ASX ANNOUNCEMENT

ASX: SIR

ABN: 46 009 150 083

Street address:

Unit 5, 5 Mumford Place, Balcatta 6021, Western Australia

Postal address:

PO Box 1011, Balcatta 6914, Western Australia

Tel: +61 8 6241 4200

Fax: +61 8 6241 4299

Email: admin@siriusresources.com.au

Web: www.siriusresources.com.au

Projects:

Fraser Range nickel-copper, gold

Polar Bear gold, nickel

Youanmi nickel, copper, PGM's

MAIDEN BOLLINGER RESOURCE AND SCOPING STUDY UPDATE

- 81,000 tonnes of nickel, 33,000 tonnes of copper and 3,300 tonnes of cobalt in maiden Bollinger Mineral Resource estimate
- Combined Nova-Bollinger Mineral Resource estimate now 325,000 tonnes of nickel, 134,000 tonnes of copper and 11,000 tonnes of cobalt
- 90% of nickel metal content of combined Nova-Bollinger resource in higher confidence Indicated Mineral Resource category
- Preliminary flotation tests on Bollinger samples yield recoveries of 99% Ni and 99% Cu in massive-breccia mineralisation and 93% Ni and 96% Cu in disseminated mineralisation
- Combined Nova-Bollinger resource to underpin scoping study, which is advancing

Sirius Resources NL (**ASX:SIR**) ("Sirius" or the "Company") advises that the maiden July 2013 Mineral Resource estimate for the Bollinger nickel -copper-cobalt deposit contains **81,000 tonnes of nickel**, **33,000 tonnes of copper and 3,300 tonnes of cobalt** (at a 0.6% nickel equivalent* lower cut-off) (see Table 1, Figure 1 – Figure 3 and Annexure 1).

The Bollinger resource comprises **4.4 million tonnes at 1.8% nickel, 0.7%** copper and **0.07% cobalt** (*see Table 1*).

The combined resource for Nova–Bollinger now comprises **14.6 million** tonnes at **2.2% nickel**, **0.9% copper and 0.08% cobalt** for **325,000 tonnes** of nickel, **134,000 tonnes of copper and 11,000 tonnes of cobalt** (at a 0.6% nickel equivalent* lower cut-off) (*see Table 1 - Table 3 and Figure 1 – Figure 3*), which represents a **43% increase in tonnage** from the

Sirius

15 JULY 2013

original Nova Mineral resource estimate announced to the ASX in March 2013. Over 90% of the contained nickel metal in the combined Nova-Bollinger resource is in the higher confidence Indicated Resource category.

The Mineral Resource estimate has been completed in accordance with the guidelines of the JORC Code (2012 edition). 78% of nickel metal in the Bollinger resource is in the Indicated Mineral Resource category – the category sufficient to use as a basis for estimating a Probable Ore Reserve and undertaking a feasibility study. The robustness of this resource at a variety of lower cutoff grades is shown in Table 4.

This Mineral Resource estimate forms the basis of the scoping study which is advancing well.

The scoping study includes but is not limited to:

- Baseline environmental surveys and studies surveys underway;
- Consultation with government at various levels;
- Hydrogeological investigations aimed at sourcing suitable water supplies for the project water drilling and testing underway;
- Large diameter core drilling for further metallurgical testwork to support the process plant design approximately 5 tonnes of sample recovered for ongoing testwork;
- Infrastructure studies considering access road, aerodrome and accommodation village locations advancing;
- Design of the proposed underground mine preliminary designs advanced;
- Geotechnical studies special purpose holes drilled and studies underway;
- Consideration of logistics options for product export.

Sirius' geological model was audited by specialist consultants Optiro, who also estimated the Mineral Resource, as described in the JORC (2012 edition) "Table 1 Checklist of Assessment and Reporting Criteria" at the back of this announcement. The July 2013 Nova-Bollinger Mineral Resource includes an update to the Nova March 2013 Mineral Resource as result of the Bollinger drilling on the eastern boundary of the deposit. There have been minor changes to the Nova 0.4% Ni sulphide envelope and feeder zone interpretations.

A range of lower cut-offs was used to report grades and tonnages, as shown in Table 4 and Table 5. The robustness of the Nova-Bollinger mineralisation is clearly demonstrated by the fact that elevated cut-off grades have minimal effect on the contained metal i.e., even using a 1.0% nickel equivalent* lower cut-off, the Bollinger resource still contains 69,000 tonnes of nickel, 27,000 tonnes of copper and 2,800 tonnes of cobalt (*see Table 4 and Figure 4*) and the combined Nova-Bollinger resource still contains 296,000 tonnes of nickel, 117,000 tonnes of copper and 9,900 tonnes of cobalt (*see Table 5 and Figure 5*).

A summary of the information used in the July 2013 Nova-Bollinger Mineral Resource estimate is as follows:

The Nova-Bollinger deposit geological setting is of a gabbroic intrusion(s) within metasediments within a high grade metamorphic terrane. The sulphide mineralisation is related to, and part of, the intrusive event. The Bollinger deposit appears to be intimately related to the Nova deposit and represents part of a number of intrusive events that transgress sedimentary layers to the immediate east of Nova.

The Bollinger Mineral Resource abuts the Nova Mineral Resource and has dimensions of 300 m (north) by 400 m (east) and 125 m (elevation). The Bollinger resource has a maximum depth of 450 m below surface. The Nova and Bollinger deposits are joined by a feeder zone, and the resource areas are arbitrarily split along a North-South line defined by the 518,600 mE MGA grid line. The Nova Mineral Resource area has

dimensions of 450 m (north) by 550 m (east) and 400 m (elevation). The total extent of the combined Nova-Bollinger deposit is therefore 750 m (north) by 950 m (east) and 450 m (elevation).

The Bollinger deposit was sampled using diamond drill holes (DD) only on a nominal 25 m by 25 m to 50 m by 50 m grid spacing. A total of 72 DD holes were drilled for 35,935 m. Holes were generally angled towards grid west between -60° and -90° to optimally intersect the mineralised zones. Drilling at the Nova deposit comprised diamond drill holes (96%) consisting of NQ2 and HQ (metallurgical) diameter core totalling 163 holes for 63,099 m. The remaining 15 holes for 2,910 m comprises reverse circulation (RC) drillholes employing a 140 mm face sampling hammer drilling. The nominal drillhole spacing is 25 m (northing) by 25 m (easting). Diamond core recoveries for all holes are >95% overall. Drillhole collar locations were surveyed using RTK GPS, and all holes were downhole surveyed using high speed gyroscopic survey tools.

Sampling of diamond core was based on geological intervals (length 0.2 m to 1.3 m). The core was cut into half (NQ2) or quarter (HQ) to give sample weights around 3 kg. Reverse circulation drilling was used to obtain 1m samples by cone or riffle splitter from which 3 kg was pulverised to produce a sub sample for assaying. Field quality control procedures involved assay standards, along with blanks and duplicates. These QC samples were inserted at an average rate of 1:15, with an increased rate in mineralised zones.

The sample preparation of diamond core involved oven drying, coarse crushing of the half core sample down to ~10 mm followed by pulverisation of the entire sample to a grind size of 85% passing 75 micron. The sample preparation for RC samples was identical, without the coarse crush stage. A pulp sub-sample was collected for analysis by four acid digest with an ICP/OES, ICP/MS (Ni, Cu, Co) finish. Independent checks for Bollinger using 201 pulp samples and standards were sent to ALS (Nova had 2,590 samples sent to two other laboratories) and showed good precision with the primary lab.

Detailed geological studies (petrography and litho-geochemistry) identified key relationships of controls such as lithology, sulphide content, form and multi-element geochemistry. These allowed interpretation of robust 3D geological and mineralisation wireframe domains that are considered to be analogous in deposit style to other mafic-hosted, nickel and copper deposits worldwide, such as Voiseys Bay and Raglan in Canada. The wireframes were used to code the drilling and select samples within each domain. A nominal grade cut-off of 0.4% Ni appears to be a natural grade boundary between disseminated and trace sulphides. This cut-off grade was used to define the mineralised envelope within which the higher grade sub domains were interpreted.

Samples were composited to one metre lengths, and adjusted where necessary to ensure that no residual sample lengths were excluded (best fit method). Statistical analysis showed the populations in each domain to generally have a low coefficient of variation but it was noted that some estimation domains included outlier values that required top-cut values to be applied. Mixed sample populations were present in the Massive and Carapace domains at Bollinger, and the Lower Massive unit at Nova which were addressed by sub-domaining using a categorical indicator approach. Subdomains were interpreted to represent the massive, breccia and/or low grade mineralisation as observed in drill core.

Due to the folded nature of the mineralisation at Bollinger, the Massive domain was modelled using an unfolding technique. Other domains with lesser degrees of folding were modelled in flattened space or used Dynamic Anisotropy to optimise the grade estimation. The Lower Massive domain at Nova, which contains the bulk of the mineralisation, was also modelled using unfolding. No other domains at Nova required spatial transformation during estimation. Directional variograms and Ordinary Kriging were used to estimate grades in all domains. Estimation searches for all elements (Ni, Cu, Co, Fe, Mg and S) were set to the ranges of the nickel variogram for all domains. Density was estimated using 7,950 samples taken by Sirius at Bollinger, and 12,429 samples at Nova.

A single block model to encompass the Nova-Bollinger Mineral Resource was constructed using an 8 mE by 12 mN by 4 mRL parent block size with subcelling to 1 mE by 1 mN by 0.25 mRL for domain volume resolution. All estimation was completed at the parent cell scale. Kriging neighbourhood analysis was carried out for the Nova March 2013 Mineral Resource in order to optimise the block size, search distances and sample numbers used, and these were considered appropriate for Bollinger. Due to the moderate-strong correlation of nickel with the other elements the size of the search ellipse per domain was based on the nickel variography. Three estimation search passes were used for each domain. Hard boundaries were applied between all estimation domains in the majority of cases, apart from the alteration envelope at Nova where a soft boundary with the disseminated domain was used. The validation of the block model shows good correlation of the input data to the estimated grades.

The Nova and Bollinger mineralised domains have demonstrated sufficient continuity in both geological and grade continuity to support the definition of Mineral Resource and Reserves, and the classifications applied under the JORC Code (2012 edition). The Bollinger resource classification criteria used drilling density of 25 m by 25 m and high confidence of geological and grade continuity to define Indicated Mineral Resources. In the case of Inferred Mineral Resources the criteria used nominal drilling density of 50 m by 50 m and lower geological confidence of grade continuity or geometry/extents. The Nova resource classification considered a nominal drillhole spacing of 25 m (northing) by 25 m (easting) to provide sufficient geological and grade continuity definition to assign an Indicated Mineral Resource classification to the majority of the deposit. The drilling density between areas defined as Indicated Mineral Resources and Inferred Mineral Resources is nominally the same, however the Inferred Mineral Resources are defined on the margins of the deposit where the final extent of the resource boundary is less confident and make up only 10% of the reported resource (see Figure 1).

The input data is comprehensive in its coverage of the mineralisation and does not favour or misrepresent in-situ mineralisation. Geological control at Nova-Bollinger consists of a primary mineralisation event modified by structural events. The definition of mineralised zones is based on a high level of geological understanding producing a robust model of mineralised domains. This model has been confirmed by infill drilling which supported the initial interpretation.

Optiro carried out a site visit to the Nova deposit on the 21st of February, 2013. Mark Drabble (Principal Consultant), who is acting as Competent Person, inspected the deposit area, the core logging and sampling facility and density measurement area. A second visit took place to view metallurgical PQ and HQ core at AMMTEC in Balcatta on the 28th June 2013. Optiro examined core samples as part the interpretation process of both resource estimates at the Sirius office in Balcatta.

No assumptions have been made as to mining methods other than that it will be by dominantly underground methods. Preliminary metallurgical testing indicates recoveries of over 95% for both nickel and copper to a bulk concentrate.

Bento

Mark Bennett, Managing Director and CEO

	Bollinger Mineral Resource - July 2013											
	Tonnes		Gra	de		C	ontained Meta	al				
	(Mt)	NiEQ%	Ni %	Copper (kt)	Cobalt (kt)							
Measured	-	-	-	-	-	-	-	-				
Indicated	2.4	2.9	2.6	1.0	0.10	63	25	2.5				
Inferred	2.0	1.0	0.9	0.4	0.04	18	8	0.8				
Total	4.4	4.4 2.1 1.8 0.7 0.07 81 33 3.3										

Table 1. Bollinger Mineral Resource estimate reported at a 0.6% nickel equivalent* (NiEq) cut-off grade.

	Nova Mineral Resource - July 2013											
	Tonnes		Gra	de		C	Contained Metal					
	(Mt)	NiEQ%	Ni %	Cu %	Co %	Nickel (kt)	Copper (kt)	Cobalt (kt)				
Measured	-	-	-	-	-	-	-	-				
Indicated	9.3	2.8	2.5	1.0	0.08	231	95	7.3				
Inferred	1.0	1.6	1.4	0.6	0.05	14	6	0.5				
Total	10.2	2.7	2.4	1.0	0.08	245	101	7.8				

Table 2. Nova Mineral Resource estimate reported at a 0.6% nickel equivalent* (NiEq) cut-off grade.

		Nova-Bollinger Mineral Resource - July 2013												
	Tonnes		Gra	de		C	ontained Meta	al						
	(Mt)	NiEQ% Ni % Cu % Co % Nickel (kt)		Copper (kt)	Cobalt (kt)									
Measured	-	-	-	_	-	-	-	-						
Indicated	11.7	2.8	2.5	1.0	0.08	294	120	9.8						
Inferred	2.9	1.2	1.1	0.5	0.04	31	14	1.2						
Total	14.6	2.5	2.2	0.9	0.08	325	134	11.0						

Table 3. Nova - Bollinger Mineral Resource estimate reported at a 0.6% nickel equivalent* (NiEq) cut-off grade.

Figure 1. Plan projection of Nova and Bollinger, showing location and extent of resource categories.

1.8

2.5

1.1

2.2

0.7

1.0

0.5

0.9

0.07

0.08

0.04

0.08

81

294

31

325

33

120

14

134

3.3

9.8

1.2

11.0

11.7

2.9

14.6

2.8

1.2

2.5

6,479,000 mN

Inferred

Total

Figure 2. Cross section 6,479,700 mN through the Nova-Bollinger deposit.

Figure 3. Cross section 6,479,650 mN through the Nova-Bollinger deposit.

NiEq%	Catagory	Tonnes		Gra	ade		Contained Metal		
cutoff	Category	(Mt)	NiEq%	Ni%	Cu%	Co%	Nickel (kt)	Copper (kt)	Cobalt (kt)
	Indicated	3.2	2.3	2.1	0.8	0.08	66	26	2.6
0.4	Inferred	3.8	0.8	0.7	0.3	0.03	25	12	1.1
	Total	7.0	1.5	1.3	0.5	0.05	91	38	3.7
	Indicated	2.6	2.7	2.4	1.0	0.10	64	25	2.5
0.5	Inferred	2.5	0.9	0.8	0.4	0.03	20	9	0.9
	Total	5.2	1.8	1.6	0.7	0.07	84	35	3.4
	Indicated	2.4	2.9	2.6	1.0	0.10	63	25	2.5
0.6	Inferred	2.0	1.0	0.9	0.4	0.04	18	8	0.8
	Total	4.4	2.1	1.8	0.7	0.07	81	33	3.3
	Indicated	2.2	3.1	2.8	1.1	0.11	62	24	2.5
0.7	Inferred	1.6	1.1	1.0	0.4	0.04	15	7	0.7
	Total	3.8	2.3	2.1	0.8	0.08	77	31	3.1
	Indicated	2.0	3.3	3.0	1.2	0.12	61	24	2.4
0.8	Inferred	1.2	1.3	1.1	0.5	0.05	13	5	0.5
	Total	3.2	2.6	2.3	0.9	0.09	74	29	3.0
	Indicated	1.9	3.5	3.1	1.2	0.12	60	23	2.4
0.9	Inferred	0.9	1.4	1.2	0.5	0.05	11	5	0.5
	Total	2.9	2.8	2.5	1.0	0.10	71	28	2.8
	Indicated	1.8	3.6	3.2	1.2	0.13	59	23	2.3
1	Inferred	0.8	1.5	1.3	0.5	0.05	10	4	0.4
	Total	2.6	3.0	2.6	1.0	0.11	69	27	2.8

Table 4. Bollinger Mineral Resource estimate outcomes based on a range of nickel equivalent* lower cut-off grades.

Figure 4. Grade-tonnage curve for Bollinger at various nickel equivalent* cut-offs.

	NiEq% cutoff	Cate
		Indio
	0.4	Infe
		То
		Indio
\bigcirc	0.5	Infe
\bigcirc		То
		Indio
615	0.6	Infe
(QD)		То
20		Indio
\bigcirc	0.7	Infe
		То
		Indio
	0.8	Infe
		То
adi		Indio
GO	0.9	Infe
		То
		Indic
\bigcirc	1	Infe
		То
	able 5. Nova - rades.	Bolling
		2
		2
~		1
		ĴĮ
		an 1
(\bigcirc)		Ton

		Tonnos		Gra	ade		(Contained Meta	ıl
cutoff	Category	(Mt)	NiEq %	Ni%	Cu %	Co%	Nickel (kt)	Copper (kt)	Cobalt (kt)
	Indicated	Tonnes (Mt) NiEq % Ni	2.2	0.9	0.07	303	125	10.2	
0.4	Inferred	4.9	0.9	0.8	0.4	0.03	39	18	1.6
	Total	18.7	2.1	1.8	0.8	0.06	342	143	11.8
	Indicated	12.6	2.7	2.4	1.0	0.08	298	122	10.0
0.5	Inferred	3.5	1.1	1.0	0.4	0.04	34	15	1.4
	Total	16.1	2.3	2.1	0.9	0.07	332	138	11.3
	Indicated	11.7	2.8	2.5	1.0	0.08	294	120	9.8
0.6	Inferred	2.9	1.2	1.1	0.5	0.04	31	14	1.2
	Total	14.6	2.5	2.2	0.9	0.08	325	134	11.0
	Indicated	10.9	3.0	2.7	1.1	0.09	290	117	9.6
0.7	Inferred	2.4	1.3	1.2	0.5	0.05	28	13	1.1
	Total	13.3	2.7	2.4	1.0	0.08	318	129	10.7
	Indicated	10.0	3.2	2.8	1.1	0.09	285	114	9.4
0.8	Inferred	2.0	1.5	1.3	0.6	0.05	26	11	1.0
	Total	12.0	2.9	2.6	1.0	0.09	310	125	10.4
	Indicated	9.3	3.4	3.0	1.2	0.10	279	111	9.3
0.9	Inferred	1.6	1.6	1.4	0.6	0.05	23	10	0.9
	Total	10.9	3.1	2.8	1.1	0.09	302	120	10.1
	Indicated	8.7	3.6	3.2	1.2	0.10	275	108	9.1
1	Inferred	1.4	1.7	1.5	0.6	0.06	21	9	0.8
	Total	10.1	3.3	2.9	1.2	0.10	296	117	9.9

ger Mineral Resource estimate outcomes based on a range of nickel equivalent* lower cut-off

Figure 5. Grade-tonnage curve for Nova - Bollinger at various nickel equivalent* cut-offs.

Nickel equivalent percentage (NiEq%) calculation basis:

The NiEq% is based on the following formula: ((Cu% x 0.95) x (7655/16408)) + (Ni% x 0.95), where the nickel price is USD\$16,408/tonne and the copper price is USD\$7,655/tonne. These metal prices are based on 12 month averages (not volume weighted) of spot prices from the London Metal Exchange (July 2012 to June 2013). The 0.95 factor is based on the metallurgical recoveries achieved in preliminary sighter flotation test work by Strategic Metallurgy Pty Ltd announced by Sirius on 20th December 2012. Preliminary sighter flotation tests on Bollinger samples yield recoveries of 99% Ni and 99% Cu in massive-breccia mineralisation and 93% Ni and 96% Cu in disseminated mineralisation. No value has been attributed to cobalt for the purposes of this calculation. This calculation has been updated for the average 12 month metal price since the March 2013 Nova Mineral Resource, but this has not had a material effect on the reported Mineral Resource figures.

It is the company's opinion that the nickel and copper metals used in the metal equivalent calculation have reasonable potential for recovery and sale based on metallurgical recoveries in preliminary flotation test work noted above. There are a number of well-established processing routes for deposits of this type and sales of the resulting product as combined or individual concentrates.

ANNEXURE 1: Drilling Results - new results in bold font

	Hole No.	Zone	Total Depth	North	East	RL	Di p	Azim	From, m	To, m	Width, m	Ni, pct	Cu, pct	Co, pct
	SFRD0167	Bollinger	529	6479700	518950	2287	70	270	361.00	463.82	102.82	1.00	0.43	0.04
5			Inc	luding					401.00	463.82	62.82	1.41	0.57	0.06
				and					433.92	438.70	4.78	4.60	1.29	0.19
	SFRD0251	Feeder Zone	517.1	6479600	518669	2285	65	270	393.71	401.57	7.86	1.83	1.92	0.07
	SFRD0252	Feeder Zone	499.2	6479600	518669	2286	65	270	378.46	380.23	1.77	4.31	1.04	0.17
	SFRD0253	Feeder Zone	528	6479673	518735	2286	66	270	392.93	410.69	17.76	0.88	0.27	0.04
	SFRD0254	Feeder Zone	459.9	6479673	518735	2286	90	270	356.00	378.58	22.58	0.42	0.32	0.02
				and					403.56	406.04	2.48	4.27	1.87	0.17
	SFRD0256	Feeder Zone	518.3	6479673	518735	2286	75	270	383.15	415.25	32.10	1.21	0.48	0.05
	SFRD0257	Bollinger	528.2	6479700	519100	2287	67	270	429.00	480.76	51.76	0.56	0.28	0.02
			Inc	luding					431.11	435.39	4.28	1.04	0.45	0.04
	SFRD0258	Bollinger	509.3	6479700	518950	2287	66	270	423.10	478.20	55.1	3.09	1.02	0.12
			Inc	luding					437.91	455.42	17.51	4.77	1.30	0.18
				and					471.40	477.41	6.01	5.18	1.74	0.20
	SFRD0259	Bollinger	541	6479600	519050	2285	63	270	450.25	464.48	14.23	4.78	1.90	0.19
	SFRD0260	Bollinger	520	6479700	519100	2287	79	270			NSI			
	SFRD0261	Feeder Zone	440	6479600	518670	2285	79	270			NSI			
	SFRD0262	Bollinger	501.1	6479650	518950	2287	79	270	385.20	437.10	51.90	2.96	1.13	0.12
			Inc	luding					416.65	434.15	17.50	4.91	1.88	0.19
	SFRD0263	C5	570.5	6479800	519000	2288	60	270	363.24	382.44	19.20	0.47	0.24	0.03
	SFRD0265	Bollinger	490	6479650	518951	2287	69	270	412.79	423.10	10.31	3.33	1.48	0.13
	SFRD0266	Bollinger	531.9	6479599	519050	2288	68	270	421.50	441.32	19.82	1.50	0.57	0.06
			Inc	luding			-		438.05	440.65	2.60	5.24	1.66	0.21
	SFRD0267	Bollinger	582.2	6479700	519100	2287	62	270	432.00	506.78	74.78	1.32	0.53	0.06
	SFRD0268	Bollinger	544.2	6479600	518675	2285	90	270	390.86	391.85	0.99	3.75	1.24	0.15
	SFRD0269	Bollinger	540.8	6479800	519000	2288	78	270			NSI			
	SFRD0270	Bollinger	569.9	6479650	518952	2287	84	270	400.47	405.64	5.17	2.93	1.85	0.12
	SFRD0272	Bollinger/C5	549.9	6479750	518850	2286.2	75	270	320.00	351.88	31.88	0.58	0.25	0.03
	SFRD0274	Bollinger	510.9	6479675	518985	2287.4	68	270	417.00	439.40	22.40	3.31	1.28	0.13
			Inc	luding					429.95	438.87	8.92	5.22	1.92	0.21
	SFRD0276	Bollinger	504.6	6479750	518850	2286	81	270	415.78	450.00	34.22	0.57	0.26	0.02
	SFRD0277	Bollinger	520.1	6479650	518950	2286.7	74	270	405.33	427.18	21.85	5.36	2.16	0.21
_	SFRD0279	Bollinger	480.8	6479800	518860	2287	65	270		1	NSI	1	1	1
	SFRD0280	Bollinger	495.9	6479675	518985	2287	74	270	394.00	461.62	67.62	1.42	0.67	0.06
			Inc	luding					433.34	443.50	10.16	3.20	1.00	0.12
			Inc	luding	1	1	r —	1	459.27	461.62	2.35	5.64	2.33	0.22
	SFRD0281	Bollinger/C5	528.4	6479700	518950	2287	60	270	424.00	431.78	7.78	1.39	0.76	0.07
				and					465.28	498.04	32.76	2.15	0.76	0.09
			Inc	luding	1	1	r —	1	494.59	498.04	3.45	5.24	1.66	0.20
	SFRD0282	Bollinger/C5	494.0	6479750	518850	2286	68	270	357.88	362.39	4.51	0.66	0.33	0.03
	SFRD0285	Bollinger	510.9	6479750	518950	2287	77	270	405.22	407.93	2.71	1.15	0.32	0.05
				and					426.39	428.92	2.53	5.08	1.73	0.19
	SFRD0286	Bollinger	490	6479675	518985	2287	77 .5	270	400.34	452.65	52.31	1.96	0.68	0.08
				and					461.16	463.62	2.46	5.73	2.24	0.22
	SFRD0287	Bollinger	525.9	6479800	519001	2289	72	270			NSI			
_	SFRD0288	Feeder Zone	522.8	6479699	518948	2287	56	270	420.50	435.38	14.88	0.66	0.66	0.03
		D - 11'	400.4	and	540050	2207	07	270	491.55	494.67	3.12	1.11	0.51	0.05
	SFRD0290	Bollinger	499.1	6479750	518950	2287	85	270	392.70	452.00	59.30	0.42	0.22	0.02

Hole No.	Zone	Total Depth	North	East	RL	Di p	Azim	From, m	To, m	Width, m	Ni, pct	Cu, pct	Co, pct
SFRD0291	Bollinger	519.8	6479675	518985	2287	62	270	436.00	463.60	27.60	3.06	1.03	0.12
		Inc	luding	•				451.84	463.60	11.76	5.15	1.73	0.20
SFRD0293	Bollinger	513.9	6479725	518950	2287	77	270	347.00	452.68	105.68	0.72	0.27	0.03
,		Inc	luding					442.41	452.68	10.27	3.42	1.15	0.13
SFRD0294	C5/Bollinger	522.9	6479700	518950	2287	63	270	402.54	420.41	17.87	0.53	0.35	0.03
			and					452.36	490.87	38.51	2.06	0.75	0.08
		Inc	luding					483.67	490.87	7.20	5.34	1.97	0.21
SFRD0295	Bollinger	526.1	6479600	519049	2287	62	270	449.40	457.23	7.83	1.18	0.23	0.05
SFRD0296	Bollinger	509.9	6479750	519100	2290	72	270	409.62	464.00	54.38	0.38	0.16	0.02
SFRD0297	Bollinger	516.4	6479675	518985	2287	66	270	425.02	443.86	18.84	5.15	2.24	0.21
SFRD0299	Bollinger	518	6479725	518950	2287	69	270	410.90	468.70	57.80	0.64	0.21	0.03
SFRD0300	Bollinger	509.5	6479600	519049	2287	66	270	445.35	455.00	9.65	1.04	0.43	0.04
SFRD0301	Bollinger	494.7	6479700	518950	2287.3	70	270	420.20	477.30	57.10	2.73	1.14	0.11
		Inc	luding					449.50	467.72	18.22	5.08	2.03	0.20
SFRD0303	Bollinger	495.9	6479725	518950	2287.3	73	270	383.53	464.00	80.47	0.59	0.25	0.03
		Inc	luding					427.27	429.32	2.05	5.79	1.44	0.22
SFRD0304	Bollinger	471.8	6479675	518985	2286	83	270	415.67	431.77	16.10	2.48	0.87	0.09
		Inc	luding					423.51	427.78	4.27	5.25	1.28	0.19
SFRD0306	Bollinger	462.9	6479625	518950	2287	66	270	415.53	430.25	14.72	2.60	1.04	0.10
		Inc	luding					415.53	421.38	5.85	4.89	1.82	0.19
SFRD0307	Bollinger	487	6479700	518950	2287	77	270	369.60	463.65	94.05	0.78	0.34	0.03
SFRD0308	Bollinger	473.6	6479600	519050	2287	73	270	415.55	416.34	0.79	1.15	2.22	0.05
SFRD0309	Bollinger	492.9	6479725	518950	2287	81	270	362.00	447.80	85.80	0.46	0.20	0.02
SFRD0311	Bollinger	487.1	6479700	518950	2287	84	270	377.73	445.92	68.19	0.71	0.26	0.03
SFRD0312	Bollinger	477.8	6479675	518985	2287	86	270			NSI			
SFRD0313	Bollinger	451	6479625	518950	2286	70	270	412.47	427.08	14.61	3.03	0.85	0.12
		Inc	luding	And the second	0		1	414.50	419.87	5.37	5.40	1.44	0.21
SFRD0314	Bollinger	513.9	6479725	518950	2287	65	270	430.85	486.97	56.12	0.62	0.26	0.03
SFRD0315	Bollinger	454.1	6479625	518950	2286	76	270	415.15	425.23	10.08	3.57	1.15	0.14
SFRD0316	Bollinger	480.9	6479675	518985	2288	81	270	397.20	445.00	47.80	1.41	0.64	0.06
SFRD0317	Bollinger	445.2	6479600	518860	2285	84	270	403.01	406.39	3.38	0.96	0.23	0.04
SFRD0318	C5/Bollinger	490.1	6479673	518735	2284	86	270	356.15	368.18	12.03	1.31	0.42	0.06
			and					400.76	421.05	20.29	1.30	0.80	0.06
SFRD0320	Bollinger	459.9	6479625	518950	2286	81	270	385.49	413.25	27.76	1.29	0.64	0.05
		Inc	luding					408.82	411.46	2.64	4.28	1.62	0.17
SFRD0321	Bollinger	490.1	6479680	518838	2286	90	270	395.67	434.69	39.02	5.15	2.20	0.21
SFRD0322	Bollinger	463	6479575	518925	2285	69	270	421.98	423.62	1.64	2.70	0.37	0.10
SFRD0323	Feeder	457.6	6479600	518860	2285	79	270	404.18	407.40	3.22	1.87	0.18	0.08
SFRD0324	Feeder	463.2	6479673	518735	2284	83	270	392.04	422.41	30.37	0.66	0.20	0.03
SFRD0325	Bollinger	495.8	6479725	519050	2289	71	270	382.61	472.00	89.39	0.44	0.18	0.02
SFRD0326	Bollinger	448.1	6479650	518800	2285	84	270	392.92	399.46	6.54	4.70	2.08	0.19
SFRD0328	Bollinger	499	6479725	519050	2289	79	270	NSI					
SFRD0330	C5/Feeder	494.9	6479650	518800	2285	78	270	361.37	375.34	13.97	2.00	1.35	0.09
			and					407.00	431.50	24.50	1.08	0.32	0.04
SFRD0331	C5/Feeder	486.8	6479650	518800	2285	74	270	353.54	365.00	11.46	1.81	1.00	0.09
			and	1				407.00	412.58	5.58	3.29	1.03	0.13
SFRD0332	Bollinger	480.9	6479725	518820	2285	70	270	416.10	417.70	1.6	2.61	0.17	0.09
SFRD0334	Feeder	510.9	6479650	518710	2285	79	270	394.10	403.40	9.3	1.56	0.56	0.06
SFRD0335	C5/Feeder	497.6	6479725	518820	2285	78	270	341.74	375.65	33.91	0.70	0.21	0.03
			and	1				411.60	451.47	39.87	0.50	0.35	0.02
SFRD0337M	Bollinger - MET	465.5	6479715	518795	2285.8 5	90	0	385.10	443.25	58.15	0.66	0.27	0.03
SFRD0338M	Bollinger - MET	477.9	6479690	518815	2285.5	90	0	388.30	439.96	51.66	3.96	1.41	0.15
		Inc	luding					402.28	429.82	27.54	5.14	1.90	0.20

	Hole No.	
	SFRD0340M	
	SFRD0345	
	Hole No.	
	SFRD0013	
	SFRD0017	
(\bigcirc)	SFRC0024	
	SERC0025	
615	SFRC0026	
(QD)		
	SFRC0027	
$(\langle / \cap \rangle)$		
00		
5		
	SFRC0028	
	SERC0029	
	SFRC0030	
	SFRC0031	
$(\Box D)$	SFRC0032	
60		
	SFRC0033	
	SFRC0034	1
(\bigcirc)		
	SERD0035	
((/))		
0 D	SFRD0037	
615		
(UD)	SFRD0038	
	SFRD0039	
~		
	SFRD0040	
	SFRD0041	
(\bigcirc)		
Пп		
	SFRD0042	

Hole No.	Zone	Total Depth	North	East	RL	Di	Azim	From,	To, m	Width,	Ni,	Cu,	Co,
SFRD0340M	Bollinger -	451.4	6479640	518860	2287	90	0	386.94	415.95	29.01	2.50	1.02	0.10
	MET	Inc	luding					408.52	415.16	6.64	5.23	2.02	0.21
SEPD024E	CE/Ecodor	124	6470625	E19900	2286	70	270	260 /	262 E	21	21	0.47	0.00
SFRD0345	C5/Feeder	424	0479025	510000	2200	70	270	500.4	303.5	3.1	2.1	0.47	0.09
Hole No.	Zone	Depth	North	East	RL	p	Azim	m From,	10, m	m width,	pct	pct	pct
SFRD0013	Nova	666.9	6479800	518780	2288	60	270	-	-	-	NSI		
SFRD0017	Nova	283.5	6479800	518900	2287	60	270	-	-	-	NSI		
SFRC0024	Nova	211.0	6479503	518212	2287	60	270	174.00	175.00	1.00	0.76	1.36	0.03
			and					178.00	181.00	3.00	0.31	0.68	0.01
			and					191.00	195.00	4.00	4.02	1.41	0.12
SFRC0025	Nova	121.0	6479506	518080	2287	60	270	-	-	-	NSI		
SFRC0026	Nova	151.0	6479505	518151	2287	60	270	123.00	136.00	13.00	4.30	1.83	0.12
		Inc	luding					128.00	136.00	8.00	5.81	2.26	0.16
SFRC0027	Nova	259.0	6479499	518249	2287	60	270	229.00	238.00	9.00	1.48	0.86	0.05
		Inc	luding					229.00	232.00	3.00	1.45	0.40	0.00
			and					232.00	238.00	6.00	1.84	0.57	0.00
		Inc	luding					236.00	237.00	1.00	4.70	0.40	0.12
SFRC0028	Nova	193.0	6479452	518152	2288	60	270	116.00	120.00	4.00	0.48	0.38	0.02
			and		1			156.00	164.00	8.00	0.25	0.22	0.00
SFRC0029	Nova	251.0	6479600	518299	2284	60	270	234.00	236.00	2.00	0.96	0.46	0.03
SFRC0030	Nova	234.0	6479600	518250	2284	60	270	188.00	196.00	8.00	0.41	0.40	0.02
SFRC0031	Nova	167.0	6479600	518200	2285	60	270	-	-	-	NSI		
SFRC0032	Nova	109.0	6479506	518084	2287	75	270	60.00	64.00	4.00	1.47	0.17	0.05
			and					80.00	82.00	2.00	2.11	1.12	0.07
SFRC0033	Nova	199.0	6479501	518154	2287	70	270	165.00	171.00	6.00	3.16	0.49	0.10
SFRC0034	Nova	253.0	6479503	518230	2287	60	270	200.00	204.00	4.00	0.22	1.07	0.01
			and					212.00	219.00	7.00	1.27	0.35	0.04
		Inc	luding					216.00	219.00	3.00	2.63	0.45	0.08
			and					220.00	224.00	4.00	0.18	0.47	0.00
SFRD0035	Nova	483.8	6479503	518155	2287	70	270	146.70	152.90	6.20	1.68	0.36	0.05
		Inc	luding					149.20	152.90	2.90	2.52	0.44	0.08
SFRD0037	Nova	328.0	6479599	518352	2282	60	270	263.90	268.40	4.50	2.30	1.16	0.09
			and					268.40	281.70	13.30	3.90	2.00	0.12
		Inc	luding		-			271.85	279.00	7.15	5.10	2.36	0.15
SFRD0038	Nova	318.5	6479499	518296	2286	60	270	285.40	286.10	0.70	2.85	0.33	0.08
SFRD0039	Nova	367.8	6479599	518352	2282	69	270	270.00	271.00	1.00	1.71	0.51	0.06
			and					272.97	273.24	0.27	6.58	0.98	0.21
			and					298.10	313.52	15.42	2.74	1.09	0.09
		Inc	luding					298.10	301.70	3.60	4.83	1.73	0.15
			and					311.30	313.50	2.22	5.92	0.82	0.19
SFRD0040	Nova	349.0	6479500	518296	2285	70	270	-	-	-	NSI		
SFRD0041	Nova	376.0	6479599	518352	2282	76	270	293.40	329.00	35.60	3.47	1.44	0.10
		Inc	luding					293.40	308.90	15.50	4.72	1.98	0.15
		Inc	luding					302.17	308.90	6.73	6.11	2.14	0.19
			and					321.66	326.68	5.02	6.11	2.57	0.19
			and					341.00	344.00	3.00	1.86	1.26	0.05
			and	•		-		349.60	350.50	0.90	6.15	1.25	0.19
SFRD0042	Nova	465.7	6479700	518501	2283	60	270	361.30	384.00	22.70	0.91	0.73	0.02
			and	-			-	392.72	413.65	20.93	1.56	0.65	0.05
SFRD0043	Nova	393.3	6479600	518399	2281	74	270	314.40	319.80	5.40	4.72	2.01	0.14
			and					330.74	344.57	13.83	3.11	0.97	0.10
		inc	luding					338.73	344.57	5.84	5.11	1.40	0.16
SFRD0044	Nova	400.4	6479600	518399	2281	80	270	327.80	332.38	4.58	2.33	0.67	0.07
			and					348.05	349.91	1.86	1.17	0.99	0.04

Hole No.	Zone	Total	North	East	RL	Di	Azim	From,	To,	Width,	Ni,	Cu,	Co,
		Deptil				P		256.00	262.24	7.24	2.20	4.07	
			and					356.00	363.21	7.21	2.20	1.27	0.07
SFRD0045	Nova	324.0	6479549	518299	2285	60	270	248.95	250.75	1.80	1.21	0.49	0.04
			and		1	<u> </u>	1	255.11	257.19	2.08	1.93	0.35	0.07
SFRD0046W	Neur	422.0	6470700	F10F01	2202	C 7	270	262.75	204.00	20.25	1.04	0.50	0.00
1	Nova	433.0	6479700	518501	2283	67	270	363.75	384.00	20.25	1.94	0.53	0.06
		Inc	iuding					364.82	367.43	2.61	7.45	0.98	0.25
			and		r	1		402.75	405.02	2.27	5.18	1.63	0.16
SFRD0047	Nova	346.0	6479549	518299	2285	70	270	265.37	272.67	7.30	0.64	0.36	0.02
	1		and		r	1	-	296.10	300.91	4.81	1.09	0.41	0.03
SFRD0049	Nova	458.1	6479600	518552	2282	65	270	405.74	426.00	20.26	1.57	0.51	0.05
SFRD0050	Nova	454.6	6479600	518553	2282	70	270	362.94	363.95	1.01	4.92	1.06	0.16
			and					398.00	404.80	6.80	0.79	0.50	0.03
			and		-		-	412.85	419.07	6.22	1.77	0.41	0.06
SFRD0051	Nova	255.1	6479549	518199	2286	82	270	206.00	209.00	3.00	1.25	0.15	0.03
			and					218.00	223.80	5.80	2.05	0.79	0.06
		inc	luding					221.00	223.80	2.80	3.06	0.91	0.09
SFRD0052	Nova	218.0	6479549	518196	2286	67	270	159.00	164.00	5.00	0.57	2.36	0.03
		Inc	luding					159.00	161.00	2.00	0.43	4.68	0.03
SERD0053	Nova	438.2	6479700	518501	2283	74	270	376.00	383 30	7 30	2 20	0.60	0.07
511120055	Nova	430.2	and	510501	2205	/ 4	270	393.00	410.00	17.00	3.68	3.82	0.07
		inc	luding					208.00	410.00	11.00	1 21	5.02	0.12
	Neue	425.0		F10F01	2202	70	270	202.44	410.00	11.10	4.51	3.05	0.14
SFRD0054	Nova	435.9	6479700	518501	2283	79	270	392.44	405.07	12.63	2.57	1.85	0.08
SFRD0055	Nova	396.9	6479649	518400	2282	70	270	310.50	312.07	1.57	1.99	0.57	0.07
			and					331.06	366.28	35.22	3.09	1.06	0.10
		inc	luding			-		354.75	366.28	11.53	5.42	1.83	0.17
SFRD0056	Nova	357.0	6479649	518398	2282	60	270	276.24	277.44	1.20	0.86	3.11	0.04
			and		-	-		282.77	292.80	10.03	0.85	0.49	0.03
			and					301.00	304.00	3.00	0.26	1.18	0.02
			and	-				309.00	326.72	17.72	1.58	0.72	0.05
		inc	luding					321.10	326.72	5.62	3.48	1.12	0.11
SFRD0057	Nova	478.7	6479700	518599	2285	70	270	393.01	431.91	38.90	3.23	1.46	0.10
		inc	luding					407.05	423.49	16.44	5.23	2.19	0.16
		inc	luding					413.38	423.49	10.11	6.00	2.75	0.19
SFRD0058	Nova	377.0	6479700	518351	2282	77	270	298.00	345.20	47.20	1.86	0.57	0.06
		inc	luding		m			309.20	345.20	36.00	2.23	0.65	0.08
		inc	luding					309.20	312.25	3.05	6.10	1.31	0.19
SERD0059	Nova	478 7	6479800	518602	2286	71	270	416.48	422.22	5 74	3 30	0.80	0.10
SERDOOGO	Nova	448 7	6479649	518518	2280	60	270	368.00	376.00	8.00	0.89	0.66	0.03
511120000	Nova	440.7	and	510510	2202	00	270	205.00	410.45	15 / 5	4.61	2 10	0.05
		inc	luding					206.25	410.45	0.05	6.20	2.19	0.15
		IIIC	iuuiiig					417.00	405.10	6.00	2.02	3.00	0.21
65000004	Nava	457.0		540524	2202	67	270	417.00	423.00	6.00	2.02	1.01	0.06
SFRD0061	Nova	457.0	6479649	518521	2282	67	270	361.82	423.50	61.68	3.40	1.27	0.10
		inc	luding					361.82	364.21	2.39	6.56	1.50	0.19
			and			-		384.08	406.93	22.85	5.83	2.03	0.17
SFRD0065	Nova	448.1	6479800	518601	2286	65	270	404.00	422.05	18.05	4.11	1.74	0.13
	I	inc	luding		1		1	410.30	419.40	9.10	6.20	2.67	0.20
SFRD0066	Nova	456.9	6479700	518600	2285	75	270	412.02	420.47	8.45	4.19	1.60	0.12
SFRD0068	Nova West	151.0	6479400	517904	2290	70	270	-	-	-	NSI		
SFRD0069	Nova West	300.0	6479350	517908	2290	75	270	-	-	-	NSI		
SFRD0070	Nova	459.9	6479800	518601	2286	60	270	379.82	384.63	4.81	0.93	0.33	0.02
			and					394.92	423.00	28.08	4.48	1.77	0.14
		inc	luding					399.29	405.50	6.21	5.93	2.55	0.18
			and					412.40	423.00	10.60	6.50	2.48	0.20
SFRD0076	Nova	462.9	6479700	518601	2285	82	270	346.00	349.60	3.60	4.43	1.42	0.16

362.50

365.00

2.50

1.04

0.40

0.04

Sirius Resources ASX/Media Announcement

and

Hole No.	Zone	Total	North	East	RL	Di	Azim	From,	То,	Width,	Ni,	Cu,	Co,
		Depth				р		m	m	m	pct	pct	pct
SFRD0077	Nova	451.0	6479649	518521	2282	75	270	349.00	412.60	63.60	3.41	1.30	0.11
	[inc	luding	1		1	-	363.00	378.23	15.23	7.01	2.36	0.22
SFRD0078	Nova	406.7	6479799	518498	2284	66	270	343.00	346.00	3.00	0.95	0.12	0.03
			and					358.00	363.00	5.00	0.96	0.24	0.03
		1	and			1		377.30	383.30	6.00	4.63	0.84	0.15
SFRD0079	Nova	500.0	6479700	518736	2287	71	270	380.00	381.60	1.60	0.85	0.34	0.02
SFRD0086	Nova	484.0	6479649	518521	2282	84	270	395.95	400.00	4.05	1.09	0.42	0.04
			and					405.00	412.50	7.50	0.71	0.52	0.03
		1	and			1		416.35	421.00	4.65	2.32	0.86	0.07
SFRD0087	Nova	406.1	6479799	518498	2284	60	270	327.00	330.00	3.00	0.88	0.42	0.02
			and					353.00	375.65	22.65	1.58	0.59	0.05
		inc	luding					363.00	375.65	12.65	2.26	0.79	0.07
	[inc	luding	1				373.00	375.65	2.65	5.47	0.96	0.16
SFRD0090	Nova	442.0	6479748	518540	2284	67	270	376.11	409.91	33.80	4.03	1.69	0.13
	[inc	luding	1				388.96	401.96	13.00	5.43	2.25	0.18
SFRD0092	Nova	517.0	6479900	518550	2287	72	270	-	-	-	NSI		
SFRD0093	Nova	360.5	6479799	518448	2283	60	270	307.00	323.60	16.60	1.31	0.54	0.04
		inc	luding					321.40	323.60	2.20	4.02	1.18	0.12
			and		,			220.65	221.00	0.25	0.72	10.9	0.05
	Neuro	222.0	6470700	F192F0	2202	66	270	330.05	331.00	0.35	0.73	0 22	0.05
3FKD0094	INOVA	333.9	6479700	518350	2282	00	270	244.90	248.00	3.10	1.32	0.23	0.05
			and		1			289.30	289.80	0.50	0.53	1.14	0.19
	Nevro	550.0	6470900	F19701	2200	70	270	294.00	295.40	1.40	0.67	1.60	0.03
3FKD0095	INOVA	550.0 inc	0479899	518701	2290	70	270	270.00	285.00	15.00	1.01	0.28	0.03
	Nova	450.0	6470000	E10/E1	2204	71	270	279.00	282.00	3.00		0.45	0.05
SFRD0096	Nova	459.9	6479900	518451	2284	71	270	-	-	-	INSI NICI		
SFRC0097	Nova	280.0	6479450	518200	2287	60	270	204.25	415.07	20 72	2 12	1.02	0.10
SERD0000	Nova Wost	200.4	6470502	510341	2204	60	270	594.55	415.07	20.72	5.15 NICI	1.95	0.10
SERCO100	Nova West	228.0	6479302	517060	2290	60	30	197.00	201.00	14.00	1 11	0.20	0.04
SEPD0102	Nova	238.0	6479450	518570	2207	65	270	210 57	201.00	0.61	1.11	0.38	0.04
SERD0102	Nova	449.9	6479550	518/35	2287	73	270	319.57	320.18	2.23	2.58	0.19	0.03
51100105	Nova	417.0	and	510455	2201	15	270	3/3.00	356.00	12.23	0.86	0.50	0.03
			and					365.00	387.00	22.00	1.01	1.05	0.03
SERD0104	Nova	130.0	6/707/8	5185/1	228/	73	270	400.10	408 17	8.07	2.95	0.01	0.03
SERC0105	Nova	154.0	6479450	518100	2204	60	270	76.00	79.00	3.00	0.90	0.31	0.03
SERD0106	Nova	300.9	6479649	518276	2200	74	270	235.85	239.24	3.00	5 72	0.45	0.03
SFRD0107	Nova	490.0	6479850	518570	2287	60	270	-	-	-	NSI	0.55	0.17
SERD0108	Nova	402.9	6479550	518435	2287	65	270	340.80	356.80	16.00	1.66	0.64	0.05
011120100		inc	luding	010100		00	270	340.80	349.00	8.20	2.55	0.62	0.08
		inc	luding					341.40	345.45	4.05	3.82	0.87	0.11
SFRD0109	Nova	270.8	6479649	518276	2283	60	270	183.00	185.01	2.01	1.10	6.66	0.06
SFRD0110	Nova	530.0	6479750	518710	2288	60	270	441.25	458.20	16.95	0.85	0.32	0.03
SFRD0111	Nova	528.5	6479800	518745	2289	60	270	0.00	0.00	0.00	NSI	0.00	0.00
SFRD0112	Nova	424.2	6479550	518435	2281	80	270	344.65	345.95	1.30	1.06	0.35	0.04
SFRD0113	Nova	369.0	6479750	518420	2282	69	270	273.12	274.45	1.33	1.35	0.62	0.03
			and					312.00	352.40	40.40	2.25	1.10	0.07
		Inc	luding					327.90	336.44	8.54	5.24	1.01	0.16
			and					348.15	352.40	4.25	4.76	3.10	0.16
SFRD0114	Nova	373.0	6479750	518420	2282	60	270	314.00	336.07	22.07	2.94	0.70	0.09
SFRD0115	Nova West	451.1	6479500	517600	2000	60	90	-	-	-	NSI	2.70	2,00
SFRD0116	Nova	400.0	6479850	518520	2285	60	270	250.73	253.33	2.60	0.65	1.79	0.01
SFRD0117	Nova	441.9	6479650	518520	2282	71	270	342.00	416.00	70.00	3.44	1.29	0.09
-	-	inc	luding		-			349.97	372.55	22.58	6.77	2.24	0.18

Sirius Resources ASX/Media Announcement

418.0

6479900 518780

2292

70

270

348.93

349.18

0.25

3.70

0.30

0.17

Nova/C5

SFRD0118

Hole No.	Zone	Total Depth	North	East	RL	Di p	Azim	From, m	To, m	Width, m	Ni, pct	Cu, pct	Co, pct
SFRD0119	Nova	400.0	6479750	518420	2282	73	270	347.20	361.90	14.70	2.33	0.57	0.07
SFRD0120	Nova	400.1	6479550	518435	2282	61	270	335.43	353.00	17.57	1.67	0.69	0.05
SFRD0121	Nova	383.5	6479750	518390	2282	61	270	252.00	258.62	6.62	0.90	0.54	0.03
			and					278.58	277.76	1.18	1.93	0.46	0.06
SFRD0122	Nova/C5	421.1	6479900	518780	2292								
SFRD0123	Nova		6479650	518520		79	270	346.43	360.54	14.11	2.37	1.00	0.08
			and	•				385.68	399.12	13.44	4.61	1.50	0.14
		inc	luding					391.00	399.12	8.12	6.26	1.67	0.18
			and					407.09	423.00	15.91	0.67	0.36	0.02
SFRD0124	Nova West	198.9	6479450	517722	2290	60	90	-	-	-	NSI		
SFRD0125	Nova/C5	403.0	6479850	518770	2290	70	270	305.70	334.57	28.87	0.50	0.34	
		inc	luding	•				322.80	334.57	11.77	0.73	0.58	
SFRD0128	Nova	395.9	6479650	518400	2281	74	270	322.80	379.00	56.20	2.64	1.15	0.09
SFRD0129M	Nova	372.7	6479700	518351	2282	79	270	309.00	366.15	57.15	1.58	0.59	0.05
	L	Inc	luding	•				330.00	366.15	35.15	2.19	0.77	0.07
		Inc	luding					353.45	365.00	11.55	4.52	1.41	0.14
SFRD0130	Nova	505.0	6479650	518398	2282	65	270	279.00	343.00	64.00	2.48	0.95	0.08
	I.	Inc	luding					294.40	304.90	10.50	6.77	2.08	0.21
SFRD0131	Nova	344.6	6479550	518300	2285	77	270	284.76	287.27	2.51	0.68	0.77	0.02
SFRD0132	Nova	324.8	6479600	518352	2282	65	270	264.65	303.75	39.10	2.38	0.96	0.07
SFRD0134	Nova	223.1	6479550	518197	2286	75	270	157.88	159.55	1.67	2.31	0.34	0.07
			and					169.95	171.45	1.50	0.68	2.27	0.02
			and	~			_	177.90	191.46	13.56	3.41	4.54	0.10
SFRD0135	Nova	274.2	6479600	518298	2284	66	270	230.00	234.00	4.00	1.98	0.44	0.06
SFRD0136	Nova	402.9	6479799	518498	2284	60	270	350.00	379.35	29.35	1.75	0.92	0.05
		inc	luding		V			373.40	379.35	5.95	3.85	1.46	0.12
SFRD0137	Nova	292.0	6479700	518347	2282	60	270	260.35	261.60	1.25	0.41	3.67	0.02
SERD0140	Nova	456.6	6479600	518550	2282	61	270	382.00	396.10	14.10	0.69	0.18	0.02
			and					411.06	425.53	14.47	3.15	1.07	0.09
SFRD0141	Nova	421.0	6479699	518500	2283	70	270	355.20	415.33	60.13	1.08	0.62	0.03
SFRD0143	Nova	430.1	6479745	518539	2284	70	270	396.76	408.74	11.98	4.71	1.98	0.14
		Inc	luding					398.81	404.92	6.11	6.64	2.53	0.19
SFRD0144	Nova/C5	507.8	6479903	518939	2290	70	270	-		-	NSI		
SFRD0145	Nova	472.0	6479599	518554	2282	79	270	359.32	362.20	2.88	0.99	0.42	0.04
SERD0146	Nova	472.0	6479700	518600	2285	64	270	368.88	379.70	10.82	0.63	1.42	0.03
011120110		Inc	luding	510000	2200		2/0	372.66	375.06	2.40	2.21	4.13	0.09
SFRD0147	Nova	459.8	6479672	518582	2284	57	270	417.00	432.58	15.58	4.64	1.90	0.15
		Inc	luding					418.00	426.74	8.74	6.36	2.36	0.20
SFRD0148	Nova	363.9	6479675	518425	2282	67	270	305.56	339.79	34.23	3.54	0.88	0.11
	I.	Inc	luding	•				317.41	339.79	22.38	4.69	1.04	0.14
SFRD0149	Nova	486.7	6479700	518735	2287	62	270	-	-	-	NSI		
SFRD0150	Nova	261.6	6479675	518314	2282	62	270	214.77	241.86	27.09	2.10	1.12	0.06
SFRD0151	Nova	376.1	6479675	518424	2282	68	270	330.65	368.25	37.60	2.01	0.81	0.07
		Inc	luding					364.75	367.55	2.80	6.65	1.67	0.20
SFRD0152	Nova	459.8	6479725	518393	2284	68	270	396.53	430.45	33.92	2.60	1.19	0.09
SFRD0153	Nova	376.0	6479725	518393	2282	71	270	299.04	362.45	63.41	1.02	0.57	0.04
	I.	Inc	luding	•				347.05	351.02	3.97	3.96	1.13	0.13
SFRD0154	Nova	289.1	6479675	518315	2282	61	270	261.45	277.30	15.85	2.94	0.84	0.09
	I.	Inc	luding	•				274.10	277.30	3.20	6.51	1.29	0.19
SFRD0155	Nova	424.0	6479625	518500	2282	68	270	336.33	398.67	62.34	2.98	1.38	0.09
		Inc	luding		•			349.85	358.70	8.85	6.24	2.89	0.19
			and					365.07	368.60	3.53	6.69	1.92	0.21
			and					410.88	417.74	6.86	1.56	0.38	0.05
SFRD0156	Nova	394.1	6479675	518425	2282	68	270	340.00	381.30	41.30	1.31	0.36	0.05
SFRD0158	Nova	462.8	6479675	518585	2284	72	270	364.15	383.00	18.85	1.15	0.42	0.04

n Ta Milath Ni Cu Ca

н	ole No.	Zone	Total	North
			Deptil	and
SF	RD0159	Nova	358.0	647972
			Inc	luding
SF	RD0160	Nova	397.1	647967
				and
SF	RD0161	Nova	431.8	647962
			Inc	cluding
SF	RD0162	Nova	328.0	647972
SF	RD0163	Nova	468.9	647967
				and
SF	RD0164	Nova	499.1	647967
SF	RD0165	Nova	433.1	647962
				and
SFF	RD0166M	Nova	450.5	647972
			Inc	luding
SF	RD0170	Nova	529.0	647962
			Inc	luding
SF	RD0171	Nova	436.0	647962
				and
SFF	RD0172M	Nova	403.0	647967
			Inc	luding
SFF	RD0174M	Nova	349.5	647962
SF	RD0175	Nova	433.0	647962
			Inc	luding
SF	RD0176	Nova	382.1	647952
SF	RD0178	Nova	441.9	647972
SF	RD0179	Nova	416.5	647982
SFF	RD0185M	Nova	372.8	647962
<u> </u>				and
	000100	N 1 - 1		cluding
SF	KD0186	inova	455.5	647962
	000107	Neve	405.2	
5		INOVA	405.2	647952
51		Nova	441.9	647972
555		Nova	285.7	647957
51	RD0191	Nova	415.3	647982
51	RD0102	Nova	330.8	647977
5		6VOVI	432.9	647977
		Nova	J25 2	647957
SFF		Nova	433.3	647972
		Nova	543.8 /11/7	647977
SEC	100200199	Nova	414.7	647982
	RD02001VI	Nova	3// 1	647957
	RD0201	Nova	257 5	647957
5	RD0202	Nova	4/1 9	647972
5	RD0205	Nova	405.1	647957
SF	RD0206	Nova	420.7	647987
			.20.7	2

Hole No.	Zone	Donth	North	East	RL	2	Azim	From,	10, m	wiath,	nut	Cu,	co,
		Deptil				þ		402.20	410.75	17.55	1.00		
	Nova	250.0	647072E	E19202	2202	60	270	212 50	419.75	20.10	1.80	0.00	0.00
3FKD0139	NUVa	556.U	0479725	210292	2202	00	270	212.20	251.09	14.24	2.22	0.40	0.07
	Nova	207.1	.iuuiiig	E1042E	2202	74	270	221.00	220.00	14.24	0.55	0.76	0.11
31 100100	NOVa	397.1	and	516425	2202	74	270	2/9 95	291 11	22 50	1 20	0.24	0.02
	Nova	121.9	6470625	518500	2262	66	270	241.00	202.00	50.60	5.06	1.75	0.04
31 100101	NOVa	431.0 Inc	luding	518500	2202	00	270	354 30	392.00	28.86	6.50	2.24	0.15
SERD0162	Nova	328.0	6479724	518393	2282	62	270	294.30	310 34	16 16	3 13	1 75	0.20
SFRD0163	Nova	468.9	6479675	518585	2282	77	270	361 75	378.96	17.21	2 40	0.68	0.10
511120105	Nova	100.5	and	510505	2201	,,	270	405.80	429 33	23 53	1 69	0.58	0.05
SFRD0164	Nova	499.1	6479675	518425	2282	77	270	327.14	385.00	57.86	0.53	0.35	0.02
SFRD0165	Nova	433.1	6479625	518500	2282	71	270	347.30	379.00	31.70	1.09	0.21	0.04
0.1120100		10012	and	010000		7-	270	388.87	399.75	10.88	1.83	0.45	0.06
SFRD0166M	Nova	450.5	6479725	518585	2285	58	270	407.33	436.65	29.32	4.94	1.82	0.17
		Inc	luding					414.72	435.87	21.15	6.03	2.15	0.20
SFRD0170	Nova	529.0	6479625	518392	2281	59	270	301.07	321.35	20.28	4.47	0.99	0.13
		Inc	luding					311.12	319.09	7.97	7.12	1.36	0.21
SFRD0171	Nova	436.0	6479625	518500	2282	74	270	347.20	367.00	19.80	1.04	0.33	0.04
			and					392.25	407.55	15.30	1.47	0.87	0.05
SFRD0172M	Nova	403.0	6479675	518425	2282	82	270	345.82	396.55	50.73	2.84	1.03	0.08
		Inc	luding					367.40	376.30	8.90	6.16	1.08	0.18
SFRD0174M	Nova	349.5	6479625	518392	2281	65	270	307.40	340.50	33.10	1.01	0.84	0.03
SFRD0175	Nova	433.0	6479625	518500	2282	79	270	377.34	399.01	21.67	2.58	1.03	0.08
		Inc	luding					381.63	384.54	2.91	7.11	1.22	0.20
SFRD0176	Nova	382.1	6479525	518435	2282	62	270	358.83	360.90	2.07	6.95	1.35	0.20
SFRD0178	Nova	441.9	6479725	518585	2285	63	270	411.56	431.33	19.77	4.62	1.86	0.14
SFRD0179	Nova	416.5	6479820	518560	2286	58	270	389.00	407.57	18.57	2.03	1.09	0.06
SFRD0185M	Nova	372.8	6479625	518392	2282	72	270	283.40	295.00	11.60	1.42	0.48	0.05
			and					316.58	363.21	46.63	2.57	0.95	0.08
		Inc	luding					334.01	347.84	13.83	6.14	2.58	0.19
SFRD0186	Nova	455.5	6479625	518500	2282	84	270	384.54	390.70	6.16	1.53	0.91	0.05
			and					409.24	418.17	8.93	2.27	1.12	0.08
SFRD0187	Nova	405.2	6479524	518435	2282	68	270	343.22	353.85	10.63	0.86	0.21	0.03
SFRD0188	Nova	441.9	6479725	518585	2285	68	270	416.23	424.99	8.76	2.92	1.35	0.09
SFRD0190M	Nova	285.7	6479575	518320	2284	61	270	269.01	274.01	5.00	2.52	0.67	0.08
SFRD0191	Nova	415.3	6479820	518560	2286	63	270	379.59	384.48	4.89	0.96	0.17	0.03
SFRD0192	Nova	330.8	6479775	518405	2282	60	270	295.60	301.31	5.71	0.90	0.85	0.03
SFRD0193	Nova	432.9	6479775	518565	2285	61	270	400.14	422.93	22.79	3.75	1.29	0.12
SFRD0195M	Nova	309.7	6479575	518320	2284	70	270	257.90	277.33	19.43	1.53	0.61	0.05
SFRD0196M	Nova	435.3	6479725	518585	2285	73	270	396.83	423.65	26.82	6.01	2.10	0.19
SFRD0197M	Nova	343.8	6479775	518405	2282	66	270	299.23	334.46	35.23	2.43	0.99	0.08
SFRD0199	Nova	414.7	6479820	518560	2286	68	270	383.80	398.07	14.27	6.58	2.84	0.20
SFRD0200M	Nova	426.9	6479775	518565	2285	67	270	401.31	410.21	8.90	5.50	2.38	0.16
SFRD0201	Nova	344.1	6479575	518320	2284	77	270	287.00	307.05	20.05	0.56	0.42	0.02
SFRD0202	Nova	357.5	6479775	518405	2282	72	270	309.47	344.29	34.82	2.51	0.95	0.10
SFRD0203	Nova	441.9	6479725	518586	2285	77	270	389.01	411.51	22.50	3.01	1.41	0.08
SFRD0205	Nova	405.1	6479575	518445	2281	63	270	341.51	352.39	10.88	4.41	0.65	0.13
SFRD0206	Nova	420.7	6479820	518560	2286	73	270	398.45	402.32	3.87	2.83	0.43	0.11
SFRD0207	Nova	421.1	6479775	518565	2285	72	270	405.60	412.20	6.60	3.64	0.99	0.09
SFRD0209M	Nova	181.1	6479525	518185	2287	62	270	149.39	159.84	10.45	4.32	1.21	0.14
SFRD0210	Nova	249.9	6479625	518285	2283	67	270	224.68	227.81	3.13	1.18	0.83	0.04
SFRD0211	Nova	361.1	6479775	518405	2282	78	270	312.00	358.12	46.12	1.46	0.79	0.05
SFRD0212M	Nova	396.7	6479575	518445	2281	70	270	366.27	3/8.71	12.44	0.48	0.22	0.02
SFRD0213	Nova	417.8	6479820	518561	2286	79	270	399.87	401.90	2.03	3.71	1.23	0.12
SFRD0214	Nova	307.0	6479820	518425	2283	61	270	0.00	0.00	nsi	NSI	0.00	0.00

F--

Hole No.	Zone	Total Depth	North	East	RL	Di p	Azim	From, m	To, m	Width, m	Ni, pct	Cu, pct	Co, pct
SFRD0215	Nova	269.7	6479625	518285	2283	73	270	253.01	258.60	5.59	5.49	1.37	0.16
SFRD0216	Nova	415.0	6479848	518570	2287	76	270	388.48	388.84	0.36	4.28	0.53	0.14
SFRD0218M	Nova	213.8	6479525	518186	2287	72	270	175.00	177.78	2.78	0.26	1.27	0.01
SFRD0219	Nova	337.2	6479820	518426	2283	68	270	282.00	319.38	37.38	2.05	0.41	0.06
SFRD0220	Nova	213.9	6479475	518190	2287	63	270	175.77	179.80	4.03	0.68	0.35	0.02
SFRD0221M	Nova	189.6	6479575	518200	2286	69	270	159.04	162.58	3.54	4.83	1.23	0.14
SFRD0222M	Nova	234.9	6479525	518186	2287	80	270	184.71	216.45	31.74	1.78	0.62	0.06
SFRD0224	Nova	403.0	6479575	518445	2281	75	270	361.26	383.00	21.74	4.37	1.15	0.13
SFRD0225	Nova	415.0	6479849	518570	2287	71	270	384.40	385.12	0.72	4.99	0.41	0.14
SFRD0226M	Nova	153.8	6479525	518145	2287	70	270	113.06	126.97	13.91	3.10	1.36	0.09
SFRD0228	Nova	233.1	6479475	518190	2287	71	270	195.12	195.83	0.71	0.52	0.16	0.01
SFRD0229M	Nova/Feeder	216.7	6479575	518200	2286	80	270	166.00	174.00	8.00	1.66	1.02	0.05
	1		and			r –		178.94	197.79	18.85	2.87	1.22	0.09
SFRD0230	Nova	358.3	6479820	518426	2283	73	270	311.90	334.43	22.53	1.02	0.47	0.03
SFRD0231	Nova	504.9	6479650	518661	2286	69	270	383.56	388.50	4.94	1.70	0.58	0.06
SFRD0232	Nova/Feeder	423.1	6479575	518446	2281	81	270	336.20	337.74	1.54	4.91	1.28	0.17
			and					375.55	386.83	11.28	0.69	0.42	0.02
			and					400.00	407.15	7.15	0.80	0.35	0.03
SFRD0234	Nova	312.7	6479525	518330	2285	57	270	280.63	282.91	2.28	1.08	0.24	0.04
SFRD0235	Nova	144.4	6479475	518124	2288	65	270	109.32	112.68	3.36	3.35	1.23	0.12
SFRD0236	Nova	420.9	6479700	518501	2283	70	270	348	401.26	53.26	1.49	0.54	0.05
SFRD0237M	Nova	334.1	6479699	518351	2282	72	270	280.24	329.76	49.52	1.12	0.66	0.04
SFRD0238	Nova	156.7	6479475	518124	2288	75	270	137.00	143.00	6.00	0.72	0.59	0.02
SFRD0239	Nova	336.8	6479525	518330	2285	68	270	-	-	-		1.52	0.11
SFRD0240M	Nova	110.4	6479475	518085	2288	//	270	71.50	82.81	11.31	3.69	1.52	0.11
SFRD0241	Nova	465.9	6479673	518584	2284	82	270	350.25	360.50	10.25	2.53	0.75	0.09
SFRD0242	Nova/Feeder	485.2	6479650	518662	2286	74	270	3/6.0	394.72	18.72	1.34	0.41	0.05
SFRD0243IVI	Nova	505.0	6479475	518085	2288	65	270	50.85	69.60	18.75	2.82	0.68	0.09
SFRD0245	Nova/Feeder	305.0	6479020	518051	2285	09	270	222.44	260.60	16.16		1.02	0.09
	Nova	104 5	6479724	518393	2282	55	270	323.44	65 60	40.10	2.73	1.02	0.08
SERD024710	Nova	360.6	6479575	518330	2285	74	270	47.55	03.00	18.05	1.20 NSI	0.09	0.04
SERD0249M	Nova	123.6	6479504	518110	2203	65	270	87.78	101 11	12 22	1.42	1.02	0.05
SERD0250	Nova	215.9	6479425	518177	2207	60	270	-	-	-	1.42 NSI	1.02	0.05
SFRD0348	Nova	218.7	6479750	518285	2282	70	270	-			NSI		
SFRD0349	Nova	234.7	6479800	518310	2282	70	270	-	-		NSI		
Hole No.	Zone	Total Depth	North	East	RL	Di p	Azi m	From, m	To, m	Width, m	Ni, pct	Cu, pct	Co, pct
SFRC0062	Conductor 2	123.0	6479499	520060	2280	80	90	-	-	-	NSI		
SFRC0063	Conductor 2	123.0	6479499	520061	2280	70	90	-	-	-	NSI		
SFRC0067	Conductor 2	150.0	6479599	520121	2281	80	90	-	-	-	NSI		
SFRC0073	Conductor 2	126.0	6479599	520127	2281	60	90	-	-	-	NSI		
SFRC0074	Conductor 2	150.0	6479700	520177	2282	80	90	-	-	-	NSI		
SFRC0075	Conductor 2	63.0	6479700	520179	2282	70	90	-	-	-	NSI		
SFRC0081	Conductor 3	150.0	6480870	519899	2298	60	0	-	-	-	NSI		
SFRC0082	Conductor 3	132.0	6480907	519994	2299	60	0	-	-	-	NSI		
SFRC0085	Conductor 3	144.0	6480947	520100	2299	75	0	-	-	-	NSI		
SFRD0064	Conductor 2	211.0	6479498	520066	2280	60	90	-	-	-	NSI		
SFRD0072	Conductor 2	247.1	6479599	520124	2281	70	90	-	-	-	NSI		
SFRD0080	Conductor 2	189.5	6479700	520181	2282	60	90	-	-	-	NSI		
SFRD0083	Conductor 3	418.1	6480905	519994	2299	75	0	-	-	-	NSI		
SFRD0084	Conductor 3	446.8	6480949	520100	2299	60	0	-	-	-	NSI		
SFRD0126	Tethys	723.1	6480192	518723	2292	74	270	-	-	-	NSI		
SFRD0127	Tethys	472.0	6480295	519026	2301	70	270	-	-	-	NSI		
SFRD0133	Tethys	374.0	6480290	519140	2303	70	270	212.57	213.75	1.18	1.44	0.31	0.08

Hole No.	Zone	Total Depth	North	East	RL	Di p	Azim	From, m	To, m	Width, m	Ni, pct	Cu, pct	Co, pct
			And					265.15	265.44	0.29	2.84	1.06	0.11
SFRD0138	Tethys	454.2	6480290	519146	2303	80	270	245.00	263.78	18.78	0.46	0.21	0.02
		Inc	luding				•	253.90	254.69	0.79	1.30	0.52	0.06
19			And					257.65	258.36	0.71	1.70	0.25	0.07
SFRD0139	The Eye	421.0	6478700	518349	2286	60	270	-	-	-	NSI		
SFRD0142	Tethys	433.0	6480298	519299	2301	70	270	-	-	-	NSI		
SFRD0157	The Eye	412.0	6480100	519052	2296	70	270	-	-	-	NSI		
SFRD0168	Tethys	502.1	6478698	518499	2285	60	270	-	-	-	NSI		
SFRD0169	Tethys	529.0	6480299	519499	2298	60	270	-	-	-	NSI		
SFRD0173	Tethys	493.0	6480401	519349	2298	60	270	-	-	-	NSI		
SFRD0177	The Eye	498.9	6479298	518500	2282	65	270	-	-	-	NSI		
SFRD0189	The Eye	498.7	6479101	518499	2282	65	270	-	-	-	NSI		
SFRD0194	Tethys	419.3	6480199	519149	2301	70	270	-	-	-	NSI		
SFRD0198	The Eye	502.5	6479101	518647	2280	65	270	-	-	-	NSI		
SFRD0204	The Eye	483.9	6480499	518599	2288	60	270	-	-	-	NSI		
SFRD0208	The Eye	473.4	6479500	518600	2281	60	270	-	-	-	NSI		
SFRD0217	The Eye	379.0	6480100	518899	2296	60	270	-	-	-	NSI		
SFRD0227	Conductor 3	271.0	6481060	520019	2297	70	180	-	-	-	NSI		
SFRD0233	The Eye	529.0	6480100	519250	2298	70	270	-	-	-	NSI		
SFRD0244	The Eye	724.1	6480500	519199	2298	60	270	-	-	-	NSI		
SFRD0255	The Eye	607.2	6479600	519050	2287	80	270	-	-	-	NSI		
SFRD0264	The Eye	531.9	6480000	519300	2298	70	270	-	-	-	NSI		
SFRD0271	The Eye	580.0	6480000	519500	2298	70	270	-	-	-	NSI		
SFRD0273	The Eye	557.6	6479900	519300	2297	70	270	-	-	-	NSI		
SFRD0275	The Eye	522.9	6479800	519150	2290	77	270	-	-	-	NSI		
SFRD0278	The Eye	484.0	6479900	519300	2295	78	270	-	-	-	NSI		
SFRD0284	The Eye	580.0	6479899	519298	2296	62	270	-	\frown	-	NSI		
SFRD0289	The Eye	518.0	6479500	518924	2285	62	270	-	- /	-	NSI		
SFRD0319	The Eye	574.1	6478800	518900	2280	75	90	-		-	NSI		
SFRD0327	The Eye	310.2	6478700	518160	2285	75	270	-	-	-	NSI		
SFRD0329	The Eye	487.3	6480150	518490	2295	90	270	-	, ,	-	NSI		
SFRD0333	The Eye	497.6	6479700	519450	2285	75	270	-	1-0	-	NSI		
SFRD0336	The Eye	454.1	6479850	519375	2285	75	270	-		-	NSI		
SFRD0339	The Eye	443.6	6479850	519525	2290	75	270	-	-	-	NSI		
SFRD0342	The Eye	511.0	6479550	519225	2290	75	270	-	-	-	NSI		
SFRD0343	The Eye	550.0	6479550	519225	2290	56	270	-	-	-	NSI		
SFRD0347	The Eye	429.9	6479550	519375	2285	75	270	-	-	-	NSI		
SFRD0350	The Eye	430.2	6478900	518500	2285	70	270	-	-	-	NSI		

The following section is provided to ensure compliance with the JORC (2012) requirements for the reporting of the Mineral Resource estimates for the Nova and Bollinger nickel deposits on mining tenement E28/1724:

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques		
Note: Due to the similarity of the deposit setting, procedures and estimation these tables present the combined Nova-Bollinger tabulation. All references to the Bollinger deposit are in bold font, and Nova is in normal font.	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	The Bollinger deposit was sampled using diamond drill holes (DD) on a nominal 25 m x 25 m to 50 m x 50 m grid spacing. A total of 72 DD holes were drilled for 35,935 m. Holes were generally angled towards grid west between -60° and -90° to optimally intersect the mineralised zones. The Nova deposit was sampled using Reverse Circulation (RC) and diamond drill holes (DD) on a nominal 25 m x 25 m grid spacing. A total of 15 RC and 163 DD holes were drilled for 2,910 m and 63,099 m respectively. Holes were generally angled towards grid west at varying angles to optimally intersect the mineralised zones.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used	Bollinger is defined by diamond drilling only, and uses the same measures employed at Nova for controls and sample representivity. The drill hole locations were picked up and downhole surveyed by survey contractors. Initial RC drilling identified the Nova target and diamond core was used to delineate the resource. The RC samples were collected by cone or riffle splitter. Diamond core was used to obtain high quality samples that were logged for lithological, structural, geotechnical, density and other attributes. Sampling was carried out under Sirius protocols and QAQC procedures as per industry best practice.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information	Diamond core is HQ and NQ2 size, sampled on geological intervals (0.2 m to 1.2 m), cut into half (NQ2) or quarter (HQ) core to give sample weights under 3 kg. Samples were crushed, dried and pulverised (total prep) to produce a sub sample for analysis by four acid digest with an ICP/OES, ICP/MS or FA/AAS (Au, Pt, Pd) finish. Diamond core is HQ (metallurgical holes) or NQ2 size, sampled on geological intervals (0.2 m to 1.3 m), cut into half (NQ2 or quarter (HQ met) core to give sample weights under 3 kg. Samples were crushed, dried and pulverised (total prep) to produce a sub sample for analysis by four acid digest with an ICP/OES, ICP/MS or FA/AAS (Au, Pt, Pd) finish. Reverse circulation drilling was used to obtain 1m samples from which 3 kg was pulverised (total prep) to produce a sub sample for assaying as above.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Diamond drilling accounts for 100% of the current drilling at Bollinger and comprises NQ2 or HQ sized core. Pre-collar depths range from 20 m to 84 m and hole depths range from 450 m to 667 m. The core was oriented using a Camtech orientation tool. Diamond drilling accounts for 96% of the drilling in the resource area and comprises NQ2 or HQ sized core. Pre-collar depths range from 6 m to 150 m and hole depths range from 144 m to 667 m. The core was oriented using a Camtech orientation tool with 71% of orientations rated as "good". RC drilling accounts for 4% of the total drilling and comprises 140 mm diameter face sampling hammer drilling. Hole depths range from 90 m to 280 m.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed	Diamond core and RC recoveries are logged and recorded in the database. Overall recoveries are >95% for Nova and Bollinger and there are no core loss issues or significant sample recovery problems.

Criteria	JORC Code explanation	Commentary
	Measures taken to maximise sample recovery and ensure representative nature of the samples	Diamond core at Nova and Bollinger is reconstructed into continuous runs on an angle iron cradle for orientation marking. Depths are checked against the depth given on the core blocks and rod counts are routinely carried out by the drillers. RC samples were visually checked for recovery, moisture and contamination.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	The Bollinger mineralisation is defined by diamond core drilling, which has high recoveries. The bulk of the Nova resource is defined by diamond core drilling, which has high recoveries. The massive sulphide style of mineralisation and the consistency of the mineralised intervals are considered to preclude any issue of sample bias due to material loss or gain.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Geotechnical logging at Nova and Bollinger was carried out on all diamond drillholes for recovery, RQD and number of defects (per interval). Information on structure type, dip, dip direction, alpha angle, beta angle, texture, shape, roughness and fill material is stored in the structure table of the database.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Logging of diamond core and RC samples at Nova and Bollinger recorded lithology, mineralogy, mineralisation, structural (DDH only), weathering, colour and other features of the samples. Core was photographed in both dry and wet form.
	The total length and percentage of the relevant intersections logged	All drillholes were logged in full, apart from rock roller diamond hole pre-collar intervals of between 20 m to 60 m depth (Bollinger) and 20 m to 60 m (Nova).
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Core for Nova and Bollinger was cut in half (NQ2) and quarter core (HQ) onsite using an automatic core saw. All samples were collected from the same side of the core.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	RC samples were collected on the rig using cone splitters. All samples in mineralised zones were dry.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The sample preparation of diamond core for Nova and Bollinger follows industry best practice in sample preparation involving oven drying, coarse crushing of the half core sample down to ~10 mm followed by pulverisation of the entire sample (total prep) using Essa LM5 grinding mills to a grind size of 85% passing 75 micron. The sample preparation for RC samples is identical, without the coarse crush stage.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Field QC procedures involve the use of certified reference material as assay standards, along with blanks, duplicates and barren washes. The insertion rate of these averaged 1:15 for both projects, with an increased rate in mineralised zones.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second- half sampling.	No field duplicates have been taken. Samples are selected to weigh less than 3kg to ensure total preparation at the pulverisation stage. Field duplicates were taken on 1m composites for RC, using a riffle splitter. One twinned diamond hole was drilled at Nova. This hole supported the location of the geological intervals intersected in the first drillhole (no assays were taken as this is a metallurgical hole).
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample sizes are considered to be appropriate to correctly represent the sulphide mineralisation at Bollinger based on: the style of mineralisation (massive sulphides), the thickness and consistency of the intersections, the sampling methodology and percent value assay ranges for the primary elements. The sample sizes are considered to be appropriate to correctly represent the sulphide mineralisation at Nova based on: the style of mineralisation (massive sulphides), the thickness and consistency of the intersections, the sampling methodology and percent value assay

ranges for the primary elements.

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	The analytical techniques used a four acid digest multi element suite with ICP/OES or ICP/MS finish (25 gram FA/AAS for precious metals). The analytical techniques used a four acid digest multi element suite with ICP/OES or ICP/MS finish (25 gram or 50 gram FA/AAS for precious metals). The acids used are hydrofluoric, nitric, perchloric and hydrochloric acids, suitable for silica based samples. The method approaches total dissolution of most minerals. Total sulphur is assayed by combustion furnace.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used to determine any element concentrations used in either resource estimate.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Sample preparation checks for fineness were carried out by the laboratory as part of their internal procedures to ensure the grind size of 85% passing 75 micron was being attained. One diamond hole had duplicates taken from the half core after coarse crushing and the results were within 3% of the original sample values. Laboratory QAQC involves the use of internal lab standards using certified reference material, blanks, splits and replicates as part of the in house procedures. Umpire laboratory campaigns with two other laboratories have been carried out as independent checks of the assay results using 201 pulp samples and standards sent to ALS , (Nova 2,590 samples) and these show good precision. Certified reference materials, having a good range of values, were inserted blindly and randomly. Results highlight that sample assay values are accurate and that contamination has been contained. The diamond drilled core pulp duplicates had more than 90% of its pairs with differences (half absolute relative differences or HARD values) below 10% (Ni, Cu, Co), which concurs with industry best practice results. Repeat or duplicate analysis for samples reveals that precision of samples is within acceptable limits
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Both the Managing and the Technical Director of Sirius has visually verified significant intersections in diamond core from Bollinger. Optiro has viewed the intersections of metallurgical core and checked core photos against the assay and geology logs. Optiro has visually verified significant intersections in diamond core as part of the resource estimation process.
F	The use of twinned holes.	No twin holes have been drilled at Bollinger to date. Two PQ and one HQ metallurgical holes have been drilled at Nova since March 2013 and the logging supports the interpreted geological and mineralisation domains. One hole at Nova was twinned - SFRD0117 and SFRD0117W1M. The results confirmed the initial intersection geology. The twin (suffixed W1M) was used as a metallurgical hole.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Primary data was collected for both projects using a set of standard Excel templates on toughbook laptop computers using lookup codes. The information was sent to ioGlobal for validation and compilation into a SQL database server.
	Discuss any adjustment to assay data.	No adjustments or calibrations were made to any assay data used in

	Criteria	JORC Code expla
	Location of data points	
)	Accuracy and quality of surveys us (collar and down-hole surveys), tre workings and other locations used estimation.
615		Specification of the grid system us
		Quality and adequacy of topograp
	Data spacing and distribution	Data spacing for reporting of Expl
		Whether the data spacing and dis to establish the degree of geologic continuity appropriate for the Min Ore Reserve estimation procedure applied.
		Whether sample compositing has
	Orientation of data in relation to geological structure	Whether the orientation of sampli sampling of possible structures an this is known, considering the dep
		If the relationship between the dri the orientation of key mineralised considered to have introduced a so should be assessed and reported ij
	Sample security	The measures taken to ensure san
	Audits or reviews	The results of any audits or review techniques and data.

Criteria	JORC Code explanation	Commentary
Location of data points	Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Hole collar locations for all holes were surveyed by Whelans Surveyors of Kalgoorlie using RTK GPS connected to the state survey mark (SSM) network. Elevation values were in AHD RL and a value of +2,000 m was added to the AHD RL by Sirius for local co-ordinate use. Expected accuracy is $+$ or $-$ 30 mm for easting, northing and elevation coordinates. Downhole surveys used single shot readings during drilling (at 18m, then every 30 m) and Gyro Australia carried out gyroscopic surveys using a Keeper high speed gyroscopic survey tool with readings every 5 m after hole completion. Stated accuracy is $+-0.25^{\circ}$ in azimuth and $+-0.05^{\circ}$ in inclination. QC involved field calibration using a test stand. Only gyro data is used in the resource estimate.
	Specification of the grid system used.	The grid system for Nova-Bollinger is MGA_GDA94, zone 51 (local RL has 2,000 m added to value). Local easting and northing are in MGA.
	Quality and adequacy of topographic control.	Topographic surface for Nova-Bollinger uses 2012 Lidar 50 cm contours.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	The nominal drillhole spacing is 25 m (northing) by 25 m (easting) in the core of the deposit, and is up to 50 m by 50 m on the margins. The nominal drillhole spacing is 25 m (northing) by 25 m (easting).
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The mineralised domains for Nova-Bollinger have demonstrated sufficient continuity in both geological and grade continuity to support the definition of Mineral Resources and Reserves, and the classifications applied under the 2012 JORC Code.
	Whether sample compositing has been applied.	Samples have been composited to one metre lengths for both projects , and adjusted where necessary to ensure that no residual sample lengths have been excluded (best fit).
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The deposit is drilled towards grid west at angles varying from -60° and -90° to intersect the mineralised zones at a close to perpendulcular relationship for the bulk of the deposit. The deposit is drilled to grid west, which is slightly oblique to the orientation of the mineralised trend; however the intersection angles for the bulk of the drilling are nearly perpendicular to the mineralised domains. Structural logging based on oriented core indicates that main sulphide controls are largely perpendicular to drill direction.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No orientation based sampling bias has been identified at Nova-Bollinger in the data at this point.
Sample security	The measures taken to ensure sample security.	Chain of custody is managed by Sirius. Samples for Nova-Bollinger are stored on site and either delivered by Sirius personnel to Perth and then to the assay laboratory, or collected from site by Centurion transport and delivered to Perth, then to the assay laboratory. Whilst in storage, they are kept on a locked yard. Tracking sheets have been set up to track the progress of batches of samples.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	A review of the sampling techniques and data was carried out by Optiro as part of each resource estimate and the database is considered to be of sufficient quality to carry out resource estimation. An internal system audit was undertaken by Sirius in November 2012.

Section 2 Reporting of Exploration Results

	Criteria	JORC Code explanation	Commentary
2	Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	Nova and Bollinger are located wholly within Exploration Licence E28/1724. The tenement is part of the Fraser Range JV between Sirius Gold Pty Ltd, a wholly owned subsidiary of Sirius Resources NL, and Ponton Minerals Pty Ltd. Sirius has a 70% interest in the tenement. The tenement sits within the Ngadju Native Title Claim (WC99/002).
		The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenement is in good standing and no known impediments exist.
	Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	No previous systematic exploration has been undertaken at the Nova or Bollinger prospects.
	Geology	Deposit type, geological setting and style of mineralisation.	The global geological setting is a Proterozoic aged gabbroic intrusion(s) within metasediments situated in the Albany Fraser mobile belt. It is a high grade metamorphic terrane. The sulphide mineralisation is related to, and part of, the intrusive event. The deposits are analogous to many mafic hosted nickel-copper deposits worldwide.
	Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length.	Refer to Annexure 1 in body of text.
	Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	All reported assays have been length and bulk density weighted. No top-cuts have been applied. A nominal 0.4% Ni lower cut-off is applied.
	F	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	High grade massive sulphide intervals internal to broader zones of sulphide mineralisation are reported as included intervals.
	1	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent values are used for reporting exploration results.
	Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	The Nova deposit is moderately east dipping in the west, flattening to shallow dipping in the east. The fans of drillholes are inclined between -54° and -90° to the west to allow intersection angles with the mineralized zones to approximate the true width. The Bollinger deposit is dominantly flat lying and is drilled to grid west with drill holes inclined between -60° and -90° . The intersection angles for the drilling appear to be close to perpendicular to the mineralised zones, therefore reported downhole intersections approximate true width.
	Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to Figure 1- Figure 3 in body of text.

Criteria	JORC Code explanation	Commentary
alanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All results are reported.
ther substantive xploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All samples are measured for their bulk density which in the Nova- Bollinger deposit range from 2.90 g/cm ³ to 4.66g/cm ³ . Multi element assaying is conducted routinely on all samples for a suite of potentially deleterious elements including Arsenic, Sulphur, Zinc and Magnesium. Geotechnical logging was carried out on all diamond drillholes for recovery, RQD and number of defects (per interval). Information on structure type, dip, dip direction, alpha angle, beta angle, texture, shape, roughness and fill material is stored in the structure table of the database.
urther work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive	Three dual purpose resource/metallurgical holes totalling 1,395 m were drilled at Bollinger for the purpose of preliminary sighter flotation and recovery test work on the sulphides by Strategic Metallurgy Pty. Ltd. Dedicated metallurgical drilling in June 2013 at Nova totalled 1,574 m to provide samples for a bulk metallurgical composite which will be used for liberation and recovery test work. The holes were drilled with PQ, HQ and NQ2 core sizes and whole core will be used. The PQ core is also to be used for comminution work. Two of these holes were also drilled to the east (down dip) to allow further geotechnical data to be collected from the hanging wall. Drilling is continuing at E28/1724 with sterilisation RAB drilling on 400 m by 100 m centres to the west of Nova.

Section 3 Estimation and Reporting of Mineral Resources

Criteria	JORC Code explanation	Commentary
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.	Data templates with lookup tables and fixed formatting are used for logging, spatial and sampling data at Nova-Bollinger . Data transfer is electronic via e-mail. Sample numbers are unique and pre-numbered bags are used. These methods all minimise the potential of these types of errors.
F	Data validation procedures used.	Data validation checks are run by database management consultancy "ioGlobal" using their proprietary software ("ioHub"). ioGlobal have their own database model with a production and quarantine database for each client. Data is validated from quarantine to upload using a set of validation rules developed by Sirius and ioGlobal. Data for Nova-Bollinger is stored in a single database.
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	Mark Drabble (Principal Consultant - Optiro), who is acting as Competent Person, viewed the metallurgical drill core at AMMTEC on 28 th June. Optiro carried out a site visit to the Nova deposit on the 21 st of February. Mark Drabble inspected the deposit area, the core logging and sampling facility and density measurement area. During this time, notes and photos were taken along with discussions were held with site personnel regarding the available drill core and procedures. Diamond core was also viewed in the Sirius offices in Perth on three occasions. A number of minor recommendations were made on procedures but no major issues were encountered.
	If no site visits have been undertaken indicate why this is the case.	Not applicable

The confidence in the geological interpretation of Nova and Bollinger is considered good. The global geological setting is a gabbroic intrusion(s) within metasediments within a high grade metamorphic terrane. The sulphide mineralisation is related to, and part of, the intrusive event. The Bollinger deposit appears to be intimately related to the Nova deposit and represents part of a number of intrusive events that transgress sedimentary layers to the immediate east of Nova. The Nova-Bollinger deposit appears similar in style to many mafic hosted nickel-copper deposits. Petrography and litho geochemistry has been used to assist identification of the rock type subdivisions applied in the interpretation process. The Nova-Bollinger deposit is generally tabular in geometry, with clear boundaries which define the mineralised domains. Infill drilling has supported and refined the model and the current interpretation is thus considered to be robust.
Petrography and litho geochemistry has been used to assist dentification of the rock type subdivisions applied in the interpretation process. The Nova-Bollinger deposit is generally tabular in geometry, with clear boundaries which define the mineralised domains. Infill drilling has supported and refined the model and the current interpretation is thus considered to be robust.
The Nova-Bollinger deposit is generally tabular in geometry, with clear boundaries which define the mineralised domains. Infill drilling has supported and refined the model and the current interpretation is thus considered to be robust.
domains. Key features are sulphide content, form and multi-element geochemistry relationships.
The Bollinger disseminated zone has small intervals of massive sulphide that required sub-domaining to constrain the estimation of metal around these samples. The Nova lower breccia zone has mixed grade populations due to variable clast versus massive sulphide content. This can be seen in the MgO and nickel grade relationships and influences the local rather than the global grade estimate. These factors have been addressed via the resource estimation process applied.
The Bollinger Mineral Resource area abuts the Nova area and has dimensions of 300 m (north) by 400 m (east) and 125 m (elevation). The Bollinger resource has a maximum depth of 450 m below surface. The Nova and Bollinger deposits are conjoined by a feeder zone. The two resources areas are arbitrarily split along a North- South line defined by the 518,600 mE MGA grid line. The Nova Mineral Resource starts at a depth of 40 m below surface. The Resource area has dimensions of 450 m (north) by 550 m (east) and 400 m (elevation).
There are a constrained and a constraint of the

Commentary

Criteria Estimation and modelling techniques

Grade estimation using Ordinary Kriging (OK) was completed for Nova and Bollinger. Nova was partially (3 domains) re-estimated for this update. CAE Studio 3 software was used to estimate six elements; Ni%, Cu%, Co%, Fe%, Mg (ppm) and S%, as well as bulk density. Drill grid spacing ranges from 25 m to 50 m. Drillhole sample data was flagged using domain codes generated from three dimensional mineralisation domains and oxidation surfaces. Sample data was composited per element to a one metre downhole length using a best fit-method. There were consequently no residuals. Intervals with no assays were excluded from the compositing routine. The influence of extreme sample distribution outliers was reduced by top-cutting where required. The top-cut levels were determined using a combination of top-cut analysis tools (grade histograms, log probability plots and CVs). Top-cuts were reviewed and applied on a domain basis. Due to the folded nature of the Lower Massive domain at Nova and the Massive domain at Bollinger, an industry accepted unfolding routine was carried out using CAE Studio 3 software. Variography The nature and appropriateness of the estimation and grade estimation of these domains was completed in unfolded technique(s) applied and key assumptions, including space. treatment of extreme grade values, domaining, It was noted that the Lower Massive domain at Nova and the interpolation parameters and maximum distance of Massive and the Carapace domain at Bollinger showed evidence of extrapolation from data points. If a computer assisted sub-populations within the domains which were not able to be estimation method was chosen include a description of wireframed separately at the available grid spacing. A categorical computer software and parameters used. indicator approach using three grade bins at Nova and two grade bins within the Bollinger domains was considered appropriate to sub-domain these populations. It was interpreted that these subdomains represented massive, breccia and/or low-grade mineralisation. Several domains which demonstrated a moderate degree of folding at Bollinger were estimated using flattening routines or Dynamic Anisotropy in order to optimise the grade estimation. Variography of these domains were completed in 2D space. For all domains, directional variograms were modelled using traditional variograms or normal scores transformations. Nugget values are moderate to high (Nova <0.5, Bollinger <0.3). Grade continuity was variable in either resource depending on mineralisation styles and ranged from 50 m to 170 m in the major direction. Small or poorly sampled domains where robust variography could not be generated used the variography of a geologically similar domain. Estimation searches for all elements were set to the ranges of the nickel variogram for each domain. This is a maiden Mineral Resource for the Bollinger deposit with an The availability of check estimates, previous estimates update for Nova Resource. No previous mining activity has taken and/or mine production records and whether the place in this area. Check estimates have been run by Sirius during the Mineral Resource estimate takes appropriate account development drilling of the deposit and have produced very similar of such data. global estimates for the Nova-Bollinger deposit. The main by-product of the resource is cobalt and recovery will be as The assumptions made regarding recovery of bya by-product with the pentlandite. This is dependent on any off take products. agreement and may realise a credit. Estimation of deleterious elements or other non-arade The non grade elements estimated are Fe%, Mg% and S%.

variables of economic significance (e.g. sulphur for acid mine drainage characterisation).

JORC Code explanation

Commentary A single block model for Nova-Bollinger was constructed using an 8 mE by 12 mN by 4 mRL parent block size with subcelling to 1 mE by 1 mN by 0.25 mRL for domain volume resolution. All estimation was completed at the parent cell scale. Kriging neighbourhood analysis was carried out for Nova in order to optimise the block size, search

distances and sample numbers used.

used.

Discretisation was set to 4 by 6 by 2 for all domains.

and lower resource confidence classifications.

with the disseminated domain was used.

The size of the search ellipse per domain was based on the nickel variography, due to the moderate-strong correlation of nickel with the other elements. Three search passes were used for each domain. In general, the first pass used the ranges of the nickel variogram and a minimum of 8 and maximum of 30 samples. In the second pass the search ranges were changed to double the ranges of the nickel

variogram, maintaining a minimum of 8 samples. The third pass

ellipse was extended to 3 times the range of the variograms for Bollinger and 5 times for Nova. A minimum of 4 and a maximum of 30 samples were applied. A maximum of 5 samples per hole were

In the majority of domains, most blocks were estimated in the first pass (particularly for the main domains); however, some more sparsely-sampled domains were predominantly estimated on the second or third pass. Un-estimated blocks, i.e. those outside the range of the third pass, were assigned the estimated domain mean

Hard boundaries were applied between all estimation domains. excluding the alteration envelope at Nova where a soft boundary

No selective mining units were assumed in this estimate.

Neural networking (3D spatial analysis) was used to determine relationships between the variables at Nova in the initial estimate. These were then incorporated into the domain interpretation process. Strong positive correlation exists between nickel and all

other elements estimated, with the exception of copper. The correlation between nickel and copper is variable; based on domain and mineralisation style. All elements within a domain used the same

The geological interpretation correlated the sulphide mineralisation to geological and structural elements at Nova- Bollinger. The

structural framework and understanding of primary magmatic and remobilised mineralisation was used to refine the mineralisation domains. These domains were used as hard boundaries to select

Statistical analysis showed the populations in each domain at Nova

and Bollinger to generally have a low coefficient of variation but it was noted that a very small number of estimation domains included

Validation of the block model carried out a volumetric comparison of the resource wireframes to the block model volumes. Validating the

estimate compared block model grades to the input data using tables of values, and swath plots showing northing, easting and elevation

sample selection routine for block grade estimation.

sample populations for variography and estimation.

outlier values that required top-cut values to be applied.

comparisons. Visual validation of grade trends and metal distributions was carried out. No mining has taken place; therefore

	Criteria	JORC Code explanation
)	
		In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.
\bigcirc		
((D)		
		Any assumptions behind modelling of selective mining units.
		Any assumptions about correlation between variables.
	F	Description of how the geological interpretation was used to control the resource estimates.
	1	Discussion of basis for using or not using grade cutting or capping.
		The process of validation, the checking process used, the comparison of model data to drillhole data, and use of reconciliation data if available.
	Moisture	Whether the tonnaaes are estimated on a dry basis or

Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.

The tonnages are estimated on a dry basis.

no reconciliation data is available.

Criteria	JORC Code explanation
Cut-off parameters	
D	The basis of the adopted cut-off grade(s) or quality parameters applied
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.
Metallurgical factors	
or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should
	be reported with an explanation of the basis of the metallurgical assumptions made.
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made
Bulk density	
	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples.

A nominal grade cut-off of 0.4% Ni appears to be a natural grade boundary between disseminated and trace sulphides for the Nova-Bollinger mineralised system. This cut-off grade was used to define the mineralised envelope within which the higher grade sub domains were interpreted.

Commentary

Mining of the Nova-Bollinger deposit will be dominantly by underground mining methods involving mechanised mining techniques. The geometry of the deposit will make it amenable to mining methods currently employed in many underground operations in similar deposits around the world. No assumptions on mining methodology have been made.

Preliminary metallurgical testing has commenced on holes considered representative of the main model domains. Preliminary sighter metallurgical flotation testwork by Strategic Metallurgy Pty. Ltd. indicates recoveries of over 95% for both nickel and copper to a bulk concentrate. An extensive metallurgical development program has been initiated to optimise the flotation flowsheet. To this end, 23 HQ diameter drillholes have been designated for metallurgical sampling and half core is in cold storage pending further testwork. Two PQ, 1 HQ and 4 NQ wedges have been drilled to create a bulk composite and allow comminution testwork. Preliminary sighter flotation tests conducted by Strategic Metallurgy Pty. Ltd. on Bollinger samples yield recoveries of 99% Ni and 99% Cu in massivebreccia mineralisation and 93% Ni and 96% Cu in disseminated mineralisation.

No assumptions have been made and these will form part of the scoping study which commenced in April 2013.

Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples.	Bulk density has been estimated from density measurements carried out on 7,950 (Bollinger) and 12,429 (Nova) full length core samples using the Archimedes method of dry weight versus weight in water. The use of wax to seal the core was trialled but was shown to make less than 1% difference. Density standards were used for QAQC using an aluminium billet, and pieces of core with known values. The density ranges for the mineralised units are listed below: Massive sulphides 2.0 to 4.7 g/cm ³ (average: 3.9 g/cm ³), net textured sulphides 3.0 to 4.4 g/cm ³ (average: 3.6g/cm ³) and disseminated sulphides 2.5 to 4.6 g/cm ³ (average: 3.5 g/cm ³).
The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit,	The host geology comprises high grade metamorphic rocks that have undergone granulite facies deformation. The rocks have been extensively recrystallised and are very hard and competent. Vugs or large fracture zones are generally annealed with quartz or carbonate in breccia zones. Porosity in the mineralised zone is low. Sensitivity to these issues is thus low.
Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	The bulk density values were estimated using the nickel search parameters and 7,950 plus 12,429 density samples taken within the geological domains.

Criteria	JORC Code explanation	Commentary	
Classification	The basis for the classification of the Mineral Resources into varying confidence categories	The Mineral Resource classification at Bollinger is based on good confidence in the geological and grade continuity, along with 25 m by 25 m spaced drillhole density in the core and bulk of the deposi and 50m x 50m on the margins. The Mineral Resource classification at Nova is based on good confidence in the geological and grade continuity, along with 25 m k 25 m spaced drillhole density. Estimation parameters including Kriging efficiency have been utilised during the classification process	
	Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).	The input data is comprehensive in its coverage of the mineralisation and does not favour or misrepresent in-situ mineralisation. Geological control at Nova- Bollinger consists of a primary mineralisation event modified by metamorphism and structural events. The definition of mineralised zones is based on a high level geological understanding producing a robust model of mineralised domains. This model has been confirmed by infill drilling which supported the initial interpretation. The validation of the block model shows good correlation of the inpud data to the estimated grades.	
	Whether the result appropriately reflects the Competent Person's view of the deposit.	The Mineral Resource estimate appropriately reflects the view of the Competent Persons.	
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	This is the maiden Bollinger Mineral Resource estimate and an update of the Nova March 2013 Mineral Resource estimate. The Nova resource was reviewed by Sirius and Optiro and some improvements made to the geological domains as a result of the new information at Bollinger.	
	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate	The relative accuracy of the Mineral Resource estimate is reflected the reporting of the Mineral Resource as per the guidelines of the 2012 JORC Code.	
	The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used	The statement relates to global estimates of tonnes and grade.	
	These statements of relative accuracy and confidence of the estimate should be compared with production data, where available	No production data is available.	

Competent Persons statement

The information in this report that relates to Exploration Results is based on information compiled by Jeffrey Foster and Andy Thompson who are employees of the company and fairly represents this information. Mr Foster is a member of the Australasian Institute of Mining and Metallurgy. Mr Thompson is a member of the Australasian Institute of Mining and Metallurgy. Mr Foster and Mr Thompson have sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as Competent Persons as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Foster and Mr Thompson consent to the inclusion in this report of the matters based on information in the form and context in which it appears. Exploration results are based on standard industry practices, including sampling, assay methods, and appropriate quality assurance quality control (QAQC) measures. Reverse circulation (RC), aircore (AC) and rotary air blast (RAB) drilling samples are collected as composite samples of 4 or 2 metres and as 1 metre splits (stated in results). Mineralised intersections derived from composite samples are subsequently re-split to 1 metre samples to better define grade distribution. Core samples are taken as half NQ core or quarter HQ core and sampled to geological boundaries where appropriate. The quality of RC drilling samples is optimised by the use of rifel and/or cone splitters, dust collectors, logging of various criteria designed to record sample size, recovery and contamination, and use of field duplicates to measure sample representivity. For soil samples, PGM and gold assays are based on an aqua regia digest with Inductively Coupled Plasma optical emission spectrometry (ICPOES) or atomic absorption spectrometry (AAS) finish. In the case of reconnel samples, PGM and gold assays are based on lead or nickel sulphide collection fire assay

finish, base metal assays are based on a four acid digest and inductively coupled plasma optical emission spectrometry (ICPOES) and atomic absorption spectrometry (AAS) finish, and where appropriate, oxide metal elements such as Fe, Ti and Cr are based on a lithium borate fusion digest and X-ray fluorescence (XRF) finish. In the case of strongly mineralised samples, base metal assays are based on a special high precision four acid digest (a four acid digest using a larger volume of material) and an AAS finish using a dedicated calibration considered more accurate for higher concentrations. Sample preparation and analysis is undertaken at Minanalytical, Genalysis Intertek and Ultratrace laboratories in Perth, Western Australia. The quality of analytical results is monitored by the use of internal laboratory procedures and standards together with certified standards, duplicates and blanks and statistical analysis where appropriate to ensure that results are representative and within acceptable ranges of accuracy and precision. Where quoted, nickel-copper intersections are based on a minimum threshold grade of 0.5% Ni and/or Cu, and gold intersections are based on a minimum gold threshold grade of 0.1g/t Au unless otherwise stated. Intersections are length and density weighted where appropriate as per standard industry practice. All sample and drill hole co-ordinates are based on the GDA/MGA grid and datum unless otherwise stated. Exploration results obtained by other companies and quoted by Sirius have not necessarily been obtained using the same methods or subjected to the same QAQC protocols. These results may not have been independently verified because original samples and/or data may no longer be available.

The information in this report that relates to Mineral Resource Estimation is based on information compiled by Mr Mark Drabble, Principal Consultant Geologist – Optiro Pty Ltd, Mr Andrew Thompson, a full time employee and General Manager Resources and Geology of Sirius Resources NL and Mr Jeffrey Foster, a full time employee and Technical Director of Sirius Resources NL and fairly represents this information. Mr Drabble, Mr Thompson and Mr Foster are members of the Australasian Institute of Mining and Metallurgy and have sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code). Mr Drabble, Mr Thompson and Mr Foster consent to the inclusion in this report of the matters based on their information in the form and context in which they appear.

