TIAN POH RESOURCES LIMITED ACN: 168 910 978 # **Quarterly Activities Report** For the Period Ending 31 December 2014 #### About Tian Poh Resources Limited Tian Poh Resources Limited (ASX: TPO) was incorporated with the purpose of investing in minerals projects in Mongolia. TPO listed on the ASX in November 2014. ## **Overview** - Completed the acquisition of Poh Golden Ger Resources Limited to acquire the interests in a coal mining license and nine (9) exploration licenses which are prospective for gold, copper and coal in Mongolia. - Listed on the Australian Stock Exchange on 11 November 2014 and raised \$2,396,400 in an initial public offering. - Induced Polarization (IP) surveys were conducted over the several tenements with at least 8 geophysical targets being delineated from the results of the IP survey, including 4 on Concession 14767X. A geophysical survey is planned to be undertaken in 2015 to target potential mineralized intrusions at depth. # **Projects** The Company's licences are grouped into four project areas across the south of Mongolia (Figure 1): - Amulet Project in the Govi-Altai Province of Western Mongolia; - Mandal-Urgukh Project in the Omnogovi Province of Southern Mongolia; - Khangailand Project also in the Omnogovi Province of Southern Mongolia; and - Huabei Kuangye Project in the Bayankhongor Province of Southwest Mongolia Figure 1: Locality Map of PGGR's Mongolian Projects # **Activities during the quarter** #### Khangailand Project (Concessions 14767X, 14768X and 14769X) Previous bulk geochemical sampling has identified 3 low-order gold anomalies between 235ppb - 255ppb Au within the 14768X Concession. A geophysical survey is planned to be undertaken in 2015 to target potential mineralized intrusions at depth. Induced Polarization (IP) surveys were conducted over the project area, with at least 4 geophysical targets being delineated from the results of the IP survey within Concession 14767X (Figure 2). GSM-19 Ground-based magnetic surveys were also conducted over the project area. Further detailed IP and GSM-19 surveys are planned to assist in targeting potential mineral prospects over the project area in 2015. Figure 2: Khangailand Project – Anomaly along Induced Polarization survey line IP3 #### Mandal-Urgukh Project (Concessions 14770X, 14771X, 14772X, 14773X and 14776X) An Induced Polarization survey and ground based magnetic survey (GSM-19) was conducted over the Mandal-Urgukh Project during the period. The IP surveys have delineated regions of interest within concessions 14770X and 14771X (Figure 3). The reconnaissance mapping was also performed at these two tenements in order to identify rock contacts, mineralization points and alteration zones and detect geophysical anomalies. Figure 3: Mandal-Urgukh Project - Anomaly along Induced Polarization survey line BB1 #### Amulet Project (Concession 14734X) The company recently completed 6 Induced Polarization survey lines totalling 12 km over the tenement. Further to a review of the survey results, the company has identified a high IP anomaly delineated on survey line CC1 which is shown below (Figure 4). The company plans to investigate these targets in 2015 field season. Figure 4: Amulet Project – Anomaly along Induced Polarization survey line CC1 ### Huabei Kuangye Project (Concession MV-017471A) No work was completed over the project area during the reporting period. # **Corporate** On 31 October 2014, the Company acquired 100% of the shares of Poh Golden Ger Resources Limited to acquire the interests in one (1) coal mining licence and nine (9) exploration licences in Mongolia, which are prospective for gold, copper and coal. On 11 November 2014, the Company listed on the Australian Stock Exchange and raised \$2,396,400, before costs, in an initial public offering. Mr KP Poh Managing Director and CEO #### **Competent Persons Statement** MIUO BSN |BUOSIBO IOL The information in this report that relates to data collection and geological interpretation is based on information compiled by Mr Luke Pickering BSc (Hons), MAusIMM, a full time employee of Salva Resource Pty Ltd (HDR), an independent consulting firm. Mr Pickering who is member of the Australasian Institute of Mining and Metallurgist has sufficient experience which is relevant to the style of mineralisation under consideration and to the activity being undertaken to qualify as a "Competent Person", as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves and consents to the inclusion in this report of the matters based on information in the form and context in which they appear. ## APPENDIX 1: JORC CODE, 2012 EDITION COMPLIANCE - TABLE 1 ### **Section 1 Sampling Techniques and Data** | Criteria | JORC Code explanation | Commentary | |-----------------------------|---|---| | Sampling techniques | Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. | Sieved (1mm) soil samples were taken over a 200m x 100m grid and surveyed by handheld GPS (Concession 14768X). Sample locations were designed to test previously known magnetic anomalies. Approximately 25-100 grams of sieved sample was collected from each site in textured bags and were uniquely labeled. Handheld XRF readings were taken over the Mandal-Urgukh Project to assist with geological mapping. No Handheld XRF readings are mentioned in this report. Sampling was supervised and conducted by trained geologists. Induced Polarization and Resistivity Method (Pole-Dipole Array Configuration) was use for all IP surveys. Approximately 35 line km of IP surveying in total was undertaken over the POH concessions. | | Drilling
techniques | Drill type (eg core, reverse circulation,
open-hole hammer, rotary air blast, auger,
Bangka, sonic, etc) and details (eg core
diameter, triple or standard tube, depth of
diamond tails, face-sampling bit or other
type, whether core is oriented and if so, by
what method, etc). | Not applicable as this does not relate
to drilling activity. | | Drill
sample
recovery | Method of recording and assessing core
and chip sample recoveries and results
assessed. | Not applicable as this does not relate
to drilling activity. | | | Measures taken to maximise sample
recovery and ensure representative nature
of the samples. | | | | Whether a relationship exists between
sample recovery and grade and whether
sample bias may have occurred due to
preferential loss/gain of fine/coarse
material. | | | Criteria | JORC Code explanation | Commentary | |---|--|--| | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or | Soil samples were logged
descriptively and locations confirmed
by trained geologists. | | | quantitative in nature. Core (or costean, channel, etc) photography. • The total length and percentage of the | | | | relevant intersections logged. | | | Sub-
sampling
techniques
and sample
preparation | If core, whether cut or sawn and whether quarter, half or all core taken. | No duplicate samples or standards
were submitted in the batch | | | If non-core, whether riffled, tube sampled,
rotary split, etc and whether sampled wet or
dry. | Soil was collected from the C soil
horizon (approximately 20cm below
surface) and sieved to 1mm size | | | For all sample types, the nature, quality and
appropriateness of the sample preparation
technique. | fraction in the field. | | | Quality control procedures adopted for all
sub-sampling stages to maximise
representivity of samples. | | | | Measures taken to ensure that the
sampling is representative of the in situ
material collected, including for instance
results for field duplicate/second-half
sampling. | | | | Whether sample sizes are appropriate to
the grain size of the material being
sampled. | | | Quality of
assay data
and
laboratory
tests | The nature, quality and appropriateness of
the assaying and laboratory procedures
used and whether the technique is
considered partial or total. | Mongolia and Central geological Lab
of Mongolia for spectrum analysis of
Au 39 elements including (Au, Ag, Al | | | For geophysical tools, spectrometers,
handheld XRF instruments, etc, the
parameters used in determining the | As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu
Fe, Ga, Hg, K, La, Mg, Mn, Mo, Na,
Ni, P, Pb, S, Sb, Sc, Sr, Te, Ti, U, Y,
Zn, Zr) | | | analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. | No additional quality controls beyond
the laboratory were adopted. | | | Nature of quality control procedures
adopted (eg standards, blanks, duplicates,
external laboratory checks) and whether
acceptable levels of accuracy (ie lack of
bias) and precision have been established. | GSM-19 magnetometer specifications. Sensitivity: 0.022 nT / √Hz Resolution: 0.01 nT Absolute accuracy: +/- 0.1 nT Dynamic Range: 20,000 nT-120000r T | | | | Sampling Rate: 60+, 5, 3, 2, 1, 0.5, 0.2 sec | | Criteria | JORC Code explanation | Commentary | |--|--|---| | | | Operating Temperature: -40oC-
+50oC | | | | Induced Polarization survey: Electrode B was positioned a distance of 2000m from the acquisition point while the other grain electrode A was positioned at the equally spaced line, MN=d=100m. During the survey there were used ElrecPro receiver made in France, Zonge GGT-30KW transmitter and Zonge 30KW generator made in the USA. | | | | Handheld XRF instruments were set
to 'soil' mode while in use. | | Verification of sampling and | The verification of significant intersections
by either independent or alternative
company personnel. | Soil sample locations were designed
to test a previously known magnetic
anomaly. A systematic 100m x 200m
grid was designed over the area | | assaying | The use of twinned holes. | using GIS software. | | | Documentation of primary data, data entry
procedures, data verification, data storage
(physical and electronic) protocols. | | | | Discuss any adjustment to assay data. | | | Location of data points | Accuracy and quality of surveys used to
locate drill holes (collar and down-hole
surveys), trenches, mine workings and
other locations used in Mineral Resource
estimation. | All sample location points were
completed using a Garmin handheld
GPS to an accuracy of approximately
5m. | | | Specification of the grid system used. | Coordinates were collected in
MGA_GDA94 Zones 48, 49 and 50 | | | Quality and adequacy of topographic control. | | | Data
spacing | Data spacing for reporting of Exploration
Results. | Soil sample locations were
systematically designed over a 100m
x 200m grid. | | and
distribution | Whether the data spacing and distribution
is sufficient to establish the degree of
geological and grade continuity appropriate
for the Mineral Resource and Ore Reserve
estimation procedure(s) and classifications
applied. | No sampling compositing has been applied. | | | Whether sample compositing has been applied. | | | Orientation
of data in
relation to
geological | Whether the orientation of sampling
achieves unbiased sampling of possible
structures and the extent to which this is
known, considering the deposit type. | There is no known bias due to data orientation of data. | | structure | If the relationship between the drilling
orientation and the orientation of key
mineralised structures is considered to
have introduced a sampling bias, this | | | Criteria | JORC Code explanation | Commentary | |--------------------|---|---| | | should be assessed and reported if material. | | | Sample
security | The measures taken to ensure sample
security. | Samples were packaged and stored
from the time of collection through to
submission. | | | | Laboratory best practice methods
were employed by the laboratory
upon receipt. | | Audits or reviews | The results of any audits or reviews of
sampling techniques and data. | None, unwarranted at this stage. | ### **Section 2 Reporting of Exploration Results** | Criteria | JORC Code explanation | Commentary | |--|--|--| | Mineral
tenement and
land tenure
status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to | All sampling and surveys
were conducted over
concessions 100% held by
Poh Golden Ger Resources
Limited (Appendix 2) in the
last quarter of 2014. | | | obtaining a licence to operate in the area. | | | Exploration done by other parties | Acknowledgment and appraisal of exploration by
other parties. | Previous exploration
identified some historic
Cu±Au anomalism and coal
occurrences over the
project area. | | Geology | Deposit type, geological setting and style of
mineralisation. | Not known at this time. | | Drill hole
Information | A summary of all information material to the
understanding of the exploration results
including a tabulation of the following information
for all Material drill holes: | Not applicable as this does
not relate to drilling activity. | | | o easting and northing of the drill hole collar | | | | elevation or RL (Reduced Level – elevation
above sea level in metres) of the drill hole
collar | | | | o dip and azimuth of the hole | | | | o down hole length and interception depth | | | | o hole length. | | | | If the exclusion of this information is justified on
the basis that the information is not Material and
this exclusion does not detract from the
understanding of the report, the Competent
Person should clearly explain why this is the
case. | | | Data
aggregation
methods | In reporting Exploration Results, weighting
averaging techniques, maximum and/or
minimum grade truncations (eg cutting of high
grades) and cut-off grades are usually Material
and should be stated. | No data weighting or
aggregation is applied. | | | Where aggregate intercepts incorporate short
lengths of high grade results and longer lengths
of low grade results, the procedure used for
such aggregation should be stated and some
typical examples of such aggregations should be
shown in detail. | | | | The assumptions used for any reporting of metal | | | Criteria | JORC Code explanation | Commentary | |---|---|--| | | equivalent values should be clearly stated. | | | Relationship
between | These relationships are particularly important in
the reporting of Exploration Results. | Not applicable to single
point data from soil. | | mineralisation
widths and
intercept | If the geometry of the mineralisation with respect
to the drill hole angle is known, its nature should
be reported. | | | lengths | If it is not known and only the down hole lengths
are reported, there should be a clear statement
to this effect (eg 'down hole length, true width
not known'). | | | Diagrams | Appropriate maps and sections (with scales) and
tabulations of intercepts should be included for
any significant discovery being reported These
should include, but not be limited to a plan view
of drill hole collar locations and appropriate
sectional views. | Regional tenement location
(Southern Mongolia) map
shown in Figure 1. | | | | Section diagrams for all
Pole-Dipole lines from IP
survey available on
request. | | | | Maps of geophysical
surveys lines and soil
geochemistry unavailable
at time of writing. | | Balanced
reporting | Where comprehensive reporting of all
Exploration Results is not practicable,
representative reporting of both low and high
grades and/or widths should be practiced to
avoid misleading reporting of Exploration
Results. | The results for the 233 soil
samples were collected
and analyzed over the
period are available on
request. | | Other
substantive
exploration
data | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | Regional geologic and
magnetic maps. | | Further work | The nature and scale of planned further work
(eg tests for lateral extensions or depth
extensions or large-scale step-out drilling). | Further geophysical
surveys are to be
undertaken to constrain | | | Diagrams clearly highlighting the areas of
possible extensions, including the main
geological interpretations and future drilling
areas, provided this information is not
commercially sensitive. | geophysical and geochemical anomalies. | ### **APPENDIX 2: CHANGES IN INTERESTS IN MINING TENEMENTS** | Tenement reference | Location | Interest at beginning of quarter | Acquired /
Disposed | Interest at end of quarter | |--------------------|----------|----------------------------------|------------------------|----------------------------| | 14734X | Mongolia | - | 100% | 100% | | 14770X | Mongolia | - | 100% | 100% | | 14771X | Mongolia | - | 100% | 100% | | 14772X | Mongolia | - | 100% | 100% | | 14773X | Mongolia | - | 100% | 100% | | 14776X | Mongolia | - | 100% | 100% | | 14767X | Mongolia | - | 100% | 100% | | 14768X | Mongolia | - | 100% | 100% | | 14769X | Mongolia | - | 100% | 100% | | MV17471X | Mongolia | - | 100% | 100% |