271.3	130	13	100	4	260	1.17
PI	.\$298	RC	69839 8	7671339	208	-61	255	170	13	105	3	250	1.24
PL	_\$298	RC	69839 8	7671339	208	-61	255	170	12	130	9	320	1.32
Pl	_\$300	RC	69840 8	7671303	210	-65.4	264.8	190	12	151	10	225	1.09
Pl	_\$300	RC	69840 8	7671303	210	-65.4	264.8	190	9	173	6	372	1.37
Pl	_S301	RC	69835 9	7671249	219	-61.5	270.9	144	12	97	12	263	1.80
Ρl	_\$301	RC	69835 9	7671249	219	-61.5	270.9	144	9	136	1	90	0.51
Ρl	_\$302	RC	69840 7	7671236	214	-64.1	257.8	180	12	140	1	220	1.01
Ρl	_\$302	RC	69840 7	7671236	214	-64.1	257.8	180	9	170	10	242	1.21
Ρl	_\$303M	DDH	09805 4	7670501	224	-59.9	275	102.6	1	61	26	182	1.67
Ρl	_\$304	RC	69809 4	7670495	221	-59.8	268.8	124	1	94	27	123	0.78
Ρl	_\$305	RC	9 69809 69809	7670449	223	-60.6	262.6	138	28	92	1	100	1.59
Ρl	_\$305	RC	9 69805	7670449	223	-60.6	262.6	138	1	97	33	115	1.32
PI	S306M	DDH	3	7670399	216	-60	264.4	99.5	1	58	24	143	1.29

HoleID	Hole Type	MGA Eastin g	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth	Domain	Depth From	Interval Length	Ta2O5 ppm	Li2O pct ¹
PI \$307	RC	69809 x	7670405	218	-59 7	266.6	130	28	83	6	78	1 22
DI COOT	DC	69809	7670405	210	55.7	200.0	130	20	102	22	10	1 24
PL530/	KC	8 69811	/0/0405	218	-59.7	266.6	130	1	102	23	80	1.34
PLS308	RC	2 69811	7670350	217	-60.8	269.4	132	28	82	7	97	1.34
PLS308	RC	2 69834	7670350	217	-60.8	269.4	132	1	106	17	107	0.90
PLS309	RC	7	7670249	222	-61.3	274.7	100	25	86	6	123	1.08
PLS310	RC	2	7670248	223	-57.9	269.4	100	2	4	2	100	0.09
PLS313	RC	5	7670595	223	-60.1	261.2	110	1	32	24	199	0.79
PLS314	RC	69802 8	7670678	220	-57.8	261.1	110	1	53	25	221	1.27
PLS315	RC	69803 4	7670749	215	-58.8	278.2	110	1	59	21	187	1.11
PLS317	RC	69836 2	7670947	202	-60.1	259.7	150	Not withii	n resource	zone		
PLS321	RC	69830 4	7671052	215	-60	268.3	150	12	60	6	175	1.69
PI \$321	RC	69830 م	7671052	215	-60	268.2	150		12/	л	222	0.50
DI 63321	PC	69834	7671444	213	-00	200.5	100	40	124	4	340	0.00
PL3322	ĸu	5 69834	/0/1144	215	-08.9	265	198	12	82	1	310	0.32
PLS322	RC	5 69834	7671144	215	-68.9	265	198	9	107	8	235	1.98
PLS322	RC	5 69834	7671144	215	-68.9	265	198	8	126	1	450	0.06
PLS322	RC	5 69839	7671144	215	-68.9	265	198	7	173	11	226	1.06
PLS328	RC	0	7671492	208	-58.9	271.9	180	13	78	7	254	1.74
PLS328	RC	0	7671492	208	-58.9	271.9	180	12	91	11	392	0.79
PLS328	RC	03039	7671492	208	-58.9	271.9	180	10	120	3	170	0.71
PLS328	RC	0 0 0 0	7671492	208	-58.9	271.9	180	8	156	6	153	1.72
PLS331	RC	69845 2	7671596	203	-58.2	274.8	190	13	95	13	322	1.98
PLS331	RC	69845 2	7671596	203	-58.2	274.8	190	12	140	14	324	1.69
PLS331	RC	69845 2	7671596	203	-58.2	274.8	190	10	165	5	204	1.67
PLS337M	אחם	69810 2	7670202	226	-89.1	0.2	108 5		65	21	110	1.56
pl 2330	RC	69801	7670000	104	-60 3	260 P	160	т 21	0	÷د ۸	125	1.50
		69801	76700039	100	-00.3	203.8	100	16	ð 25	4	132	1.00
rloga	KC	0 69801	/6/0099	196	-ьU.З	269.8	168	33	37	6	80	1.57
PLS338	RC	0 69801	7670099	196	-60.3	269.8	168	34	74	41	83	1.58
PLS338	RC	0 69785	7670099	196	-60.3	269.8	168	36	136	28	120	1.72
PLS339	RC	9 69785	7670101	199	-60.3	269.1	120	33	32	4	58	0.87
PLS339	RC	9 69770	7670101	199	-60.3	269.1	120	36	64	37	104	0.26
PLS340	RC	4	7670099	193	-60	263.2	90	36	23	45	106	0.85
PLS346	RC	09729 8	7669499	181	-60	270	96	Not withii	n resource	zone		
PLS347	RC	69735 1	7669501	179	-60	270	108	Not withii	n resource	zone		
PLS357	RC	69774 0	7670107	208	-60	264.7	84	36	33	30	108	1.25
PLS358	RC	69816 9	7670098	228	-58.3	269	120	1	83	30	113	1.13

ASX Announcement 1 Feb	oruary 2016 cont.
------------------------	-------------------

Page 36

HoleID	Hole Type	MGA Eastin g	MGA Northing	RL	Din	MGA Azimuth	Hole Depth	Domain	Depth From	Interval Length	Ta2O5	Li2O pct ¹
DISSEC	DC	69775	7670140	211		262.6	00	20		25	107	1 5 4
PL3359	ĸu	3 69779	/0/0149	211	-60	203.0	90	30	44	35	127	1.54
PLS360	RC	9 69784	7670151	203	-60	260.3	120	36	40	63	90	1.46
PLS361	RC	4 69799	7670155	195	-60.3	263.4	126	36	58	48	122	0.87
PLS362	RC	8 69799	7670150	201	-60	265.6	180	31	23	5	116	1.91
PLS362	RC	8 69799	7670150	201	-60	265.6	180	32	35	1	140	2.59
PLS362	RC	69799 69799	7670150	201	-60	265.6	180	33	50	3	147	1.71
PLS362	RC	8 60700	7670150	201	-60	265.6	180	34	81	16	71	1.33
PLS362	RC	8 60010	7670150	201	-60	265.6	180	36	149	26	91	0.97
PLS363	RC	69810 5	7670298	226	-60	261.4	138	28	70	7	89	1.49
PLS363	RC	69810 5	7670298	226	-60	261.4	138	1	84	18	126	1.62
PLS363	RC	69810 5	7670298	226	-60	261.4	138	31	112	9	114	1.67
PLS364	RC	69814 9	7670295	229	-60	269	162	28	98	6	112	1.36
PLS364	RC	69814 9	7670295	229	-60	269	162	1	116	20	115	1.14
PLS365	RC	69820 2	7670309	226	-60	261.6	198	25	19	2	145	1.25
PLS365	RC	69820 2	7670309	226	-60	261.6	198	28	139	8	98	0.30
PI \$365	RC	69820 2	7670309	226	-60	261.6	198	1	164	30	106	1.07
DI \$266	PC	69814	7670256	220	60	261.0	102	20	105	90	04	1 29
PLOSE		69814	7070350	220	-00	201.5	192	20	105	12	54	1.50
PLS300	RC	8 69814	7070350	220	-00	201.3	192	1	139	12	74	1.20
PLS366	RC	8 69819	/6/0356	220	-60	261.3	192	31	155	/	59	1.03
PLS367	RC	4 69819	7670355	221	-59.2	265.2	200	28	128	11	127	1.37
PLS367	RC	4 69814	7670355	221	-59.2	265.2	200	1	172	10	98	0.80
PLS368	RC	9 69814	7670407	217	-60	270	78	Not withii	n resource	e zone		
PLS368A	RC	7 69814	7670407	217	-60.8	265.8	186	28	110	8	101	1.35
PLS368A	RC	7 69814	7670407	217	-60.8	265.8	186	1	150	17	75	1.24
PLS368A	RC	7 69804	7670407	217	-60.8	265.8	186	31	175	2	85	0.39
PLS369	RC	69899	7670548	221	-62.1	281.6	100	1	56	23	221	0.97
PLS384	RC	6 6	7674249	222	-90	0	80	80	24	23	157	1.77
PLS385	RC	2	7674346	215	-90	0	80	80	51	10	123	1.86
PLS386	RC	09922 9	7674453	216	-90	0	184	80	35	12	152	1.25
PLS386	RC	69922 9	7674453	216	-90	0	184	81	171	13	118	1.94
PLS387	RC	69916 8	7674553	210	-90	0	88	81	13	15	99	1.80
PLS388	RC	69921 8	7674551	213	-90	0	141	81	69	28	102	1.59
PLS389	RC	69926 3	7674550	215	-90	0	178	80	4	12	144	0.96
PLS389	RC	69926 3	7674550	215	-90	0	178	81	127	22	127	0.24
PLS390	RC	69730 1	7669699	183	-60	270	96	Not withii	n resource	e zone		

	2
(D)	

			MGA										
		Hole	Eastin	MGA			MGA	Hole		Depth	Interval	Ta2O5	Li2O
	HoleID	Туре	g	Northing	RL	Dip	Azimuth	Depth	Domain	From	Length	ppm	pct ¹
ſ			69735										
	PLS391	RC	1	7669697	183	-58.6	271.5	96	Not withi	n resourc	e zone		
			69740										
	PLS392	RC	1	7669700	183	-60	270	96	Not withi	n resourc	e zone		
			69755										
	PLS393	RC	1	7669699	184	-60	270	120	Not withi	n resourc	e zone		
			69760										
	PLS394	RC	0	7669700	183	-60	270	150	Not withi	n resourc	e zone		
μ			69764										
	PLS395	RC	9	7669700	182	-60	270	125	Not withi	n resourc	e zone		
			69770										
	PLS396	RC	0	7669700	183	-60	270	104	Not withi	n resourc	e zone		
			69774										
	PLS397	RC	6	7669699	181	-60	270	100	Not withi	n resourc	e zone		
			69796										
	PLS398	RC	8	7670199	209	-60	270	96	31	25		6 127	1.64
	BI 6300	D.C	69796	7670400	200	60	270	0.0	24	70		o 70	4 5 4
	PLS398	RC	8	7670199	209	-60	270	96	34	76		8 70	1.54
	DI C200	DC	69931	7674547	210	00	0	104	00	27	1	0 124	0.12
	PL3399	RC	60021	/0/454/	210	-90	0	184	80	27	1	0 124	0.12
	015200	PC	09931	7674647	216	00	0	101	01	162		7 104	0.07
	PL3599	ΝC	60744	/0/454/	210	-90	0	104	01	102		/ 104	0.07
	PI \$400	RC	09744 Q	7669699	18/	-60	270	96	Not withi	n resourc	e 70ne		
	1 23400	ile i	697/9	7005055	104	-00	270	50	Not Within	ricsoure	c 2011c		
	PI \$401	RC	ر <i>ب</i> ررن ۵	7669698	185	-60	270	108	Not withi	n resourc	e 700e		
	1 23401	ne -	69926	1005050	100	-00	270	100		, icsourc	C 2011C		
	PLS402	RC	8	7674446	224	-90	0	134	80	80	1	5 203	0.60

- 1 Where Li_{2}O field is blank, it is because the interval was not sampled and analysed specifically for $\text{Li}_{2}\text{O}.$
- ² When compared to interval reported for Ta₂O₅, the interval length sampled and analysed specifically for Li₂O is a subset of the reported interval. This is the case for 7 of the intervals reported in the table above, including:

HoleID	Domain	Ta₂O₅ interval	Li₂O interval
PLC014	12	22 m	18 m
PLC042	8	3 m	1 m
PLC044	8	11 m	5 m
PLC053	3	28 m	20 m
PLC055	8	2 m	1 m
PLC065	9	5 m	1 m
PLC066	12	26 m	4 m

Appendix 2

JORC Code, 2012 Edition – Table 1 report

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
		 the rig with a steel brace. The cyclone splitter was configured to split the cuttings at 85% to waste (to be captured in 600mm x 900mm green plastic mining bags) and 15% to the sample port in draw-string calico sample bags (12-inch by 14-inch). Diamond core was sampled by taking a 15-20mm fillet at 1m intervals.
	• Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	 Talison/GAM holes are all RC, with samples split at the rig sent to the Wodgina site laboratory and analysed by XRF for a suite of 36 elements. Selected pulps from the 2008 and 2010 drilling plus all pegmatite pulps from the 2012 drilling were collected and sent to SGS Laboratories in Perth for analysis of their lithium content. Lithium analysis was conducted by Atomic Absorption Spectroscopy (AAS). Pilbara RC samples were split at the rig and sent to the Nagrom laboratory in Perth and analysed by XRF and ICP. Diamond core was cut at Nagrom, and then crushed and pulverised in preparation for analysis by XRF and ICP.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 The drilling rig used in 2008 is not noted in any reports. The 2010 drilling was completed by Australian Drilling Solutions using an Atlas Copco Explorac 220 RC truck mounted drill rig with a compressor rated to 350psi / 1200cfm and a booster rated to 800psi, with an expected 600psi down-hole. An auxiliary booster/compressor was not required at any point during the drilling. The 2012 drilling was completed by McKay Drilling using an 8x8 Mercedes Truck-mounted Schramm T685WS rig with a Foremost automated rod-handler system and on-board compressor rated to 1,350cfm/500psi with an auxiliary booster mounted on a further 8x8

Criteria	JORC Code explanation	Commentary
		 Mercedes truck and rated at 900cfm/350psi. Drilling used a reverse circulation face sampling hammer. The sampling system consisted of a trailer mounted cyclone with cone splitter and dust suppression system. The Pilbara Minerals 2014 drilling was completed by Quality Drilling Services (QDS Kalgoorlie) using a Track-mounted Schramm T450 RC rig with a 6x6 truck mounted auxiliary booster & compressor. Drilling used a reverse circulation face sampling hammer with nominal 51/4" bit. The system delivered approximately 1800cfm @ 650- 700psi down hole whilst drilling. The 2015 RC drilling was undertaken by Orbit Drilling (200 holes), Mt Magnet Drilling (44 holes) and Strike Drilling (11 holes). Orbit used two rigs; a Schramm T450RC Rig, and a bigger Hydco 350RC Rig. Mt Magnet also used a Schramm T450RC Rig, and Strike used a SDR04 RC Rig mounted on a VD3000 Marooka track base. Diamond drilling HQ sized core.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	 Recoveries for the majority of the historical holes are not known, while recoveries for 2012 GAM holes were overwhelmingly logged as "good." Recoveries for Pilbara RC and diamond holes were virtually all dry and overwhelmingly logged as "good."
	 Measures taken to maximise sample recovery and ensure representative nature of the samples. 	 Whilst drilling through the pegmatite, rods were flushed with air after each metre drilled (GAM and Pilbara holes). In addition, moist or wet ground conditions resulted in the cyclone being washed out between each sample run. Loss of fines as dust was reduced by injecting water into the sample pipe before it reached the cyclone. This minimises the possibility of a

Criteria	JORC Code explanation	Commentary
		positive bias whereby fines are lost, and heavier, tantalum bearing
		material, is retained.
	• Whether a relationship exists between sample recovery and grade	No material bias has been identified.
	and whether sample bias may have occurred due to preferential	
	loss/gain of fine/coarse material.	
Logging	Whether core and chip samples have been geologically and	• 1m composites were laid out in lines of 20 or 30 samples, with
	geotechnically logged to a level of detail to support appropriate	cuttings collected and geologically logged for each interval, and
	Mineral Resource estimation, mining studies and metallurgical	stored in 20 compartment plastic rock-chip trays annotated with
	studies.	hole numbers and depth intervals (one compartment per 1m
		composite). Geological logging information was recorded directly
		into an Excel spreadsheet using a toughbook laptop computer.
		• The GAM rock-chip trays were later stored onsite at Wodgina in one
		of the exploration department sea containers.
		• The Pilbara rock-chip trays were transported back to Perth and
		stored at the company office.
		• Diamond core was transported to Nagrom laboratories for cutting,
		sampling, detailed logging and storage.
	Whether logging is qualitative or quantitative in nature. Core (or	Logging has primarily been quantitative, using RC chips.
	costean, channel, etc) photography.	• Detailed logging has been undertaken on diamond core by a
		mineralogical consultant.
	• The total length and percentage of the relevant intersections logged.	• The database contains lithological data for all holes in the database.
Sub-sampling	• If core, whether cut or sawn and whether quarter, half or all core	• RC samples collected by Talison/GAM were generally dry and split at
techniques	taken.	the rig using a cyclone splitter.
and sample	• If non-core, whether riffled, tube sampled, rotary split, etc and	• RC samples collected by Pilbara were virtually all dry and split at the
preparation	whether sampled wet or dry.	rig using a cone splitter mounted directly beneath the cyclone.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	• A 15 to 20mm fillet of core was taken every metre from half cut core.
1		1

Criteria	JORC Code explanation	Commentary
	• Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	 Talison/GAM/Pilbara samples have field duplicates as well as laboratory splits and repeats. 110 sample pulps were selected from across the pegmatite zones for umpire checks with ALS Laboratory Perth.
	• Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	 For the Talison/GAM/Pilbara RC drilling, field duplicates were taken approximately every 20m, and splits were undertaken at the sample prep stage on every other 20m. Talison/GAM/Pilbara RC samples have field duplicates as well as laboratory splits and repeats. Pilbara diamond holes have laboratory splits and repeats.
	• Whether sample sizes are appropriate to the grain size of the material being sampled.	• The Talison/GAM/Pilbara drilling sample sizes are considered to be appropriate to correctly represent the tantalum mineralization at Pilgangoora, based on the style of mineralization (pegmatite), and the thickness and consistency of mineralization.
Quality of assay data & laboratory tests	• The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	 The Talison/GAM samples were assayed by the Wodgina Laboratory, for a 36 element suite using XRF on fused beads. The Pilbara samples were assayed at the Nagrom Perth laboratory, using XRF on fused beads plus ICP to determine Li₂O, ThO₂ and U₃O₈.
	• For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	 No geophysical tools were used to determine any element concentrations used in this resource estimate.
	• Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	 GAM Wodgina laboratory splits of the samples were taken at twenty metre intervals with a repeat/duplicate analysis also occurring every 20m and offset to the lab splits by 10 samples. In total one field duplicate series, one splits series and one lab duplicate/repeat series were used for quality control purposes assessing different stages in

Criteria	JORC Code explanation	Commentary
		 the sampling process. This methodology was used for the samples from the 2010 and 2012 drilling programs. Comparison of these splits and duplicates by using a scatter chart to compare results show the expected strong linear relationship reflecting the strong repeatability of the analysis process. The GAM and Pilbara RC drilling contains QC samples (field duplicates and laboratory pulp splits, GAM internal standard, selected CRM's for Pilbara), and have produced results deemed acceptable. 110 sample pulps (10% of the June 2015 resource composite samples) were selected from across the pegmatite zones for umpire checks with ALS Laboratory Perth. All closely correlated with the original Nagrom assays. Further samples will be selected for additional checks
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. 	 Infill drilling completed by GAM in 2012 and Pilbara in 2014 and 2015 confirmed the approximate width and grade of previous drilling. Eight of the diamond holes were drilled as twins to RC holes, and compared to verify assays and lithology.
	• Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	 An electronic database containing collars, surveys, assays and geology was provided by GAM. All GAM assays were sourced directly from Wodgina internal laboratory files. All Pilbara assays were sourced directly from Nagrom as certified laboratory files.
	• Discuss any adjustment to assay data.	 Tantalum was reported as Ta₂O₅ %, and converted to ppm for the estimation process. A two-step adjustment has been applied to the Fe₂O₃ assays to

Criteria	JORC Code explanation	Commentary
Location of data points	JORC Code explanation JORC Code explanation	 Commentary account for (i) contamination of pulps by the steel bowl at the grinding stage, and (ii) contamination of RC chips with the drill bit. Step one is to subtract 0.15% from all Fe₂O₃ assays, step 2 is to subtract a further 0.26% from all Pilbara Minerals RC samples, and 0.10% from all historic RC samples. No second factor has been applied to the Pilbara diamond core Fe₂O₃ assays. Talison/GAM holes were surveyed using a DGPS with sub one metre accuracy by the GAM survey department. Pilbara drill hole collar locations were surveyed at the end of the program using a dual channel DGPS with +/- 10mm accuracy on northing, easting & RL by Pilbara personnel. No down hole surveys were completed for PLC001-039 (Talison). Gyro surveys were completed every 5m down hole for PLC040-068 (Talison). Eastman Single Shot surveys were completed in a stainless steel starter rod approximately every 30m for PLC069-076 & PLRC001-009 (GAM). Reflex EZ-shot, electronic single shot camera surveys were completed in a stainless steel starter performance of the program steel starter rod approximately every 30m for PLC069-076 & PLRC001-009 (GAM).
		completed in a stainless steel starter rod for each hole for the Pilbara November-December 2014 RC drilling. Measurements were recorded from approximately 8m; in the middle; and at the bottom of each hole.
		 Camteq Proshot, electronic single shot cameras were completed in a stainless steel starter rod for each hole from the Pilbara 2015 RC and diamond drilling campaigns. Measurements were recorded at 10m, 40m, 70m and 100m (or EOH) for each hole.
	• Specification of the grid system used.	• The grid used was MGA Zone 50, datum GDA94.

Criteria	JORC Code explanation	Commentary
	• Quality and adequacy of topographic control.	 The topographic surface used was a 50cm resolution Digital Surface Model (DSM) derived by stereoscopic photogrammetric processes from 5cm resolution imagery. Surveyed DGPS drillhole collar elevation data was then compared to this surface, and found to have an average difference of -0.7m.
Data spacing and distribution	• Data spacing for reporting of Exploration Results.	 Talison completed 54 RC drillholes in 2008 GAM completed 46 RC drillholes between 2010 and 2012 Pilbara completed 293 RC holes between 2014 and 2015. Pilbara completed 9 diamond drillholes in 2015. Drilling spacings vary between 25m to 50m apart
	• Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	• The continuity of the mineralization can confidently be interpreted from the geology of the pegmatite sheets, which can be mapped on surface as extending over several hundred metres in strike length.
	Whether sample compositing has been applied.	 No compositing was necessary, as all samples were taken at 1m intervals.
Orientation of data in relation to geological structure	• Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	 The mineralisation dips between 20 and 60 degrees at a dip direction between 050 and 115 degrees for the majority of the domains. The Monster zone strikes 040 to 045 degrees and dips moderately to the south-east. The drilling orientation and the intersection angles are deemed appropriate.
	• If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 No orientation-based sampling bias has been identified.

Criteria	JORC Code explanation	Commentary
Sample	• The measures taken to ensure sample security.	• Talison sampling security measures are unknown, but assumed to be
security		equal to industry standards since the drilling is as recent as 2008.
		• Chain of custody for GAM holes were managed by GAM personnel.
		Samples were delivered to the Wodgina laboratory by GAM
		personnel where samples were analysed.
		Chain of custody for Pilbara holes were managed by Pilbara
		personnel. Samples for analysis were delivered to the Regal
		Transport Depot in Port Hedland by Pilbara personnel. Samples were
		delivered from the Regal Transport Depot in Perth to the Nagrom
		laboratory in Kelmscott by Regal Transport courier truck.
Audits or	• The results of any audits or reviews of sampling techniques and data.	The collar and assay data have been reviewed by compiling a new
reviews		SQL relational database. This allowed some minor sample numbering
		discrepancies to be identified and amended.
		Drilling locations and survey orientations have been checked visually
		in 3 dimensions and found to be consistent.
		All GAM assays were sourced directly from the laboratory (Wodgina
		laboratory). However it has not been possible to check these original
		digital assay files.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral	• Type, reference name/number, location and ownership including	• The Pilgangoora resource lays within E45/2232 and M45/333 which
tenement and	agreements or material issues with third parties such as joint	are 100% owned by Pilbara Minerals Limited. The E45/2232 area is
land tenure	ventures, partnerships, overriding royalties, native title interests,	now also part of a mining lease application (M45/1256).
status	historical sites	
	• The security of the tenure held at the time of reporting along with	No known impediments.

PILBARA MINERALS

Criteria	JORC Code explanation	Commentary
	• The assumptions used for any reporting of metal equivalent	
	values should be clearly stated.	
Relationship	• These relationships are particularly important in the reporting of	• Downhole lengths are reported in Appendix 1 of this announcement.
between	Exploration Results.	• It is noted in previous sections that not all samples analysed for
mineralisation	• If the geometry of the mineralisation with respect to the drill hole	Ta_2O_5 have also been analysed for Li ₂ O. All pegmatite pulps from the
widths and	angle is known, its nature should be reported.	2012 drilling were analysed for Li_2O but only selected pulps from the
intercept lengths	• If it is not known and only the down hole lengths are reported,	2008 and 2010 drilling were. As noted in Appendix 1, there are 7
	there should be a clear statement to this effect (eg 'down hole	intervals reported for ${\sf Ta_2O_5}$ that were only partial analysed for ${\sf Li_2O}$ –
	length, true width not known').	see Note 2 for Appendix 1.
Diagrams	Appropriate maps and sections (with scales) and tabulations of	See Figures 2 to 7
	intercepts should be included for any significant discovery being	
	reported These should include, but not be limited to a plan view	
	of drill hole collar locations and appropriate sectional views.	
Balanced	Where comprehensive reporting of all Exploration Results is not	Comprehensive reporting of drilling details has been provided in
reporting	practicable, representative reporting of both low and high grades	Appendix 1 in this announcement.
	and/or widths should be practiced to avoid misleading reporting	
	of Exploration Results.	
Other substantive	Other exploration data, if meaningful and material, should be	All meaningful & material exploration data has been reported.
exploration data	reported including (but not limited to): geological observations;	
	geophysical survey results; geochemical survey results; bulk	
	samples – size and method of treatment; metallurgical test	
	results; bulk density, groundwater, geotechnical and rock	
	characteristics; potential deleterious or contaminating	
	substances.	
Further work	• The nature and scale of planned further work (eg tests for lateral	• Further planned drilling aims to test extensions to the currently
	extensions or depth extensions or large-scale step-out drilling).	modelled pegmatites zones and to infill where required to convert
	• Diagrams clearly highlighting the areas of possible extensions,	Mineral Resources to high confidence classification (i.e. Inferred to
	including the main geological interpretations and future drilling	Indicated and Indicated to Measured).

Page 50		LIMITED
Criteria	JORC Code explanation	Commentary
	areas, provided this information is not commercially sensitive.	

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	• Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.	 The original database was compiled by GAM and supplied as a Microsoft Access database. The data have then been imported into a relational SQL Server database using DataShed™ (industry standard drillhole database management software). The data are constantly audited and any discrepancies checked by Pilbara Minerals personnel before being undated in the database
	Data validation procedures used.	 Normal data validation checks were completed on import to the SQL database. Data has not been checked back to hard copy results, but has been checked against previous databases supplied by GAM. All logs are supplied as Excel spreadsheets and any discrepancies checked and corrected by field personnel.
Site visits	• Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	 John Young (Executive and Chief Geologist - Pilbara Minerals and Competent Person) has visited the site numerous times.
Geological interpretation	• Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	• The confidence in the geological interpretation is considered robust. Tantalum is hosted within pegmatite dykes intruded into mafic meta volcanics and amphibolites of the East Strelley greenstone belt. The

Criteria	JORC Code explanation	Commentary
	Nature of the data used and of any assumptions made.	area of the Pilgangoora pegmatite field within E45/2232 and M45/333 comprises a series of extremely fractionated dykes and
	• The effect, if any, of alternative interpretations on Mineral Resource estimation.	veins up to 15m thick within the immediate drilling area. These dykes and veins dip to the east at 20-60° and are parallel to sub- parallel to the main schistose fabric within the greenstones.
	• The use of geology in guiding and controlling Mineral Resource estimation.	• The geological interpretation is supported by drill hole logging and mineralogical studies completed by GAM (previously Talison) and Pilbara Minerals.
	• The factors affecting continuity both of grade and geology.	 No alternative interpretations have been considered at this stage. Grade wireframes correlate extremely well with the logged pegmatite veins. The key factor affecting continuity is the presence of pegmatite.
Dimensions	• The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	 The main modelled mineralized domains has a total dimension of 4,100m (north-south), ranging between 50-600m (east-west) in multiple veins and ranging between -50m and 220m RL (AMSL). The Monster and Southern areas each have a modelled strike of approximately 700m.
Estimation and modelling techniques	• The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	 Grade estimation using Ordinary Kriging (OK) was completed using Geovia Surpac[™] software for both Ta₂O₅ and Li₂O. Note that there were insufficient samples analysed to allow populating of Li₂O into 1 of the 35 domains. Drill spacing typically ranges from 25m to 50m. Drillhole samples were flagged with wireframed domain codes. Sample data was composited for Ta₂O₅, Li₂O and Fe₂O₃ to 1m using a
	• The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.	 best fit method. Since all holes were sampled on 1m intervals, there were no residuals. Influences of extreme sample distribution outliers were reduced by top-cutting on a domain basis. Top-cuts were decided by using a

Criteria	JORC Code explanation	Commentary
	• The assumptions made regarding recovery of by-products.	combination of methods including grade histograms, log probability plots and statistical tools. Based on this statistical analysis of the
	• Estimation of deleterious elements or other non-grade variables of	data population, top-cuts of between 2.0% and 3.8% for Li_2O ,
	economic significance (eg sulphur for acid mine drainage	110ppm to 1000ppm for Ta_2O_5 and 1.0% and 4.8% for Fe_2O_3 were
	characterisation).	applied. Some domains did not require top-cutting.
		Directional variograms were modelled by domain using traditional
	• In the case of block model interpolation, the block size in relation to	variograms. Nugget values are moderate to low (between 20 and
	the average sample spacing and the search employed.	30%) and structure ranges up to 260m. Domains with more limited
		samples used variography of geologically similar, adjacent domains.
	• Any assumptions behind modelling of selective mining units.	• Block model was constructed with parent blocks of 5m (E) by 25m
		(N) by 5m (RL) and sub-blocked to 2.5m (E) by 12.5m (N) by 2.5m
	• Any assumptions about correlation between variables.	(RL). All estimation was completed to the parent cell size.
		Discretisation was set to 5 by 5 by 2 for all domains.
	Description of how the geological interpretation was used to control	 Inree estimation passes were used. The first pass had a limit of 75m, the second uses 450m and the third uses security as large distances.
	the resource estimates.	the second pass 150m and the third pass searching a large distance
		maximum of 12 samples a minimum of 6 samples and maximum per
	• Discussion of basis for using or not using grade cutting or capping.	hole of 4 samples. The exceptions to this were domains with less
	. The process of validation the checking process used the comparison	than 20 samples, which used a maximum of 10 samples, a minimum
	• The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if	of 4 samples and maximum per hole of 3 samples for the second
	available	pass.
		 Search ellipse sizes were based primarily on a combination of the
		variography and the trends of the wireframed mineralized zones.
		Hard boundaries were applied between all estimation domains.
		• Validation of the block model included a volumetric comparison of
		the resource wireframes to the block model volumes. Validation of
		the grade estimate included comparison of block model grades to
		the declustered input composite grades plus swath plot comparison

PILBARA MINERALS

Criteria	JORC Code explanation	Commentary
		 by easting, northing and elevation. Visual comparisons of input composite grades vs. block model grades were also completed. As a potential deleterious element, Fe₂O₃ has been estimated for this resource, both as raw and factored Fe₂O₃. Identification of contamination during both the sample collection (steel from drill bit and rod wear) and assay phases (wear in the steel pulverisation containers) has resulted in a detailed statistical analysis and colocated data comparison between diamond core and RC twin hole assays. Factors have been applied to the raw Fe₂O₃ assays in two steps. Firstly, all Fe₂O₃ assays have been reduced by -0.15% to account for additional iron introduced by the steel pulverisation containers in the sample preparation phase. Secondly, Pilbara RC sample Fe₂O₃ assays have been reduced by -0.26% to account for additional iron introduced by wear on drill bits and rod in the drilling process, -0.1% to the historic RC for the same reason. No second factor has been applied to the Pilbara diamond core Fe₂O₃ assays.
Moisture	• Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	Tonnes have been estimated on a dry basis.
Cut-off parameters	• The basis of the adopted cut-off grade(s) or quality parameters applied.	• Grade envelopes have been wireframed to an approximate 100ppm Ta_2O_5 and 1% Li ₂ O cut-off allowing for continuity of the higher-grade zone. Based on visual and statistical analysis of the drilling results and geological logging of the pegmatite zoning, this cut-off tends to be exactly the same or very close to the natural geological contact between the pegmatite and host mafic rocks.
Mining factors or assumptions	• Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider	 Based on the orientations, thicknesses and depths to which the pegmatite veins have been modelled, plus their estimated grades for Ta₂O₅ and Li₂O, the potential mining method is considered to be open pit mining.

PILBARA MINERALS

Criteria	JORC Code explanation	Commentary
	 the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 project holders at the time, Sons of Gwalia. Previous consultants as well as GAM personnel have referred to this study and used these figures for the previous resource estimations which were carried out in-house. Pilbara Minerals completed specific gravity testwork on nine samples across the deposit using both Hydrostatic Weighing (uncoated) on surface grab samples and Gas Pycnometry on RC chips which produces consistent results. Geological mapping and rockchip / grab sampling has not observed any potential porosity in the pegmatite. Pilbara Minerals conducted hydrostatic weighing tests on uncoated HQ core samples to determine bulk density factors. A total of 207 core samples were tested. Measurements included both pegmatite ore and waste rock. The bulk density factors applied to the current resource estimate are 2.53 g/cm³ in the (minimal) oxide, and 2.72 g/cm³ in fresh/transition zone material.
Classification Audits or	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. The results of any audits or reviews of Mineral Resource estimates. 	 The Mineral Resource has been classified on the basis of confidence in the geological model, continuity of mineralized zones, drilling density, confidence in the underlying database and the available bulk density information. All factors considered; the resource estimate has in part been assigned to Indicated resource with the remainder to the Inferred category. Whilst Mr. Barnes (Competent Person) is considered Independent of
reviews		PLS, no third party review has been completed.
Discussion of relative	• Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach	• The relative accuracy of the Mineral Resource estimate is reflected in the reporting of the Mineral Resource as per the guidelines of the

Page 56		PILBARAMINERALS
Criteria	JORC Code explanation	Commentary
accuracy/	or procedure deemed appropriate by the Competent Person. For	2012 JORC Code.
confidence	example, the application of statistical or geostatistical procedures to	• The statement relates to global estimates of tonnes and grade.
	quantify the relative accuracy of the resource within stated	
	confidence limits, or, if such an approach is not deemed appropriate,	
	a qualitative discussion of the factors that could affect the relative	
	accuracy and confidence of the estimate.	
	• The statement should specify whether it relates to global or local	
	estimates, and, if local, state the relevant tonnages, which should be	
	relevant to technical and economic evaluation. Documentation	
	should include assumptions made and the procedures used.	
	• These statements of relative accuracy and confidence of the	
	estimate should be compared with production data, where available.	